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Abstract 

The investigation into intelligent acceptance systems for distribution automation terminals has spanned over a dec-
ade, furnishing indispensable assistance to the power industry. The integration of cutting-edge edge computing 
technologies into these systems has presented efficacious, low-latency, and energy-efficient remedies. This paper pro-
vides a comprehensive review and synthesis of research achievements in the field of intelligent acceptance systems 
for distribution automation terminals over the past few years. Firstly, this paper introduces the definition, composition, 
functions, and significance of distribution automation terminals, analyzes the advantages of employing edge com-
puting in this domain, and elaborates on the design and implementation of intelligent acceptance systems based 
on edge computing technology. Additionally, this paper examines the technical challenges, security, and privacy 
issues associated with the application of edge computing in intelligent acceptance systems and proposes practical 
solutions. Finally, this paper summarizes the contributions and significance of this paper and provides an outlook 
on future research directions. It is evident from the review that the integration of edge computing has effectively 
alleviated these challenges, but new issues await resolution.
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Introduction
With the continuous development and modernization 
of the power industry, the intelligent acceptance system 
for distribution automation terminals plays a critical role 
in ensuring the reliability and security of power supply 
[1]. The intelligent acceptance system for distribution 
automation terminals is a system that utilizes advanced 
technologies and algorithms to automate the inspection, 
testing, and evaluation of distribution terminal equip-
ment. Traditional acceptance of distribution terminals 

is typically performed manually, relying on human inter-
vention for the coordination and acceptance between 
field terminals and distribution control centers [2]. Field 
personnel manually simulate analog quantities and 
switch positions according to signal definitions, commu-
nicate with dispatch center personnel via telephone on 
a per-signal basis, and rely on dispatch center personnel 
to observe system responses and analyze and judge the 
acceptability of each signal change.

Therefore, traditional manual methods suffer from 
issues such as lengthy coordination times, a lack of 
standardization in the acceptance testing process, a lack 
of rigor and precision in acceptance management, sig-
nificant burdens on main station personnel during peak 
periods, and limited accuracy. To overcome the limita-
tions of traditional manual methods, the introduction of 
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an intelligent acceptance system for distribution auto-
mation terminals is crucial. This system automates vari-
ous testing and inspection tasks, enhancing efficiency 
and accuracy. It can rapidly identify potential issues and 
defects, providing timely feedback. Automation reduces 
manual intervention, cutting labor costs, and ensuring 
consistent acceptance processes. By automating multiple 
testing and inspection tasks, the intelligent acceptance 
system for distribution automation terminals signifi-
cantly shortens the acceptance duration, promptly iden-
tifies potential issues and defects, and provides timely 
feedback. Furthermore, it enhances accuracy by employ-
ing advanced algorithms and sensors to precisely evaluate 
equipment performance, minimizing human influence. 
Consequently, the intelligent acceptance system signifi-
cantly enhances the quality and reliability of distribution 
terminal equipment.

The intelligent acceptance system of distribution auto-
mation terminals faces challenges like delays [3], net-
work loads [4], data security [5], and system robustness 
[6]. Researchers and engineers are increasingly adopting 
edge computing technology to address these challenges. 
The intelligent acceptance system of distribution automa-
tion terminals typically involves processing and analyz-
ing a large amount of data, and moving computational 
tasks from traditional centralized servers to mobile edge 
nodes near the terminal devices can significantly reduce 
data transmission delays. This enables real-time data pro-
cessing and decision-making, thereby improving the effi-
ciency and responsiveness of the acceptance process.

Traditional intelligent acceptance systems usually 
require transmitting a large amount of data to remote 
servers for processing and analysis. This can increase the 
network transmission load and potentially impact the 
performance of other network services. By introducing 
mobile edge computing, the intelligent acceptance sys-
tem of distribution automation terminals can perform 
data processing and analysis locally, thereby alleviat-
ing the network load and enhancing the overall system’s 
reliability and stability [7]. The intelligent acceptance 
system of distribution automation terminals involves a 
vast amount of sensitive data, such as power equipment 
status and power quality. Storing and processing data at 
the edge nodes can reduce the risks associated with data 
transmission, minimizing the possibilities of data tam-
pering or leakage. Edge computing offers a more secure 
and controllable data processing environment, contribut-
ing to safeguarding data security and privacy. This system 
often operates in complex environments with unstable 
network conditions. By conducting data processing and 
decision-making at the edge nodes, the system can bet-
ter cope with network interruptions or unstable connec-
tions, ensuring the normal operation of the system. This 

distributed edge computing architecture provides higher 
system robustness and reliability.

Edge computing technology shifts computational and 
data processing tasks from centralized servers to edge 
nodes near terminal devices [8]. This distributed archi-
tecture offers low-latency data processing, reduces net-
work load, and improves system reliability [9]. Leveraging 
edge computing technology, the intelligent acceptance 
system of distribution automation terminals can better 
address challenges related to large data volumes, real-
time requirements, and security [10–13]. These advan-
tages make mobile edge computing an ideal choice for 
achieving efficient, reliable, and secure intelligent accept-
ance systems. These intelligent grid solutions provide 
reliability in power distribution and transmission for 
developing countries, such as maintaining large-scale 
power infrastructure without excessive costs [14]. How-
ever, there is currently a relatively limited amount of lit-
erature that provides a comprehensive overview of edge 
computing technologies applied to intelligent acceptance 
systems for distribution automation terminals. Although 
the application of edge computing technology in the 
power industry is continuously growing, the research on 
its specific use in intelligent acceptance systems for dis-
tribution automation terminals is still in its early stages. 
Existing research primarily focuses on the infrastructure, 
control strategies, data acquisition, and processing of dis-
tribution automation systems, and the potential of edge 
computing technology in intelligent acceptance systems 
has not been fully explored and investigated. Therefore, 
the aim of this paper is to address this research gap and 
provide a comprehensive review of the latest advance-
ments and applications of edge computing technology in 
intelligent acceptance systems for distribution automa-
tion terminals, along with the challenges and prospects 
that lie ahead.

The contributions of this paper are as follows: Firstly, it 
fills the research gap in the literature regarding the use of 
edge computing technology in intelligent acceptance sys-
tems for distribution automation terminals. By provid-
ing a comprehensive review of the latest advancements 
and applications, it offers a profound understanding and 
insights into this field. Secondly, from various perspec-
tives and through concrete case studies and performance 
evaluations, it reveals the practical potential of edge 
computing technology in intelligent acceptance systems. 
These insights shed light on its real-world applications 
and benefits. Thirdly, the paper addresses the techni-
cal challenges, security, and privacy issues faced by edge 
computing technology in intelligent acceptance systems. 
It also explores possible solutions and future research 
directions, offering valuable guidance for both academia 
and the industry. Lastly, the in-depth review of the latest 
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developments in edge computing technology for intelli-
gent acceptance systems in distribution automation ter-
minals holds practical significance for professionals and 
researchers in the power industry. It provides valuable 
technological references and guidance for the intelligent 
upgrading and development of power systems.

The remainder of this paper is structured and organ-
ized as follows. In Overview of Distribution Automation 
Terminals (DAT) section, we provide a comprehensive 
introduction to distribution automation terminals. Edge 
computing for DAT’s intelligent acceptance system sec-
tion elaborates on the application of edge computing 
technology in intelligent acceptance systems for distribu-
tion automation terminals. Our focus on the design and 
implementation of intelligent acceptance systems based 
on edge computing technology is presented in Design 
and implementation of edge computing-based intelligent 
acceptance system section. In Challenges and Limitations 
of Edge Computing in DAT’s Intelligent Acceptance Sys-
tem section, we analyze the technical challenges, security, 
and privacy issues faced by edge computing technology 
in intelligent acceptance systems, and propose possi-
ble solutions and future research directions. Finally, we 
conclude the paper and provide an outlook on future 
research directions.

Overview of distribution automation terminals 
(DAT)
In this section, we provide an overview of distribution 
automation terminals, a critical component in power 
distribution systems. We define distribution automa-
tion terminals and highlight its functions, emphasizing 
its importance in ensuring efficient and reliable power 
distribution.

Definition
An automatic process refers to a task that is executed in 
an automated fashion, leading to enhanced operational 
efficiency. The notion of distribution automation was ini-
tially introduced in the 1970s [15]. The Institute of Elec-
trical and Electronics Engineers (IEEE) has provided a 
definition for Distribution Automation Systems (DAS) 
as systems that empower electric utilities to remotely 
monitor, coordinate, and operate distribution compo-
nents in real time. [16].With the rapid economic devel-
opment, there is an increasing demand from users for 
power supply quality and reliability. Distribution auto-
mation systems utilize modern computer, communica-
tion, and network technologies to achieve automation 
in medium-voltage distribution networks, effectively 
improving power supply quality and production manage-
ment efficiency. Distribution automation terminals trans-
mit information to the substation or master station of 

the distribution automation system, while receiving con-
trol commands from the substation or master station to 
remotely operate distribution switches, thereby enabling 
real-time monitoring, fault detection, fault isolation, and 
network reconfiguration of the distribution network. In 
recent years, distribution automation has gained signifi-
cant attention from national power grids and research 
and production units.

The distribution automation system consists of three 
parts: the master station, communication network, and 
terminal devices [17]. Distribution automation terminals 
are mainly used for monitoring and controlling ring main 
units, reclosers, pole-mounted sectional switches, distri-
bution transformers, and other components in medium-
voltage distribution networks. They communicate with 
the distribution automation master station to provide the 
necessary data for distribution operation, control, and 
management. The performance and reliability of these 
terminals directly influence the effectiveness of the entire 
system [18].

Types
Terminal units are grouped into three types: distribu-
tion terminal unit (DTU), feeder terminal unit (FTU), 
and transformer terminal unit (TTU). They are utilized 
to oversee operational data linked to feeders, distribution 
switching stations, and distribution transformers, corre-
spondingly [19].

The first type is the monitoring terminal for switch-
gear, public, and user distribution substations, commonly 
referred to as the DTU terminal. Its basic structure is 
similar to that of traditional remote data terminals, 
mainly sharing structural similarities, without the need 
for additional protective devices. This approach saves 
space and maximizes the utilization of limited resources. 
Unlike traditional remote data terminals, the DTU termi-
nal features editable logic control functionality, allowing 
for remote unit monitoring and operation independently 
of the master station. Additionally, fault detection func-
tionality is added to the traditional terminal technology, 
enabling the issuance of commands and automatic isola-
tion of the area with faults when the main unit experi-
ences a failure, ensuring power stability [20]. The DTU 
terminal typically does not have a backup power supply, 
which simplifies its structure. Furthermore, due to its 
protective functionality, there is no need to design opera-
tional control loops, greatly improving the structural 
flexibility of the terminal equipment, making it easier to 
maintain and manage. The schematic representation of 
the decentralized distributed DTU structure is shown in 
the Fig. 1.

The second type is the monitoring terminal for sec-
tionalizing switches along distribution feeders, known as 
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the feeder terminal unit (FTU) [21]. The feeder terminal 
unit is classified into two types: one type is suspended 
on outdoor overhead line poles, known as pole-mounted 
feeder terminal switches. These devices are typically 
made from corrosion-resistant materials and are housed 
in rainproof, moisture-proof, and dust-proof enclosures 
due to the harsh outdoor environment they operate in. 
The other type is used in ring main units, and their struc-
ture and the number of feeder terminals used may dif-
fer depending on the specific environmental conditions. 
Additionally, the installation methods vary between 
the two cases. If the outdoor ring main unit has condi-
tions suitable for installing feeder terminal units within 
the unit, there is no need for specialized enclosures. 

Conversely, protective enclosures with the required func-
tionality are used. However, if space constraints exist 
within the ring main unit for accommodating the moni-
toring and control equipment, there is no need to use 
specialized enclosures, which saves space. The configura-
tion of the pole-mounted feeder terminal unit is shown 
in the Fig. 2.

The third type is the monitoring terminal for distribu-
tion transformers, commonly known as the transformer 
terminal unit (TTU). The TTU is an effective device 
used in the substation automation system to monitor the 
operational status of transformers. It is a crucial compo-
nent of the substation automation system, installed as a 
remote terminal at the bottom of the system to monitor 

Fig. 1  The structure of a decentralized distributed Terminal Unit (DTU)

Fig. 2  The composition of a pole-mounted Feeder Terminal Unit (FTU)
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real-time operating parameters of distribution trans-
formers [22]. Its primary function is to record and detect 
the load conditions of distribution transformers. The 
TTU can promptly upload the collected data and report 
the condition of the distribution system based on the 
actual situation. The structure of the transformer ter-
minal unit is relatively simple and compact, without the 
need for a battery backup. If the TTU is installed out-
doors, a protective enclosure made of corrosion-resistant 
materials is required. The basic structure of the TTU is 
depicted in the Fig. 3.

Components
The distribution automation terminal primarily consists 
of five components: the central monitoring unit, the 
human-machine interface module, the operation control 

loop, the communication terminal, and the power mod-
ule [23], as depicted in Fig. 4.

Distribution automation terminals are centered around 
the central monitoring unit, which performs critical 
functions including the acquisition of analog and digital 
input signals, fault detection, calculation of vital opera-
tional parameters like voltage, current, and active power, 
generation of control signals, and facilitating remote 
communication. These distribution automation terminals 
currently employ a platform-based and modular design 
for their output and communication interfaces. This 
design offers scalability and configurability, enabling tai-
loring to specific requirements.

The communication terminal, also known as a com-
munication adapter, establishes a connection between the 
monitoring unit and the distribution network automation 

Fig. 3  Basic structure diagram of transformer terminal unit (TTU)

Fig. 4  The basic components of a distribution automation terminal
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communication medium. It can be connected via the moni-
toring unit’s Ethernet interface or RS232 serial interface. 
Different types of communication terminals are available, 
including fiber optic terminals, wireless terminals, modems 
(for analog channels), and carrier terminals, depending on 
the communication equipment channel type. The opera-
tion control circuit can be utilized in FTU (Feeder Terminal 
Unit) and requires manual control buttons. This device aids 
operators in understanding the switch status through cir-
cuit displays based on the switch positions.

The power module supplies various DC power sources 
required by the distribution terminal circuit. For DTU 
(Distribution Terminal Unit), the external power source 
is typically obtained from the AC 220  V utility power 
within the switchgear. In the event of a utility power fail-
ure, an uninterruptible power supply (UPS) is utilized as 
a backup power source. For TTU (Transformer Terminal 
Unit), the power input is derived from the low-voltage 
side output of the distribution transformer. In the case 
of FTU, since there is generally no dedicated AC 220 V 
power supply along the distribution lines, voltage trans-
formers are commonly used to provide voltage measure-
ment signals and power the FTU simultaneously. The 
FTU power supply should be equipped with a storage 
battery to ensure uninterrupted power supply to the ter-
minal’s circuit during line power outages and to provide 
power for switch operations.

Functions
The functional requirements of distribution automation 
terminals vary depending on the monitoring objects and 
application scenarios. Therefore, in practical engineering, 

it is necessary to make choices regarding the following 
functions based on specific application requirements 
[24]. The primary functions of the distribution automa-
tion terminal are illustrated in Fig. 5.

The Supervisory Control and Data Acquisition 
(SCADA) function represents the “three remotes” 
(telemetry, telecontrol, and telecommunication) of the 
traditional Remote Terminal Unit. The distribution ter-
minal should be able to measure electrical quantities 
reflecting the system’s imbalance under normal operating 
conditions, such as voltage, current, active power, reac-
tive power, apparent power, and power factor. It should 
also be capable of accessing direct current input to moni-
tor the voltage and supply current of the backup battery. 
Telecommunication mainly involves accessing signals 
from auxiliary contacts of distribution switches, energy 
storage unit’s normal operation signal, and so on. Tele-
control includes outputs for closing and tripping distri-
bution switches, as well as switch status outputs [25–27].

Importance
In recent years, distribution automation terminals have 
become increasingly important in distribution automa-
tion systems. Their significance can be summarized as 
follows:

Firstly, distribution automation terminals continuously 
monitor the state, parameters, and performance of the 
power grid through built-in sensors and measurement 
devices. They collect a vast amount of data, including key 
indicators such as voltage, current, power, and frequency. 
Secondly, distribution automation terminals are equipped 
with built-in protection devices that can promptly detect 
faults, short circuits, overloads, and other abnormal 

Fig. 5  The new functional structure diagram of the distribution automation system
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conditions within the power system [28]. The fault detec-
tion and protection functions of distribution automation 
terminals are critical components for achieving reliable 
power supply. Additionally, distribution automation ter-
minals possess remote control and operation capabili-
ties, allowing them to communicate with the higher-level 
control center or other terminal devices for remote con-
trol and operation of grid equipment. This flexibility in 
remote control enables operators to respond quickly to 
changes in the power system’s requirements, carry out 
load adjustments, switch lines, optimize equipment, 
and achieve efficient operation and optimized manage-
ment of the power system [29]. Lastly, through the intel-
ligent features of distribution automation terminals, the 
power system can integrate distributed energy resources, 
optimize power load management, and engage with the 
electricity market. The automation capabilities of dis-
tribution automation terminals reduce manual inter-
vention, enhance the system’s level of automation and 
operational efficiency, and extend the lifespan of existing 
distribution system infrastructure.

The overview of distribution automation terminal pre-
sented in this section sheds light on its significance in 
modern power distribution systems. Understanding the 
definition, functions, and types of distribution automa-
tion terminals provides a foundation for exploring the 
application of edge computing in distribution automation 
terminals’ intelligent acceptance system, as discussed in 
the subsequent sections.

Edge computing for DAT’s intelligent acceptance 
system
In this section, we delve into the concept of edge com-
puting and its advantages in the context of distribution 
automation terminals’ intelligent acceptance system. By 
combining the power of edge computing with the func-
tionalities of distribution automation terminals, we aim 
to enhance the system’s efficiency, responsiveness, and 
decision-making capabilities.

Edge computing
In recent years, driven by advancements in technolo-
gies like the Internet of Things (IoT), cloud computing, 
and big data, data volume has surged. Traditional cloud 
computing models necessitate uploading extensive data 
to cloud servers. However, due to the gap between cloud 
servers and terminal devices, challenges like transmission 
speed, energy use, latency, network interference, and data 
security become hard to circumvent. Despite the pow-
erful computing capability of cloud computing, which 
can address the challenges of extensive calculations and 
device battery consumption, the advancement of smart 
terminals, new network applications, and evolving user 

demands for seamless experiences have raised require-
ments for data transmission speed, low latency, and ser-
vice quality. Consequently, cloud computing struggles 
to meet the needs of many technologies and scenarios 
[30–32]. To address the issues of latency and energy con-
sumption caused by the distance between cloud data 
centers and terminal devices, scholars have proposed 
shifting cloud functionality to the network edge. Mobile 
Edge Computing (MEC) is a novel network architecture 
and computing paradigm that offers information tech-
nology services and computational abilities at the edge of 
mobile networks, in close proximity to terminal mobile 
devices [33–36].

In 2014, the concept of MEC was defined as “a new 
platform that provides IT service environment and cloud 
computing capabilities at the edge of mobile networks.“ 
by ETSI (European Telecommunications Standards Insti-
tute). In 2016, ETSI expanded MEC to Multi-Access 
Edge Computing, encompassing multiple access paths 
extending beyond mobile communication networks to 
other access networks such as Wi-Fi and wired connec-
tions [37]. MEC does not replace cloud computing but 
rather serves as its extension [38]. Unlike cloud com-
puting, MEC offloads the computational tasks of termi-
nal devices to edge servers closer to the devices. These 
edge servers can provide computing and content cach-
ing functionalities. Edge servers, distributed at the net-
work edge and sometimes referred to as computing or 
edge nodes, relieve the computational load on terminal 
devices, curbing interactions with central cloud data 
centers and notably diminishing message exchange wait 
times. With a defined storage and computing capacity, 
these edge servers, positioned closer to terminal devices, 
enable computation-intensive or latency-sensitive mobile 
devices to shift their computing tasks for execution at the 
edge [39, 40].

Figure  6 depicts the fundamental three-layer archi-
tecture of MEC. It consists of a three-layer structure: 
the cloud layer, the edge layer, and the terminal layer. 
In MEC, mobile terminal devices cannot communicate 
directly with servers; they need to communicate with 
MEC servers through base stations or wireless access 
points in the terminal layer. MEC servers are deployed 
in the edge layer, closer to the terminal devices, and can 
provide computing and caching services, thus mitigat-
ing the latency and energy consumption issues caused by 
having all terminal device tasks request services from a 
remote cloud.

Intelligent acceptance system
The intelligent acceptance system is a key technology 
in distribution automation terminals, used to ensure 
the correct installation, configuration, and proper 
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functioning of distribution automation terminals. This 
system utilizes advanced sensors, communication, and 
data analysis technologies to comprehensively monitor 
and assess distribution automation equipment, providing 
an automated acceptance process. The main aspects of 
the intelligent acceptance system are as follows:

1.	 Equipment installation and configuration: The intel-
ligent acceptance system can be used for the instal-
lation and configuration of distribution automation 
equipment. It verifies the correct connection and 
configuration of the equipment, ensuring its proper 
functioning. Through automated testing and diag-
nostics, the intelligent acceptance system can quickly 
detect and rectify issues in installation and configura-
tion, reducing human errors.

2.	 Function validation and performance assessment: 
The intelligent acceptance system can validate the 
functionality and assess the performance of distri-
bution automation equipment. It can perform vari-
ous tests and operations, such as sending control 
commands and detecting device responses. Through 
real-time data collection and analysis, the intelligent 
acceptance system can evaluate the performance 
indicators of the equipment, ensuring compliance 
with design and specification requirements.

3.	 Fault diagnosis and early warning: The intelligent 
acceptance system can conduct fault diagnosis and 
early warning. It monitors the operational status and 
parameters of the equipment and identifies poten-
tial faults and abnormal conditions by comparing 

them with pre-defined normal operation modes and 
behavioral rules. Through timely alerts and alarms, 
the intelligent acceptance system assists operation 
and maintenance personnel in quickly identifying 
and resolving problems, minimizing the impact of 
faults on the power system.

4.	 Data analysis and optimization: The intelligent 
acceptance system can perform data analysis and 
optimization. It can collect and analyze real-time 
data, identify potential issues and bottlenecks in the 
power system using algorithms and models, and pro-
vide corresponding optimization recommendations. 
The data analysis capabilities of the intelligent accept-
ance system can enhance the efficiency, reliability, 
and security of the power system.

5.	 Operation and maintenance management and 
remote monitoring: The intelligent acceptance sys-
tem can be integrated with higher-level control cent-
ers or other management systems to enable remote 
operation, monitoring, and management of equip-
ment. Through remote access and control, the intel-
ligent acceptance system enhances the efficiency of 
maintenance personnel, allowing them to promptly 
address issues and conduct remote maintenance.

In practical application scenarios, the intelligent 
acceptance system verifies the correct connection of all 
cables, ensures sensor calibration accuracy, and checks 
if communication interfaces are configured according 
to specifications. If any inconsistencies are detected, 
the system generates an automated report, highlighting 

Fig. 6  The basic three-layer architecture of MEC
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the specific issues. After the installation of remote con-
trol devices in a distribution substation, the intelligent 
acceptance system tests their functionality by sending 
control commands to open and close circuit breakers. 
It then monitors the equipment’s response, including 
response times and sequence of operations. By evaluating 
these parameters against design specifications, it ensures 
that circuit breakers perform as expected in real-world 
situations, such as breaker operations. A utility company 
employs the intelligent acceptance system to manage and 
monitor a network of telemetry equipment distributed 
across various substations. Through a centralized con-
trol center, operators can remotely access and control 
equipment at different substations. For instance, they 
can remotely close circuit breakers to restore power after 
temporary faults without dispatching on-site personnel. 
This reduces downtime and enhances the overall opera-
tional efficiency [41].

In summary, the intelligent acceptance system plays 
a significant role in distribution automation. Through 
automated testing, diagnostics, and data analysis, it pro-
vides comprehensive equipment acceptance and perfor-
mance assessment, supporting equipment installation, 
configuration, and fault handling. Applying the intel-
ligent acceptance system can bolster the power system’s 
reliability, efficiency, and security, offering vital sup-
port to distribution automation systems’ operation and 
management.

Application of edge computing in intelligent acceptance 
system
In recent times, edge computing has assumed a pivotal 
role in the intelligent acceptance system of distribution 
automation terminals (DAT). This section will delve into 
the utilization of edge computing within the intelligent 
acceptance system of DAT.

Firstly, edge computing provides real-time data pro-
cessing capabilities to the intelligent acceptance system. 
As early as 2017, Nastic et al. [42] proposed a real-time 
data processing platform applied in the context of the 
Internet of Things (IoT). By performing local data pro-
cessing on edge devices, the system can rapidly analyze 
data and make timely decisions. Secondly, edge com-
puting enables secure local data storage and caching for 
the intelligent acceptance system. For instance, paper 
[31] proposed a blockchain-based data security storage 
method in an edge computing scenario. Utilizing this 
capability, the power system can securely store and cache 
relevant data on edge devices, reducing the demand for 
data transmission to the cloud. This facilitates quick 
access to historical data, real-time analysis, and com-
parisons, thereby enhancing the efficiency and flexibility 
of the acceptance system. Furthermore, edge computing 

empowers the intelligent acceptance system with offline 
operation and autonomy, allowing the system to operate 
independently even when disconnected from the cloud 
[10]. Lastly, edge computing delivers edge analysis and 
machine learning capabilities to the intelligent accept-
ance system. Sophisticated analysis and machine learning 
algorithms can be deployed on edge devices for real-time 
data analysis [11], anomaly detection [12], and fault pre-
diction [13].

Edge computing holds significant application value in 
the intelligent acceptance system of distribution automa-
tion terminals. It offers capabilities such as real-time data 
processing, local data storage and caching, offline opera-
tion and autonomy, edge analysis and machine learning, 
and bandwidth optimization. These applications bring 
higher efficiency, flexibility, and reliability to the intelli-
gent acceptance system, providing robust support for the 
acceptance work of distribution automation terminals.

Limitations of traditional intelligent acceptance system
Although the intelligent acceptance system played a piv-
otal role in distribution automation terminals, the limi-
tations of traditional intelligent acceptance systems have 
restricted their widespread adoption and application in 
several aspects.

One problem with traditional intelligent acceptance 
systems is data processing latency. Relying on cloud-
based data processing and analysis leads to elongated 
data transmission and cloud processing durations, 
thereby constraining the system’s responsiveness [43]. 
This latency can be further increased in scenarios that 
require large-scale data processing and complex algo-
rithm execution. Such delays may prevent acceptance 
personnel from timely accessing critical real-time data 
and analysis results, adversely affecting the accurate 
assessment and decision-making regarding the status of 
power equipment [44].

Traditional intelligent acceptance systems typically 
rely on cloud resources for data storage, computation, 
and analysis [45, 46]. Handling large amounts of data 
transmission and storage requires high bandwidth and 
large-capacity cloud resources, which increases costs 
and introduces complex network management. For real-
time acceptance requirements, the time delay in cloud 
processing may not meet the system’s demands, thereby 
affecting the accuracy and efficiency of acceptance. Fur-
thermore, traditional intelligent acceptance systems that 
depend on cloud resources face challenges in ensuring 
data privacy and security requirements, especially con-
sidering the sensitive nature of the multidimensional data 
in power systems.

Traditional intelligent acceptance systems have high 
bandwidth requirements. In large-scale distribution 
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automation terminals, a tremendous amount of data is 
generated, particularly when it involves high-frequency 
sampling and sensor data. Traditional systems need to 
transmit this data to the cloud for processing and stor-
age, which places high demands on network bandwidth 
[47]. However, in network environments with limited 
bandwidth, such as remote areas or mobile network envi-
ronments, this high bandwidth requirement may result in 
data transmission delays and instability.

Undoubtedly, traditional intelligent acceptance systems 
have various limitations, and these limitations are also 
the advantages offered by intelligent acceptance systems 
that employ edge computing technology.

Benefits of using edge computing
Based on edge computing, intelligent acceptance systems 
have the following advantages compared to traditional 
intelligent acceptance systems:

Improved acceptance efficiency: Edge computing tech-
nology significantly enhances the efficiency of intelli-
gent acceptance systems. By performing real-time data 
processing and analysis on edge devices, the system 
reduces the time delay of transmitting data to the cloud 
for processing [48]. This enables acceptance person-
nel to promptly access critical real-time data and analy-
sis results, facilitating quick assessment of the status of 
power equipment and accurate decision-making.

Reduced dependence on the cloud: Edge computing-
based intelligent acceptance systems decrease reliance on 
cloud resources. By processing and analyzing data locally 
on the devices, the system reduces the need for data 
transmission and computation with the cloud. This not 
only lowers communication latency with the cloud but 
also reduces dependence on cloud resources [49]. By ena-
bling local computation and decision-making at the edge, 
intelligent acceptance systems enhance system independ-
ence and reliability while reducing requirements for net-
work connectivity to the cloud and associated costs.

Optimized bandwidth usage: Edge computing technol-
ogy optimizes the bandwidth usage of intelligent accept-
ance systems. By performing real-time data processing 
and analysis on edge devices, the system can filter and 
aggregate data locally, transmitting only relevant infor-
mation or insightful results to the cloud. This bandwidth 
optimization reduces data transmission volume and low-
ers the demand for network bandwidth, thereby improving 
system performance and scalability. By effectively utilizing 
limited network resources, intelligent acceptance systems 
can operate more efficiently and reduce operational costs.

Challenges and limitations of using edge computing
Despite the advantages of edge computing technol-
ogy in the intelligent acceptance system of distribution 

automation terminals (DAT), its application also faces 
several challenges and limitations, including:

Limited computing resources: Edge devices often fea-
ture restricted processing power, memory, and storage 
capacity when compared to cloud servers. This limitation 
could curtail the extent and intricacy of data process-
ing and analysis attainable on edge devices. Therefore, it 
is essential to optimize algorithms and develop efficient 
resource management techniques to allocate available 
resources properly, ensuring the effective utilization of 
limited computing resources. Allocating computing and 
network resources amid diverse or fluctuating circum-
stances poses a demanding endeavor [50]. To tackle this 
obstacle, numerous scholars have put forth assorted 
approaches. For instance, a Joint Communication and 
Computation (JCC) resource allocation method has been 
recommended. This method aims to fulfill resource req-
uisites on Mobile Edge Computing (MEC) servers, align-
ing with user specifications, given that the necessary 
resources are accessible on MEC servers [51].

Network resource reliability: Edge computing relies 
on network connections to transfer data between edge 
devices and central systems. However, in certain deploy-
ment environments, network connections may be unsta-
ble, intermittent, or subject to delays. Due to limited edge 
computing server resources, congestion may occur when 
there is a large number of requests and an increase in 
data traffic. The primary reason for congestion is the lim-
itation of server resources. This is an important issue in 
edge computing networks that can be addressed through 
the following methods: (1) Traffic buffering: When net-
work capacity is at maximum and resources are in use, 
data packets are stored and queued until the buffer 
capacity is reached [52]; (2) Intelligent resource alloca-
tion: In this technique, limited resources are used to sup-
port incoming requests one by one [53].

Data security and privacy: Edge computing involves 
data processing and storage on edge devices, which ele-
vates the significance of data security and privacy pro-
tection. Edge devices are susceptible to physical security 
risks and the potential for data leakage [54]. Using differ-
ent encryption techniques can reduce such risks, but it 
may increase processing time and decrease application 
performance [55].

System management and maintenance: As the intel-
ligent acceptance system of distribution automation ter-
minals involves the collaborative work of multiple edge 
devices and central systems, system management and 
maintenance can become complex. Ensuring the stable 
operation of edge devices, software updates, and trouble-
shooting are challenging tasks.

These challenges and limitations need to be addressed 
through appropriate technical solutions and effective 
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system design to overcome them, ensuring the effective 
application and optimal performance of edge computing 
in the intelligent acceptance system of distribution auto-
mation terminals.

The exploration of edge computing for DAT’s intelli-
gent acceptance system highlights its potential to revo-
lutionize traditional methods and enable real-time data 
processing and analysis. The advantages of edge comput-
ing in this domain set the stage for discussing the design 
and implementation of an intelligent acceptance system 
powered by edge computing in the next section.

Design and implementation of edge 
computing‑based intelligent acceptance system
In this section, we introduce the architecture and compo-
nents of an edge computing-based intelligent acceptance 
system for distribution automation terminals. We discuss 
the selection of edge devices and sensors, data collection, 
processing, and the application of machine learning algo-
rithms to optimize the acceptance process.

Architecture and components
The edge computing-based intelligent acceptance sys-
tem for distribution automation consists of three layers: 
cloud, edge, and device. Each layer performs specific 
functions, working together to ensure the system’s effi-
cient and stable operation, as shown in Fig. 7.

Cloud layer
The cloud layer serves as the core management and data 
processing center of the intelligent acceptance system. It 
is responsible for the following functions:

Data Storage and Management: The cloud layer han-
dles the storage and management of large-scale data, 
including acceptance data, historical data, and system 
configuration information. By utilizing high-performance 
databases and storage systems, the cloud layer efficiently 

stores and retrieves data, providing support for subse-
quent data analysis and decision-making [56].

Data Analysis and Algorithms: The cloud layer utilizes 
powerful computing capabilities and machine learning 
algorithms to analyze and process collected data. It can 
execute complex data analysis and mining algorithms, 
achieving intelligent identification and prediction of 
power equipment status, performance indicators, and 
abnormal situations [57].

Decision Support and Optimization: Based on data 
analysis results, the cloud layer provides decision sup-
port and optimization suggestions. The system can gen-
erate detailed acceptance reports, fault diagnosis reports, 
and equipment performance evaluation reports, assisting 
operations personnel in making accurate decisions [58].

Edge layer
The edge layer serves as an intermediary between the 
cloud layer and the device layer, encompassing the fol-
lowing functionalities:

Data Preprocessing and Filtering: The edge layer pre-
processes and filters raw data from the device layer to 
minimize data transmission volume and alleviate cloud 
processing loads. It can perform simple data cleaning, 
denoising, and sampling operations, enhancing data 
quality and availability [59].

Real-time Data Analysis and Decision-making: The 
edge layer has a certain computing and analytical capa-
bility, allowing real-time analysis and decision-making 
on preprocessed data. It can execute rapid data analysis 
algorithms and rule engines to achieve real-time moni-
toring, fault detection, and warning functions for power 
equipment.

Data Caching and Buffering: The edge layer can locally 
cache a portion of data to provide fast data access and 
response capabilities. It can intelligently manage data 
caching and buffering based on system requirements and 

Fig. 7  Intelligent Acceptation System
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resource constraints, reducing frequent access and trans-
mission to the cloud layer [60].

Device layer
The device layer comprises the actual equipment of dis-
tribution automation terminals, including sensors, meas-
urement instruments, and controllers. It possesses the 
following functions:

Data Collection and Transmission: The device layer 
is responsible for real-time data collection from power 
equipment, including parameters such as current, volt-
age, power, and temperature. It transmits the data to 
the edge layer or cloud layer for processing and analysis 
through sensors and measurement instruments [61].

Control and Execution: The device layer executes con-
trol operations on power equipment based on system 
instructions and control strategies. It can achieve auto-
mated switch control, protection actions, and fault han-
dling functions, ensuring the safe operation and fault 
recovery capability of the power system.

Device Status Monitoring and Maintenance: The device 
layer can monitor the real-time status and operational 
parameters of power equipment, detecting the health 
status and fault conditions of the equipment. Through 
self-checking and self-diagnostic functions, it provides 
real-time feedback and anomaly reports on equipment 
status, assisting maintenance personnel in equipment 
maintenance and fault troubleshooting.

Selection of edge devices and sensors
Before selecting edge devices and sensors, a thorough 
analysis and definition of the intelligent acceptance sys-
tem’s requirements are necessary. This includes func-
tional requirements, data collection needs, computing 
capability requirements, communication requirements, 
as well as reliability and security requirements. By clari-
fying the system’s needs, it can better guide the selection 
of edge devices and sensors.

Selection of edge devices
The selection of edge devices should be evaluated based 
on the system requirements and available resources, con-
sidering the following factors:

Computing Capability: Edge devices should have suf-
ficient computing power to handle real-time data pro-
cessing, analysis, and decision-making tasks. Depending 
on the system’s complexity and data volume, appropriate 
hardware and software components such as processors, 
memory, and operating systems need to be chosen. High-
performance edge devices can better meet the demands 
for complex algorithms and real-time data processing [62].

Network Connectivity: Due to the rapid growth of 
IoT devices, IoT faces several communication-related 

challenges in edge computing networks. One key issue 
in these networks is how to effectively choose IoT edge 
computing devices when multiple edge nodes are availa-
ble to transmit information. Edge devices should support 
stable network connections to facilitate data exchange 
and communication with the cloud layer and other edge 
devices. When selecting edge devices, factors such as 
network interfaces, transmission rates, and protocol 
compatibility need to be considered. A higher network 
connectivity performance ensures timely data transmis-
sion and communication reliability. To overcome this 
problem, Shafig et al. [63] introduced a novel framework 
called SoftSystem that utilizes the soft set technique to 
suggest relevant IIoT devices.

Reliability and Stability: Edge devices should have high 
reliability and stability to operate continuously in uninter-
rupted operating environments. Choosing high-quality 
and low-failure-rate edge devices ensures system stabil-
ity and reliability. Additionally, the temperature range and 
environmental adaptability of edge devices need to be con-
sidered to cope with various harsh working conditions.

Manageability: Select edge devices that are easy to man-
age and maintain for system configuration, monitoring, 
and troubleshooting. Edge devices should have features 
such as remote management, software update support, 
and fault diagnosis capabilities, facilitating remote man-
agement and maintenance operations. This improves sys-
tem manageability and maintenance efficiency.

Selection of sensors
The selection of sensors is a critical step based on data 
collection needs and the system’s monitoring objectives 
[64]. The following factors need to be considered:

Measurement Parameters: Select appropriate types of 
sensors based on the power equipment parameters that 
need to be measured by the system. For example, cur-
rent sensors, voltage sensors, temperature sensors, etc. 
Depending on different monitoring objectives, choose 
sensors with corresponding measurement parameters to 
meet the monitoring requirements for power equipment 
status.

Accuracy and Sensitivity: Choose sensors with suffi-
cient accuracy and sensitivity to ensure data quality and 
accuracy. The resolution, error range, and sensitivity of 
sensors directly impact the accuracy and reliability of 
data collection.

Data Acquisition Rate: Depending on the system’s real-
time requirements, select sensors that can provide fast 
data acquisition. Consider factors such as the sensor’s 
sampling rate and response time to ensure the sensor 
meets the system’s requirements for real-time data.

Reliability and Durability: Choose sensors with high 
reliability and durability, capable of operating for an 
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extended period in harsh environments. Consider factors 
such as the sensor’s protection level, anti-interference 
capability, and lifespan to ensure stable operation of the 
sensor under various working conditions.

By comprehensively considering the characteristics of 
edge devices and sensors and the system’s requirements, 
the most suitable combination can be selected to achieve 
accurate monitoring and data collection of power equip-
ment in the intelligent acceptance system. Furthermore, 
considering system scalability and cost-effectiveness, 
standardized devices and sensors can be considered to 
achieve better interoperability and maintainability.

Data collection and processing
Data acquisition is a crucial step in the intelligent accept-
ance system, used to obtain real-time data from distri-
bution automation terminal devices. Edge computing 
provides the intelligent acceptance system with real-time 
data processing capabilities, enabling data acquisition 
to take place at the edge devices. Edge devices can be 
equipped with various types of sensors, such as current 
sensors, voltage sensors, temperature sensors, etc., to 
collect different parameters from power equipment.

Edge computing has distinct advantages in data col-
lection and processing. Firstly, it pushes data process-
ing closer to the data source, reducing data transmission 
latency [48]. This means that data can be processed closer 
to where it is generated, resulting in faster response 
times. Secondly, edge devices can perform real-time data 
processing and analysis tasks, extracting valuable infor-
mation according to system requirements, without the 
need to send all data to central servers for processing 
[49]. This distributed data processing approach enhances 
system efficiency.

As the volume of power data continues to grow, 
advanced data acquisition and processing methods are 
crucial for the intelligent acceptance system. MEC is an 
architectural technology that offers a computing paradigm 
and IoT services from centralized servers to distributed 
network edges. In the context of MEC, the management 
of data streams is handled by proximate edge nodes. This 
approach leads to a significant augmentation in compu-
tational capacity and a reduction in data transmission 
latency [65]. To illustrate, Zhou and colleagues [66] lev-
eraged deep learning techniques to validate the accuracy 
of sensor data. They established a MEC-driven framework 
for local data processing, ensuring consistent computa-
tion and adaptable data conveyance.

Machine learning algorithms
Deep learning has gained significant attention in recent 
years, thanks to its exceptional capabilities [67]. These 
algorithms are known for their robustness, generality, 

scalability, and adaptive learning, all of which have played 
a pivotal role in advancing modern sustainable power 
systems [4, 68].

Numerous studies have demonstrated the outstand-
ing performance of deep learning algorithms in the 
power system. For instance, in [69], researchers proved 
the effectiveness of deep learning algorithms in tackling 
complex power system problems. By learning patterns 
and features from large-scale datasets, deep learning can 
extract valuable information, including power load fore-
casting, power equipment fault diagnosis, and power 
system security assessment, among others. The appli-
cation of deep learning algorithms in these tasks has 
yielded remarkable results, playing a vital role in enhanc-
ing power system operational efficiency and reducing the 
risk of faults.

Machine learning algorithms are playing an increas-
ingly vital role in various fields, particularly in IoT domain 
[70]. Machine learning algorithms can also be applied to 
fault diagnosis in intelligent acceptance systems. Faults 
in distribution systems can lead to power outages, and 
issues such as short circuits, overloads, and human errors 
can result in significant losses. Fault detection is an ana-
lytical process that enables the rapid identification of the 
root cause of a problem based on power operation data 
and configuration data when subsequent issues arise. 
This facilitates the prompt resolution and restoration of 
normal power system operation. In [71], a method com-
bining wavelet transform and DNN (Deep Neural Net-
work) is proposed to provide fault types, fault phases, and 
fault locations in microgrid systems. Compared to tradi-
tional methods, the proposed approach demonstrates 
more accurate prediction results. In [72], an adaptive 
Convolutional Neural Network (CNN) approach for fault 
diagnosis is proposed, aiming to locate faults in distribu-
tion networks. This method boasts advantages such as 
short computation time and high accuracy/speed in fault 
selection. Additionally, in [73], the authors introduce a 
CNN algorithm for obtaining fault types and locations 
within distribution systems. Simulation results demon-
strate the precise performance of CNN in comparison 
to other techniques like Support Vector Machine (SVM). 
Additionally, in [74], a method for fault recognition in 
the voltage sampling module of distribution terminals is 
introduced. This method employs a combination of Gen-
erative Adversarial Network (GAN) and CNN. The GAN 
model is employed to generate patterns and learn from 
developed samples, subsequently enhancing the CNN’s 
fault detection accuracy significantly.

Integration with existing DAT infrastructure
The existing distribution automation infrastructure is 
a critical component in the power system, comprising a 
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series of components and functional modules designed 
to achieve monitoring, control, and management of the 
distribution system [75, 76]. The distribution automa-
tion infrastructure includes various vital equipment and 
systems, such as intelligent electronic devices [77], moni-
toring devices [78], data acquisition systems [79], and 
communication networks [80].

In modern power systems, various distribution auto-
mation infrastructures play crucial roles. With the 
increasing power demand, integration of renewable 
energy, and challenges in grid security, the distribution 
system becomes more complex. The combination of 
edge computing with distribution automation infrastruc-
ture provides the power system with more intelligent, 
automated, and sustainable operation and management 
capabilities. This integration not only enhances system 
efficiency and reliability but also provides essential sup-
port for the development and sustainable growth of the 
power system.

Integrating edge computing technology with the exist-
ing distribution automation infrastructure can further 
enhance system intelligence and performance. In modern 
power systems, deploying edge devices such as edge serv-
ers or edge nodes at the edge of the distribution network 
allows real-time data collection and processing, tightly 
integrated with sensors and monitoring devices. Fur-
thermore, harnessing the computational capabilities of 
edge devices allows for the offloading of certain data pro-
cessing and analysis tasks from the cloud to these edge 
devices [81, 82]. This reduces data transmission latency 
to the cloud, achieving real-time data processing and 
decision-making, thereby enhancing system response 
speed and efficiency. The distribution system can con-
duct data filtering and preprocessing on edge devices, 
reducing data transmission to the cloud. Additionally, 
edge devices can have storage space for data storage and 
caching, reducing reliance on cloud storage resources 
and improving data access speed and efficiency.

Implementation details and challenges
To combine edge computing with distribution automa-
tion terminals and integrate it into the intelligent accept-
ance system, a comprehensive system architecture must 
be designed, incorporating edge computing as part of 
the distribution automation terminal infrastructure. This 
architecture should clearly define the data flow and com-
munication methods between edge devices and cloud 
systems, ensuring secure and reliable data transmission. 
Additionally, the deployment locations and quantities of 
edge devices should be planned based on the distribu-
tion system’s requirements and topology. Furthermore, 
to seamlessly integrate edge devices with existing sensors 

and monitoring equipment for real-time data collection 
and transmission, sensor networks and communication 
technologies can be utilized to facilitate efficient and 
security data exchange and communication between 
edge devices and various nodes within the distribution 
system [83]. This enables real-time monitoring and data 
acquisition of power equipment status. An effective col-
laborative mechanism between edge devices and cloud 
systems should be established, allowing edge devices to 
transmit processed data to the cloud for further analy-
sis and decision-making, while the cloud system can 
send instructions and configuration parameters to edge 
devices. This collaborative effort between edge and cloud 
allows for advanced data processing and system control. 
Lastly, when integrating edge computing technologies, 
security and privacy preservation are key considerations. 
To ensure data security and prevent unauthorized access 
as well as data leakage, it is crucial to implement suitable 
encryption and authentication mechanisms. An effective 
solution, for example, is to adopt the data security frame-
work proposed by Chadwick et al. [84].

Integrating edge computing technology with existing 
distribution automation terminal infrastructure involves 
work in system architecture design, data collection and 
transmission, introducing edge computing capabilities, 
data storage and caching, edge-cloud collaboration, as 
well as security and privacy protection. Such integration 
can enhance the intelligence level of distribution auto-
mation systems and improve system reliability, real-time 
performance, and overall efficiency.

The design and implementation of the edge computing-
based intelligent acceptance system for distribution auto-
mation terminals demonstrate its potential to enhance 
system efficiency and decision-making capabilities. The 
integration of edge computing with the existing distribu-
tion automation terminal infrastructure and the provided 
case studies contribute significantly to the advancement 
of intelligent acceptance systems in power distribution.

Challenges and limitations of edge computing 
in DAT’s intelligent acceptance system
This section addresses the challenges and limitations that 
edge computing may encounter when applied to distribu-
tion automation terminals’ intelligent acceptance system. 
We discuss technical constraints, reliability issues, power 
consumption, and security and privacy concerns that 
warrant attention for successful implementation.

Technical challenges and limitations
Latency and bandwidth constraints
When applying edge computing to intelligent accept-
ance systems, there are still challenges and limitations 
that need to be addressed. One of these challenges is 
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data processing latency and bandwidth. Due to the rela-
tively limited computational and storage capabilities of 
edge devices, edge computing nodes may not be able to 
process and analyze large amounts of data as quickly as 
the cloud [85]. This results in data processing latency 
issues, affecting the real-time capability and responsive-
ness of the system. Another related limitation is band-
width constraints. Edge devices typically communicate 
with the cloud or other edge nodes through limited net-
work bandwidth. When a large amount of data needs 
to be transferred between edge devices and the cloud, 
bandwidth constraints can become a bottleneck, causing 
data transfer speeds to slow down [86]. This can lead to 
increased data processing latency, potentially affecting 
real-time capabilities and system performance. Such con-
straints and limitations can have adverse effects on the 
reliability and performance of intelligent acceptance sys-
tems, particularly with regard to real-time data process-
ing and analysis, which are essential components of these 
systems. Therefore, the presence of processing latency 
and bandwidth constraints may prevent acceptance per-
sonnel from obtaining real-time data and accurate analy-
sis results in a timely manner.

Reliability and availability issues
The extensive use of distribution automation terminals 
not only enhances the operational management level of 
distribution networks but also improves power supply 
quality. However, practical applications often encounter 
issues such as low online rates, frequent crashes, and data 
security concerns, seriously affecting the normal opera-
tion of distribution automation systems. Addressing 
these issues has become a top priority for power supply 
enterprises [87].

When applying edge computing to intelligent accept-
ance systems, reliability and availability are other impor-
tant aspects that need to be considered and addressed 
[88]. Reliability refers to the stability and dependability 
of the system when facing faults, errors, or exceptional 
situations. Since edge computing involves multiple dis-
tributed nodes and devices, communication and coor-
dination between nodes may encounter instability and 
errors. This may lead to issues such as data transmission 
loss, processing errors, or system crashes, thereby affect-
ing the reliability of the intelligent acceptance system. 
Availability refers to the system’s ability to continuously 
provide services. Edge computing nodes may be affected 
by factors such as power failures, network interrup-
tions, or device malfunctions, causing nodes to function 
improperly or fail to provide the required services. This 
can result in the unavailability of the intelligent accept-
ance system, preventing acceptance personnel from 
accessing data and making timely decisions.

Power consumption and heat dissipation
During urbanization in developing nations, power con-
sumption demand has surged alongside a substantial 
increase in the count of IoT devices across manufac-
turing and usage sectors [89]. The proliferation of IoT 
devices and escalating data processing needs intensify 
the energy demands on the power system. Edge devices’ 
computation and communication actions can lead to 
elevated energy consumption, a concern that escalates as 
the system expands. Moreover, during intensive comput-
ing, edge devices may generate a considerable amount of 
heat, necessitating effective heat dissipation measures to 
maintain stable device operation. Energy consumption 
issues can potentially impact the long-term sustainability 
and operational costs of intelligent acceptance systems 
[90]. High energy consumption implies more frequent 
power supply or larger battery capacity requirements, 
significantly increasing the operational costs of the sys-
tem. Additionally, higher energy consumption can have 
adverse effects on the environment, which is a critical 
concern that could potentially be addressed by provid-
ing sustainable and renewable energy sources [91]. The 
heat dissipation issue arises from the intensive comput-
ing of edge devices. During extensive data processing and 
the execution of intricate algorithms, edge devices have 
the potential to generate considerable heat. Prolonged 
exposure to elevated temperatures can result in device 
overheating, consequently diminishing the system’s per-
formance and reliability [92]. Therefore, effective heat 
dissipation measures are crucial factors in ensuring the 
proper functioning of the devices.

These challenges and limitations necessitate a series 
of mitigation measures when applying edge comput-
ing to intelligent acceptance systems. Firstly, explor-
ing optimized data processing algorithms, offloading 
certain tasks to the cloud for processing, or employing 
higher-performance edge devices can alleviate data pro-
cessing latency and address bandwidth limitations. Sec-
ondly, ensuring system reliability and availability is of 
paramount importance, achievable through measures 
such as device redundancy and backup configurations, 
fault detection, and automatic switchover. Addition-
ally, regarding power consumption and heat dissipation 
concerns, consideration can be given to the use of more 
energy-efficient hardware devices and the adoption of 
renewable energy sources to mitigate the environmental 
impact of energy consumption.

Security and privacy concerns
Data confidentiality and integrity
Intelligent acceptance systems handle substantial vol-
umes of sensitive data, encompassing power equipment 
status, monitoring data, and analysis outcomes. Thus, 
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safeguarding data privacy and integrity becomes pivotal 
to uphold user rights and sustain system credibility [93]. 
Data privacy refers to the assurance that sensitive data is 
not accessible, acquired, or tampered with by unauthor-
ized individuals or entities during processing and trans-
mission. Edge computing involves multiple distributed 
nodes and devices, and data transmission and process-
ing between different nodes may face security threats 
and risks, such as data leaks, theft, or tampering. Thus, 
to protect data privacy, it’s essential to employ measures 
like data encryption, access control, and identity authen-
tication [94]. Data integrity refers to the assurance that 
data is not accidentally or maliciously altered, damaged, 
or lost during transmission and processing. In the edge 
computing environment, data transmission and process-
ing involving multiple nodes and devices may encounter 
situations such as transmission errors, packet loss, or 
node failures, which can affect data integrity. Therefore, 
measures such as data verification, error detection, and 
fault tolerance mechanisms need to be implemented to 
ensure data integrity.

Data confidentiality and integrity are crucial security 
aspects within intelligent acceptance systems. In the con-
text of edge computing, these aspects encounter specific 
challenges, including complex management and resource 
constraints. Nonetheless, these challenges can be sur-
mounted by implementing suitable technologies and 
strategies, thereby ensuring data security and bolstering 
system reliability [95]. As technology continues to evolve, 
we can anticipate witnessing further innovative solutions 
in intelligent acceptance systems that address these chal-
lenges while concurrently satisfying data privacy and 
integrity requisites.

Authentication and access control
Identity authentication and access control play a criti-
cal role in intelligent acceptance systems to ensure that 
only authorized users or devices can access and operate 
system resources and data. Appropriate identity authen-
tication and access control mechanisms can prevent 
unauthorized access and potential malicious activities, 
thereby safeguarding system security and data integrity 
[96]. However, when edge computing is applied to intel-
ligent acceptance systems, although identity authentica-
tion and access control are important measures to ensure 
data security and system trustworthiness, edge comput-
ing also brings some challenges and limitations. Firstly, 
the distributed nature of the edge computing environ-
ment increases the complexity of identity authentication 
and access control. Due to the diversity of edge devices 
and nodes, there exist different identity authentication 
mechanisms and access control policies. Therefore, how 

to unify the management and coordination of identity 
authentication and access control mechanisms distrib-
uted across edge nodes becomes a challenge. Secondly, 
resource limitations of edge nodes may impact the imple-
mentation of identity authentication and access con-
trol. Edge devices often possess constrained computing 
power and storage capacity, potentially limiting the use of 
intricate identity authentication and access control algo-
rithms. In the edge computing environment, lightweight 
authentication and authorization schemes need to be 
designed to achieve efficient identity authentication and 
access control in resource-constrained environments.

Compliance with regulations and standards
Intelligent acceptance systems handle sensitive data 
and operational information of power equipment, thus 
requiring adherence to relevant regulations and legal 
standards to ensure data security, privacy, and legality. 
Compliance requirements encompass a wide range of 
areas, including data protection, privacy preservation, 
and network security. Depending on the regulations and 
standards of different regions and industries, intelligent 
acceptance systems may need to comply with a series of 
regulations and legal requirements. To adhere to these 
legal regulations, it’s crucial to adopt suitable security 
measures, encompassing data encryption, access control, 
and identity authentication. This ensures the preserva-
tion of data confidentiality, integrity, and availability.

In the edge computing environment, implementing 
compliance and legality requirements poses certain chal-
lenges. Firstly, the distribution and heterogeneity of edge 
nodes increase the complexity of management. Given 
the number and diversity of edge nodes, it is essential 
to ensure that all nodes comply with legal requirements, 
including security configurations, access control, and log 
recording, among others. Secondly, the changing and 
updating of legal regulations also present challenges for 
the edge environment. As relevant regulations and stand-
ards evolve and update, intelligent acceptance systems 
need to promptly adjust and update their security meas-
ures to meet the latest requirements. Regular compliance 
assessments and reviews are essential to maintain con-
sistent adherence to regulatory and legal mandates in the 
system.

Potential solutions and future research directions
Edge‑cloud collaboration
Edge computing is an architecture that performs distrib-
uted processing and storage at the data source, offering 
numerous advantages in data processing and computa-
tion [97]. Solutions that include edge computing can typ-
ically reduce communication latency, improve network 



Page 17 of 23Zhu et al. Journal of Cloud Computing          (2023) 12:149 	

scalability, and enhance information accessibility, thus 
enabling more agile and efficient business development. 
Edge nodes are deployed at the edge side, and various 
terminal devices access the platform through the edge 
side, placing higher demands on edge-side resources. 
The edge-cloud computing architecture consists of 
numerous edge servers and terminals that require uni-
fied management through the edge cloud to support edge 
applications.

Edge-cloud synergy is a potential solution to address 
the challenges faced by edge computing in intelligent 
acceptance systems. By enabling coordinated work 
between edge devices and cloud resources, their respec-
tive strengths can be fully utilized. As an example, edge 
devices can handle real-time data processing and analy-
sis tasks, while cloud resources can offer enhanced com-
puting capabilities and expanded storage capacity [31, 
98]. Through optimizing data flow and task allocation to 
achieve collaboration between the edge and the cloud, 
the performance and efficiency of intelligent acceptance 
systems can be improved.

To enhance intelligent acceptance systems, optimiz-
ing their performance is crucial. Achieving this involves 

close collaboration between edge computing and cloud 
computing to cater to varying application scenarios. This 
synergy entails resource coordination, application man-
agement, data integration, and intelligent operations. 
Resource synergy combines edge nodes’ computing, stor-
age, network, virtualization, and other infrastructure 
resources to facilitate network services. Application man-
agement synergy refers to the deployment and runtime 
environment of network applications provided by edge 
nodes, managing and scheduling multiple application 
lifecycles on the nodes. Data synergy involves edge nodes 
taking charge of data collection at the edge, performing 
initial data processing and analysis based on predefined 
models, and subsequently uploading the results to the 
cloud. Intelligent synergy encompasses the execution of 
inference using intelligent models on edge nodes. This 
enables distributed intelligence to be achieved [99].

In the context of the power industry, edge-cloud syn-
ergy technology, as shown in Fig.  8, conducts decision-
making on edge-side data through value mining, data 
computation, and data application from bottom to top, 
uploading it to the cloud center. The cloud center con-
trols the edge-side data with instructions, enabling 

Fig. 8  Technical architecture of edge-cloud collaboration
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collaborative bidirectional interaction between user 
edge-side data and the power grid cloud center.

Demand response business is an essential service that 
facilitates the interaction between the power supply side 
and the user side. It involves user-side participation in 
response to pricing or incentives, leading to changes in 
consumption patterns. This participation plays a crucial 
role in reducing peak loads on the power grid and ensur-
ing safe and stable operations. The adjustment of electric-
ity prices or incentive mechanisms by the power supply 
side relies on relevant data from supply-demand interac-
tions. Therefore, the application of edge-cloud synergy 
technology holds significant significance for optimiz-
ing demand-side resources. Electricity analysis primar-
ily involves the analysis of various aspects of electricity 
consumption, faults, repair efficiency, peak power con-
sumption, among others, encompassing scenarios asso-
ciated with multiple data analyses. Fault warning focuses 
on predicting equipment failures, power consumption 
loads, and potential electricity usage conditions. Elec-
tricity scheduling assesses the power grid’s safety and 
operational status based on data or monitoring informa-
tion provided by various information collection devices, 
combined with power grid operational parameters, and 
subsequently makes adjustments to the system. The data 
application of edge-cloud synergy encompasses vari-
ous aspects of data analysis, prediction, and control for 
equipment and systems.

Hybrid edge‑cloud architecture
When developing energy-saving solutions, various 
approaches can be taken to store and process energy foot-
prints. Cloud computing platforms are the most widely 
used paradigms for this purpose [100, 101]. Despite 
the slight delays in implementing real-time energy effi-
ciency applications, cloud computing technology is gar-
nering increasing attention [102, 103]. Meanwhile, edge 
computing has emerged as a more favorable solution to 
address the challenges encountered in cloud computing, 
particularly as an alternative or supplementary method 
for processing energy data at the Internet of Things (IoT) 
edge to mitigate latency issues [104, 105]. Nevertheless, 
edge computing still demands additional electrical power 
for independent utilization in order to fulfill the high 
computational requirements of AI-based energy-saving 
solutions. Consequently, the hybrid edge-cloud architec-
ture is presently considered the most optimal trend for 
implementing intelligent acceptance systems in distribu-
tion automation [106, 107]. Figure 9 illustrates the hybrid 
edge-cloud architecture.

Additionally, in recent years, the analysis, detec-
tion, and visualization of abnormal energy consump-
tion and behavior in distribution automation systems 

have received increasing attention. This is because such 
research is crucial in developing efficient energy-sav-
ing systems [108]. For example, in [109], supervised 
and unsupervised anomaly detection methods were 
introduced, while in [110], an energy anomaly detec-
tion approach based on using micro-moments and deep 
learning models was proposed and compared with vari-
ous traditional machine learning models. Although 
these technologies can achieve high accuracy in anomaly 
detection, their main challenge lies in the computational 
resources required for implementation and operation. 
Consequently, researchers have explored various archi-
tectures, including cloud-based, edge-based, and edge-
cloud hybrid solutions [110].

Although most energy-saving solutions in distribution 
automation smart acceptance systems currently utilize 
cloud computing for data collection, preprocessing, and 
analysis of energy data, edge computing has garnered 
increasing interest. Nevertheless, edge computing still 
requires more electrical power for individual use to meet 
the high computational demands of AI-based energy-
saving solutions. At the same time, the hybrid edge-cloud 
architecture emerges as a promising approach in current 
energy-efficient systems implementation. It provides flex-
ible control over energy usage in distribution automa-
tion smart acceptance systems, minimizes cloud hosting 
costs, and enhances privacy protection. For instance, in 
[111], authors propose a novel energy-efficient system 
based on a hybrid edge-cloud computing architecture. 
In the edge-cloud collaboration, high concurrency in 
offloading deep learning tasks can overload edge serv-
ers and lead to unacceptable latency. Optimal offload-
ing decisions are challenging in dynamic, heterogeneous 
edge-cloud environments. To tackle these concerns, Xu 
et  al. [112] introduced GPOV (Game theory-based Par-
titioning and Offloading with CNN, a dynamic offload-
ing approach that fuses game theory and CNN. The CNN 
partitioning allows for more efficient resource utilization 
and reduces latency through parallelism.

Blockchain‑based security and privacy protection
In recent times, blockchain distributed technology has 
surfaced as a remedy for fortifying the architecture of 
enterprise systems and hierarchical network opera-
tions. This technology introduces attributes like integ-
rity, transparency, privacy, and security [113]. Through 
the creation and implementation of distributed appli-
cations (DApps), accessing information becomes more 
convenient, and blockchain-backed APIs amplify the 
effectiveness and dependability of designing distributed 
information systems [114–116]. In the context of smart 
grids and distribution environments, blockchain can be 
utilized to protect intelligent acceptance systems, encrypt 



Page 19 of 23Zhu et al. Journal of Cloud Computing          (2023) 12:149 	

information, and record node execution details and 
events. The storage based on blockchain relies entirely 
on its immutability, preserving the ledger for transpar-
ent information investigations [117]. Furthermore, block-
chain, which supports a distributed ledger environment, 
provides a chronologically ordered structure to record 
transaction execution events and distribution fluctua-
tions in the smart grid nodes. To facilitate execution 
and delivery, two different channels are deployed in alli-
ance public/private networks. However, the independent 
execution of distribution tasks within the smart grid is 
accomplished using chaincode scripts, orchestrating vari-
ous operations through DApps for scheduling, control, 
management, and organization. This decentralized dis-
tributed technology bolsters the security and privacy of 
the ledger, allowing the creation of a transparent ecosys-
tem that resists tampering and forgery [118].

The assessment of challenges and limitations in the 
application of edge computing to DAT’s intelligent 
acceptance system calls for proactive measures to miti-
gate latency, enhance reliability, and address security 
and privacy concerns. The potential solutions and future 
research directions proposed in this section offer promis-
ing avenues for overcoming these obstacles.

Conclusion and future work
This paper presents a comprehensive review of the latest 
advancements and applications of edge computing tech-
nologies in intelligent acceptance systems for distribution 
automation terminals. Initially, we introduce the defini-
tion and functions of distribution automation terminals, 
emphasizing their significance in power system opera-
tion and management. Subsequently, we delve into the 
definition and advantages of edge computing, providing 

Fig. 9  Hybrid edge-cloud architecture
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examples and explanations of its applications in intel-
ligent acceptance systems, particularly highlighting its 
advantages in data analysis and decision support. Fur-
thermore, we focus on the design and implementation of 
intelligent acceptance systems based on edge computing 
technologies, including system architecture, device and 
sensor selection, data acquisition and processing, and 
the application of machine learning algorithms. When 
discussing technical challenges, security, and privacy 
issues, we identify the challenges faced by edge comput-
ing in intelligent acceptance systems and propose poten-
tial solutions. In particular, we emphasize the importance 
of edge-cloud collaboration, hybrid edge-cloud archi-
tectures, innovative edge devices and sensors, advanced 
machine learning algorithms, and blockchain-based 
security and privacy protection in future research.

Intelligent acceptance systems have extensive appli-
cation prospects and significant development poten-
tial, especially in the field of distribution automation 
and power. In the future, they will evolve in several key 
directions:

Firstly, intelligent acceptance systems will collaborate 
more with other intelligent systems, such as smart dis-
tribution grids and energy management systems. This 
collaboration will enable broader data sharing and coop-
erative control, thereby enhancing the overall efficiency 
and reliability of the power system. Secondly, with the 
continuous advancement of artificial intelligence and 
machine learning technologies, intelligent acceptance 
systems will become more intelligent. They will have 
the capability to conduct in-depth data analysis, auto-
matically identify potential issues, and provide more 
intelligent fault detection and diagnostics, ultimately 
reducing maintenance time and costs. Sustainability and 
energy efficiency are critical topics in the future. Intelli-
gent acceptance systems will adopt more energy-efficient 
hardware and green energy sources to reduce energy 
consumption and minimize their environmental impact. 
The application of blockchain technology will ensure 
data security and integrity, particularly in data sharing 
and exchange. This will help establish trustworthy data 
records and auditing mechanisms. Finally, as the level 
of system intelligence increases, network security and 
data privacy protection will become crucial focus areas. 
Future systems will employ stronger security measures 
to defend against potential threats. These directions will 
collectively drive the widespread application and con-
tinuous development of intelligent acceptance systems in 
the field of power and beyond.

In the development of intelligent acceptance systems, 
edge computing technologies will continue to play a piv-
otal role. To propel further advancements in this field, 
several key research directions merit exploration:

Enhancing the Performance and Efficiency of Edge 
Computing: With the continuous increase in data vol-
ume and complexity, improving the performance and 
efficiency of edge computing is a critical concern. 
Researchers can explore novel edge device and sensor 
technologies and optimize edge computing algorithms 
and models to enhance system responsiveness and pro-
cessing capabilities.

Strengthening Edge-Cloud Collaboration: Edge-cloud 
collaboration is crucial to enhancing the performance 
and reliability of intelligent acceptance systems. Future 
research can explore improved collaboration mecha-
nisms and data transfer schemes to facilitate efficient 
cooperation and data sharing between edge devices and 
the cloud.

Enhancing Security and Privacy Protection: Intelligent 
acceptance systems involve vast amounts of sensitive 
data, making security and privacy paramount. Research-
ers can further explore security solutions based on 
blockchain and encryption technologies to ensure data 
confidentiality and integrity.

Developing Autonomous Decision-Making Capabilities 
for Intelligent Acceptance Systems: Future research can 
explore the application of autonomous decision-making 
technologies such as reinforcement learning in intelligent 
acceptance systems, enabling the system to learn from 
experience, optimize acceptance strategies, and adapt 
automatically to different devices and environments.

Leveraging Emerging Technologies: With continuous 
technological advancements, intelligent acceptance sys-
tems can leverage emerging technologies like the IoT, 
big data analysis, and AI to further enhance their perfor-
mance and functionality.

The application of edge computing technologies in 
intelligent acceptance systems holds tremendous poten-
tial. By improving the performance of edge computing, 
enhancing security protection, strengthening edge-cloud 
collaboration, and advancing autonomous decision-mak-
ing capabilities, we are poised to achieve more precise, 
efficient, and reliable intelligent acceptance systems, pro-
viding robust technical support for the acceptance work 
of distribution automation terminals.
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