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Abstract 

With the widespread acceptance of the cloud-native concept and the emergence of a large number of dedicated 
cloud-native applications, the service stacks of cloud-native applications have received extensive attention in the 
industry. To analyze the extensibility problems of service stacks, a cloud-native light-cone model is proposed, which 
focuses on the dimensions of application, infrastructure, tenant and workflow, and provides a perspective view that 
reflects the concerns of stakeholders. Based on this model, various challenges in designing extensible cloud-native 
service stacks are identified by classification. To solve these challenges, a holistic architecture and a set of key technol-
ogies are designed, involving unified runtime abstraction, cluster bootstrapped creation, application-specific control-
lers, etc. Furthermore, the OMStack (Oriental Mind Stack) is implemented, which integrates these technologies and 
provides a group of PaaS and SaaS services for container cluster (OMCC), artificial intelligence (OMAI), big data (OMBD) 
and so on. Experimental analysis and production applications demonstrate the practicality, efficiency and reliability of 
the proposed architecture, stack and services.
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Introduction
In recent years, the practices of cloud-native comput-
ing have been widely accepted by cloud service provid-
ers and information technology enterprises. On the 
basis of the original capabilities of cloud computing like 
resource pooling, on-demand provisioning and elastic 
scaling [1, 2], the concept of cloud-native computing fur-
ther emphasizes that the full stack of systems and the full 
life-cycle of applications are naturally designed for cloud 
environments. It aims to provide automation, resiliency, 
manageability and observability to the users [3].

Many dedicated cloud-native applications are devel-
oped to serve different businesses. Several cloud-native 
service stacks [4–6] are also proposed to provide orches-
tration and maintenance capabilities for upper-layer 
applications. Compared to earlier cloud computing prac-
tices of running traditional applications on virtualized 
infrastructures, the cloud-native practices deliver higher 

resource utilization and enable more business flexibility. 
Thus, it gets particular attention from enterprises with 
on-premise clusters.

As can be seen from the history of cloud-native com-
puting, its typical architectures and technologies are 
abstracted and summarized from best practices, rather 
than deduced from pure theories. This is reasonable in 
computer engineering, but it is also worthwhile to con-
sider a more systematic approach to analyzing and build-
ing cloud-native service stacks. In this way, the research 
challenges can be analyzed in a structured manner, and 
the service software can be designed in a consolidated 
manner. This is the direction this paper hopes to explore.

To realize the value of the systematic approach, it is 
necessary to build production systems and serve real 
businesses. Instead of large and comprehensive service 
stacks for cloud service providers, the cloud-native ser-
vice stack for enterprises is the focus of this paper, while 
mainstream applications including artificial intelligence 
and big data are considered as the primary workloads. To 
generalize the capabilities in many dimensions that the 
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service stack needs to achieve, the “extensibility” feature 
is highlighted.

The contributions of this paper include:
(1) A cloud-native light-cone model is proposed to 

characterize the issues of extensibility in cloud-native 
service stacks. Multiple dimensions including applica-
tion, infrastructure, tenant and workflow are covered. 
Based on this model and its perspective view, challenges 
in designing extensible cloud-native service stacks are 
identified and analyzed.

(2) A multi-dimensional extensible architecture for 
cloud-native service stacks is proposed, and a set of 
key technologies are designed to solve the challenges of 
multiple aspects. The main technologies include uni-
fied runtime abstraction, cluster bootstrapped creation, 
application-specific controllers, etc.

(3) An implementation of the architecture – OMStack 
(Oriental Mind Stack) is developed, which provides a 
group of PaaS and SaaS services for container cluster, 
artificial intelligence, big data and so on. Its practicality, 
efficiency and reliability have been proven in experimen-
tal analysis and production applications.

Background
The field of cloud-native computing has gradually formed 
a recognized technical system. The dimensional analysis 
and modeling research on the field is also emerging.

Cloud‑native technical stacks
Cloud-native technical stacks are the foundation for 
building service capabilities. Despite the lack of standard-
ized definitions, the main components and basic charac-
teristics of the stacks have been identified and accepted 
by the practices of the industry. Three main perspectives 
are worth noting.

In terms of workload abstraction, the serverless execu-
tion model [7] is emphasized. It means the developers 
of applications only need to pay attention to the busi-
ness logic, not the capacity planning, allocation or main-
tenance of the underlying resources. In the technical 
implementation, FaaS (Function as a Service) and CaaS 
(Container as a Service) are two major routes. A FaaS 
service hosts users’ application functionalities and allo-
cates scalable resources for them at fine granularity. Its 
disadvantage is that the application needs to be rewrit-
ten and the functionality is constrained. A CaaS service 
encapsulates and runs applications within containers. 
It has better compatibility with legacy business, but the 
scalability, efficiency and resiliency are also subject to the 
existing applications.

In terms of runtime management and resource sched-
uling, containerization is the main technical route. Com-
pared to hypervisor-based virtualization technologies 

used by IaaS stacks, containerization technology is more 
lightweight and efficient. In the cloud-native context, ser-
vice stacks need not only container engines for a single 
node, but also container orchestrators that manage the 
compute, storage and network resources for a cluster. 
Kubernetes [4] is such a widely used container orchestra-
tor. Containerization technology also meets the needs of 
the microservice architecture for functional decomposi-
tion, service discovery and runtime management, so it is 
friendly to existing enterprise applications.

In terms of software engineering paradigm, the con-
cepts of CI/CD (continuous integration, continuous 
delivery) and DevOps (combining software development 
and IT operations) are often emphasized by cloud-native 
practices. Its purpose is to improve the development 
efficiency and product quality of cloud-native services. 
Under this paradigm, automated workflows are lever-
aged to drive the building, verification and deployment 
of applications. The boundary between development and 
production environments becomes blurred, while auto-
mated traffic policies implement the iterations of ser-
vices in a real-time and secure manner. Saving operation 
and maintenance costs is an important consideration for 
enterprises adopting this paradigm.

Dimensional analysis models
Architecture modeling is a systematic way of analyzing 
existing systems and designing new systems. Among the 
modeling methodologies, dimensional analysis is a con-
cise and effective way.

In computer networking, the hourglass model [8] is a 
classic model that uses the dimensions of hierarchy and 
function to describe the relationship between protocols. 
The bridging role of the network layer (Internet protocol) 
is an important insight from the model. This model has 
also been extended to related fields such as grid comput-
ing [9]. Inspired by the hourglass model, Lin et  al. pro-
posed an analysis model for consolidated cluster systems 
[10] that adopts the dimensions of resource consolidation 
and runtime coordination. This model defines a set of key 
features on each dimension in order to locate the defi-
ciencies in existing systems, and guide the improvement 
and innovation of new systems.

In software engineering, the 4+1 view model [11] 
provides general guidance for software architecture 
design and implementation. It uses the views of logical, 
process, development, physical and scenarios to clar-
ify the concerns in each phase of a software life-cycle. 
Based on this model, many formal methods like UML 
diagrams are available for each view [12], so the con-
ceptual model can further guide engineering practice, 
involving systematically analyzing existing software 
and automatically generating new code. Inspired by 
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this model, derived models [13, 14] have also been pro-
posed in some subfields of software engineering.

In cloud computing, dimensional analysis is widely 
adopted by academia and industry. Among the mod-
els, the conceptual reference model proposed by NIST 
[15] as well as the taxonomy on multiple dimensions 
has universal guiding significance. It organizes the 
concepts of the taxonomy in four levels: role, activ-
ity, component and sub-component. Typical service 
deployment and consumption modes are defined by the 
model. This model focuses on external functional views 
instead of internal technical details. Other models and 
taxonomies [16] usually extend the reference model in 
depth (underlying implementation) or breadth (subdi-
vision components). Refined formal specifications like 
TOSCA (Topology and Orchestration Specification for 
Cloud Applications) [17] are also proposed for describ-
ing and constructing cloud applications.

Specific to the field of cloud-native computing, there 
are relatively few studies on analysis models. Kratzke 
et  al. proposed the ClouNS reference model [18] and 
analyzed a group of cloud-native applications, architec-
tures and methodologies [19] according to the model. 
The main dimensions the model focuses on are infra-
structure viewpoint and service category. Through 
hierarchical refinement, the underlying implementa-
tions of different applications and service stacks are 
classified. Thus, their design trade-offs can be identi-
fied, and potential innovation opportunities can be 
found. Besides, the maturity assessment model [3] for 
cloud-native service stacks is also concerned by enter-
prise users.

Cloud‑native light‑cone model
In order to characterize the issues in designing cloud-
native service stacks, and analyze the technical challenges 
in a systematic way, a new model – the cloud-native light-
cone model is proposed.

Definition
The cloud-native light-cone model is a dimensional 
analysis model. It focuses on describing and guiding 
the designs of cloud-native service stacks. It defines the 
dimensions of analysis from a spatiotemporal perspec-
tive in software engineering. Four dimensions including 
application, infrastructure, tenant and workflow are con-
cerned by this model. As shown in Fig.  1, these dimen-
sions form a 4D coordinate system that looks like a light 
cone in the theory of relativity. The axis scales qualita-
tively represent the design options for each dimension, 
while the points in the space represent the product ori-
entations or design decisions of cloud-native services and 
service stacks.

This model is inspired by the end-to-end idea of the 
hourglass model but with obvious extensions. The appli-
cation and infrastructure dimensions are the top and 
bottom ends of a technical stack, while the tenant and 
workflow dimensions are the spatial and temporal organ-
ization units of a business pipeline. The qualitative scales 
of each dimension are not constrained by this model, but 
can be chosen flexibly by users. A typical group of scales 
and their instances in existing service stacks are listed in 
Table 1. The object indexed by a larger number approxi-
mately contains the object indexed by a smaller number 
in each dimension.

Fig. 1  The coordinate system of the cloud-native light-cone model
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This model also provides a perspective view that 
reflects the concerns of different stakeholders. As shown 
in Table 2, pairwise combinations of the four dimensions 
constitute six kinds of concerns. They are associated with 
six typical roles in three groups of stakeholders (end-user, 
proprietor and developer) of a service stack. Each role’s 
responsibility related to the four dimensions is explained 
in the table. It illustrates the guidance value of this model 
for the design, application and evaluation of cloud-native 
service stacks.

Properties
Extensibility is the main property of concern that can be 
derived directly from the structural features of the cloud-
native light-cone model. The specific meanings of exten-
sibility are explained as follows.

(1) Extensibility in depth: it means the whole or part 
of a service stack corresponding to a point in the coor-
dinate system can support extensive types of instances, 
where the instances belong to the objects constrained by 
the multi-dimensional scales of the point. This property 
reflects the service stack’s functional strength at a single 
point.

(2) Extensibility in breadth: it means the whole or part 
of a service stack corresponding to a point in the coor-
dinate system has the potential to extend its range of 
capabilities to those defined by the nearby points in the 
coordinate system. This property reflects the service 
stack’s capability coverage and application scope.

Although this model does not reflect other properties 
of a service stack directly, they can be further derived 
from the functions produced by the combination of 

Table 1  The dimensions of the cloud-native light-cone model

Dimension Example of scale

Index Object Instance

x: application A1 process (task) a mapper task of a Spark MR job

A2 process group (job) a Spark MR job

A3 application framework a group of Spark runtime services

A4 application cluster a Kubernetes cluster with Spark-operator

y: infrastructure I1 device a GPU

I2 node a VM with a GPU

I3 IaaS stack instance an OpenStack cluster

I4 IaaS source a public cloud

z: tenant T1 user a personal (sub)account on a public cloud

T2 user group a user group on a public cloud

T3 virtual organization a project on a public cloud

T4 organization an enterprise account on a public cloud

t: workflow W1 intra-job an Allreduce-based AI training

W2 inter-job an ensemble-learning-based AI training

W3 inter-service an AI pipeline from training to inference

W4 inter-cluster an AI pipeline for CI/CD

Table 2  The perspective view of the cloud-native light-cone model

Stakeholder Concern Explanation

Group Role

service stack end-user manager x + z manage and coordinate various business resources, involving things (application) and people 
(tenant)

ordinary user x + t organize individual work (application) uniformly and effectively in a structured way (workflow)

service stack proprietor service operator y + z use the service stack on the infrastructure to serve the users (tenant)

system maintainer y + t ensure the stability and availability of the business (workflow) on the infrastructure

service stack developer software architect x + y design effective abstractions to map applications to underlying resources (infrastructure)

product manager z + t design business processes (workflow) and user experience for tenants to improve efficiency 
and usability
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dimensions. The following sections on architecture and 
designs will explain them.

Discussion
To better understand and apply the cloud-native light-
cone model, it is necessary to explain how it relates to 
classic models and existing formal methods.

The original intention and positioning of this model 
are similar to the 4+1 view model, that is, to propose 
a macroscopic model for guiding system analysis and 
design. It evolves rather than replaces the classic model. 
On the one hand, it spotlights the scenario of cloud-
native services. A specific target field makes the selec-
tion of dimensions more focused and relevant. On the 
other hand, while referring to the view division based on 
various stakeholders, this model places more emphasis 
on the spatiotemporal dimensions closely related to the 
runtime of cloud services, so as to better serve the effec-
tive output of enterprises.

The functionality of this model is a complement to clas-
sic formal methods like UML and TOSCA. It extends 
existing methodologies rather than conflicts with them. 
UML and TOSCA focus more on implementability. They 
pursue a consistent mapping from logical design to phys-
ical implementation. In contrast, our model focuses more 
on comprehensibility. It is a thinking framework that 
mainly serves the upstream of a software life-cycle for 
high-level problem analysis and architecture design.

Challenges of extensible cloud‑native service stack
By using the cloud-native light-cone model, the chal-
lenges of designing an extensible cloud-native service 
stack are analyzed. To make the research problems more 
focused, this paper mainly studies the requirements of 
mainstream application scenarios in modern enterprises, 
involving artificial intelligence, big data, etc. All chal-
lenges are classified according to the dimensions of the 
model. The challenges in dimension x and y are mainly 
related to extensibility in depth, while those in dimension 
z and t are mainly related to extensibility in breadth.

Extensibility dimension x: diverse application modes
The key to enabling extensibility in the application 
dimension is to support diverse application modes. Its 
main challenges include diverse scheduling modes and 
runtime environment dependency.

Diverse scheduling modes
Mainstream enterprise applications usually require two 
main scheduling modes: microservice and batch job. 
For each application framework, there are also diverse 
scheduling (sub)modes for specific workload types. For 
the microservice mode, service stacks need to deal with 

issues including service discovery, traffic routing and 
high availability. For the batch job mode, service stacks 
need to support the schematized behaviors of scheduling 
stateful runtime among tasks such as gang-scheduling. 
Container-based service stacks are microservice friendly, 
but they generally do not provide deep adaptation for 
batch jobs. Although open-source adaptors like Kubeflow 
[20] and Volcano [21] are available, they provide either 
application-specific high-level abstraction or fine-grained 
widgets. A universal batch job management mechanism 
and a universal abstraction for diverse scheduling modes 
are important for an extensible stack.

Runtime environment dependency
An application’s runtime environment dependency 
involves hardware and software. On the hardware side, 
artificial intelligence and big data applications often 
require compute accelerators (e.g. GPU, FPGA) and high-
speed network cards (e.g. InfiniBand, RoCE). However, 
not all container orchestrators provide native abstrac-
tions to manage these special devices. Especially when 
dealing with diverse models and specs, simple resource 
matching mechanisms like label selector appears to be 
insufficient. On the software side, although the container 
technology aims at solving the problem of dependencies 
in a self-contained way, some complicated cases are not 
covered. For example, the versions of CUDA and OFED 
libraries are coupled with the versions of the underlying 
GPU and InfiniBand drivers. A service stack needs to 
decide whether to put the libraries inside or outside con-
tainers, and how to make sure the versions are compat-
ible with those of the drivers on hosts.

Extensibility dimension y: heterogeneous infrastructures
Extensibility issues related to the infrastructure dimen-
sion mainly stem from heterogeneity. The resources of 
compute, storage and network have their own distinct 
challenges.

Heterogeneous IaaS
A container-based service stack usually uses bare-metal- 
or virtual-machine-based infrastructure as its host envi-
ronment. To provide a consistent execution environment 
for upper-layer applications, some of the software-level 
heterogeneity issues should be handled and hidden by 
the service stack. For example, the IaaS APIs are dif-
ferent among cloud providers, so tailored adaptation 
is necessary to enable dynamic resource provisioning 
and multi-cloud resource access. A typical issue in this 
aspect is the mechanism of public network accessibility 
and load balancing, in which the implementation is sub-
ject to complicated factors like network address transla-
tion and security policy. Conversely, some hardware-level 
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heterogeneity issues such as the instruction set architec-
ture are often perceived by the upper-layer application 
developers, especially for an environment combining 
clouds and edges. In this case, a service stack should pro-
vide architecture-aware orchestration mechanisms.

Storage locality
The separation architecture of compute and storage [22] 
is popular in cloud-native environments. In this archi-
tecture, independent storage clusters are built using 
generic underlying storage systems like the object stor-
age, while multiple compatible interfaces like the HDFS 
API are exported to compute clusters. This architecture 
is friendly to dynamic, elastic and stateless containerized 
compute workloads. However, for small/medium-scale 
on-premise clusters in enterprises, the separation archi-
tecture has potential disadvantages including the high 
sensitivity of network performance, the low utilization 
of storage resources, and the complexity of construction 
and maintenance. It is worthwhile to introduce classic 
local storage mode into containerized environments to 
solve these problems. The main challenges involve the 
dynamic allocation and reclamation of persistent storage 
space, the performance optimization of disk and network 
access, and the affinity between compute and storage 
containers.

Virtualization of high‑performance hardware
Multiplexing of high-performance hardware like GPU 
and InfiniBand is important for cost savings. Although 
some devices provide native multiplexing or virtualiza-
tion mechanisms, potential problems remain with their 
applications in cloud-native environments. Firstly, device 
plugins of container orchestrators are required to enable 
virtual devices in container clusters, but the ecosystem 
of device plugins is immature. For example, the existing 
InfiniBand plugin cannot constrain RDMA traffics on 
virtual devices [23]. Secondly, the configuration for using 
high-performance hardware in applications is gener-
ally complicated, while virtualization introduces further 
cumbersome factors. For example, a virtual function of 
a RoCE device has its additional index, which results in 
poor environmental portability for applications in con-
tainers. Besides, the security isolation and performance 
isolation among workloads sharing the same device are 
relatively weak due to the limitation of the container 
mechanism.

Extensibility dimension z: multi‑tenant on‑demand 
clusters
In the tenant dimension, the extensibility issues are 
reflected in the provisioning of independent virtual 

execution environments on-demand for multiple tenants 
in a secure and efficient manner.

Framework on‑demand provisioning
On-demand provisioning is an important feature of cloud 
computing. Even in a single enterprise, users are always 
making continuous requests for resources in accordance 
with diversified business needs. According to the appli-
cation dimension, cloud-native service stacks can pro-
vide on-demand resources for tenants at different scales: 
process group (job), application framework or applica-
tion cluster. Application-specific stacks (e.g. a Kubeflow 
on Kubernetes cluster for artificial intelligence) usually 
only support the job-scale provisioning. When the ten-
ant dimension is introduced, on-demand provisioning 
at the application framework or application cluster scale 
becomes necessary because it can provide fully controlla-
ble virtual execution environments for different tenants. 
Fine-grained resource allocation and access control for 
the users and groups inside a tenant (organization) are 
feasible in the virtual execution environments in a frame-
work-native way. The challenge is how to implement it 
for diverse frameworks with different characteristics and 
requirements.

Security isolation
Security is a fundamental requirement in production sys-
tems, which involves factors such as runtime isolation, 
data privacy and traffic policy. In an enterprise-oriented 
multi-tenant environment, flexible security strategies 
can be adopted at different layers. The isolation between 
tenants (organizations) usually needs to be mandatory 
and physical, while that between users inside a tenant 
is usually just optional or logical. At the container level, 
achieving strong isolation by using the weak isolation 
techniques of containerization is a challenge. At the con-
tainer cluster level, the multi-tenancy feature is not avail-
able at a product level in mainstream orchestrators [24]. 
Thus, cloud-native service stacks need to fill these gaps. 
The designs should balance security with additional over-
head, resource utilization and application transparency.

Resource utilization
The percentage of resources used by effective workloads 
is an important indicator of a software stack, especially 
for that in an on-premise cluster. Multi-tenancy intro-
duces additional issues on resource utilization. Typi-
cal issues are as follows. Firstly, the isolation of virtual 
execution environments among tenants limits the elas-
tic scheduling of free resources, while the per-tenant 
components also take up more resources than shared 
components. Secondly, when introducing the sepa-
ration architecture of compute and storage in small/
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medium-scale clusters, the storage utilization may be rel-
atively low compared with that in the traditional coupling 
architecture. Thirdly, to fully utilize expansive high-per-
formance hardware, the trade-off between multiplexing 
and security is inevitable. A cloud-native service stack 
should deal with the above problems in a systematic way.

Extensibility dimension t: automated workflows
The workflow dimension focuses on achieving connectiv-
ity and automation across the entire life-cycle of business 
on the cloud. This dimension is the embodiment of the 
cloud-native software engineering paradigm.

Inter‑job workflow
Batch job schedulers generally handle intra-job work-
flows, while common workflow engines in the cloud-
native ecosystem generally handle workflows over 
containers or pods rather than batch jobs. For artificial 
intelligence and big data applications, higher-level work-
flows are often required to meet the needs of compre-
hensive businesses. For example, an artificial intelligence 
workflow involves model development, training, serving 
and verification, where different steps have diverse sched-
uling and interaction modes. To handle this kind of busi-
ness, the workflow mechanism needs to be extensible for 
both universality (application adaptability) and scalability 
(task scale). Meanwhile, usability is another value that 
workflow mechanisms can bring. Application-specific 
workflow plans and routine steps can be made implicit in 
the upper layers of a service stack, while the lower layers 
are responsible for generic capabilities.

CI/CD workflow
When the concepts of continuous integration and con-
tinuous delivery are introduced in a service stack, the 
workflow designs will expand at multiple angles. In 
terms of environmental coverage, a CI/CD workflow 
may cover multiple clusters involving development and 
production environments. In terms of objects to be man-
aged, a CI/CD workflow deals with not only executable 
tasks, but also entities like data assets and software arti-
facts. Although the general CI/CD toolchains in soft-
ware engineering are relatively mature, adaptive designs 
are required when applying them in specific application 
scenarios. For example, a CI/CD workflow for artificial 
intelligence needs to manage the logics of models’ com-
pilation for specific inference devices, encapsulation for 
specific runtime environments, documentation of meta-
information, etc. Besides, the programmable mechanism 
is helpful for a CI/CD workflow, which enhances the con-
figurability of complicated automation pipelines.

Multi‑dimensional extensible architecture
Guided by the cloud-native light-cone model, a multi-
dimensional extensible architecture is designed. It 
focuses on addressing the challenges of implementing 
extensible cloud-native service stacks. The composition 
of this architecture and the relationship among main 
components are shown in Fig.  2. Intuitively, it inher-
its and extends the idea of the hourglass model. The 
architecture defines the service stack as a bridging layer 
logically. It emphasizes that the service components 
should treat the applications and infrastructures in a 
hierarchical view like the protocol stack of computer 
networking. The introduction of tenant and workflow 
emphasizes two meanings: (1) The virtual execution 
environments for tenants define the spatial division of a 
service stack, while the orchestration and scheduling of 
workflows define the temporal organization of a service 
stack. (2) The workflows carry the inputs of business 
logic, while the tenants receive the outputs of business 
logic.

Referring to the perspective view in Table 2, this archi-
tecture also embodies six main functions of a service 
stack by connecting four dimensions:

(1) x + z : business management. Enterprise tenants 
typically have business management policies consistent 
with their administrative regulations. The service stack 
should provide flexible mechanisms to allow tenants to 
implement their policies.

(2) x + t : runtime abstraction. The business logic car-
ried by workflows will be abstracted into application 
runtime entities of appropriate granularities so that 
either the service stack or the users can manage the busi-
ness logic in a uniform manner respectively.

(3) y+ z : environment allocation. The infrastruc-
tures will be partitioned or packaged as multiple virtual 
execution environments to serve different tenants or 
businesses. The service stack ensures a tenant-specific 
resource view.

(4) y+ t : resource maintenance. The infrastructure as 
the critical basis needs to be operated and maintained 
effectively. The service stack should meet the proprie-
tor’s need for stability and availability to host workflows 
in production.

(5) x + y : architecture adaption. The infrastructures 
will be utilized in an organized way according to the 
applications’ requirements. Architecture adaptation 
interfaces between hardware and software at the appro-
priate level will be implemented by the service stack.

(6) z + t : logic orchestration. The workflows stand for 
the business processes requested by tenants, which are 
scheduled by the service stack to ensure that the orches-
tration logic meets the tenants’ expectations as in the 
physical world.
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Designs of key technologies
Based on the multi-dimensional extensible architecture, a 
group of key technologies are designed. They aim to solve 
the concrete challenges so that an extensible cloud-native 
service stack for enterprises can be implemented sys-
tematically. Representative designs are introduced in this 
section. The correspondence between the designs of key 
technologies and the challenges they address is presented 
in Fig. 3.

Unified runtime abstraction
The unified runtime abstraction [25] is designed for job 
management. It includes two layers: the universal inter-
face and extensible drivers. The universal interface is an 
abstract data structure describing the runtime entities 
as well as their resource requirements and scheduling 
policies of a job. It supports either using the fine-grained 
“process group” structure to describe any job in a free 
way or using the templated “application job” structure 
to describe jobs of classic application frameworks in a 
concise way. Taking the artificial intelligence job as an 

example, the templated structure abstracts typical dis-
tribution modes like PS-Worker, Allreduce and MPI 
as standard options of scheduling policy. The universal 
interface can be expressed and stored in JSON.

Extensible drivers are employed to support diverse 
application modes. For the microservice mode, the driver 
is implemented using the mechanisms of native Kuber-
netes and Istio [26]. For the batch job mode, the generic 
driver is implemented by synthesizing the mechanisms 
of Volcano, the network and affinity policies of Kuber-
netes, as well as several improved designs implementing 
the schematized scheduling behaviors. Some of the spe-
cific drivers for classic application frameworks are imple-
mented using the operator mechanism of Kubernetes.

To solve the runtime environment dependency prob-
lem, the runtime abstract provides fields for environment 
matching. To support special devices with quantitative 
specifications (e.g. GPU’s model and memory), and also 
to match the versions of drivers on hosts, a resource 
expression matching mechanism is designed to extend 
the simple label selector mechanism. It implements 

Fig. 2  The composition of the multi-dimensional extensible architecture
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arithmetic, string and set operations, so complicated 
matching conditions can be expressed.

Kubernetes cluster bootstrapped creation
The Kubernetes cluster bootstrapped creation mecha-
nism [27] is designed for the life-cycle management of 
containerized application clusters. It can create inde-
pendent Kubernetes clusters dynamically for different 
tenants. The mechanism includes the universal abstrac-
tion and extensible bootstrapped drivers. The universal 
abstraction describes the requirements of a Kubernetes 
cluster. Advanced configuration items involving network 
and storage infrastructures are supported.

Extensible bootstrapped drivers are responsible for 
creating Kubernetes clusters on bare-metal- or virtual-
machine-based IaaS clusters. Two environments are 
related to a driver: the host environment where the driver 
runs, and the target environment where the new Kuber-
netes cluster is created. “Bootstrap” means that a driver 
is a self-contained job in a container running in the host 
environment. The self-contained job depends on only the 
standard IaaS APIs of the target environment, but not any 
other components of it. The implementation of drivers 
leverages some IaC (Infrastructure as Code) toolchains 
like Terraform [28]. The complexity of programming in 
the IaC DSL (domain-specific language) is hidden in the 
drivers, while the support for high-performance devices 
is extended in specially developed plugins.

Support for multiple heterogeneous cloud environ-
ments demonstrates the extensibility of this mechanism. 
The design of extensible providers in the IaC toolchain 
allows the target environment to be set on either a pri-
vate cloud based on OpenStack with Magnum, or IaaS 
clusters of mainstream public clouds. This enables a 
cloud-native service stack to support hybrid cloud and 
multi-cloud environments [29] for performance and 
availability.

Intranet penetration mechanisms
To solve the network accessibility issues in complicated 
network environments, a group of intranet penetration 
mechanisms are employed. Traditionally, VPN (virtual 
private network) and cloud load balancer are common 
mechanisms for accessing the intranets inside contain-
erized clusters from the Internet. They offer the benefits 
of reliability and performance, but they are subject to the 
capabilities of cloud providers and are costly. Two new 
flexible mechanisms are designed. One is the container-
cluster-oriented reverse proxy mechanism, and another is 
the MQTT (message queuing telemetry transport)-based 
message broker. They require only the virtual IP service 
from cloud providers, and provide lightweight channels 
for intranet penetration at a low cost.

The container-cluster-oriented reverse proxy mecha-
nism includes a load gateway and a group of Istio ser-
vices. The load gateway works as the entry of traffic which 
supports dynamic virtual IP binding, while the Istio 

Fig. 3  The designs of key technologies and the challenges they address



Page 10 of 18Lin et al. Journal of Cloud Computing           (2022) 11:83 

services are responsible for the routing of traffic within 
the intranet. The MQTT-based message broker contains 
peer services in different network environments, which 
are designed for transmitting control messages on unre-
liable connections. Typical application scenarios of these 
mechanisms include: implementing a hybrid cloud where 
the cloud-native service is in a private cluster but the tar-
get environments are on public clouds, implementing an 
application across clouds and edges in which the edge 
sides have their own private networks, etc.

Full‑stack application‑specific controllers
The full-stack application-specific controller is a compre-
hensive technology to implement on-demand provision-
ing of application frameworks or application clusters. 
Compared with common Kubernetes operators [30], the 
concept of “full-stack” emphasizes that the technology 
covers not only the runtime entities of frameworks/clus-
ters, but also the underlying resources including storage 
and network.

A typical example of these controllers is the HDFS-
on-Kubernetes provisioner. It is a full-stack opera-
tor that aims to provision multiple on-demand storage 
clusters, and also addresses the challenges of storage 
locality and network performance sensitivity. This pro-
visioner includes the designs of CRD (custom resource 
definition)-based workload abstraction, endpoint provi-
sioning mechanism for port allocation and reclamation, 
and volume provisioning mechanism for disk partition-
ing and mounting. When a request for an HDFS cluster 
is received, the provisioner will find a group of hosts with 
enough disk space, partition the disks using LVM (logical 
volume manager), and then create the corresponding PV 
(persistent volume) objects for the service pods. To avoid 
the overhead of the overlay network, the host network is 
used in this scenario. The allocation records of the ports 
on hosts are managed by the provisioner so that differ-
ent containerized HDFS clusters can share the same port 
space without conflicts.

To achieve network isolation, the controllers can also 
use the MAC-based VLAN and route policies to restrict 
the security risks among different application frame-
works/clusters. As a general entry for a set of related 
objects, the Kubernetes operator-based controller design 
also facilitates the implementation of multi-tenant access 
control.

Device multiplexing plugins
The device multiplexing plugins are designed for shar-
ing the high-performance hardware with multiple jobs 
to improve resource utilization. The main devices that 
need to be multiplexed include compute accelerators and 
high-speed network cards. On the GPU side, a new GPU 

device plugin for Kubernetes with its scheduler extender 
is developed. Compared to the existing solutions [31, 
32], it supports matching GPU by model and allocat-
ing resources by both computing power and memory, 
where the computing power is abstracted as “milli-GPU”. 
To enforce performance isolation, system call intercep-
tion and external resource monitoring mechanisms are 
adopted. On the RDMA side, new device plugins are 
developed by improving the open-source solution for 
InfiniBand [33]. The SR-IOV-based virtualization is used 
to implement mandatory resource constraints, while 
compatibility design is also made to multiplex other 
RDMA devices like RoCE.

In order to solve the complexity issues of configuring 
high-performance devices in containerized environ-
ments, several utilities are developed. An RDMA device 
information detector is developed for fetching the addi-
tional indexes of virtualized devices, which helps the 
applications in containers to bind network interfaces. An 
RDMA job launcher is developed for setting essential sys-
tem parameters like the pinned memory size in a secure 
manner. Other utilities like the multi-network IP address 
mapper, the shared memory setup tool and the GPU 
monitor agent are also available. For the application-spe-
cific container images supplied by a service stack, these 
utilities can be integrated and executed implicitly to pro-
mote the usability and portability of the stack.

High‑performance containerized communication
The device multiplexing plugins for high-performance 
hardware solve the feasibility and utilization issues. Fur-
ther, performance optimization needs to be considered. 
Several designs for high-performance containerized 
communication are proposed. Representative technolo-
gies are introduced as follows.

To accelerate distributed big data jobs, an RDMA-
based remote shuffle service [34] is designed. Its basic 
idea inherits the existing work [35] in the industry, while 
its innovation is mainly in the cloud-native design and 
RDMA communication. This shuffle service runs as a 
container cluster. Benefiting from the provisioning mech-
anism of the full-stack operator, the local disk-based stor-
age can be partitioned and mounted automatically. An 
RDMA-based shuffle client integrated with the Spark 
framework is developed to enable high-throughput com-
munication with the shuffle service. The client and ser-
vice use control messages to manage the allocation of 
pinned communication buffers.

To adapt the separation architecture of compute and 
storage, and provide better performance in this case, a 
containerized storage access layer [36] is proposed. This 
layer runs in the compute cluster as a cache service. The 
core implementation is based on Alluxio [37], and the 
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containerized provisioning is also based on the full-stack 
operator. To accelerate upper-layer applications that do 
not support RDMA, the IPoIB network is introduced. 
The multi-network IP address mapper will help applica-
tions to find this network plane for data access.

Dynamic interactive workflow
For typical application scenarios with inter-job work-
flows, it is necessary to design general underlying mech-
anisms and dedicated upper-layer routines to balance 
universality and usability. The key point of co-designing 
these two types of components is how to effectively 
combine manual operations with automated processes. 
The dynamic interactive workflow design is proposed to 
address this issue. At the lower layer, an enhanced work-
flow engine is designed. It supports scheduling logic 
based on dynamic DAG (directed acyclic graph) so that 
the manual interactions can be inserted dynamically, and 
complex conditional concurrency can be implemented. 
At the upper layer, dedicated interactive tools need to be 
customized to make the underlying orchestration trans-
parent to the users.

One case of the dynamic interactive workflow design 
is the guided automatic learning technology [38] for the 
artificial intelligence model development. The under-
lying workflow connects the phases of online labeling, 
data pre-processing, model training, model serving and 
verification. In the model training phase, a set of batch 
jobs will be launched concurrently according to the algo-
rithms of automatic hyperparameter tuning and neural 
network architecture search. The jobs may be created or 
terminated dynamically when triggered by certain condi-
tions. This design allows not only to execute a workflow 
linearly, but also to jump between steps following cer-
tain rules. This kind of manual intervention is used to 
push the model’s evolution to the desired direction. His-
torical execution paths created by dynamic interactive 
workflows can be accurately recorded by the provenance 
mechanism [39].

Structured asset delivery management
The structured asset delivery management mechanism 
[40] is designed to maintain the data assets and software 
artifacts involved in workflows of artificial intelligence 
and big data application frameworks. It aims to pro-
duce deliverable assets with complete encapsulation and 
documentation. The service consists of a DSL for asset 
meta-information and a continuous delivery engine for 
asset building. It allows the users to define the deliverable 
assets in a declarative language, through which the work-
flow will be created and scheduled automatically, and 
the encapsulation and documentation will be generated 
according to the meta-information of input objects.

The DSL for asset meta-information is based on JSON. 
It describes a deliverable asset using five sets of fields: 
general, inputs, outputs, dependencies and extensions. 
The general fields include the basic meta-information of 
the asset like its name, type and version, which deter-
mines the application framework and job type for build-
ing the asset. The inputs and outputs provide essential 
information to create the job for building the asset. The 
dependencies are used to build the DAG for workflow 
orchestration. The extensions are used for creating docu-
ments and other subsidiary artifacts. The asset meta-
information in this DSL can be manually written by the 
users or automatically generated by the service stack 
through graphical configuration.

The continuous delivery engine for asset building has 
two main responsibilities: maintaining the meta-informa-
tion database and driving the workflow engine. Its input 
is parsed from the asset meta-information in the DSL. 
The workflow is often inter-service or inter-cluster, espe-
cially for the final steps of encapsulation, documentation 
and delivery, so the engine supports distributed asyn-
chronous workflows. The aforementioned provenance 
mechanism is also employed to trace the relationship 
among assets.

Product implementation of the OMStack
The multi-dimensional extensible architecture as well as 
its key technologies has been implemented in a newly 
proposed service stack – OMStack (Oriental Mind 
Stack). This service stack consists of a series of produc-
tion-grade cloud services. The relationship between the 
services and their key designs is shown in Fig. 3.

OMStack overview
OMStack is a cloud-native service stack providing various 
types of PaaS and SaaS services. It uses containerization 
technology as a common base, and high-performance 
computing technology as a characteristic ability. It aims 
at serving the mainstream workloads widely used by 
modern enterprises such as artificial intelligence and big 
data.

The overall architecture of OMStack is shown in Fig. 4. 
The component layout of OMStack is guided by the 
dimensional analysis using the cloud-native light-cone 
model. Different PaaS services cover four scales (A1–A4 
in Table 1) of the application dimension, while the infra-
structures used by the stack are organized into four scales 
(I1–I4 in Table  1) of the infrastructure dimension. The 
SaaS layer includes an integrated portal and application 
services for end-users. The dependencies between com-
ponents are represented by dotted lines in the figure.
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PaaS services
Two layers of PaaS services are implemented. The lower 
layer is a general-purpose container cluster orchestra-
tion service covering the application cluster (A4) scale, 
while the upper layer is a group of domain-specific con-
tainer application services covering the process (A1) to 
the application framework (A3) scales. These container 
application services involve supporting both batch jobs 
and microservices, where container-based scheduling is 
their core duty.

OMCC – container cluster service
OMCC [27] takes the managed Kubernetes cluster 
as the first-class entity, and provides rich capabilities 
inside and outside container clusters. Inside a con-
tainer cluster, OMCC supports workload management, 
service orchestration and automatic maintenance for 
containerized applications, which significantly expands 
the functionality of traditional dashboards. Outside of 
container clusters, OMCC supports on-demand pro-
visioning, elastic scaling and multi-cloud deployment 
for Kubernetes clusters, which can be considered as an 
extension of the IaaS layer. OMCC is a bridging layer 

that hides the complexity of the infrastructure, and 
offers consistent and universal capabilities for upper-
layer services.

OMCC provides a subsidiary service named OMCC-
OSB. It supports on-demand provisioning for common 
service middleware such as databases, web servers and 
cache services via the OSB (open service broker) inter-
face. In an enterprise environment, it provides users with 
an easy-to-use service catalog that helps reduce the costs 
of operation and maintenance.

OMBD – big data service
OMBD is a big data analysis and processing service that 
supplies application frameworks of multiple paradigms 
including batch (Hadoop, Spark), streaming (Flink, Spark 
Streaming), NoSQL database (HBase), data warehouse 
(Hive), etc. On compute, it supports either scheduling 
jobs in a shared framework instance or provisioning inde-
pendent framework instances for different businesses. 
On storage, it can provide on-demand containerized 
HDFS clusters, while external storage services are also 
supported. It allows the compute and storage clusters 
to run on either separated or shared infrastructure. The 

Fig. 4  The overall architecture of OMStack
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high-performance RDMA network is adopted to imple-
ment efficient communication for distributed jobs.

OMAI – artificial intelligence service
OMAI [25] serves the full life-cycle of artificial intelli-
gence including algorithm development, model training 
and online inference. Diverse AI engines like Tensor-
Flow, PyTorch and MindSpore are integrated. Training 
modes based on custom algorithms, preset algorithms 
and guided automatic learning are ready for users with 
different knowledge backgrounds. Scheduling of large-
scale distributed jobs with multiple distribution modes 
is supported by the scheduler with specific policies, 
and accelerated by the optional RDMA communica-
tion. Object storage is the standard storage service that 
enables data sharing in the whole pipeline, while other 
storage services are also compatible via the CSI (con-
tainer storage interface) mechanism.

OMPredict – AI inference service
OMPredict is a professional AI inference service. It 
is well suited for enterprises or cloud service provid-
ers with diverse and variable AI inference requests. It 
supports running either model files in the FaaS mode 
or model images in the CaaS mode. Container-based 
elastic scaling mechanism is designed, which supports 
“scale to zero” to save resources for idle services. Access 
control and usage measurement are implemented in a 
universal gateway layer so that a complete commercial 
model service can be easily implemented using native 
models. Models produced by OMAI can be encapsu-
lated and deployed in OMPredict automatically by the 
structured asset delivery mechanism.

OMBatch – batch processing service
OMBatch is a general-purpose batch processing ser-
vice that implements the unified runtime abstraction 
and serves the scheduling of batch jobs. It is a basis of 
OMAI and OMBD, and it also works as an inter-job 
workflow engine within a service. OMBatch addresses 
the key issues of mapping stateful semantics like gang-
scheduling to container-based microservices.

OMAutomation – automated workflow service
OMAutomation is a workflow orchestrator support-
ing inter-service and inter-cluster task orchestration. It 
serves many cases of service coordination in OMStack, 
such as the structured asset delivery and the implicit 
incremental training. When building a business-spe-
cific system with OMStack, OMAutomation can work 
as a general coordinator for upper-layer applications 
and lower-layer services.

SaaS services
The SaaS layer supplies business-oriented application 
services to present the functionalities of OMStack to 
the end-users. It represents the value extension of our 
model and architecture to the application level.

OMCloud – integration portal
OMCloud is a portal that integrates the user inter-
faces of all the OMStack services. Under the unified 
graphical interface, a set of universal mechanisms are 
designed to achieve standardized modular integration 
of services, which involve a user system, a billing sys-
tem, a messaging service, a monitor service and so on. 
In on-premise clusters for enterprises, OMCloud can 
be easily integrated with existing IT systems due to its 
open designs.

OMAI Market – AI market service
OMAI Market provides an on-demand service trad-
ing platform for the supply and demand sides of arti-
ficial intelligence models. Neural network models from 
OMAI and statistical learning models from OMBD 
can be packaged as pay-as-you-go services with both 
auto-generated GUIs and RESTful APIs via this plat-
form. Elastic model serving is supported by leveraging 
OMPredict. Usability designs including model accu-
racy assessment and JSON parsing guidance are also 
available.

OMVision – machine vision service
OMVision is an image and video analysis platform. It 
supports intelligent capabilities such as target detec-
tion, entity recognition and event discovery by using 
machine vision algorithms. Benefiting from the cloud-
native design, algorithms can be dynamically deployed 
and elastically scaled on both cloud and edge sides 
according to requirements. Implicit incremental train-
ing and transfer learning for various scenarios are the 
key features enabled by the underlying OMAI and 
OMPredict.

Evaluation
To demonstrate the practicality, efficiency and reli-
ability of OMStack, a set of performance experiments 
are performed and analyzed, representative results of 
which are presented in this section. OMStack has also 
been deployed and used in many production applica-
tions. This section will introduce some typical cases.

Performance experiments
Three typical experiments are introduced to illustrate 
the performance characteristics of OMStack. They 
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cover the life-cycle of interface invocation, job sched-
uling and job execution. The test environment is an 
OMStack cluster deployed on an OpenStack-based 
VM cluster with 120 nodes. Each virtual node has 16× 
vCPU, 64GB memory, and a 200GB data disk. The data 
plane network is a 10G ethernet supporting RoCE. The 
software environment involves CentOS 7.8, Kubernetes 
1.19, Spark 3.0.2 and HiBench 8.0.

Service interface invocation
This experiment focuses on the response time of call-
ing the REST APIs of OMAI concurrently. Each “view” 
interface synchronously returns a query result from an 
100,000-record table, while each “create” interface asyn-
chronously returns a state code for generating a single 
object. The components handling the requests involve 
OMCC, Kubernetes and PostgreSQL in addition to 
OMAI. A multi-thread client calls each interface with 10, 
50 and 100 concurrent invocations, and the total num-
ber of requests is 1,000 for each interface in each case. 
The results are shown in Fig. 5. It shows that the response 
time increases linearly with the concurrency. For most 
interfaces, the response time of 10-concurrency is less 
than 200ms, and that of 100-concurrency is less than 2s. 
This reflects the high efficiency of OMStack components 
under high pressure.

Large‑scale job scheduling
This experiment focuses on the time overheads for the 
main parts in the life-cycles of concurrent jobs in OMAI. 
The test load is a logistic regression training algorithm. 
The recorded times include creation time (in Kuber-
netes and PostgreSQL), scheduling time (in Kubernetes), 

and execution time (in containers). Sufficient CPUs and 
memory are prepared so that all the concurrent jobs 
do not need to be queued for resources. The results are 
shown in Fig. 6, where time is the average time of all con-
current jobs. It shows that creation and scheduling times 
are roughly linearly related to the number of jobs. This 
behavior is consistent with the Kubernetes modeling 
analysis given by [41]. The execution time remains basi-
cally constant, which reflects the scalability of OMStack 
in the number of jobs.

Distributed job execution
This experiment compares the execution time of a typi-
cal big data job with different configurations. The test 
load is the TeraSort benchmark in HiBench [42], while 
the objects of comparison involve the containerized 
environment provided by OMBD vs. the traditional VM 
environment, as well as the remote shuffle service vs. 
the built-in shuffle mechanism in Spark. The results are 
shown in Fig.  7. In terms of containerization, OMBD 
has acceptable overheads for some cases with small data 
sizes, but it shows an advantage in the 1TB case. Besides 
the performance fluctuation of Java applications, it is 
probably because containers provide better performance 
isolation [43]. In terms of shuffle, our design shows a sig-
nificant advantage at 1TB data.

Application cases
The full stack or parts of OMStack has been applied in 
many scenarios in industry and academia to serve real 
businesses. It provides cloud-native services involving 
container clusters, big data, and artificial intelligence to 
support upper-layer applications.

Fig. 5  Test results of service interface invocation
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AI service in Big Earth Data
OMStack supports the construction of the artificial intel-
ligence cloud service in the SDG (Sustainable Develop-
ment Goals) Big Data Platform of the Big Earth Data 
program [44]. Scientists in fields such as remote sensing 
and physical geography use OMAI to develop and train 
models to facilitate their research. To lower the threshold 
for the non-computer professionals to use AI algorithms, 
a variety of domain-oriented models are preset, which are 
managed by the structured asset delivery mechanism so 
that the release and iteration can be automated. Guided 
automatic learning processes for geographic image pro-
cessing and analysis are designed. Dedicated labeling 
tools and image pre-processing algorithms are developed 
to serve typical applications such as surface semantic 

segmentation and object detection in a pure GUI way. 
On the system side, the device multiplexing mechanism 
for high-performance accelerators improves the utili-
zation of GPUs. The public cloud service of AI [45] has 
been launched and serves many institutions, which veri-
fies the stability and reliability of OMStack.

iPaaS platform for enterprises
An iPaaS (Integration Platform as a Service) platform 
is designed based on OMStack. It aims to provide self-
service provisioning and management of common PaaS-
layer services for developers in the private/hybrid clouds 
of enterprises. OMCC and its affiliated OMCC-OSB are 
the core of the iPaaS platform. Benefiting from the unified 
runtime abstraction and full-stack application-specific 

Fig. 6  Test results of large-scale job scheduling

Fig. 7  Test results of distributed job execution
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controllers, various services with different distributed 
architectures and scheduling modes can be organized 
and orchestrated uniformly. The service catalog already 
covers dozens of services including web applications, big 
data frameworks, message middleware, etc. Based on the 
DevOps concept, the automation designs in OMStack 
significantly reduce the cost of IT operations. The iPaaS 
platform has been adopted by several enterprise custom-
ers involving telecom operators, software manufacturers 
and hospitals.

Smart industrial inspection solution
Our team proposes a smart industrial inspection solu-
tion using the components in OMStack. This allows 
traditional industries to benefit from the advantages of 
cloud-native and artificial intelligence. The core of the 
solution is customized based on OMVision. Algorithms 
developed for specific inspection scenarios are executed 
by the inference service of OMVision and dynamically 
scheduled on demand. The implicit incremental training 
and transfer learning technologies enable the accuracy 
of models to be automatically improved in use based on 
user feedback. The intranet penetration mechanism can 
solve the problem that some businesses need to access 
edge-side networks or enterprise intranet from the 
Internet securely. This solution has been deployed for 
customers in multiple industries including machinery 
manufacturing, road maintenance and railway vehicles.

Related work
On the architecture analysis of cloud computing, besides 
the dimension- or taxonomy-based methods introduced 
in the section of background, formalized or quantitative 
methods have also been proposed. Binz et  al. [46] pro-
posed an enterprise topology graph model to match the 
architecture of cloud infrastructure with the organization 
structure for optimizing operational costs. Andrikopou-
los et al. [47] designed a quantitative estimation method 
to analyze the CAP (Consistency–Availability–Partition 
tolerance) properties of cloud-native applications. Hal-
abi et al. [48] designed a quantitative evaluation method 
using relative matrices to study the security properties 
of cloud service providers. Szalay et  al. [49] proposed a 
quantitative model to formalize the state placement prob-
lem of cloud-native applications, which can guide the 
architecture optimization for cloud databases. Salmon 
et  al. [50] applied classic models like End-User Com-
puting Satisfaction (EUCS) to characterize the multifac-
eted properties of cloud services. Chemashkin et al. [51] 
used a control theory model to characterize Kubernetes 
operators, which aims to guide the state-space design 
of application-specific controllers. These subdomain-
focused methods are instructive for designing a complete 

formalized and quantitative analysis methodology for 
cloud-native service stacks.

On the architecture design of cloud-native service 
stacks, theoretical studies and engineering practices are 
emerging. Balalaie et al. [52] reported the experience of 
migrating traditional architectures to the cloud-native 
architecture, which provides a common pattern for build-
ing DevOps-enabled microservice stacks. Pahl et al. [53] 
summarized a group of architectural definitions, princi-
ples and patterns for cloud service stacks, and proposed a 
reference architectural style. Moreno et al. [54] proposed 
a complete cloud architecture for enterprises to serve the 
full life-cycle of big data and artificial intelligence appli-
cations. Kosińska et al. [55] designed AMoCNA, a cloud-
native framework with autonomic computing features 
for provisioning and scheduling diverse applications to 
improve manageability. Gundu et al. [56] aimed at solv-
ing load balancing challenges in multi-cloud and hybrid 
IT infrastructures in order to enhance the scalability of 
cloud computing architectures. Moreover, Goniwada [3] 
summarized and detailed many classic designs of overall 
and partial architectures in cloud-native systems. These 
studies and practices provide useful inputs for the model 
and architecture designs of this paper.

Conclusion
Cloud-native computing is popular in recent years. This 
paper aims at designing a practical architecture and 
a service stack to improve the existing designs in the 
cloud-native ecosystem. A cloud-native light-cone model 
extending the classic hourglass model is proposed, which 
highlights the extensibility features of a service stack 
on four dimensions: application, infrastructure, ten-
ant and workflow. Guided by the model, the challenges 
in designing an extensible service stack are categorized 
and analyzed by dimension. Key issues such as diverse 
scheduling modes and framework on-demand provi-
sioning are identified. To solve these challenges, a multi-
dimensional extensible cloud-native architecture and a 
set of key technologies are designed by using a system-
atic approach based on the above model. These designs 
revolve around six main functions: business manage-
ment, runtime abstraction, environment allocation, 
resource maintenance, architecture adaption and logic 
orchestration. Representative technologies including the 
Kubernetes cluster bootstrapped creation and full-stack 
application-specific controllers are developed to improve 
these functions.

These designs are not limited to theoretical and tech-
nical ideas, but are implemented as production-grade 
software and applied in real businesses. OMStack is pro-
posed to realize the multi-dimensional extensible cloud-
native architecture. A group of PaaS and SaaS services 
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integrating the key technologies are implemented in 
OMStack to serve enterprise applications. Typical ser-
vices include the OMCC container cluster service, the 
OMBD big data service and the OMAI artificial intel-
ligence service. The functionality and performance of 
these services and the underlying technologies have been 
verified by experiments. OMStack has supported many 
projects in industry and academia. Its value has been 
proven in practice.

In the future, the quantitative analysis method based on 
the cloud-native light-cone model will be explored so that 
the model’s guidance to practice will be enhanced. The 
AIOps technique will be studied to improve the full-stack 
autonomy. In addition, more cloud-native services, espe-
cially IaaS services, will be designed and implemented to 
promote the completeness of OMStack.
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