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Abstract

In this paper, we study how an oligopolist influences the coalition structure in federated cloud markets. Specifically,
we use cooperative game theory to model the circumstances under which a cloud provider prefers to join a cloud
federation vis-a-vis consider taking a price offer made by an oligopolist. We consider two price offering strategies for
an oligopolist: non-adaptive and adaptive. In non-adaptive strategy, an oligopolist makes a price offer to all the cloud
providers simultaneously. It can be noted that the oligopolist can buy-out all the cloud providers by making a price
offer which is equal to a core allocation and the total price offer made by the oligopolist is equal to the value of the
grand coalition. In adaptive strategy, the oligopolist approaches the cloud providers one after another in a sequential
manner. We show that by using the adaptive strategy, the oligopolist can buy-out all the cloud providers at a total
price offer which is less than that of the non-adaptive strategy.

Keywords: Federated clouds, Oligopoly, Linear production games

Introduction

The current cloud computing market structure is akin to
oligopoly as few mega cloud providers completely own
the market share. Each of them individually or in collu-
sion has the power to affect the market prices leading to
what is called an imperfect competition. Further, due to
the large scale of operations in the data centers owned by
these oligopolists, there is an acute stress on electricity
and other natural resources. Many studies [1, 2] indicated
the resulting adverse impact on the environment due to
carbon emissions and other pollutants.

Since computing has become a common commodity
these days, it is easy to envisage a large number of micro
cloud providers with small to medium scale data centers.
With the presence of a large number of producers, an
oligopolistic market leans towards a perfectly competitive
market. In a market with perfect competition, produc-
ers become price takers and it is not possible for one
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or few cloud providers to affect the market prices. Fur-
ther, as these small data centers are geographically spread
out, the stress on the local resources and the impact
on the micro-climate will be mitigated, especially by the
usage of renewable energy resources and productive use
of dissipated heat energy.

However, such micro cloud providers will be able to
serve only moderate sized consumer requests due to the
limited availability of resources in their data centers. In
order to serve large consumer requests many micro cloud
providers have to come together and form a coalition or
a federation. The federation formation can happen in a
peer-to-peer fashion leading to what is called a Peer-to-
Peer Inter-Cloud Federation (refer Fig. 1a) [3]. The other
option is to use the services of a broker as in Fig. 1b
resulting in a Multi-Cloud federation model. The broker
is one of the very few oligopolists who owns a substantial
market share. He can generate more revenue and thereby
profit, using the same set of resources when compared
with micro cloud providers. This is due to his market
reach, brand value and other value-added services he can
provide.
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Fig. 1 Cloud Federation Models

(a) Peer-to-Peer Inter-Cloud Federation

Broker

(b) Multi-Cloud Model

Problem statement and contributions

In this section, we briefly outline the problems addressed
in this paper and the later sections provide a detailed
technical discussion regarding the same !.

Peer-to-peer inter-clouds and linear production games

Given a set of cloud providers, we formulate the problem
of peer-to-peer inter-cloud federation formation (refer
Fig. 1a) as a linear production game. This is the first contri-
bution of this paper. It is a well-known theorem that every
linear production game has a non-empty core [5, 6]. A core
is a pay-off distribution scheme such that no individual
player or a sub-coalition of players have an incentive to
break-off from the grand coalition. For many cooperative
game theoretic models, there are no known polynomial
time algorithms for computing a core allocation. However,
for linear production games, computing a core involves
solving the dual of a linear programming problem, which
can be done computationally efficiently.

Intervention of an oligopolist

An oligopolist may intervene in the formation of a peer-
to-peer cloud federation and pursue individual cloud
providers to subscribe to the services of a broker, in this
case the oligopolist himself, resulting in the Multi-Cloud
model (refer Fig. 1b). When an oligopolist makes a price
offer to each of the cloud providers, some may take up
the offer and others may not. This results in the grand
coalition splitting up into sub-coalitions. We say that a
sub-coalition is feasible if each member cloud provider
gets a greater pay-off than that offered by the oligopolist.
A collection of such feasible sub-coalitions forms what
we call a stable coalition structure. The notion of a sta-
ble coalition structure has hitherto not been considered in
research literature. Further, given a price offer vector from
an oligopolist, we propose an efficient algorithm for the
computation of a stable coalition structure. These ideas

IThis paper is an extension of our previous Euro-Par'18 work [4] in which
problems mentioned in Peer-to-peer inter-clouds and linear production
games and Intervention of an oligopolist sections are addressed. The current
journal version addresses the problem of oligopolist price determination
formulated in Oligopolist price determination section.

constitute the second main contribution of the current
paper.

Oligopolist price determination

Thirdly, we study the price offering strategies which an
oligopolist can use to induce the cloud providers to lend
their resources to him while maximizing his profit. The
simplest price determination strategy for an oligopolist
is to compute the core and make a price offer which
is the same as that of a core. This non-adaptive strat-
egy gives a lower bound on the profit an oligopolist can
make. However, an oligopolist can approach the cloud
providers with price offers one after another in a strategic
manner. We call this as an adaptive price offering strat-
egy. In this paper, we show that adaptive price offering
strategies can yield more profit to an oligopolist when
compared with non-adaptive strategies. To the best of our
knowledge, the problem statements in Intervention of an
oligopolist and Oligopolist price determination section
are completely novel and no prior related work exists.

In Background section, we provide the necessary back-
ground on cooperative game theory and linear production
games; in Federation formation and payoff distribution
using linear production games section, we formulate the
cloud federation formation and payoff distribution prob-
lems using linear production games; in Intervention of
an oligopolist in federation formation section, we show
the impact of an oligopolist on federation formation and
how we can arrive at stable coalition structures; related
experimental analysis is provided in Experimental analysis
section; in Oligopolist price determination section, we
present non-adaptive and adaptive price offering strate-
gies of an oligopolist; Related work section contains the
related work; and finally we conclude with Conclusions
section.

Background

In this paper, we model the proposed problem as a linear
production game, a class of games from the cooperative
game theory [5, 6]. Towards this end, we provide a brief
overview of cooperative game theory concepts, which will
be used in the rest of the paper.
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Cooperative game theory

Given a set of N = {1,---,n} players, a subset S € N
of them can pool their resources and form a coalition to
generate an utility or value v(S). We say that the utility is
transferable if it can be split among the members of the
coalition in an arbitrary fashion.

Definition 1 A cooperative n-person game in coalitional
form is denoted by G = (N,v) where v : 2N — R, with
v(¢) = 0. The function v is called the characteristic function
of the game and v(S) is called the value of the coalition S.

A cooperative game G = (N, v) can induce a subgame
Gs = (S,vs) where S € N and vs(T) = v(T) for all
T C S. We say that a cooperative game is super-additive
fv(SUT) = v(S) +wT) forall S, T € 2N withSN T =
¢. Clearly, when a game is super-additive, then players
find it beneficial to form coalitions of larger size. How-
ever, the formation of a grand coalition N or any other
coalition depends on the payoff vectors allocated to the
players.

Definition 2 A payoff vector x = (x1,--- ,%x,) € R" is
called an imputation if it satisfies the following individual
rationality and efficiency conditions.

1 Individual rationality: x; > v({i}) Vi € N.
2 Efficiency: Y iy xi = v(N).

The set of imputations associated with a game G =
(N,v) is denoted by I(G). For a payoff vector x and a
coalition § C N, let x(S) denote D, ¢ ;.

Definition 3 The core of a game G = (N, V) denoted as
C(G) is defined as follows.

CG) ={xel(@) |x(F) >v(F)VF C N }.

If the payoff vector is from the core, then there is no
incentive for any sub-coalition S C N to deviate from the
grand coalition N, thus ensuring stability. However, the
core of a game is not necessarily non-empty. Bondareva
[7] and Shapley [8] gave independently a characterization
of games with a non-empty core.

Definition 4 A map » : 2N \ {¢} — R is called a
balanced map if

Z A(S)eS =€V,

Se2N\(¢)

where for a coalition S € N the vector ¢% € R" is defined
asef: llfieSandef=0LfieN\S.
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Definition 5 A cooperative game G = (N, V) is called a
balanced game if for each balanced map ) : 2N\ {¢p} — R+
the following condition holds good.

Z A(S)V(S) < v(N).
SeaN\(g)

Further, a cooperative game G = (N, v) is called totally
balanced if every induced subgame Gs = (S, vs) forall S €
2N\ (@)} is balanced.

The following theorem due to Bondareva and Shapley
characterizes the set of games with a non-empty core.

Theorem 1 A cooperative game G = (N, v) will have a
non-empty core if and only if it is a balanced game.

Linear production games

Consider a production situation where m different types
of products Py, ..., P, can be manufactured using g dis-
tinct kind of resources Gi,...,G,. Further, there is a
production matrix Ay xq whose (j, I entry aj denotes
the number of units of resource Gy required to manu-
facture an unit of product P;. Overall, the j** row of the
matrix denoted by a; gives the overall resource require-
ments per unit of product P;. The linearity of the pro-
duction situation comes from the fact that to manufac-
ture o units of product P; the corresponding resource
requirements scale-up linearly to oa;. Let the j** entry
of the price vector ¢ijx;; = (c1,--,c,) denote the
price per unit of product P;. Given a resource bun-
dle byx1 = (B1,--- ,,Bq)T with non-negative entries,
the optimal production plan x,,x1 = (x1,--- Jxm) T s
obtained by solving the following linear programming
problem.

Maximize c¢-x
X

subject to AT . x <b

x>0

Consider now an n-player game G = (N, v) wherein
the resource bundle owned by the i player is denoted
by b;. The resource bundle owned by a coalition S € N
is defined as b(S) = Y ;.s ;. Since each b; is a resource
vector, the summation denotes the usual vector addition
operation. The value v(S) associated with the coalition S
is obtained by solving the following linear programming
problem.

Maximize c-x
X

subject to AT . x < b(S)

x>0
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The following is an important theorem which we use in
this paper.

Theorem 2 Every linear production game Gy, = (N,v)
is totally balanced. Hence not only the core C(Gyy,) is non-
empty but also the core C(Gs) of every induced subgame
Gs = (S,vs) where S C N is also non-empty.

The algorithmic idea behind computing a core allo-
cation from C(Gs) is to first formulate the dual prob-
lem for the primal problem posed above. The solu-
tion to the dual problem gives the shadow prices for
the g distinct resources used while manufacturing m
distinct products in various quantities so as to maxi-
mize revenue. We can then derive the pay-offs to the
individual players based on their resource contribu-
tion and the shadow prices computed from the dual
problem.

Federation formation and payoff distribution
using linear production games

In this section, we will present a model for peer-to-peer
inter-cloud federation and an efficient payoff distribu-
tion scheme which gives a core allocation using linear
production games.

Federation formation model
Let Z = {Cy,---,Cy} be a collection of cloud providers.
A cloud provider C; owns a resource bundle b; =
(b5, 07", b?) T where b is the total number of available com-
pute cores; b/" and b; denotes the total available main
memory and secondary storage respectively. The cloud
providers can offer m types of virtual machines denoted
by VM;, 1 < j < m. The core, main memory and storage
requirements for each virtual machine type is given by the
production matrix A,,x3 whose jth row, a; = (uf, a;”, als-),
corresponds to the resource configuration vector of a vir-
tual machine of type VM;. Table 2 gives example virtual
machine types and the associated production matrix used
in the experimental analysis section of this paper. The per
unit market price of different types of virtual machines is
denoted by the price vector p = (p1,- -+ , pm)- Table 2 also
provides the hourly rental price for various types of vir-
tual machines considered. Given this market scenario, the
cloud providers have to decide upon a federation structure
such that each of them maximize their respective payoffs.
It can be observed that we can model this problem by
constructing a linear production game which is exactly
similar to the game G= (N, v) described in the Linear pro-
duction games section. We denote the total pooled cores,
memory and storage from a federation S by b°(S), b (S)
and b*(S) respectively. The value v(S) associated with a
federation S is obtained by solving the following linear
programming problem OPTLP(S).
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m
Max;cmlze ijpj (1a)
j=1
m
subject to ijaf < b°(S) (1b)
j=1
m
ija}” <b"(S) (1c)
j=1
m
Y@ < b(S) (1d)
j=1
% >0(1<j<m) (1e)

Constraints 1b, 1c and 1d denote the capacity con-
straints corresponding to core, memory and storage
respectively. In fact, this game being super additive, we
can infer that the grand coalition generates the maximum
revenue, which is obtained by solving the linear program-
ming problem OPTLP(N). Further, from Theorem 2, we
know that there is a core allocation possible as it is a totally
balanced game. In the next section, we show how we
can do payoff distribution using a core allocation, thereby
achieving the stability of the grand coalition.

Payoff distribution

Owen [9] showed that we can compute a core allocation
for a linear production game Gy, = (N,v) by solving
the following dual problem associated with the primal
problem OPTLP(N).

Minimize y16°(N) + 20" (N) + y3b*(N) (2a)

y
subject to  y1ai +y2a" +y3a; > py (V,1 <j <m) (2b)
y>0 (2¢)

We interpret the optimal solution y, = (¥, ¥/, y5) to
the dual problem as the shadow prices for cores, memory
and storage. Owen proved that we can obtain a core allo-
cation vector by paying the i" player with the resource
bundle b; = (&%, b}, bf)T as follows.

aN)= > b,

jelc,m,s}

We denote the payoff vector as «(N) =
(1 (N), -+ ,a,(N)) where the parameter N indicates
that the payoff corresponds to the grand coalition. The
subset of core allocations which are formed using optimal
dual solutions is know as the Owen set. In Intervention
of an oligopolist in federation formation section, we will
present how a broker or an oligopolist can intervene
in the formation of a grand coalition by offering higher
payoff to individual cloud providers.
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Discussion

The idea of carving out virtual machines of different types
by aggregating the cores, memory and storage from differ-
ent cloud providers is used in prior work [10, 11]. In prac-
tice, it is impractical to construct a virtual machine with
cores from one cloud provider and memory from another,
for example. In fact, even within the same premises of a
cloud provider, it is not possible to have a virtual machine
with cores from one physical machine and memory from
another. So a virtual machine has to be carved out using
the resources available on a single physical machine. How-
ever, at the data center level, resources within a phys-
ical machine are usually proportionate. It means that a
physical machine with large number of cores usually
has large memory and storage capacity. In fact, the
storage could be network attached and not associated
with the physical machine directly. From this, we can
intuitively infer that the optimal virtual machine pro-
duction plan (xik,~~~ ,%5,) obtained from solving the
OPTLP(S) problem can be almost realized while respect-
ing the practical physical constraints. There could be
some small number of remnant virtual machines which
cannot be realized but the impact on the optimality
of the solution will be minimal. Another approach to
handle remnant virtual machines is by using a small
reserve pool of physical machines at every micro data
centre. Overall, we argue that the linear programming
formulation is a reasonable approximation to estimate
the value of a coalition as it is not only computation-
ally efficient but also lends itself to the computation
and analysis of pay-off distribution schemes through
the framework of linear production games. We validate
this intuitive argument through experimental analysis
in Optimality of linear production games formulation
section.

Intervention of an oligopolist in federation
formation
In order to maintain market control, the oligopolists
may intervene in the peer-to-peer federation forma-
tion, refer Fig. la, by offering incentives to the micro
cloud providers to lend their resources to them. The
oligopolists in turn use the lent resources to supply vir-
tual machines to the end consumers potentially at a
higher price due to their wider market reach. During
this process, an oligopolist assumes the role of a bro-
ker leading to a multi-cloud architecture depicted in
Fig. 1b. In the rest of this section, we study how an
oligopolist can affect the structure of cloud federation
and the resulting impact on the payoff to individual cloud
providers.

Let an oligopolist offers a price m; to rent the entire
resource bundle b; from the cloud provider C;. In this
paper, we study the restricted problem of an interaction
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between a single oligopolist and a set of cloud providers?.
One simple way of considering more than one oligopolist
is to set the price offer m; made to the cloud provider C; to
the maximum of the offers made by different oligopolists
in the market, and the rest of the theory proposed in this
section holds good.

Core allocation for subgames

In Payoff distribution section, we described how the pay-
off distribution vector «(N) can be computed for the
game Gy, = (N,v). Since, every subgame Gs = (S, vs)
induced by Gy, is also a linear production game, we
can analogously compute the payoff distribution vector
o(S) by solving the dual problem for the primal prob-
lem OPTLP(S). Overall, we have to solve 2” — 1 linear
programming problems to compute the payoff distribu-
tion vectors for all the induced subgames, which is com-
putationally expensive. However, it can be noted from
the constraints (2b) and (2c), the feasible region for the
dual problem of OPTLP(S) is independent of the federa-
tion S and only the coefficients of the objective function
change. Hence, for practical values of m, we can enu-
merate the basic feasible solutions, in other words, the
extreme points of the polyhedra defined by the dual
problem constraints. For different objective functions
associated with different subgames, we can exhaustively
check the list of extreme points and find the optimal
solution.

Influence of the oligopolist

Definition 6 The marginal payoff for a cloud provider
C; with respect to a coalition S and a price offer m; from an
oligopolist is defined as

Bi(S) = a;(S) — m;.

A cloud provider has an incentive to deviate from a fed-
eration S and take up the offer of an oligopolist if and only
if Bi(S) < 0. Thus the oligopolist may destabilize the grand
coalition as all the cloud providers whose S;(N) < 0 will
break away from the coalition.

Definition 7 For a cooperative game G = (N,v) and a
price offer vector m = (my, - -+ ,my), a coalition S € N is
called a feasible coalition if and only if B;(S) > 0 for all
ies.

From the discussion in Core allocation for subgames
section, we can enumerate the list of all feasible coalitions
in 2N by computing the respective payoff distribution
vectors.

2 An alternate way to view this problem is to consider the single oligopolist as a
monopolist by ignoring the market influences due to other oligopolists which
is not the subject matter of this paper.
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Definition 8 Given price offer vector m, we call a parti-
tion CS = {Fy,- - - ,Fx_1, F*} of the player set N as a stable
coalition structure if

1 The coalitions F;,1 < i < k—1 are feasible coalitions.

2 There exists no subset S C F* which is a feasible
coalition. Thus all the cloud players from F* take the
price offer made by the monopolist.

Note that if m; < v({i}), then cloud provider C; is a
feasible coalition by himself.

Finding a stable coalition structure

There can be many possible stable coalition structures for
a given price offer vector from the oligopolist. We may
prefer one stable coalition structure to other based on
certain criteria. For example, one criteria could be to mini-
mize the number of cloud providers taking up oligopolist’s
offer, i.e., |F*|. Another criteria could be to be maxi-
mize the sum of payoffs of all the cloud providers, i.e.,

k-1
ic1 2jer, @(F) + 2 jcp m.

Definition 9 For a feasible coalition F and a price offer
vector m = (my,- - ,my), we associate a goodness value
g(F) which is defined as follows.

gF) = (ai(F) — my)/|F|
ieF
In this paper, we propose the following simple greedy
algorithm for stable coalition formation.

1 Let the initial coalition structure be CS = ¢. Repeat
the following step until it terminates.
2 (i iteration)

(a) Among all the feasible coalitions, choose a
coalition F; with a maximum goodness value
g(F)and FNF; = ¢ forall F € CS.

(b) If there exists no feasible coalition which is
disjoint with the already chosen feasible
coalitions, then exit the algorithm after setting
F* =N — UpecsF and CS = CS U {F*}.

The time complexity of the above algorithm is dominated
by the computation of the payoff values «;(F), for 1 <i <
nand F € N. This involves solving 2” linear optimiza-
tion problems. Further, we can easily note from the above
algorithm, that different goodness functions will yield dif-
ferent coalition structures. In the next section, we do an
experimental analysis on the influence of an oligopolist on
stable coalition formation and overall payoff distribution.

Experimental analysis
In this section, we study how increasing price offers from
an oligopolist to the individual cloud providers impact the

Page 6 of 13

structure of stable coalitions formed. We consider a set
of 12 cloud providers Z = {Cy,--- , C12} whose resource
capacities are given in Table 1. These resource capaci-
ties are randomly chosen, first by choosing one of the
three buckets: small, medium and large; and then choos-
ing a capacity randomly within a range determined by
that bucket type. Inspired from Microsoft Azure, we let
each cloud provider offer four types of virtual machines:
General Purpose (B2S), Storage Optimized (L4), Memory
Optimized (E8 v3), and Compute Optimized (F16 v2). The
resource requirements of each type of virtual machine is
given in Table 2. The same table also provides the hourly
rental price for each type of virtual machine.

We consider / = 45 different market scenarios. In the
i market scenario, M;, 1 < i <, the oligopolist makes a
price offer m = (my,--- ,mj, - - - ,m12) wherein

my = (1 + 150) <v({G). 3)

That means the oligopolist is offering a price which is %
greater than the value a cloud provider can generate by
working all alone. For small values of i, a cloud provider
can potentially get better payoff by forming a coalition;
whereas for larger values of i he may be better off tak-
ing up the oligopolist’s offer. This can be observed from
the Fig. 2 which depicts how the stable coalition struc-
ture evolves with the increasing price offers from the
oligopolist. The stable coalition structures are computed
using the greedy algorithm proposed in Finding a stable
coalition structure section. Each track of the semi-circle
represents the coalition structure for a given price offer.
The yellow colored cloud providers are those who take
up the oligopolists offer. Similar colored cloud providers
in a track belong to the same coalition. For example, at
one percent price offer, the coalition structure is CS =

Table 1 Resource capacity of cloud providers. vCPUs are
expressed in 100s of cores, memory and storage in 100 GB units

Cloud Provider vCPU Memory Storage
G 36 44 1845
G 55 74 1704
G 120 165 548
(@ 15 133 1906
Cs 61 490 2100
Ce 110 503 3164
G 119 900 3468
Cg 181 150 3900
Cy 182 986 6814
Cio 210 610 4654
Ci 166 531 13000
Ci2 239 850 4100
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Table 2 VM instance types, their resource configurations and hourly rental prices

vCPU Memory (in GB) Storage (in GB) Price (per hour)
General Purpose 2 4 8 0.0475
Storage Optimized 4 32 678 03128
Memory Optimized 8 64 200 0.532%
Compute Optimized 16 32 128 0.716%

{{1,2,5,11}, {3, 6}, {4,10}, {8, 9}, {7, 12}}. The members of
the last set F* = {7, 12} are those who accepted the offer
made by the oligopolist. Further, the semi-circle shows
only those tracks where there is a change in the coalition
structure from the previous market scenario. For exam-
ple, since the coalition structure did not change from the
market scenario My till Mj7, the intervening coalition
structures are not represented. We can notice the increas-
ing yellow color as we move from inside to outside in
the semi-circle indicating that with increasing price offers
more cloud providers will lean towards the oligopolist.
This is further illustrated by the graph in Fig. 3a which
shows the size of F*, |F*|, with increasing price offers.
Another interesting observation is that a cloud provider
may take an oligopolist’s offer in market scenario M;
but may change his mind in My where i/ > i. This is
due to the overall change in the coalition structure. This
phenomenon can be observed by looking at the sector
corresponding to the cloud provider 5 in Fig. 2.

Figure 3b shows the average marginal payoff of the
cloud providers who preferred to form a peer-to-peer
coalition. For a given market scenario, if CS is a stable
coalition structure (refer Definition 8), then the average
marginal payoff is defined as } r c oo\« D_jer, Bi(Fi)/IN \
F*|. As expected, with the increasing price offer from
the oligopolist, the marginal payoff goes down. How-
ever, it needs not be monotonic, as it may increase
locally due to the changes in the stable coalition structure.

Figure 4a shows the total time taken for the computa-
tion of the stable coalition structure for a given market
scenario. It can be noted that overall it is in the order
of milliseconds and hence computationally feasible prob-
lem to solve for all practical purposes. Further, with
increasing price offers, the number of feasible coalitions
go down, which makes the greedy algorithm converge
faster.

For a coalition, we know that vg(S) is the total pay-
off available for the coalition S. The combined payoff
from an oligopolist to a coalition S is ) ;¢ m;. Figure 4b
compares the coalitional payoff and the combined broker
payoff for all the coalitions in the market scenario M. For
cloud providers 7 and 12, who take up the oligopolist’s
offer, these two values are almost the same (one percent
difference).

Optimality of linear production games formulation

In Discussion section, we discussed the shortcomings of
the linear production games and why despite that, it is still
a reasonable market model to adopt. The primary issue in
linear production games formulation is that the optimal
solution obtained by solving OPTLP(S) may not be phys-
ically realizable, even when the federation S consists of
only one cloud provider. We compared how far away the
optimal feasible allocation for each cloud provider C; to
that of OPTLP({C;}). This will also throw light when the
federation S consists of more than one cloud provider.

i o
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41 32 17 7 4 3
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Fig. 2 Evolution of coalition structure with increasing price offers going from market scenario My to Mas (refer Eq. 3)
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(a) Number of cloud providers taking
up the offer made by the oligopolist
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We assume that the data centers owned by different
cloud providers consist of physical machines with 96
cores, 200 GB RAM, and 2 TB secondary storage. This
type of resource configuration is typical for server class
machines. We computed the optimal feasible allocation
for a cloud provider, DP({C;}), using a dynamic program-
ming approach. The average percentage over-estimation
of revenue by using linear programming over dynamic
programming is 19.8 percent. The cloud provider C3 has
the worst over-estimation error of 61.2 percent. This is
due to the meager secondary storage availability when
compared to cores and memory. Even cloud providers Cq,
Cs and Cy have around 30 percent over-estimation error.

This is due to the imbalance in the core and memory ratio.
These atypical data center configurations are due to our
randomization in the initial resource assignment to cloud
providers in our experimental setup. Without these out-
liers, the average over-estimation error reduces to 10.5
percent.

Oligopolist price determination

In Intervention of an oligopolist in federation formation
section, we studied how the price offer vector m =
(my,--- ,my) made by an Oligopolist induces a stable
coalition structure CS = {Fy,---,Fx_1,F*}. The cloud
providers in F* would take up the price offer being made
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(a) Total time taken to compute the sta-
ble coalition structure for a given market
scenario.

Fig. 4 Left panel depicts time taken to compute stable coalition structure. Right panel compares the payoff from the coalition and the oligopolist in

the first market scenario
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by the Oligopolist. Let us denote F* as F*(m) to make its
dependence on the price offer vector explicit.

Given a resource bundle b = (b b",b°%), let U(b)
denotes its utility for the oligopolist. If C(b) denotes the
cost the oligopolist pays to acquire the resource bundle,
then his profit P(b) is defined as follows.

P(b) = U(b) — C(b)

For example, with the price offer vector m, the resource
bundle procured by the oligopolist is given by

bm)= Y b

ieF*(m)

Then the profit made by him is given as follows.

P(b(m)) = U(b(m)) — Y m

ieF*(m)

The goal of the oligopolist is to come up with a price offer
vector m such that P(b(m)) is maximized. Typically, an
oligopolist has a higher utility for a resource bundle when
compared with a cloud provider, due to the larger market
reach and other value added services he can provide to the
end users. So, it is safe to assume that for two resource
vectors b1 and by, if by < by, then P(b1) < P(b;). Hence,
the oligopolist aims to acquire resources from all the cloud
providers and while doing so he would like to minimize
the total price offer he makes. In the next section, we show
that if the oligopolist approaches the cloud providers in a
sequential manner, one after another, then the total price
offer he makes would be less than that of what he makes
through a non-adaptive approach.

Non-adaptive vs adaptive price offer vectors

Non-adaptive pricing scheme

In the problem formulation from Intervention of an
oligopolist in federation formation section, the oligopolist
approaches all the cloud providers simultaneously with a
price offer vector. Recall the cooperative linear produc-
tion game Gj, = (N,v) from Federation formation and
payoff distribution using linear production games section
involving the cloud providers. The value of a cloud fed-
eration S € N, denoted by v(S), is obtained by solving
the linear programming problem OPTLP(S). In partic-
ular, the value v(N) of the grand coalition is obtained
by solving the linear programming problem OPTLP(N).
The oligopolist can compute a core allocation «(N) =
(a1 (N),- -+ ,a5(N)) from the Owen set by solving the dual
problem as discussed in Payoff distribution section. Then
the oligopolist makes a price offer which is equal to that
of core allocation @ (N) and acquire all the resources from
the cloud providers. Thus the total price offer he makes to
acquire the maximal resource bundle b(N) is v(N).
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Adaptive pricing scheme

Unlike the aforedescribed non-adaptive pricing scheme,
it is possible for the oligopolist to approach one cloud
provider at a time with a price offer possibly less than that
of the pay-off he gets from core allocation, and thereby
acquire the resource bundle b(N) at a total price less than
v(N). The price offer vector in this case is denoted by an
ordered n-tuple m = ({i1,p1),-* - , {in, pu)). The n-tuple
indicates that the cloud provider C;, is approached first
with a price offer p; and so on. We now define the optimal
price offer vector #1,,:(S) where S € N as follows.

Definition 10 For a coalition S C N, we say that a price
offer vector Mg (S) = (i1, p1),- -+, {is, ps)) made by an
oligopolist is optimal if

1 All the cloud providers in S accept the offer.
2 Y%, piis minimal.

Let Vop(S) = > ;_; pi denote the optimal total price
offer made by the oligopolist with respect to the coali-
tion S. From Payoff distribution section, we know that
we can compute the payoff distribution vector a(S) =
(@1(8),- -+, 0,(S)) for a coalition S € N by solving the
dual of the problem OPTLP(S) and thereby obtain the
shadow prices of the resources. Let Aut(S) denote the set
of automorphisms or permutations of S. If the oligopolist
approaches the cloud providers in an order determined
by a permutation 7 € Aut(S), then the total price offer
made by him with respect to the permutation 7, denoted
as V (S), is given by the following recurrence relation.

T;JT S) = U (1) S +7ﬂ[2:s] S—={zD} (4)

That is the oligopolist computes the payoff distribution
vector for the coalition S. Then he buys out the cloud
provider Cr(1y by making a price offer «x(1)(S) which
matches the payoff he obtains by remaining in the coali-
tion. The same process is repeated by considering the
reduced coalition S — {Cy(1)} and the permutation 7 [2 :
s] (S — {Cr)}). This requires solving # OPTLP problems
to compute V; (N). The total optimal price offer is the
minimum of price offers obtained by trying out all the
permutations possible. It is given as follows.

T”opt(s)z min T;Tr(S)

weAut(S)
A simple brute force approach to computing Vo, (S) is
by trying out all permutations. This requires solving
n x n! OPTLP problems to compute Vopt(S). However,
we can notice that there are only 2" distinct OPTLP
problems corresponding to different subsets of N. Hence
sub-problems repeat themselves and the redundant com-
putations can be avoided by storing the solutions to all
the sub-problems in a memoization table. This approach
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is similar to the one we adapt in dynamic programming
algorithms. For example, consider the permutation 7; =
(C1, Cy, C3, C4, Cs) consisting of 5 cloud providers. After
computing the price offer for C; and C; in two iterations,
the oligopolist solves the subproblem with 71[3 : 5]=
(Cs, C4, Cs) in (4). The same subproblem would be solved
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4 (i iteration) Compute M(S;) where S; C N is
lexicographically the i subset.

(a) For each cloud provider C; € S;:
if M[S;] > (M[S; —{C}}]+P[C;,S])
then

again for the permutation my = (Cy, C1, C3, Cy, Cs) after MISi] =M [Si - {Cj}] +P [C},S]

the payoff vectors for Cy and C; are determined in that C=¢

order. However, we can avoid the redundant computation end if

by storing the solution to every newly solved subproblem (b) O[S;]=[C]+0O[S;—{C}]// Extend the
and recalling it later whenever necessary. The following is list

a summary of the steps of the algorithm.

1 Precomputation Step Recall that «;(S), for
1 <i<mnandS C N, denotes the payoff of the cloud
provider C; in the coalition S. Payoff distribution
section shows how this value can be computed by
solving the dual of OPTLP(S). We precompute these
payoff values and store them in a table P by
initializing the entries of the table as follows,

P(C;, ) = a;(S).

2 Let M be the memoization table where M(S) stores
the minimal total price offer the oligopolist makes to
buy out all the cloud providers in the coalition S € N
in an adaptive fashion. Each entry of this table is
initialized to a very large value or it can be set to the
value of the grand coalition v(N).

3 Let O be the memoization table where O(S) stores
the order in which the oligopolist approaches the
cloud providers to achieve the optimal price offer
corresponding to M(S).

The time complexity of the above dynamic programming
algorithm is ® (#2"). This makes the algorithm practical to
implement when compared with the naive algorithm with
time complexity © (n!).

Consider the example from Experimental analysis section
consisting of 12 cloud providers Z = {Cy, - - - , C12} whose
resource capacities are given in Table 1. Further, vari-
ous virtual machine types and their hourly rental costs
are provided in Table 2. The value of the grand coali-
tion Z consisting of all the cloud providers is obtained
by solving OPTLP(Z). It is equal to v(Z) = 77816 when
rounded to the nearest integer. This is the price at which
the oligopolist can acquire the resources of all the cloud
providers wherein he approaches them simultaneously
i.e., in a non-adaptive fashion. The first row of the Table 3
in fact corresponds to a core allocation and gives the price
offer made by the oligopolist to different cloud providers.
The values in the Table 3 are rounded to the nearest
integer for the sake of simplicity.

Table 3 In each iteration /;, for 1 < t < 12, the oligopolist buys out a cloud provider by offering him a price which is equal to his payoff
in the remnant grand coalition. This payoff to a cloud provider is suitably marked in each row of the table. The second column
represents the remaining coalition members. The last column labeled Vo, represents the total price offer made by the oligopolist at
the end of corresponding iteration. The last row gives the percentage loss of a cloud provider due to the adaptive strategy when
compared with the payoff he gets from the non-adaptive strategy

It Coalition (€3] Cc10 c c9 c12 C11 c4 c7 1 2 cs8 c Vopr

101-12] 6078 10296 4116 10709 12148 8746 1170 7788 1646 2445 7588 5084 6078

2[1-5,7-12] 10180 4062 10539 12043 8530 1124 7697 1602 2405 7494 5069 16258
3[1-5,7-911-12] 4106 10675 12128 8702 1161 7771 1637 2437 7568 5081 20364
41[1-4,7-9,11-12] 10412 11970 8356 1087 7635 1566 2372 7421 5061 30775
5[1-4,7-8,11-12] 12116 8677 1155 7761 1632 2432 7558 5080 42892
6[1-4,7-8,11] 8539 1244 8997 1457 2263 6928 4955 51430
7[1-4,7-8] 1162 7774 1639 2439 7572 5082 52593
8 [1-3,7-8] 7773 1638 2438 7571 5082 60366
9[1-38] 984 1656 3356 3692 61350
10 [2-3,8] 1656 3356 3692 63006
113,8] 3356 3692 66362
12 3] 3097 69459

Percentage Loss 0.00 1.13 0.26 2.78 0.27 237 0.65 0.20 40.19 32.29 55.77 39.09
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In the adaptive approach, the oligopolist reaches
out to different cloud providers one after another
in such a way that the total price offer he makes
is  minimized. Using the proposed dynamic
programming  algorithm, we  determined that
[ Ce, C10, Cs5, Co, Ci2, C11, Ca, C7, €1, €, C3, C3] s the
optimal order in which the oligopolist can approach
the cloud providers. From Table 3, we can note that in
Iteration 1, the oligopolist approaches cloud provider Cg
and makes a price offer 6078. This price offer is the same
as what the cloud provider gets in the non-adaptive case.
Hence he readily accepts, resulting in the new coalition
7y =[1—5,7 — 12]. The oligopolist then obtains the core
allocation for 7, by solving the dual of OPTLP(Z;). He
then makes an offer of 10180 to cloud provider Cjp which
is the payoff he obtains in the coalition Z;. This leads to
the coalition Z3 =[1 — 5,7 — 9,11 — 12] for Iteration 3.
The oligopolist repeats this process for 12 iterations. The
cumulative price offer made by the oligopolist across iter-
ations is given by the last column of the Table 3. The total
adaptive price offer made by the oligopolist is 69459 which
is 10.7 percent less than the total non-adaptive price
offer. The last row of Table 3 shows the percentage loss
of different cloud providers due to the adaptive approach
when compared with the non-adaptive approach. We can
notice that these percentages vary widely. For example,
cloud provider Cg faces no loss but cloud provider Cg
has a maximum loss percentage of 55.77. In general, the
oligopolist pays the key cloud providers sufficiently and
takes them out of coalition in the early iterations. This
leaves the remnant coalition weak and thus the coalition
members have to settle for a lesser price offer made by
the oligopolist. Through this discussion we propose the
following important theorem which we could not find in
the prior literature to the best of our knowledge.

Theorem 3 In linear production games, the total adap-
tive price offer made by an oligopolist to buy out all the
coalition members can be strictly less than the total non-
adaptive price offer which is nothing but the value of the
grand coalition.

The oligopolist can use a greedy approach instead of
dynamic programming to find the order in which he can
buy out the cloud providers. In the greedy approach, the
oligopolist starts by making a price offer to the cloud
provider with the least payoff in the grand coalition.
In our example, it would be cloud provider Cs. This
results in the new grand coalition N — Cj. The cloud
provider computes the new payoff vector in the reduced
grand coalition and again makes an offer to the cloud
provider with the least payoff. This process is iterated
until the oligopolist acquires the resources of all the
cloud providers. In the example under consideration, the
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greedy approach yields the following order on the cloud
providers [ C4, Cy, Cy, Cs, Cs, Cg, Cg, C7, C11, C10, Co, C12],
with a total price offer 77603, whereas the non-adaptive
total price offer is 77816 and the dynamic programming
based approach results in a total price offer of 69459.

Let DP; denote the cloud providers acquired by the
oligopolist using the optimal dynamic programming strat-
egy. Let PZP denote the total payoff made by the oligopolist
so far. Figure 5 compares the total payoff made by
the oligopolist with the value v(DPy) —o— of the cloud
providers if they form a coalition. This shows how the
adaptive strategy is making gains with the progress in each
iteration when compared with the non-adaptive strategy.
Similarly, the line plots —— and depict the total
payoff and coalition value at the end of each iteration.
As can be observed that using the greedy strategy, the
oligopolist does not gain any noticeable profit as the total
payoff he makes is almost the same as the coalition value.
However, in the case of dynamic programming approach,
starting with iteration 9, the total price offer made by the
oligopolist when compared with the coalition value starts
going down. Finally, by the end of iteration 12, the total
payoff made is 10.7 percent less than that of the coali-
tion value, which directly turns into his profit. However, in
the initial iterations, the dynamic programming approach
seems to fare no better than the greedy approach as the
oligopolist nets no profits.

Payoff analysis from random permutations

We recall from the previous section that the oligopolist
makes a maximum and minimum total price offers of
value 77816 and 69459. The maximum offer corresponds
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to the coalition value. The minimum offer is computed
by using the dynamic programming algorithm, which
gives us a strategic permutation to approach the cloud
providers. We analyzed the total price offer distribution
and the payoff distribution for each cloud provider by
generating 10000 random permutations. Figure 6 shows
the histogram of price offers made by the oligopolist. It
can be noted that most of the total price offers are clus-
tered around the maximum. In fact, we do not encounter
any price offer close to the minimum, which is less than
70000. Table 4 shows the minimum, maximum, average,
and standard deviation of the payoffs obtained by the indi-
vidual cloud providers. We note that the variation in the
oligopolist’s price offer is minor compared to the variation
in each cloud provider’s payoff distribution. This could be
because the oligopolist has to pay one cloud provider or
other in the overall scheme of things. Thus his savings,
although non-negligible but are meager.

Related work

Grozev et al. [3] provided a systematic taxonomy of
various inter-cloud architectures. The peer-to-peer inter-
cloud architecture and the broker based multi-cloud
architecture considered in this paper are based on their
taxonomy. There has been several works on federation
formation and payoff distribution using cooperative game
theory [10-15]. However, none of these works consider
the impact of an oligopolist or a monopolist on coalition
formation which is the main focus of this paper. Niytao
et al. [12] proposed the usage of stochastic linear pro-
gramming games for payoff distribution among coalition
members. The payoff distribution scheme we presented
in this paper using linear production games is similar to
their work. The closest work related to ours in literature
is due to Fragnelli [16]. The author studied a market sce-
nario which is very similar to that of ours but the specific
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Fig. 6 Histogram of total price offers made by the oligopolist from
10000 random permutations
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Table 4 Payoff distribution for individual cloud providers based
on 10000 random permutations

Cloud Minimum Maximum Average Standard
Provider Deviation
G 985 1669 1540 218

G 1656 2467 2325 259

G 3097 5089 4849 595

Cy 1007 2976 1198 245

Cs 3920 4774 4120 98

Ce 5793 11255 6093 273

G 7460 8997 7772 27

Cs 3353 7637 6859 1499

Co 10099 11611 10683 88

Cio 9881 13650 10336 402

Ciy 8075 11882 8707 370

Ci2 11768 12777 12149 113

problem addressed is the pricing strategy to be adopted by
the players. Innes and Sexton [17] also studied very sim-
ilar market scenario wherein the market unfolds in three
stages. In Stage-1, the monopolist makes a price offer to
the market players. Some of them may accept the offer
and the rest reject. Those players who rejected form a
coalition in Stage-2. Then the monopolist offers a price in
Stage-3 to buy out the rest of the coalition. In our work,
the monopolist approaches the cloud providers one after
another in strategic fashion, thereby weakening the power
of the remnant coalition continuously.

Conclusions

In this paper, we showed how we can model the influence
of an oligopolist in a cloud market where multiple cloud
providers can potentially come together to form a feder-
ation in order to increase their market reach. Further, we
introduced the notion of stable coalition structures in the
presence of oligopolists and a greedy algorithm for com-
puting them. Next, we showed that by using a adaptive
approach, wherein an oligopolist buys out cloud providers
in a strategic order, he can do better than a non-adaptive
approach, in terms of the total price offer he makes. We
believe that our work paves way for further research in this
less studied facet of federated cloud computing. Further,
the proposed ideas are applicable to other markets beyond
federated clouds.

Abbreviations
No abbreviations are used in the manuscript.

Acknowledgements
None

Authors’ Contributions
This work is an intensely collaborative work and is hard to demarcate who did
what. However, a coarse grained contribution classification is given below. Y.



Khandelwal et al. Journal of Cloud Computing (2021) 10:54

K, KG.S.P.and P.V.R. modeled the cloud federation formation as a linear
production game and how an oligopolist can intervene in coalition formation.
A.D.and S.P. showed that by using an adaptive approach an oligopolist can
buy out individual cloud providers at a total price lesser than the grand
coalition price. All authors read and approved the final manuscript.

Funding
None

Availability of data and materials
We did not use any external data. The cloud market model parameters we
used are clearly listed in the manuscript itself.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

TComputer Systems Group, International Institute of Information Technology,
Hyderabad, India. 2Department of Electrical Engineering, Indian Institute of
Technology Madras, Chennai, India.

Received: 5 October 2020 Accepted: 30 August 2021
Published online: 24 October 2021

References

1. Dai X, Wang J, Bensaou B (2016) Energy-efficient virtual machines
scheduling in multi-tenant data centers. IEEE Trans Cloud Comput
4(2):210-221. https://doi.org/10.1109/TCC.2015.2481401

2. Wajid U, Cappiello C, Plebani P, Pernici B, Mehandjiev N, Vitali M, Gienger
M, Kavoussanakis K, Margery D, Perez D, Sampaio P (2016) On achieving
energy efficiency and reducing co2 footprint in cloud computing. IEEE
Trans Cloud Comput 4(2):138-151. https://doi.org/10.1109/TCC.2015.
2453988

3. Grozev N, Buyya R (2014) Inter-cloud architectures and application
brokering: taxonomy and survey. Softw Pract Experience 44(3):369-390.
https://doi.org/10.1002/spe.2168

4. Khandelwal Y, Ganti K, Purini S, Reddy P (2018) Cloud federation
formation in oligopolistic markets. In: Aldinucci M, Padovani L, Torquati M
(eds). Euro-Par 2018: Parallel Processing. Springer, Cham. pp 392-403

5. Curiel 1 (1997) Cooperative Game Theory and Applications: Cooperative
Games Arising from Combinatorial Optimization Problems. Springer, US.
https://books.google.co.in/books?id=0m_2BkKuxe8C

6. Tijs S (2003) Introduction to Game Theory. Hindustan Book Agency, New
Delhi

7. Bondareva O (1963) Some applications of linear programming methods
to the theory of cooperative games. Probl Kibern 10:119-139

8. Shapley L (1967) On balanced sets and cores. Nav Res Logist Q
14(4):453-460. https://doi.org/10.1002/nav.3800140404

9. Owen G (1975) On the core of linear production games. Math Program
9(1):358-370. https://doi.org/10.1007/BF01681356

10. Mashayekhy L, Nejad M, Grosu D (2015) Cloud federations in the sky:
Formation game and mechanism. IEEE Trans Cloud Comput 3(1):14-27.
https://doi.org/10.1109/TCC.2014.2338323

11. Khandelwal Y, Purini’S, Reddy P (2016) Fast algorithms for optimal coalition
formation in federated clouds. In: Proceedings of the 9th International
Conference on Utility and Cloud Computing UCC "16. ACM, New York, NY,
USA. pp 156-164. https://doi.org/10.1145/2996890.2996900

12. Niyato D, Vasilakos A, Kun Z (2011) Resource and revenue sharing with
coalition formation of cloud providers: Game theoretic approach. In: 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. pp 215-224. https://doi.org/10.1109/CCGrid.2011.30

13. Romero Coronado J, Altmann J (2017) Model for incentivizing cloud
service federation. In: Pham C, Altmann J, Bafares JA (eds). Economics of
Grids, Clouds, Systems, and Services. Springer, Cham. pp 233-246

Page 13 0f 13

14. Samaan N (2014) A novel economic sharing model in a federation of
selfish cloud providers. IEEE Trans Parallel Distrib Syst 25(1):12-21. https://
doi.org/10.1109/TPDS.2013.23

15. Guazzone M, Anglano C, Sereno M (2014) A game-theoretic approach to
coalition formation in green cloud federations. IEEE. https://doi.org/10.
1109/CCGrid.2014.37

16. Fragnelli V (2004) A Note on the Owen Set of Linear Programming Games
and Nash Equilibria. In: Gambarelli G (ed). Essays in Cooperative Games: In
Honor of Guillermo Owen. Springer, Boston. pp 205-213. https://doi.org/
10.1007/978-1-4020-2936-3_16

17. Innes R, Sexton R (1993) Customer coalitions, monopoly price
discrimination and generic entry deterrence. Eur Econ Rev
37(8):1569-1597. https://doi.org/10.1016/0014-2921(93)90122-Q

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1109/TCC.2015.2481401
https://doi.org/10.1109/TCC.2015.2453988
https://doi.org/10.1109/TCC.2015.2453988
https://doi.org/10.1002/spe.2168
https://books.google.co.in/books?id=Om_2BkKuxe8C
https://doi.org/10.1002/nav.3800140404
https://doi.org/10.1007/BF01681356
https://doi.org/10.1109/TCC.2014.2338323
https://doi.org/10.1145/2996890.2996900
https://doi.org/10.1109/CCGrid.2011.30
https://doi.org/10.1109/TPDS.2013.23
https://doi.org/10.1109/TPDS.2013.23
https://doi.org/10.1109/CCGrid.2014.37
https://doi.org/10.1109/CCGrid.2014.37
https://doi.org/10.1007/978-1-4020-2936-3_16
https://doi.org/10.1007/978-1-4020-2936-3_16
https://doi.org/10.1016/0014-2921(93)90122-Q

	Abstract
	Keywords

	Introduction
	Problem statement and contributions
	Peer-to-peer inter-clouds and linear production games
	Intervention of an oligopolist
	Oligopolist price determination


	Background
	Cooperative game theory
	Linear production games

	Federation formation and payoff distribution using linear production games
	Federation formation model
	Payoff distribution
	Discussion

	Intervention of an oligopolist in federation formation
	Core allocation for subgames
	Influence of the oligopolist
	Finding a stable coalition structure

	Experimental analysis
	Optimality of linear production games formulation

	Oligopolist price determination
	Non-adaptive vs adaptive price offer vectors
	Non-adaptive pricing scheme
	Adaptive pricing scheme

	Payoff analysis from random permutations

	Related work
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' Contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

