
ZU064-05-FPR main 26 September 2019 14:45

Under consideration for publication in J. Functional Programming 1

On the Complexity of Stream Equality

Jörg Endrullis, Dimitri Hendriks, Rena Bakhshi
VU University Amsterdam, The Netherlands

and Grigore Roşu
University of Illinois at Urbana-Champaign, USA
University Alexandru Ioan Cuza, Iaşi, Romania

Abstract

We study the complexity of deciding the equality of streams specified by systems of equations.
There are several notions of stream models in the literature, each generating a different semantics of
stream equality. We pinpoint the complexity of each of these notions in the arithmetical or analytical
hierarchy. Their complexity ranges from low levels of the arithmetical hierarchy such as Π0

2 for the
most relaxed stream models, to levels of the analytical hierarchy such as Π1

1 and up to subsuming
the entire analytical hierarchy for more restrictive but natural stream models. Since all these classes
properly include both the semi-decidable and co-semi-decidable classes, it follows that regardless
of the stream semantics employed, there is no complete proof system or algorithm for determining
equality or inequality of streams. We also discuss several related problems, such as the existence and
uniqueness of stream solutions for systems of equations, as well as the equality of such solutions.

Contents

1 Introduction 2
1.1 On Semantics of Stream Equality 5
1.2 Contributions 8
1.3 Related Results in Computer Science 10

2 Turing Machines, Levels of Undecidability, and Term Rewriting 11
2.1 Turing Machines 11
2.2 Levels of Undecidability 12
2.3 Terms and Term Rewriting 14

3 Stream Specifications and Semantics 16
3.1 Hidden Algebra Semantics 16
3.2 Behavioral Algebra Semantics 18
3.3 Extensional Algebra Semantics 18
3.4 Full Extensional Algebra Semantics 20
3.5 Equality of Sets of Solutions 22

4 Turing Machines as Equational Specifications 23
5 Equality in Hidden Models 27
6 Equality in Behavioral Models and Extensional Models 31

6.1 Auxiliary Bitstream Specifications 31
6.2 Equality in All Extensional Models 33

ZU064-05-FPR main 26 September 2019 14:45

2 Endrullis et al.

6.3 Equality in Full Extensional Models 37
6.4 Comparing Sets of Solutions 41

7 Hidden Models for Streams of Natural Numbers 44
8 Conclusions 45
References 45

1 Introduction

In functional programming, the use of infinite data structures dates back to (Landin, 1965;
Henderson & Morris, Jr., 1976; Friedman & Wise, 1976). More recently, also in other
branches of computer science, interest has grown towards infinite data, as witnessed by the
application of type theory to infinite objects (Coquand, 1993), the emergence of coalge-
braic techniques for infinite data types (Aczel, 1988; Rutten, 2003), infinitary term rewrit-
ing (Dershowitz et al., 1991; Endrullis et al., 2012a) and infinitary lambda calculus (Böhm,
1975; Kennaway et al., 1997).

One of the simplest examples of an infinite data-structure is the stream, specifically the
stream of bits 0,1. Streams can be equivalently regarded as functions on natural numbers in
a trivial way, by associating to each natural number n the element on the n-th position in the
stream. Since the equality of functions on natural numbers is an arbitrarily complex prob-
lem, so is the equality of streams in general. However, there is a relatively broad interest
in streams defined in a particular but intuitive and meaningful way, namely equationally.
For example, the usual zeros and ones streams containing only 0 and 1 bits, respectively,
as well as a blink stream of alternating 0 and 1 bits and the zip binary operation on streams,
can be defined equationally as follows:

zeros = 0 : zeros

ones = 1 : ones

blink = 0 : 1 : blink

zip(a : x,y) = a : zip(y,x)

 (1)

The equational specification of streams and other infinite objects is common practice in
coalgebra, term rewriting and functional programming.

There is an obvious connection between equational stream specifications and functional
programs computing lazy lists. Many programming or specification languages with sup-
port for lazy evaluation or rewriting, allow for streams defined equationally as above;
for example Haskell (Peyton-Jones, 2003)1, Miranda (Turner, 1986), Clean (Sleep et al.,
1993), or Maude (Clavel et al., 2003). In the programming community there is also a
long-standing tradition of employing stream-like abstractions, for example, for stream
I/O (Landin, 1965).

The set of streams can be formally defined in many different, but ultimately equivalent
ways; e.g., as a coinductive type (Geuvers, 1992), as a final coalgebra (Rutten, 2005), as an

1 Haskell provides a built-in zip :: [a]→ [b]→ [(a,b)], but here we prefer to use ‘zip’ for the
interlacing of lists, as defined by the equation in (1). The operation is also known as perfect shuffle.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 3

zip(zeros,ones) = blink

0 = 0 zip(ones,zeros) = 1:blink

1 = 1 zip(zeros,ones) = blink

head tail

head tail

Fig. 1. Intuitive proof by circular coinduction of zip(zeros,ones) = blink

observational specification (Bidoit et al., 2003) or as a hidden logic theory (Roşu, 2000).
All these approaches build upon the observation that streams cannot be defined using
conventional equational specifications; one reason for this is that equational specifications
allow too many models, making it impossible to prove many interesting properties of
streams. Consider, for example, infinite streams of bits together with their usual constructor
: and together with the streams and stream operations defined equationally above. Then
note that the expected properties

zip(zeros,zeros) = zeros ,

zip(ones,ones) = ones ,

zip(zeros,ones) = blink

cannot be proved equationally, not even by making use of induction, because they ac-
tually do not hold in the initial model of the equations above. Indeed, the initial model
(Goguen et al., 1977) has as elements equivalence classes of provably equal ground terms,
such as {zeros,0 : zeros,0 : 0 : zeros, ...} or {zip(zeros,zeros),0 : zip(zeros,zeros),0 : 0 :
zip(zeros,zeros), ...}, but there is nothing in the ordinary equational setting that can col-
lapse these two equivalence classes into one, which is what would be needed in order for
the first equation above to hold in the initial model, for example.

There are several approaches to proving streams equal, such as coinduction in a coal-
gebraic equational specification of streams (Rutten, 2005), context induction (Hennicker,
1991) in an observational equational framework, guarded coinduction (Coquand, 1993) in
a higher-order typed framework, or circular coinduction (Roşu, 2000) in a hidden logic
framework; the first three typically need human support, while the latter is automatic. By
circular coinduction, for example, we can prove zip(zeros,ones) = blink as follows:

(i) check that the two streams have the same head, 0;
(ii) take the tail of the two streams and generate new goal zip(ones,zeros) = 1 : blink;

this becomes the next task;
(iii) check that the two new streams have the same head, 1;
(iv) take the tail of the two new streams; after simplification one gets the new goal

zip(zeros,ones) = blink, which is nothing but the original proof task;
(v) conclude that zip(zeros,ones) = blink holds.

The intuition for the above “proof”, depicted in Fig. 1, is that the two streams have been
exhaustively tried to be distinguished by iteratively checking their heads and taking their

ZU064-05-FPR main 26 September 2019 14:45

4 Endrullis et al.

tails. Ending up in circles (we obtained the same new proof task as the original one) means
that the two streams are indistinguishable, so equal. There are tools that attempt to automate
proving stream equality, such as (Lucanu et al., 2009; Zantema & Endrullis, 2011), as
well as methods for mechanically proving stream equality in assisted theorem provers like
Coq (Niqui, 2009; Danielsson, 2010; Endrullis et al., 2013). Since some techniques can
show many challenging equalities of streams and seem not to fail even on large and tricky
examples, one may be (wrongly) tempted to prove them complete; by a complete technique
in this context we mean one which answers “yes” on precisely the inputs consisting of pairs
of equal streams—on the others it may either not terminate, or terminate with an output
different from “yes”. Also, since equational logic is complete, one may (wrongly) think
that streams defined equationally must also admit some complete proof system. Moreover,
since two different streams must differ on some position of finite index, one could (also
wrongly) think that at least one can detect when two streams are not equal.

In this paper we study the precise complexity of deciding the equality of streams spec-
ified equationally like above. In order to address such a problem we have to first make a
choice for what it means for two streams to be equal, or in other words to make a choice
for a semantics of streams and of their equality. A careful analysis of the vast literature on
streams and related topics reveals that there are several meaningful candidate semantics,
which essentially differ in their choice of stream models, that is, the semantics used to
interpret specifications. Although the differences between the various models may appear
to be minor and irrelevant at first sight, we show that in fact they have a crucial effect on
the complexity of the stream equality problem. As one may expect, the more relaxed the
stream models, the lower the complexity of the equality problem. We show that even with
the most relaxed models that we are aware of, the problem is still Π0

2. Recall that Π0
2 is

the class in the arithmetic hierarchy which properly extends both the semi-decidable and
the co-semi-decidable classes, and contains predicates (over natural numbers) of the form
P(a) := ∀x ∈ N.∃y ∈ N.R(a,x,y) where R is a decidable predicate (Rogers, Jr., 1967). In
other words, the results in this paper tell us that there is actually no algorithm or proof
system that is complete for equality of streams in general, so the problem is strictly harder
than that of proving equality in equational or first-order logics, as well as no algorithm or
proof system that is complete for inequality of streams.

Before we discuss in more detail the various semantics that we use in the sequel, we
mention that all of the complexity results we obtain, as well as those in (Buss & Roşu,
2000; Roşu, 2006; Endrullis et al., 2012b), originate from non-productive specifications.
A specification is productive if its terms can be evaluated to infinite constructor terms
in the limit. For a stream term this means that its infinite normal forms looks like a0 :
a1 : a2 : See (Sijtsma, 1989; Endrullis et al., 2008; Endrullis et al., 2010a) for a
precise definition of productivity. Productivity itself is undecidable, namely Π0

2-complete,
as shown in (Endrullis et al., 2009).

The complexity results in this paper are all based on the comparison of non-productive
specifications. The proofs inherently encode productivity problems, exploiting the choice
of freedom the models have for giving semantics to undefined (parts of) objects.

Indeed, equality of normal forms for productive specifications is a suitable candidate for
the semantics of equivalence of specifications. However, even if we restrict to productive
specifications (and thus separate the problem of productivity from that of equality), the

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 5

problem of stream equality is undecidable, namely Π0
1-complete, as shown in (Grabmayer

et al., 2012). This semantics (equality of normal forms for productive specifications) thus
forms an exception in comparison to all other semantics that we are about to discuss, in the
sense that inequalities can be recursively enumerated.

The (productive) specifications used for Π0
1-completeness of their equivalence are re-

markably simple; they are formed by equations X = t where terms t are built from the
signature Σ = {zipk,proji,k | k ∈ N, 0 ≤ i < k}∪B with B a finite non-empty set of data
constants, and including the following defining equations for zipk and proji,k :

zipk(a : x0,x1, . . . ,xk−1) = a : zipk(x1, . . . ,xk−1,x0)

proj0,k(a : x) = a : projk−1,k(x)

proji,k(a : x) = proji−1,k(x) (0 < i < k) .

When we restrict the signature even further by dropping the projection functions proji,k,
and allow only symbols zipk for a fixed k ≥ 2, then equality becomes decidable, again
see (Grabmayer et al., 2012). It is an open problem whether equivalence of ‘zip-mix’
specifications, where zips of different arities are allowed, is decidable.

1.1 On Semantics of Stream Equality

The semantic candidates for stream equality that we consider in this paper are as follows:

I. Equality in hidden models, i.e., behavioral equivalence.
II. Equality in extensional models.

(a) Equality in all extensional models.
(b) Equality in all full extensional models.

III. Equality of sets of solutions.

(a) Equality of sets of solutions over all extensional models.
(b) Equality of sets of solutions over all full extensional models.

The ‘right’ choice of equality depends on the intended application. The classic semantics
mentioned in items II and III above, are defined by model-theoretic means. From an
algebraic perspective, these are the natural semantics to consider for equational reasoning.
Semantics I, which is based on hidden models with behavioral equality, has a wide range
of applications for modeling non-determinism, and hidden values.

We briefly describe the three semantics. The basis of each of them is an interpretation
of specifications in Σ-algebras, see e.g. (Ehrig & Mahr, 1985). Here Σ is the signature of
the specification that we intend to model, that is, a set of ranked symbols occurring in the
specification. A Σ-algebra A consists of a carrier set A, also called the domain of A , and
an interpretation function [[·]] of the symbols in Σ (respecting their arities). We consider
specifications of streams over the set {0,1}.2 We let algebras always contain the following
two interpretations:

[[head]] : AS→{0,1} and [[tail]] : AS→ AS ,

2 The concrete choice of {0,1} is irrelevant for the results in this paper; the results remain unchanged
when replacing {0,1} by any finite set B of symbols of arity 0 that contains at least 2 elements.

ZU064-05-FPR main 26 September 2019 14:45

6 Endrullis et al.

where AS is the carrier of A corresponding to its streams, [[head]](w) represents the first
element of the stream w, and [[tail]](w) the stream without the first element.

In general, there are no restrictions on how Σ-algebras represent streams. For example, in
some Σ-algebras the stream elements of AS can be infinite words of 0 and 1 bits, in others
they can be functions from N to {0,1}, in others infinite trees (with a specific traversal
meaning), etc. Nevertheless, in all cases, any stream Σ-term s with variables in a set X can
be uniquely interpreted into a stream element [[s]]α ∈ AS for each assignment α : X → A
of its variables to appropriate elements in the carrier of the Σ-algebra.

The interpretations of the head and tail operations determine a notion of behavioral
equivalence on the streams of the Σ-algebra, which can be used to define the semantics of
stream equations. Two streams u,v ∈ AS are behaviorally equivalent, written u≡ v, iff they
are indistinguishable with respect to all 〈head, tail〉-experiments, that is,

u≡ v ⇐⇒ ∀n ∈ N. [[head]]([[tail]]n(u)) = [[head]]([[tail]]n(v)) ,

where [[tail]]n(u) =

n times︷ ︸︸ ︷
[[tail]](· · · [[tail]](u) · · ·). Given two stream Σ-terms s and t, possibly with

variables in set X , we say A behaviorally satisfies equation s = t, written A |≡ s = t, iff
[[s]]α ≡ [[t]]α for all α : X → A. As usual, if E is a set of equations then A |≡ E iff A |≡ e
for each e ∈ E. If A |≡ E then we also say that A is a model of E.

We define E |≡ e iff A |≡ E implies A |≡ e for all Σ-algebras A . Depending upon
which Σ-algebras are allowed to serve as stream models, the problem whether E |≡ e can
have different degrees of complexity. Intuitively, the more Σ-algebras are allowed as stream
models, the fewer pairs in the relationship E |≡ e, so the lower the complexity of deciding
it. Our results in this paper confirm this intuition.

Equality in Hidden Models (I). Hidden models (Goguen, 1991; Malcolm, 1997; Goguen
& Malcolm, 2000; Roşu, 2000) are the least restrictive stream models that we are aware
of. In fact, they add no additional restrictions to the above. In particular, they do not even
require the existence of a constructor operation ‘:’ for streams (prepending a 0 or 1 to
an existing stream). For example, the streams zeros, ones, blink, and the operation zip

discussed at the beginning of this section can be defined as follows:

head(zeros) = 0 tail(zeros) = zeros

head(ones) = 1 tail(ones) = ones

head(blink) = 0 head(tail(blink)) = 1 tail(tail(blink)) = blink

head(zip(x,y)) = head(x) tail(zip(x,y)) = zip(y, tail(x)) .

If E is the equational specification above then we can show that E |≡ e, where e is any of

zip(zeros,ones) = zeros

zip(ones,ones) = ones

zip(zeros,ones) = blink .

While hidden algebras turned out to be quite appropriate for specifying and reasoning about
non-deterministic and/or concurrent systems (Goguen & Malcolm, 2000; Roşu, 2000), one
can admittedly claim that, at least in the context of streams, for certain purposes there

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 7

could be too many models allowed for equational specifications. In general there is no
requirement in the hidden algebra semantic approach that all streams are constructed with
‘:’. That is, there may be elements σ ∈ AS in the stream domain for which there exist no
a ∈ {0,1} and τ ∈ AB such that σ = [[:]](a,τ). For example, if we replace the equational
specification above with the specification (1) at the beginning of this section where ‘:’ is
an operation whose semantics is given by the equations

head(a : x) = a tail(a : x) = x

then there is no way to prove the equations e above, because, essentially, there is no way
to even prove head(zip(x,y)) = head(x). We can only prove it when x is a stream of the
form a : x′. In fact, the real problem is the fact that the behavioral equivalence relation is
not required to be a congruence (i.e., to be preserved by all operations in Σ) in a hidden
algebra; if it were, we would be able to transform the hidden algebra into an equivalent one
which has the property that each stream element x has the form a : x′ for some bit element
a and some other stream x′ (see Proposition 3.15).

This brings us to a first meaningful restriction on hidden algebras, which yields to what
(Bidoit et al., 2003) call behavioral algebras: a behavioral Σ-algebra is a hidden Σ-algebra
in which the behavioral equivalence is a congruence. It turns out (see Proposition 3.15)
that E |≡ e with behavioral models if and only if E |≡ e with extensional models, so we do
not need to discuss behavioral models in much depth.

Equality in Extensional Models (II). Extensional models further restrict the hidden mod-
els to ones whose behavioral equivalence is the identity. In other words, each stream in
the model is uniquely characterized by its behavior: u = v ⇐⇒ u ≡ v. This suggests a
further simplification without affecting the satisfaction problem E |≡ u = v in any way:
we introduce so-called extensional algebras where the carrier AS contains only infinite
sequences over {0,1}, i.e., AS ⊆ {0,1}ω . A particularly interesting special case is when
AS = {0,1}ω , that is, when their carrier contains all the streams; we call such extensional
models full.

Equality of Sets of Solutions (III). Semantics I and II are useful when the objects under
consideration are specified in the same specification. These semantics interpret the objects
simultaneously in each model satisfying the specification. But they fail to be effective when
streams or stream operations are underspecified. Consider, for example, an underspecified
constant M together with a renamed copy N of it,

M = 0 : tail(M) N = 0 : tail(N) . (2)

Here M and N are not equal in every model, because we can take M to be 00ω and N to
be 01ω . Nevertheless, M and N are equal in the sense that they exhibit the same behaviors.
That is, in every extensional model they have the same set of solutions: every stream
starting with a zero is a solution for M as well as for N. Thus, M and N are equal with
respect to semantics III which defines equality via the set of solutions. Like in the case of
extensional models, we consider two kinds of sets of solutions: in all extensional models,
versus in all full extensional models.

ZU064-05-FPR main 26 September 2019 14:45

8 Endrullis et al.

In contrast to I and II, semantics III is more suitable for comparing objects specified by
different specifications, as we explain below. The objects are compared via the set of their
solutions (in their respective specifications). This semantics is well-known from equations
over real (or complex) numbers, where two equations, like

(x−1)2−1 = 0 and x2−2x = 0 ,

are equivalent if they have the same solutions for x, here {0,2}.
Semantics III enables us to compare streams M and N given by separate specifications

EM and EN, respectively. An alternative approach would be the application of semantics II
to the union EM∪EN. But even if the specifications have disjoint signatures (using renam-
ing), taking the union of the specifications may result in an additional restriction on the
admissible domains, and thus objects may be wrongly identified, see further Remark 6.18.
For a trivial example, assume that one of the specifications has no model, then also the
union has no models, despite the fact that the other specification may have a unique
solution.

Two stream constants M and N are equal with respect to semantics III if the set of
solutions of M in EM coincides with the set of solutions of N in EN:

{ [[M]]A |A |≡ EM } = { [[N]]A |A |≡ EN }

Here the set of solutions of a constant X in a specification EX is the set of interpretations
of X in all (full) extensional models of EX.

1.2 Contributions

We characterize the complexity of the problem of deciding equivalence of equational
specifications of streams for each of the semantics I, IIa, IIb, IIIa and IIIb listed above.
As all of these problems are undecidable, we classify them by means of the arithmetical
and analytical hierarchies; see Figure 2. In the arithmetical hierarchy the complexity of
a problem P is classified by the minimal number of quantifier alternations in first-order
formulas that characterize P. The analytical hierarchy extends this classification to second-
order arithmetic, then counting the alternations of set quantifiers.

A We show that the problem of deciding behavioral equivalence in all hidden models
(semantics I) is Π0

2-complete, and thus resides at a low level of the arithmetical hierarchy.
This is Theorem 5.1.

B We then strengthen the notion of models by requiring behavioral equivalence ≡ to
be a congruence, leading to behavioral models. Surprisingly, it turns out that this simple
requirement catapults the complexity of deciding equality out of the arithmetical hierarchy
to the level Π1

1 of the analytical hierarchy. See Theorem 6.6. This also holds for extensional
models, which further restrict the behavioral equivalence to be the identity and their carriers
to be subsets of {0,1}ω , because we show that satisfaction with extensional models is
equivalent to satisfaction with behavioral models.

C We further strengthen the extensional models to be full, that is, require their domain
to contain all bitstreams {0,1}ω . This again yields a huge jump in the complexity of the

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 9

problem: the complexity of deciding equality in all full extensional models subsumes the
entire arithmetical and analytical hierarchy (see Definition 6.11). See Theorem 6.14.

Π1
0 = ∆1

0 = Σ1
0

Π1
1 Σ1

1

∆1
2

Π1
2 Σ1

2

...

arithmetic predicates Φ

∃X .Φ(X)∀X .Φ(X)

∃X .∀Y.Φ(X ,Y)∀X .∃Y.Φ(X ,Y)

Π0
0 = ∆0

0 = Σ0
0

Π0
1 Σ0

1

∆0
2

Π0
2 Σ0

2

...

decidable predicates D

∃x.D(x)∀x.D(x)

∃x.∀y.D(x,y)∀x.∃y.D(x,y)

well-foundedness

totality

recursively enumerable

C

B

A

Fig. 2. Arithmetical (bottom) and analytical hierarchy (top).

Since all these results hold for specifications of bitstreams, they serve as a lower bound
on the hardness of the equivalence problem for coinductive objects with richer structure.

Further results. Besides the complexity of deciding equivalence in the mentioned seman-
tics, we also consider the following related problems:

(i) Complexity of deciding equality of sets of solutions.

We study the complexity of deciding whether two terms (possibly given by distinct
specifications) have the same set of solutions. Again, we have the choice whether to
consider all extensional models, or only full extensional models.

When we consider the set of solutions over all extensional models, the problem turns
out to be Π1

2-complete. See Theorem 6.20. This is a higher complexity class than Π1
1

where equality in all extensional models resides. Intuitively, the reason is that for
every solution of one specification, we need to check the existence of an equivalent
solution of the other specification (and this translates to second-order quantifiers ∀∃
quantifying over models).

When we consider the set of solutions over all full extensional models, the com-
plexity of the problem is again raised to subsume the analytical hierarchy. See
Theorem 6.19.

(ii) Deciding the existence of (i) at least one, (ii) at most one, (iii) precisely one solution.

When giving semantics to specifications of (finite or infinite) objects, it is a natural
question to ask whether the specification has at least one solution, that is, whether
there exists a model at all. A specification may admit several models, and it is

ZU064-05-FPR main 26 September 2019 14:45

10 Endrullis et al.

interesting to know whether a term under consideration has the same interpretation
in all these models, or can have multiple solutions.

The obvious questions are as follows; does a given term have

(i) at least one solution,
(ii) at most one solution,

(iii) precisely one solution?

Again, when considering these questions over all full models, the complexity of
each problem subsumes the entire analytical hierarchy. See Theorems 6.15, 6.16,
and 6.17.

The situation becomes more interesting when we consider all extensional models, or
equivalently, behavioral models. The problems (i) and (ii) turn out to be Σ1

1-complete
and Π1

1-complete, respectively. See Theorems 6.9 and 6.8. Problem (iii) is both
Π1

1-hard and Σ1
1-hard, but is strictly contained in ∆1

2. See Theorem 6.10.

(iii) Hidden models for streams over natural numbers.

Finally, we consider the complexity of deciding the equality of streams of natural
numbers, instead of bits, in hidden models. This raises the complexity from the class
Π0

2 of the arithmetical hierarchy (for specifications of bitstreams) to the class Π1
1 of

the analytical hierarchy. See Theorem 7.2.

Note: This article merges, extends and modifies results published in two ICFP conferences
which were six years apart, namely (Roşu, 2006) in ICFP 2006 and (Endrullis et al., 2012b)
in ICFP 2012. The former was the first to claim the results for hidden models, while the
latter was the first to claim the results for (full) extensional models. This article presents the
two groups of strongly related results in a uniform notational setting, discusses additional
relationships and connections between them (such as the relationship between behavioral
and extensional models), and finally includes all the detailed proofs of the claimed results.

1.3 Related Results in Computer Science

Let us mention a few related complexity results in the area of computer science. Dy-
namic logic has been shown to be Π1

1-complete in (Meyer et al., 1981), see also (Harel
et al., 2000). The paper (Castro & Cucker, 1989) presents several complexity results on
ω-computations. For the proof of Theorem 6.20, we have made use of their Π1

2-complete-
ness result for the problem of deciding whether a non-deterministic Turing machine accepts
all ω-words. For further results on ω-languages, see (Finkel & Lecomte, 2009). The pa-
per (Harel, 1985) gives a nice exposition of various complexity classes up to Π1

1 and Σ1
1, and

illustrates these classes by means of various tiling problems. In (Endrullis et al., 2011b) the
complexity of various properties of rewriting systems is determined, and Π1

1-completeness
of dependency pair problems is shown. The paper (Endrullis et al., 2009) is concerned with
the complexity of productivity; it is shown that strong and weak productivity are Π1

1- and
Σ1

1-complete, respectively.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 11

2 Turing Machines, Levels of Undecidability, and Term Rewriting

In order to set notation and to make the exposition self-contained, we recall the basic
notions of Turing machines, of levels of undecidability including the arithmetic and the
analytic hierarchies, and of term rewriting.

2.1 Turing Machines

We consider Turing machines with left- and right-infinite tapes.

Definition 2.1. A (deterministic) Turing machine T is a tuple 〈Q,Γ,q0,δ 〉 consisting of

– a finite set of states Q,

– an initial state q0 ∈ Q,

– a finite alphabet Γ containing a designated blank symbol 2, and

– a partial transition function δ : Q×Γ ⇀ Q×Γ×{L,R}.

A configuration of a Turing machine T is a pair 〈q,τ〉 consisting of a state q ∈ Q and a
tape τ : Z→ Γ. We define the transition relation→T on the set of configurations by

(q,τ)→ (q′,τ ′) if δ (q,τ(0)) = 〈q′,τ ′(1),L〉 and τ
′(x) = τ(x−1) for x ∈ Z\{1},

(q,τ)→ (q′,τ ′) if δ (q,τ(0)) = 〈q′,τ ′(−1),R〉 and τ
′(x) = τ(x+1) for x ∈ Z\{−1}.

The Turing machine T is said to halt on tape τ0 with output b ∈ {0,1} if the maximal
sequence

〈q0,τ0〉 →T 〈q1,τ1〉 →T · · · →T 〈qn,τn〉

of→T -steps starting from the initial configuration 〈q0,τ0〉 is finite (that is, the configuration
〈qn,τn〉 does not admit any further steps), and τn(0) = b. We say that T halts on input
w ∈ {0,1}∗ with output b if it halts with output b on the tape τ defined by τ(z) = w(z) for
all 0≤ z < |w|, and τ(z) = 0 for every other z ∈ Z.

Convention 2.2. For convenience we restrict Γ to the alphabet Γ = {0,1} where 0 is the
blank symbol 2, and we denote Turing machines by triples 〈Q,q0,δ 〉.

Note that we use a non-standard variant of Turing machines: we restrict the alphabet to
{0,1} without a third symbol for 2, and we have no designated halting states (the machine
halts if there is no transition possible). It is straightforward to show that by this restriction
we do not lose any expressive power.

Proposition 2.3. Turing machines as restricted in Convention 2.2 can define all com-
putable functions.

As input for the Turing machines we use a unary number representation, that is, we use
11 · · ·1 (n times 1) to encode the natural number n. Of course, other encodings are possible,
as long as the encoding is computable, and the Turing machine is able to detect the end
of the input (here one has to take care of the double role of 0). For encoding multiple
inputs n1, . . . ,nk we will interleave the unary representations of k,n1, . . . ,nk; see further

ZU064-05-FPR main 26 September 2019 14:45

12 Endrullis et al.

Definitions 4.2 and 4.7. For example, for k = 2, the inputs n1 = 3 and n2 = 2 will be
interleaved as

zip3(11000 · · · , 1̂1̂1̂0̂0̂ · · · ,11000 · · ·) = 11̂1101̂0101̂0000̂0000̂ · · · .

The markings above the symbols indicate the origin of the interleaved symbols. Note that
the number k can be extracted from the result by taking the elements at indices 0, 2, 4, 6,
. . . , the number n1 from the elements at indices 1, 5, 9, 13, . . . , and the number n2 from the
elements at indices 3, 7, 11, 15,

2.2 Levels of Undecidability

We briefly introduce the complexity related notions relevant for this paper: promise prob-
lems, reducibility, hardness and completeness, as well as the arithmetical and the analytical
hierarchy. All results in this section are classical. For more details, we refer to the standard
textbooks (Rogers, Jr., 1967), (Shoenfield, 1971), (Hinman, 1978), (Odifreddi, 1992), and
(Odifreddi, 1999).

Definition 2.4. Let A⊆P⊆N, where N is the set of natural numbers. The promise problem
for A with promise P, written A|P, is the question of deciding on the input of n ∈ P whether
n ∈ A. For the case P = N, we speak of the membership problem for A.

We identify the membership problem for A with the set A itself, and the promise problem
for A with promise P with the pair 〈A,P〉 ∈℘(N)×℘(N), also written A|P.

Definition 2.5. Let A,B,P,Q ⊆ N. Then A|P can be (many-one) reduced to B|Q, denoted
by A ≤ B, if there exists a partial recursive function f : N⇀ N such that P ⊆ domain(f),
f (P)⊆ Q, and ∀n ∈ P.n ∈ A⇔ f (n) ∈ B.

Definition 2.6. Let B,Q⊆N and P ⊆℘(N)×℘(N). Then B|Q is called P-hard if every
A|P ∈P can be reduced to B|Q. Moreover, B|Q is P-complete if additionally B|Q can be
reduced to some A|P ∈P .

We stress that Definition 2.6 does not require that a P-complete promise problem B|Q
is a member of P itself. This allows for classifying promise problems using the usual
arithmetic and analytical hierarchy (for membership problems).

Lemma 2.7. If A|P can be reduced to B|Q and A|P is P-hard, then B is P-hard.

We use 〈〈·〉〉 to denote the well-known Gödel encoding of finite lists of numbers as
elements of N,

〈〈n1,n2, . . . ,nk〉〉 := pn1+1
1 · pn2+1

2 · · · pnk+1
k ,

where p1 < p2 < · · ·< pk are the first k prime numbers.
Next, we recall the definitions of the arithmetical and analytical hierarchy. See also

Figure 2.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 13

Definition 2.8. Let Σ0
0 := Π0

0 := ∆0
0 be the collection of recursive sets of natural numbers

(the decidable problems). For n≥ 1, we define:

Σ
0
n :=

{
{m ∈ N | ∃x∈N. 〈〈x,m〉〉∈B} | B ∈Π

0
n−1
}
,

Π
0
n :=

{
{m ∈ N | ∀x∈N. 〈〈x,m〉〉∈B} | B ∈ Σ

0
n−1
}
,

∆
0
n := Σ

0
n∩Π

0
n .

The arithmetical hierarchy consists of the classes Π0
n, Σ0

n and ∆0
n for n ∈ N.

For example, the membership a ∈ A for every set A ∈ Π0
2 can be defined by a formula

∀x1.∃x2.∀x3.P(a,x1,x2,x3) where P is a decidable predicate. The classes Σ0
1 and Π0

1 are
the collections of semi-decidable and co-semi-decidable problems, respectively. It is well-
known that ∆0

n (Σ0
n, ∆0

n (Π0
n, and Σ0

n ∪Π0
n (∆0

n+1 for all n ≥ 1, see (Hinman, 1978).
Hence

⋃
n∈N Σ0

n =
⋃

n∈N Π0
n =

⋃
n∈N ∆0

n.
The analytical hierarchy extends this classification of sets to formulas of the language

of second-order arithmetic, that is, with set (or equivalently function) quantifiers. The
following definition makes use of a result from recursion theory, see (Rogers, Jr., 1967),
stating that if there is at least one quantifier over sets, then two quantifiers over numbers
suffice (for functions quantifiers, one quantifier over numbers suffices).

Definition 2.9. Let Σ1
0 := Π1

0 := ∆1
0 =

⋃
n∈N Π0

n be the set of all arithmetic predicates. A
set A⊆N is in Π1

n for n > 0 if there is a decidable predicate P⊆℘(N)n×N3 such that for
all a ∈ N:

a ∈ A ⇐⇒ ∀ξ1.∃ξ2. . . .∀ξn−1.∃ξn.∀x1.∃x2.P(ξ1, . . . ,ξn,a,x1,x2)

a ∈ A ⇐⇒ ∀ξ1.∃ξ2. . . .∃ξn−1.∀ξn.∃x1.∀x2.P(ξ1, . . . ,ξn,a,x1,x2)

for n even, and n odd, respectively. Here, ξ1, . . . ,ξn ⊆ N range over sets of natural num-
bers, (the corresponding quantifiers are set quantifiers), and x1,x2 ∈ N range over natural
numbers (the corresponding quantifiers are quantifiers over numbers). Dually, A is in Σ1

n, if
the condition holds with all ∀ and ∃ quantifiers swapped. Finally, ∆1

n := Π1
n∩Σ1

n.

We introduce some representative problems for different levels of the arithmetical and
analytical hierarchy. We begin with the well-known empty tape halting problem for Turing
machines.

Definition 2.10. The empty tape halting problem is the following problem:

INPUT: A Turing machine T .

QUESTION: Does T halt on the empty tape?

Proposition 2.11. The empty tape halting problem is Σ0
1-complete.

The class Σ0
1 corresponds to one existential number quantifier over a decidable predicate.

Here the decidable predicate P(n) is whether the Turing machine halts in n steps, and we
quantify over the number of steps until termination. The class Σ0

1 consists of the recursively
enumerable, or semi-decidable problems. Indeed, we can enumerate the Turing machines
that halt on the empty tape (but not the Turing machines which do not halt).

The problem becomes more difficult if we ask for termination on an infinite set of inputs.
For example termination on all natural numbers is known as the totality problem. This
problem resides at the level Π0

2 of the arithmetical hierarchy.

ZU064-05-FPR main 26 September 2019 14:45

14 Endrullis et al.

Definition 2.12. The totality problem is the following problem:

INPUT: A Turing machine T .

QUESTION: Does T halt on every input n ∈ N ?

Proposition 2.13. The totality problem is Π0
2-complete.

To see that the totality problem is in Π0
2, observe that it has a positive answer if and only

if for any input n ∈ N, there exists a computation which halts T ; checking whether a given
computation on a given tape is correct and ends in a halting state is decidable.

A significantly more difficult problem is deciding the well-foundedness of (computable)
binary relations P⊆ N×N (given in the form of Turing machines).

The well-foundedness problem resides in the class Π1
1 of the analytical hierarchy. The

check whether there are no infinite chains n1 P n2 P n3 P . . . requires a universal quantifi-
cation over all streams n1 : n2 : n3 : . . . in front of an arithmetical formula that verifies the
existence of an index i ∈ N such that ni P ni+1 does not hold.

Definition 2.14. The well-foundedness problem for decidable binary relations is the fol-
lowing problem:

INPUT: Decidable binary predicate P⊆ N×N in form of a Turing machine.

QUESTION: Is P well-founded?

Proposition 2.15. The well-foundedness problem is Π1
1-complete.

The following is a result of (Castro & Cucker, 1989) stating that the problem of deciding
whether the ω-language of a non-deterministic Turing machine contains all words {0,1}ω

is Π1
2-complete.

Definition 2.16. Let T be a non-deterministic Turing machine, and w ∈ {0,1}ω a stream.
We start T on the stream w by letting T run on the configuration τ defined by τ(n) = w(n)
for all n ∈N and τ(z) = 0 for all z < 0. A run of T is complete if every tape position p≥ 0
is visited (that is, positions right of the starting position), and it is oscillating if some tape
position is visited infinitely often. A run is accepting if it is complete and not oscillating,
that is, it visits every position p≥ 0 at least once, but only finitely often. The ω-language
L ω(T) of T is the set of all streams w ∈ {0,1}ω such that T has an accepting run w.

Proposition 2.17. The following problem is Π1
2-complete:

INPUT: A Turing machine T (encoded as a natural number).

QUESTION: Does T accept all streams w ∈ {0,1}ω , that is, L ω(T) = {0,1}ω ?

2.3 Terms and Term Rewriting

Although the specifications we consider in this paper always consist of equations over finite
terms we also make use of infinite terms, which we define below. Moreover, as specifica-
tions of bitstreams are inherently sorted, with a sort for bits, and a sort for bitstreams, we
introduce sorted terms.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 15

Definition 2.18. Let S be a set of sorts. An S -sorted set C is a family of sets {Cs}s∈S .
Let C and D be S -sorted sets. Then an S -sorted function (or map) from C to D is a
function f : C→ D such that f (Cs)⊆ Ds for all s ∈S , that is, a function that respects the
sorts.

An S -sorted signature Σ is a set of symbols f ∈ Σ, each having a type (s1, . . . ,sn,s) ∈
S n+1, which we denote by f :: s1× ·· · × sn → s, where n is the arity of f . If the arity
of a symbol f is 0 we just write f :: s and call it a constant. Let X be an S -sorted set
of variables. The S -sorted set of (finite and) infinite terms Ter∞(Σ,X) is coinductively
defined as follows: for every s ∈S , and every term t ∈ Ter∞(Σ,X)s we have either

– t is a variable t ∈Xs, or

– t is of the form t = f (t1, . . . , tn) ∈ Ter∞(Σ,X)s with f ∈ Σ of type s1×·· ·× sn→ s,
and terms t1 ∈ Ter∞(Σ,X)s1 , . . . , tn ∈ Ter∞(Σ,X)sn .

Let t ∈ Ter∞(Σ,X). The set of positions Pos(t)⊆ N∗ of t is defined by

Pos(x) = {ε} , Pos(f (t1, . . . , tn)) = {ε}∪{ip | 1≤ i≤ n, p ∈Pos(ti)} .

A term t ∈ Ter∞(Σ,X) is called finite if the set Pos(t) is finite, and we use Ter(Σ,X) to
denote the set of finite S -sorted terms.

For p ∈Pos(t), the subterm t|p of t at position p is defined by

t|ε = t , f (t1, . . . , tn)|ip = ti|p .

Let s ∈S . A substitution σ is a map σ : Xs→ Ter∞(Σ,X)s. The domain of a substitu-
tion σ is extended to terms Ter∞(Σ,X) by

σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)) .

Let 2 be a fresh variable, 2 6∈X . A context C is a term Ter∞(Σ,X ∪{2}) containing
precisely one occurrence of the variable 2. By C[t] we denote the term σ(C) where σ(2)=

t and σ(x) = x for all x ∈X .
A rewrite rule `→ r is a pair (`,r) ∈ Ter(Σ,X)×Ter(Σ,X) of finite terms of the same

sort such that ` 6∈X and Var(r)⊆ Var(`). A term rewrite system (TRS) R is a finite set of
rewrite rules. A TRS induces a rewrite relation on the set of terms as follows. For p ∈ N∗
we define→R,p ⊆ Ter∞(Σ,X)×Ter∞(Σ,X), a rewrite step at position p, by

C[`σ]→R,p C[rσ] if C is a context with C|p =2, `→ r ∈ R, σ : X → Ter∞(Σ,X).

We write s→R t if s→R,p t for some p ∈ N∗. A normal form is a term without a redex
occurrence, that is, a term that is not of the form C[`σ] for some context C, rule `→ r ∈ R
and substitution σ .

We write→∗ for the reflexive-transitive closure of a relation→.

Remark 2.19. Intuitively, the above coinductive definition of the set Ter∞(Σ,X) means
that the grammar rules may be applied an infinite number of times. One can thus think of
infinite terms as infinite labeled trees. Alternatively (now ignoring sorts) one may define a
term t ∈ Ter∞(Σ,X) as a partial map t : N∗⇀ Σ∪X such that t(ε) ∈ Σ∪X , and for all
p ∈ N∗ and i ∈ N we have t(pi) ∈ Σ∪X if and only if t(p) ∈ Σ of arity n and 1 ≤ i ≤ n.
The set of positions Pos(t) of a term t ∈ Ter∞(Σ) then is the domain of t, i.e., the set of

ZU064-05-FPR main 26 September 2019 14:45

16 Endrullis et al.

values p ∈ N∗ such that t(p) is defined: Pos(t) = {p ∈ N∗ | t(p) ∈ Σ∪X }. Note that the
set Pos(t) is prefix-closed.

An S -sorted equation s = t consists of terms s, t ∈ Ter(Σ,X)s×Ter(Σ,X)s for some
s∈S . An equational specification is a finite set of equations. Equational specifications are
very similar to term rewriting systems. The only difference is that in equational reasoning
the equations (rules in term rewriting) may be applied in both directions (from left to right,
and from right to left).

3 Stream Specifications and Semantics

Streams are one-sided infinite sequences of symbols. There are various ways of introducing
streams: as functions N→ A mapping an index n to the n-th element of the stream, as final
coalgebras over the functor X 7→ A×X (Rutten, 2000), using coinductive types (Geuvers,
1992), or observational models (Malcolm, 1997; Goguen & Malcolm, 2000; Roşu, 2000;
Bidoit et al., 2003). All these definitions are equivalent in the sense that the resulting
coalgebras are isomorphic.

For the study of the model-theoretic semantics of equality, we focus on equational
specifications of bitstreams, i.e., systems of equations (partially) defining streams over
the alphabet {0,1}. Due to their simplicity, bitstreams can be embedded in almost every
non-trivial coinductive structure. Specifications of bitstreams are inherently sorted, with a
sort B for bits, and a sort S for bitstreams.

Convention 3.1. For notational and technical simplicity, from now on we let S = {B,S},
noting that the subsequent results do not depend on this restriction.

3.1 Hidden Algebra Semantics

The philosophy of hidden algebra (Goguen, 1991; Malcolm, 1997; Goguen & Malcolm,
2000; Roşu, 2000) is that the objects of study are blackboxes whose contents are hidden, the
only way to interact with them being by means of experiments using a subset of operations
specially chosen for this purpose. Some of the experiments end with a visible result (an
observable value), others with a hidden result (another blackbox). By systematically and
iteratively applying all the available experiments to an object, we obtain the (typically
infinite) behavior of that object. Two objects are behaviorally equivalent if and only if
they cannot be distinguished by any of the available experiments.

In the case of streams, the blackboxes with hidden contents are the streams themselves,
the visible values are the bits {0,1}, and the experiments are the operations head and tail.
Thus, the behaviors of a stream blackbox consist of precisely the bits corresponding to
the infinite number of stream positions reachable with head and tail operations, and two
streams are behaviorally equivalent if and only if they have the same bits corresponding to
the same positions in them. We next particularize the hidden algebra notions to streams.

Definition 3.2. A bitstream signature Σ is an S -sorted signature such that 0,1,head, tail∈
Σ where 0,1 :: B are the usual bits and where head :: S→ B, tail :: S→ S are the stream
destructors giving the head and respectively the tail of a stream. A bitstream specification
over Σ is a finite set E of equations over Σ.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 17

Example 3.3. Define Σ = {0,1,+,head, tail,A,T} with + :: B×B→ B, head :: S→ B,
tail,T :: S→ S, and A :: S× S→ S. Then the following system of equations establishes a
bitstream specification over Σ,

0+0 = 0 0+1 = 1

1+1 = 0 1+0 = 1

head(A(σ ,τ)) = head(σ)+head(τ) tail(A(σ ,τ)) = A(tail(σ), tail(τ))

head(T(σ)) = head(σ) tail(T(σ)) = T(A(σ , tail(σ))) .

This is a modified version of a specification in (Endrullis et al., 2013), where it is used to
illustrate the method of circular coinduction by proving that the unary stream function T is
an involution, that is, T(T(σ)) = σ .

We think of the stream sort S as hidden, in the sense that the exact representation
of streams in models is irrelevant. The only way we can observe them is by means of
observing their elements using the head and tail operations.

Definition 3.4. A hidden algebra A = 〈A, [[·]]〉 consists of

(i) an S -sorted domain A where AB = {0,1},
(ii) for every f :: s1×·· ·× sn→ s ∈ Σ an interpretation [[f]] : As1 ×·· ·×Asn → As,

(iii) 0,1 ∈ Σ with [[0]] = 0 and [[1]] = 1.

Definition 3.5. Let A = 〈A, [[·]]〉 be a hidden algebra, and α : X → A a variable assign-
ment. The interpretation of terms [[·]]Aα : Ter(Σ,X)→ A is defined inductively by:

[[x]]Aα = α(x) [[f (t1, . . . , tn)]]Aα = [[f]]([[t1]]Aα , . . . , [[tn]]Aα)

We write [[·]]α for [[·]]Aα whenever the algebra A is clear from the context. For ground terms
t ∈ Ter(Σ,∅), we have [[t]]α = [[t]]β for all assignments α,β ; we then write [[t]] for short.

Definition 3.6. Let A = 〈A, [[·]]〉 be a hidden algebra. We define behavioral equivalence≡
by

σ ≡ τ ⇐⇒ ∀n ∈ N. [[head]]([[tail]]n(σ)) = [[head]]([[tail]]n(τ)) ,

for all σ ,τ ∈ AS. On the domains corresponding to the other sorts in S (i.e., those different
from S) we fix ≡ to be the identity relation.

We say that [[head]]([[tail]]n(σ) is a 〈head, tail〉-experiment on σ . So σ ≡ τ iff σ and τ

cannot be distinguished by any 〈head, tail〉-experiment.

Remark 3.7. We stress that AS may contain elements x,y ∈ AS that are not equal (x 6= y)
but have the same behavior (x ≡ y), see Example 3.9. Note that ≡ is preserved by [[head]]

and [[tail]], but that in general it does not need to be a congruence on A.

Definition 3.8. Let E be a bitstream specification over Σ. A hidden algebra A = 〈A, [[·]]〉
behaviorally satisfies E, or A is a hidden model of E, written A |≡ E, if for every equation
of E, the left- and right-hand sides are behaviorally equivalent:

[[u]]α ≡ [[v]]α for every u = v in E and α : X → A

We say that an equation s = t is behaviorally satisfied in all hidden models of E, written
E |≡ s = t, if A |≡ E implies A |≡ s = t for every hidden algebra A .

ZU064-05-FPR main 26 September 2019 14:45

18 Endrullis et al.

As we mentioned in Remark 3.7, behavioral equivalence in hidden models is not re-
quired to be a congruence. This property is useful if one wants to model certain aspects of
non-deterministic behavior, as in the following example.

Example 3.9. The equation

tail(push(x)) = x (3)

can be used to model an operation push that non-deterministically prepends a 0 or 1 to a
stream. It admits a hidden model A = 〈A, [[·]]〉 where AS = {0,1}ω ×{0,1}ω , and

[[head]](〈aσ ,τ〉) = a

[[tail]](〈aσ ,τ〉) = 〈σ ,τ〉
[[push]](〈σ ,bτ〉) = 〈bσ ,τ〉

for all a,b ∈ {0,1} and σ ,τ ∈ {0,1}ω . Note that we have 〈σ ,τ〉 ≡ 〈σ ′,τ ′〉 if and only if
σ = σ ′, and so there is a large number of behaviorally equivalent elements. The model
employs the second component of the pair for generating random bits for the operation
[[push]]. If≡ was required to be a congruence, then such non-deterministic behavior would
not be possible. In particular, every model of (3) in which ≡ is a congruence, satisfies

push(tail(push(x))) = push(x) (4)

which does not allow for the intended non-determinism. Observe that (4) is not satisfied in
the hidden model A , for example

[[push]]([[tail]]([[push]](〈σ ,01τ〉))) = 〈1σ ,τ〉 6≡ 〈0σ ,1τ〉= [[push]](〈σ ,01τ〉) .

3.2 Behavioral Algebra Semantics

We now adapt the setup by requiring ≡ to be a congruence relation, that is,

σ ≡ τ ⇒ [[f]](. . . ,σ , . . .)≡ [[f]](. . . ,τ, . . .)

for any f ∈ Σ. (Here only the displayed argument of the function [[f]] is altered from σ to
τ .) The resulting models are called behavioral in (Bidoit et al., 2003).

Definition 3.10. A behavioral algebra is a hidden algebra where ≡ is a congruence re-
lation. For a bitstream specification E, we say that s = t is behaviorally satisfied in all
behavioral models of E, written E |≡bhv s = t, if A |≡ E⇒A |≡ s = t for every behavioral
algebra A .

3.3 Extensional Algebra Semantics

In behavioral algebras, elements that are behaviorally equivalent also behave the same
when put in a context. As a consequence, we can identify elements with the same behavior.
For convenience, we identify each element with the infinite binary sequence from {0,1}ω

that represents its observable behavior. This leads to the following definition of extensional
algebras:

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 19

Definition 3.11. An extensional algebra A = 〈A, [[·]]〉 is a hidden algebra such that we
have AS ⊆ {0,1}ω and for all a ∈ AB and x ∈ AS: [[head]](ax) = a and [[tail]](ax) = x .

For a bitstream specification E, we say that s = t is satisfied in all extensional models of
E, written E |≡ext s = t, if A |≡ E⇒A |≡ s = t for every extensional algebra A .

We stress that for extensional algebras, the domain is not required to contain all streams.
The absence of such a requirement is natural, especially for hidden or behavioral algebras.
For hidden and behavioral algebras, the domain is an arbitrary set A, and it is typically
not required that for every possible observable behavior, there exists an element in the
domain A that exhibits this behavior. As we will see, behavioral algebras are equivalent to
extensional algebras. For this equivalence, it is important that extensional algebras are not
required to contain all streams.

Remark 3.12. Why do we not require to restrict to ground models? Ground models are
models where every element of the domain is an interpretation of a ground term, i.e., a term
without variables. The reason is that E |= s = t — equality in all models — is meaningful
even if there are no ground terms at all. For example, we have

E |= zip(x,x) = dup(x) ,

where the specification E consist of

zip(a : x,y) = a : zip(y,x) dup(a : x) = a : a : dup(x) .

The hardness proofs in the paper show that the problem of deciding E |= s = t has the
same complexity if s and t are restricted to be ground terms. Then it can be shown that
the complexity does not change when restricting to ground models. The reason is that a
countermodel (satisfying E but not s = t) remains a countermodel even if we restrict to
interpretations of ground terms.

Lemma 3.13. In every extensional algebra, behavioral equivalence ≡ coincides with
equality =, that is, x = y if and only if x≡ y.

Proof. Let A = 〈A, [[·]]〉 be an extensional algebra. Fix w,u ∈ AS ⊆ {0,1}ω . It suffices
to show that w ≡ u implies w = u. For a contradiction, assume w ≡ u and w 6= u. Since
w,u ∈ {0,1}ω it follows that there exists n ∈ N such that w(n) 6= u(n). By definition of
extensional algebras, we have [[head]](ax) = a and [[tail]](ax) = x, for all a ∈ AB and x ∈
AS. By induction it follows that for all x ∈ AS, we have [[head]]([[tail]]n(x)) = x(n). Hence
[[head]]([[tail]]n(w)) = w(n) 6= u(n) = [[head]]([[tail]]n(u)), thus contradicting w≡ u.

As a consequence, behavioral satisfaction coincides with the usual notion of satisfaction
where left- and right-hand sides of equations are required to have equal interpretations.

Lemma 3.14. An extensional algebra A = 〈A, [[·]]〉 satisfies a bitstream specification E if
and only if [[u]]α = [[v]]α for every u = v in E and α : X → A.

Proof. This lemma is a direct consequence of the definition of behavioral satisfaction for
hidden algebras and Lemma 3.13.

In the sequel, we will use Lemmas 3.13 and 3.14 tacitly. These two lemmas allow us
to reason about extensional models of equational specifications without having to worry
about distinct, but behaviorally equivalent elements in the model.

ZU064-05-FPR main 26 September 2019 14:45

20 Endrullis et al.

The following proposition states that extensional algebras are, for our purposes, equiva-
lent to behavioral algebras, that is, hidden algebras for which behavioral equivalence ≡ is
a congruence.

Proposition 3.15. We have E |≡bhv s = t if and only if E |≡ext s = t. That is, an equation
s = t is behaviorally satisfied in all behavioral models of a specification E if and only if
s = t is satisfied in all extensional models of E.

Proof. It suffices to show that the following properties are equivalent:

(i) There exists a behavioral algebra A such that A |≡ E and A 6|≡ s = t.
(ii) There exists an extensional algebra A such that A |≡ E and A 6|≡ s = t.

The implication (ii)⇒ (i) follows immediately, since every extensional algebra is a behav-
ioral algebra.

For the implication (i)⇒ (ii), let A = 〈A, [[·]]〉 be a behavioral algebra, that is, behavioral
equivalence ≡ is a congruence. Let A /≡ = 〈A/≡, [[·]]/≡〉 be the quotient algebra, i.e.,
A/≡ is the set of congruence classes of A with respect to ≡. For symbols f ∈ Σ of arity
n and B1, . . . ,Bn ∈ A/≡, we define [[f]]/≡(B1, . . . ,Bn) = B if [[f]](b1, . . . ,bn) = b for b1 ∈
B1, . . . ,bn ∈ Bn, and B is the congruence class of b with respect to ≡. The quotient algebra
A /≡ is a behavioral algebra that, due to ≡ being a congruence, behaviorally satisfies
the same equations as A . Let A ′ be the algebra obtained from A /≡ by renaming the
domain elements into the streams they represent, that is, a ∈ (A /≡)S becomes [[head]](a) :
[[head]]([[tail]](a)) : Then [[:]](x,σ) = xσ , since in A /≡ every stream has a unique
representative in the model. Hence, A ′ is an extensional algebra. Moreover, for elements
a,b of the domain of A /≡, we have a≡ b iff a = b. Hence, A ′ is a model of an equation
s = t if and only if s = t is behaviorally satisfied in A .

3.4 Full Extensional Algebra Semantics

For extensional algebras, the domain is a subset of {0,1}ω . While strongly motivated
by the desired relationships with the hidden and behavioral models, once streams are
identified with their behaviors in {0,1}ω it is quite natural to drop the subset restriction
and thus require all extensional models to have a fixed carrier, the set of all possible
streams (or stream behaviors). Then each model only provides particular interpretations
of the operations in Σ over all possible streams.

Definition 3.16. We say that an extensional algebra A = 〈A, [[·]]〉 is full if its domain
contains all bitstreams, AS = {0,1}ω . For a bitstream specification E, we say that s = t is
satisfied in all full extensional models of E, written E |≡full s = t, if A |≡ E⇒A |≡ s = t
for every full extensional algebra A .

The difference between extensional and full extensional models may seem insignificant,
but as shown in Section 6.3, requiring the domains to contain all streams yields a huge
jump in the complexity of deciding stream equality.

Remark 3.17. We briefly discuss the differences between hidden models, extensional (or
equivalently behavioral) models and full extensional models. In Example 3.9 we have seen

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 21

that hidden models can be used for modeling non-determinism. As explained, this is not
possible with behavioral or extensional models.

Let us compare extensional and full extensional models. In extensional models, the do-
main is not required to contain all streams. This allows us to write equational specifications
that restrict the possible domains. For example, consider the following specification:

uc(x,count(x)) = ones (5)

uc(x,ones) = zeros (6)

uc(a : y,1 : y) = uc(x,y) (7)

uc(0 : 0 : x,0 : y) = uc(0 : x,0 : y) (8)

uc(1 : 1 : x,0 : y) = uc(1 : x,0 : y) (9)

uc(0 : 1 : x,0 : y) = zeros (10)

uc(1 : 0 : x,0 : y) = zeros (11)

In every extensional model A = 〈A, [[·]]〉 of this specification, the domain contains only
streams that are ultimately constant, that is, for every σ ∈ AS there exists n ∈ N such
that [[tail]]n(σ) ∈ {0ω , 1ω}. We sketch the proof of this fact. The idea is that for every
stream σ ∈ AS, the index of the first 0 in [[count]](σ) determines the maximum length
of the non-constant prefix of σ . Let σ ∈ AS be a stream in the domain. If [[count]](σ)

contains no 0, then (5) and (6) yield an immediate contradiction. Let z ∈ N be the index
of the first 0 in [[count]](σ). Then from (7) we can derive that [[uc]](σ , [[count]](σ)) =

[[uc]]([[tail]]z(σ), [[tail]]z([[count]](σ))). Moreover, by the choice of z, the first element of
[[tail]]z([[count]](σ)) is a 0. Then (8)–(11) ensure that the stream [[tail]]z(σ) is constant. In
particular, equations (10) and (11) yield a contradiction with (5) if the stream contains any
occurrence of 01 or 10.

Clearly, the above specification has no full extensional model. However, it is always
possible to ‘simulate’ non-full extensional models using full extensional models. That is,
for every equational specification E over Σ we can construct an equational specification E ′

over the extended signature Σ∪{dom} with dom :: S→ S, satisfying

(i) for every extensional model A |≡ E there exists a full extensional model A ′ |≡ E ′

such that [[f]]A = [[f]]A
′

for all f ∈ Σ, and
(ii) for every full extensional model A ′ |≡ E ′ there exists an extensional model A |≡ E

such that [[f]]A = [[f]]A
′

for all f ∈ Σ.

Let us sketch the construction of E ′. We use the range of [[dom]] to model the domain of an
arbitrary extensional model. We then need to modify the equations in E by replacing each
variable x by the term dom(x):

x 7→ dom(x) .

This forces that the equations hold precisely for the elements in the range of [[dom]].
Moreover, we need to extend E with equations

f(dom(x1), . . . ,dom(xn)) = dom(f(dom(x1), . . . ,dom(xn)))

for every f ∈ Σ where n is the arity of f. These equations guarantee that the range [[dom]]

is closed under all functions [[f]]A with f ∈ Σ. Actually, for these equations to work, we

ZU064-05-FPR main 26 September 2019 14:45

22 Endrullis et al.

assume without loss of generality that [[dom]](σ) = σ for every σ in the range of [[dom]].
The resulting specification E ′ fulfills the properties (i) and (ii).

Let us further mention that for certain purposes, full models are the natural choice. For
example, the equation

g(f(x)) = x

can be used to ensure that [[g]] is the inverse function of [[f]]. However, if we interpret this
equation in arbitrary (non-full) extensional models, then [[g]] and [[f]] are inverses of each
other only for the stream in the domain of the model which could be as small as {0ω}.

(Full) Extensional models are not necessarily unique. The reason is that there can under-
specified elements or functions, as illustrated by the following example.

Example 3.18. The specification

even(A) = zeros zeros = 0 : zeros even(x : y : σ) = x : even(σ)

admits many non-isomorphic full extensional models. The interpretation of the constant
A :: S can be any stream of the form 0 : x1 : 0 : x2 : 0 : x3 : · · · .

Definition 3.19. Let E be a bitstream specification over Σ, and s, t ∈ Ter(Σ,X) with s, t ::
S. Then s and t are said to be

(i) equal in all hidden models of E if E |≡ s = t,
(ii) equal in all behavioral models of E if E |≡bhv s = t,

(iii) equal in all extensional models of E if E |≡ext s = t, and
(iv) equal in all full extensional models of E if E |≡full s = t.

3.5 Equality of Sets of Solutions

We define the set of solutions of a term s in a specification E, that is, the set of all possible
interpretations [[s]] of s in all models of E.

Definition 3.20. Let E be a bitstream specification over Σ, and s ∈ Ter(Σ,∅) with s :: S.
Then the set of

(i) solutions of s in E over all extensional models is

[[s]]E,ext = { [[s]]A |A |≡ E } .

(ii) solutions of s in E over all full extensional models is

[[s]]E, full = { [[s]]A |A full,A |≡ E } .

Remark 3.21. Note that in Definition 3.20 we define the set of solutions only for ground
terms s∈ Ter(Σ,∅). For terms with variables there are different choices as to what the set of
solutions should be. An obvious choice is to take the set of solutions as the interpretations
in all models, under all possible interpretations of the variables, that is,

[[s]]E,ext = { [[s,α]]A |A |≡ E, α : X → A} ,

where s ∈ Ter(Σ,X) is a term with variables. This definition can easily be reduced to sets
of solutions of ground terms as follows. For every variable x ∈ Var(s) we introduce a fresh

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 23

constant x′. Let the substitution σ be defined by σ(x) = x′ if x ∈ Var(s), and σ(x) = x
otherwise. Then the set of solutions of s is equal to the set of solutions of the ground term
sσ , that is:

[[s]]E,ext = [[sσ]]E,ext

Let A be such that A |≡ E and let α : X → A. Then [[s,α]]A = [[sσ]]A
′

where A ′ is
obtained from A by defining [[x′]] = α(x) for all x ∈ Var(s). Reversely, [[sσ]]A = [[s,α]]A

where α is defined by αx = [[x′]] for all x ∈ Var(s).
Another possible choice for the set of solutions of terms with variables is to consider the

terms as functions depending on the assignment of the variables. Then the domain of these
functions depends on the domain of the model. Thus for a sensible comparison of these
functions it seems useful to restrict to full models.

Note that we have given the definition of solutions only for extensional models. Clearly,
we want the set of solutions of a stream term to be a set of streams. In hidden and behavioral
models, the domain A is an arbitrary set, and thus the interpretation is an arbitrary element.
In order to generalize the definition to hidden algebras one needs to consider the set of
streams that represent all possible behaviors of s in hidden models of the specification E.

Definition 3.22. Let Es and Et be bitstream specifications over Σs and Σt , respectively. Let
s ∈ Ter(Σs,∅) and t ∈ Ter(Σt ,∅). Then s and t are said to have

(i) equal solutions over all extensional models, when [[s]]Es,ext = [[t]]Et ,ext , and
(ii) equal solutions over all full extensional models, when [[s]]Es, full = [[t]]Et, full .

Definition 3.23. Let E be a bitstream specification over Σ, and s ∈ Ter(Σ,∅). Then s is
said to have

(i) exactly one solution over all extensional models, if |[[s]]E,ext|= 1,
(ii) exactly one solution over all full extensional models, if |[[s]]E, full|= 1,

(iii) at least one solution over all extensional models, if |[[s]]E,ext| ≥ 1,
(iv) at least one solution over all full extensional models, if |[[s]]E, full| ≥ 1,
(v) at most one solution over all extensional models, if |[[s]]E,ext| ≤ 1,

(vi) at most one solution over all full extensional models, if |[[s]]E, full| ≤ 1.

4 Turing Machines as Equational Specifications

For defining streams and operations on streams we will frequently employ the stream
constructor ‘:’, a distinguished symbol of the signature Σ which we write infix. We tacitly
assume that specifications include the following equations

head(a : x) = a tail(a : x) = x (12)

These equations fully define the interpretation [[:]] of the stream constructor, that is, in every
extensional model 〈A, [[·]]〉 of (12) we have, for all a ∈ AB and x ∈ AS,

[[:]](a,x) = ax .

Remark 4.1. For hidden models, the equations (12) do not define the interpretation [[:]]
uniquely, but up to behavioral equivalence ≡ (even if the interpretations [[head]] and [[tail]]

are fixed). Actually, Section 5 is independent of the equations (12).

ZU064-05-FPR main 26 September 2019 14:45

24 Endrullis et al.

We define a set of standard equations (for bitstream specifications) that will be used
throughout the paper.

Definition 4.2. Fix an integer m ≥ 0. Let Σm = {0,1, :,zeros,ones}∪{zipk | 1 ≤ k ≤ m},
with zipk :: Sk → S. We define the specification Zm over Σm to consist of the following
equations, for all k such that 1≤ k ≤ m,

zeros = 0 : zeros zip1(x1) = x1

ones = 1 : ones zip2(a : x1,x2) = a : zip2(x2,x1)

zipk(x1, . . . ,xk) = zip2(x1,zipk−1(x2, . . . ,xk)) (k > 2) .

If for some m ≥ 2 the symbol zipm occurs in a specification S then S (implicitly) contains
the equations zipk(. . .) = . . . for all k ≤ m, that is, Zm ⊆ S.

To give an example,

[[zip3]](x,y,z) = x(0)y(0)x(1)z(0)x(2)y(1)x(3)z(1)x(4)y(2) · · · .

The function [[zipk]] was also used in the work (Endrullis et al., 2011a), which introduces
a new approach to comparing the complexity of streams on the basis of reducibility via
finite state transducers.

Lemma 4.3. Fix m ∈N, and let S be a specification with Zm ⊆ S (see Definition 4.2). Then
for every extensional model A = 〈A, [[·]]〉 of S we have

[[zeros]](n) = 0 [[zip1]](x1)(n) = x1(n) (13)

[[ones]](n) = 1 [[zipk]](x1, . . . ,xk)(2n) = x1(n) (14)

[[zipk]](x1, . . . ,xk)(2n+1) = [[zipk−1]](x2, . . . ,xk)(n) (15)

for all k such that 2≤ k ≤ m, x1, . . . ,xk ∈ AS, and n ∈ N. In closed form this is

[[zipk]](x1, . . . ,xk)(2i−1(2n+1)−1) = xi(n) , (1≤ i < k) (16)

[[zipk]](x1, . . . ,xk)(2k−1(n+1)−1) = xk(n) . (17)

Proof. For streams x ∈ AS we write x = x(0)x(1) · · · and x′ = x(1)x(2) · · · . First note
that [[zip2]](x,y)(2n) = x(n) and [[zip2]](x,y)(2n + 1) = y(n) follow by induction on n;
distinguish three cases: [[zip2]](x,y)(0) = x(0), [[zip2]](x,y)(2n+ 1) = [[zip2]](y,x′)(2n) =
y(n), and [[zip2]](x,y)(2n+2) = [[zip2]](y,x′)(2n+1) = x′(n) = x(n+1). From this and the
definition of zipk, equations (14) and (15) follow directly.

Next, we prove (16) and (17) by induction on k ≥ 2. The base case k = 2 boils down
to (14) and (15). So let k > 2. The case i = 1 is just (14) again. For 1 < i < k we rea-
son [[zipk]](x1, . . . ,xk)(2i−1(2n+ 1)− 1) = [[zipk]](x1, . . . ,xk)(2(2i−2(2n+ 1)− 1) + 1) =
[[zipk−1]](x2, . . . ,xk)(2i−2(2n+ 1)− 1) by (15), which is equal to xi(n) by the induction
hypothesis. Similarly, [[zipk]](x1, . . . ,xk)(2k−1(n+ 1)− 1) = [[zipk]](x1, . . . ,xk)(2(2k−2(n+
1)−1)+1) = [[zipk−1]](x2, . . . ,xk)(2k−2(n+1)−1) = xk(n).

We define a translation of Turing machines to equational specifications of bitstream
functions, based on the standard translation to term rewriting systems from (Terese, 2003).
However, we represent the tape to the left and to the right of the head using streams instead
of finite lists, and have one instead of four rules for ‘extending’ the tape. In particular, the

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 25

equation for extending the tape is the equation for zeros from Definition 4.2. The terms
of the shape q(x,y) represent configurations of the Turing machine, where the stream y
contains the tape content below and right of the head, and x the tape content left of the
head backwards. So the head of the machine stands on the first symbol of y.

Definition 4.4. Let T = 〈Q,q0,δ 〉 be a Turing machine. We define the signature Σ =

{0,1, :,zeros} ∪Q where the symbols q ∈ Q have type q :: S× S → B. We define the
specification ET over Σ to consist of the following equations:

zeros = 0 : zeros

q(a : x,b : y) = q′(x,a : b′ : y) for every δ (q,b) = 〈q′,b′,L〉,
q(x,b : y) = q′(b′ : x,y) for every δ (q,b) = 〈q′,b′,R〉,
q(x,b : y) = b whenever δ (q,b) is undefined.

We write ET |= s = t to denote that s = t can be derived from ET by standard equational
reasoning. Moreover, we use RT to denote the term rewriting system obtained from ET by
orienting all equations from left to right.

Proposition 4.5. A Turing machine T = 〈Q,q0,δ 〉 halts on input w with output b if and
only if ET |= q0(zeros,w1 : w2 : . . . : w|w| : zeros) = b.

Proof. Let U = Ter({0,1, :,zeros},∅)S, the set of terms of the form a0 : a1 : . . . : ak−1 :
zeros, with k ∈ N and ai ∈ {0,1}, 0 ≤ i < k. Define ∼ =↔∗zeros, the equivalence relation
induced by the rule zeros→ 0 : zeros (which is in RT). We define a map F :U×U→{0,1}Z
as follows. For s = a0 : · · · : ans−1 : zeros and t = b0 : · · · : bnt−1 : zeros, set F(s, t)(x) =
a|x|−1 if −ns ≤ x < 0, F(s, t)(x) = bx if 0 ≤ x < nt , and F(s, t)(x) = 0 for all other x.
Clearly F is invariant under ∼, i.e., F(s, t) = F(s′, t ′) iff s ∼ s′ and t ∼ t ′. The initial
tape τ0 with input w is (not uniquely) represented by τ0 = F(s0, t0) with s0 = zeros and
t0 = w1 : w2 : · · · : w|w| : zeros. If T halts on input w, then all tapes τi in the maximal
sequence 〈q0,τ0〉 →T 〈q1,τ1〉 →T · · · →T 〈qn,τn〉 have a finite non-zero part, and can thus
be represented by F(si, ti) for some si, ti ∈U , 0≤ i≤ n. Equally clear is that in the rewrite
sequence q0(s0, t0)→RT /∼ q1(s1, t1)→RT /∼ · · · →RT /∼ b all stream terms si, ti are in the set
U . Here, for relations R,E, we write R/E for the composed relation E∗RE∗. The reason for
reasoning modulo ∼ is that it is sometimes required to ‘extend the tape’, i.e., unfold the
constant zeros, in order for a rule q(. . .)→ q′(. . .) to be applicable.

Now to prove the claim, it suffices to show that for all q,q′ ∈ Q and s, t,s′, t ′ ∈U ,

〈q,F(s, t)〉 →T 〈q′,F(s′, t ′)〉 ⇐⇒ q(s, t)→RT /∼ q′(s′, t ′) , and

〈q,F(s, t)〉 6→T ⇐⇒ q(s, t)→RT /∼ F(s, t)(0) .

Let τ = F(s, t), and τ ′ = F(s′, t ′), and assume 〈q,τ〉 →T 〈q′,τ ′〉. We distinguish two
cases. If δ (q,τ(0)) = 〈q′,d,L〉, then s ∼ a : u and t ∼ τ(0) : v for some a ∈ {0,1} and
u,v ∈U , and it can be verified that τ ′ = F(u,a : d : v). Hence q(s, t)→RT /∼ q′(s′, t ′), since
s′∼ u, and t ′∼ a : d′ : v. For the case δ (q,τ(0)) = 〈q′,d,R〉, we pick v such that t ∼ τ(0) : v,
and check τ ′ = F(d : s,v), whence q(s, t)→RT /∼ q′(s′, t ′) follows from s′ ∼ d : s and t ′ ∼ v.
If 〈q,τ〉 is a halting configuration, the output is τ(0). For a suitably chosen v with v ∼ t
(i.e., unfold zeros if t = zeros), we get q(s, t)∼ q(s,v)→RT τ(0).

ZU064-05-FPR main 26 September 2019 14:45

26 Endrullis et al.

On the other hand, given q(s, t)→RT /∼ q′(s′, t ′), the step 〈q,F(s, t)〉 →T 〈q′,F(s′, t ′)〉
follows directly from the definitions and invariance of F under ∼. Likewise so for the
halting case q(s, t)→RT /∼ F(s, t)(0).

Notation 4.6. For an integer n≥ 0 we use n to denote the stream term

n = 1 : · · · : 1︸ ︷︷ ︸
n times

: zeros .

For a set ξ ⊆ N, we write ξ to denote the infinite stream term

ξ = χξ (0) : χξ (1) : χξ (2) : . . . ,

where χξ : N→{0,1} is the characteristic function of ξ , i.e., χξ (n) = 1 iff n ∈ ξ .

As said before, in contrast to the encoding of Turing machines as in (Terese, 2003), we
do not have equations for extending the tape. We use q(s, t) only for infinite stream terms
s, t or finite terms s, t that evaluate to fully defined streams in the limit.

Apart from the additional rule for termination and the lack of rules for extending the tape,
the translation RT is standard, and the rewrite rules model the transition relation of Turing
machines in a one-to-one fashion. We consider the rewrite system RT as the operational
semantics of the Turing machine T , and we define concepts like input and oracles directly
on the term representations. We pass k-tuples 〈n1, . . . ,nk〉 ∈Nk of natural numbers as input
to a Turing machine by choosing the following start configuration:

q0(zeros,zipk+1(k,n1, . . . ,nk)) ,

The particular encoding of tuples is not important. For equational specifications the encod-
ing zipk+1(k,n1, . . . ,nk) is more convenient than the Gödel encoding. Yet another possibil-
ity would be the encoding (1 :)k 0 : (1 :)n1 0 : . . . : (1 :)nk 0 : zeros. We have opted for the
zip operation simply because we use this encoding also for writing multiple oracles (which
are represented as infinite stream terms) on the tape.

We obtain Turing machines with oracles ξ1, . . . ,ξm ⊆ N by writing the oracles element-
wise interlaced on the tape left of the head, as follows:

Definition 4.7. Let T = 〈Q,q0,δ 〉 be a Turing machine. For stream terms ξ1, . . . ,ξm :: S
and n1, . . . ,nk :: S, we define

T (ξ1, . . . ,ξm;n1, . . . ,nk) := q0(zipm(ξ1, . . . ,ξm),zipk+1(k,n1, . . . ,nk))

Here the intuition is as follows: The stream terms ξ1, . . . ,ξm represent oracles, and
the stream terms n1, . . . ,nk represent natural numbers. The term T (ξ1, . . . ,ξm;n1, . . . ,nk)

corresponds to the Turing machine T started with m oracles ξ1, . . . ,ξm and k input numbers
n1, . . . ,nk. While the terms ξ1, . . . ,ξm may be infinite, we only consider finite sequences of
rewrite steps (corresponding to a finite number of transition steps of the Turing machine).

Note that for passing the tuple of natural numbers 〈n1, . . . ,nk〉 to the Turing machine,
we include the length k of the tuple within the interleaving zipk+1. In this way, the Turing
machine can determine how many arguments have been passed. For the oracles ξ1, . . . ,ξm

we have chosen for not passing m since for the Turing machines in this paper we do not
need a variable number of oracles.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 27

Definition 4.8. A Turing machine T = 〈Q,q0,δ 〉 halts (with output b ∈ {0,1}) on inputs
n1, . . . ,nk ∈ N with oracles ξ1, . . . ,ξm ⊆ N if there is a rewrite sequence

T (ξ1, . . . ,ξm;n1, . . . ,nk)→∗RT
b .

We note that due to the rules for zipn and zeros, there are infinite rewrite sequences
even if the Turing machine halts. However, RT is orthogonal and therefore outermost-fair
rewriting is a normalizing strategy, see (Ketema & Simonsen, 2010). That is, outermost-
fair rewriting using RT computes the normal form b ∈ {0,1} if it exists. This normal form
is unique by (Klop & de Vrijer, 2005; Endrullis et al., 2010b).

Definition 4.9. A predicate P ⊆℘(N)m×Nk is decidable if there is a Turing machine T
such that for all ~ξ ∈℘(N)m and~n ∈Nk we have that T halts on input~n with oracles ~ξ , and
the output is 1 if and only if 〈~ξ ,~n〉 ∈ P.

We note that the above definition is independent of our particular variant of Turing
machines, and of the encoding of inputs and oracles. It can easily be seen to correspond
with the standard definitions in (Rogers, Jr., 1967; Shoenfield, 1971).

In correspondence with Definition 4.7 we define for a Turing machine T = 〈Q,q0,δ 〉,
and streams ξ1, . . . ,ξm, n1, . . . ,nk ∈ {0,1}ω ,

[[T]](ξ1, . . . ,ξm;n1, . . . ,nk) := [[q0]]([[zipm]](ξ1, . . . ,ξm), [[zipk+1]]([[k]],n1, . . . ,nk)) .

Then for the models of Turing machine specifications we have:

Lemma 4.10. Let P⊆℘(N)m×Nk be decidable, and let T = 〈Q,q0,δ 〉 be the correspond-
ing Turing machine. Then in every extensional model A = 〈A, [[·]]〉 of a specification
including the equations Zmax(m,k+1) from Definition 4.2 and ET , we have for every ~ξ ∈
℘(N)m and~n ∈ Nk: (~ξ ,~n) ∈ P if and only if [[T]](ξ1, . . . ,ξm;n1, . . . ,nk) = 1.

Proof. By assumption P is decidable, hence T (ξ1, . . . ,ξm;n1, . . . ,nk) has a normal form in

{0,1}, and the normal form is 1 if and only if (~ξ ,~n) ∈ P.

5 Equality in Hidden Models

As seen in Section 3, the hidden Σ-algebra stream models are the most relaxed models that
we consider in this paper, in that any of the other models are obtained by adding restrictions
to hidden Σ-algebras. In this section we study the complexity of deciding whether E |≡ e
with hidden model semantics, where E is a finite bitstream specification and e is a stream
equation s = t. Specifically, we show that this problem has the lowest complexity among
all the similar problems discussed in the sequel: Π0

2-complete.
The result below was first claimed in (Roşu, 2006), but in a slightly more involved

stream hidden algebraic setting, where the bitstream signatures Σ were required to also
include the stream constructor ‘:’ and the bitstream specifications to include the equations
head(b : x) = b and tail(b : x) = x. However, as noted in (Endrullis et al., 2012b), the
lack of congruence of the behavioral equivalence relation interacted unexpectedly with the
‘:’ construct in some examples, so we have reworked the result below to eliminate the
dependence of ‘:’ and its special properties in the proof. The Π0

2-hardness part still uses a
‘:’ operation symbol, but it defines it like any other symbol, without any special properties.

ZU064-05-FPR main 26 September 2019 14:45

28 Endrullis et al.

The membership in Π0
2 follows by framing the problem as follows: for any n ∈ N, there

exists a first-order logic (FOL) proof of E ` head(tailn(s)) = head(tailn(t)), where the
proof checking part is decidable. This is possible thanks to the completeness of FOL. The
Π0

2-hardness is shown by reduction from the totality problem (see Proposition 2.13).

Theorem 5.1. The following problem is Π0
2-complete:

INPUT: Bitstream specification E, terms s, t :: S.

QUESTION: Is s = t behaviorally satisfied in all hidden models of E?

Proof. Let us first show the membership in Π0
2. To do that, we need to prove some prop-

erties relating behavioral satisfaction to first-order logic satisfaction. Let E be a bitstream
specification and let EB be the potentially infinite FOL= specification (i.e., it can have
infinitely many finite formulae) defined as follows:

– add to EB all the equations in E of sorts different from S;

– add for each equation u = v of sort S in E a decidable (or recursive) set of equations
of sort B, namely {head(tailn(u)) = head(tailn(v)) | n ∈ N};

– add the formulae ¬(0 = 1) and b = 0∨b = 1, where b is a variable of sort B; these
are the only non-equational formulae in EB.

Then the following hold:

(1) For any algebra A = 〈A, [[·]]〉, A |= EB iff A {0,1} is a hidden model of streams and
A {0,1} |≡ E, where A {0,1} is A whose elements A0 and A1 in AB are renamed by 0
and 1, respectively, and |= is the standard satisfaction in FOL=;

(2) If e is an equation of sort B, then E |≡ e iff EB |= e (the latter is FOL= entailment).

To show (1), first note that for any algebra A , A satisfies the two non-equational
formulae ¬(0 = 1) and b = 0∨b = 1 in EB if and only if the carrier AB of A has precisely
two elements and those correspond to the constant operations 0 and 1, if and only if
A {0,1} is a hidden model of streams. Also, note that in this case, if e is some equation
of sort different from S in E, then A |= e if and only if A {0,1} |≡ e; that is because
the behavioral equivalence relation is identity on all sorts different from S. All that is
left to prove now is that for any equation u = v of sort S in E, it is the case that A |=
{head(tailn(u)) = head(tailn(v)) | n ∈ N} if and only if A {0,1} |≡ u = v. Note that
[[head(tailn(u))]]α = [[head]]([[tail]]n([[u]]α)) for any mapping α : X →A and for any n∈N,
and similarly for v. Therefore, A |= {head(tailn(u)) = head(tailn(v)) | n ∈ N} if and
only if [[head]]([[tail]]n([[u]]α)) = [[head]]([[tail]]n([[v]]α)) for any n ∈ N, if and only if (by
Definition 3.6) A {0,1} |≡ u = v.

For (2), let e be an equation of sort B, and let us first assume that E |≡ e. To show that
EB |= e, let us pick some algebra A such that A |= EB. By (1), it follows that A {0,1}

is a hidden model and A {0,1} |≡ E, which implies that A {0,1} |≡ e. Since e has a sort
different from S, as explained in the proof of (1) it follows that A |= e. Therefore, EB |= e.
Conversely, let EB |= e and let A be any hidden model such that A |≡ E. By the definition
of hidden models, A is also a algebra; moreover, A {0,1} = A . By (1) it follows that
A |= EB, which implies A |= e. Since e has sort B, it follows that A |≡ e. Hence E |≡ e.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 29

Note that Definitions 3.6 and 3.8 imply that for any equation s = t of sort S, E |≡ s = t
if and only if E |≡ head(tailn(s)) = head(tailn(t)) for all n ∈ N. Then an immediate con-
sequence of (2) above is that E |≡ s = t if and only if EB |= head(tailn(s)) = head(tailn(t))
for all n ∈ N, where the latter entailment is that of FOL=.

We are now ready to show the membership in Π0
2. We use the observation above and

the fact that |= in FOL= admits complete deduction. Specifically, E |≡ s = t if and only
if for any n ∈ N there is some proof πn in FOL= of the entailment EB |= head(tailn(s)) =
head(tailn(t)). Rigorously speaking, we can encode all proofs in FOL= as natural numbers
m. Then we can more easily see that our stream equality problem is in Π0

2 because it is
a problem of the form P(x) := ∀n.∃m.R(x,n,m), where x ranges over pairs of equational
bitstream specifications and equations of streams (E, s = t), P is the predicate that E |≡ s =
t, n ranges over the number of tail operations followed by a head applied to the streams s
and t and m over FOL= proofs, and R is a procedure checking that m is a correct proof for
EB |= head(tailn(s)) = head(tailn(t)) for all n ∈ N. Since checking a given FOL= proof is
a decidable problem, the stream equality problem is in class Π0

2.
We next show the Π0

2-hardness by reduction from the totality problem (see Defini-
tion 2.12 and Proposition 2.13). Let us first give the totality problem a more convenient
formulation. We claim that there are some Turing machines U , which according to our
input encodings described in Section 2.1 take two natural numbers n and k as input, such
that the following problem:

INPUT: An integer k ≥ 0

QUESTION: Does U halt on all inputs 1n01k for all n ∈ N?

which we refer to as TOTALITY, is Π0
2-complete. It is obvious that TOTALITY is in Π0

2 for
any Turing machine U . To show that it is Π0

2-hard, we may choose U to be a universal
Turing machine such that on input 1 j01k, U halts if and only if Turing machine with Gödel
number k halts on input j, under some canonical assignment of Gödel numbers to Turing
machines. Therefore, the conventional totality problem (Definition 2.12) has a positive
solution for Turing machine M if and only if TOTALITY(k) has a positive solution for the
Gödel index k of M. It follows then by Proposition 2.13 that TOTALITY is Π0

2-complete. We
henceforth fix some choice of U that makes the TOTALITY problem above Π0

2-complete.
Also, since in this case the particular output value (0 or 1) with which U terminates is
irrelevant, we assume that it always terminates with output 1.

We next construct a hidden equational bitstream specification E corresponding to the
Turing machine U chosen above and an equation ek corresponding to any k ∈ N with
the property that TOTALITY(k) has a positive solution if and only if E |≡ ek. This will
guarantee the desired Π0

2-hardness result for behavioral satisfaction problem for hidden
models of streams.

Let Σ be the bitstream signature containing, in addition to 0,1,head, tail∈Σ, the symbols
zeros,ones :: S, ‘:’ of type B×S→ S, as well all the symbols q :: S×S→ B corresponding
to the states q of U like in Definition 4.4. Here we do not need to add the various zip

symbols discussed in Section 4. We now construct the bitstream specification E over Σ by

ZU064-05-FPR main 26 September 2019 14:45

30 Endrullis et al.

adding the equations corresponding to the transition function of U (see Definition 4.4)

q(x,b : y) = q′(b′ : x,y) for every δ (q,b) = 〈q′,b′,R〉,
q(a : x,b : y) = q′(x,a : b′ : y) for every δ (q,b) = 〈q′,b′,L〉,

and, additionally, for halting configurations:

q(x,b : y) = b whenever δ (q,b) is undefined.

Since we assumed that U always terminates with output 1, the b in the last equation
above is always 1. Since in hidden algebras for streams there is no predefined relationship
between the interpretations of head, tail and ‘:’, as well as no requirement stating that
‘:’ is a constructor for streams or even that operations on streams preserve the behavioral
equivalence generated by head/tail-observations, we need to add more equations to E.

We encode the fact that U’s tape is infinite with the following equations

q(x,zeros) = q(x,0 : zeros)

q(zeros,y) = q(0 : zeros,y)

for all states q of U . Note that adding the equation zeros = 0 : zeros instead of the above
does not work, because the operations q need not preserve the behavioral equality. Com-
putations in Turing machine U can now be mimicked with equational deduction with the
equations above the same way like described in Section 4 (replacing applications of the
equation zeros = 0 : zeros by applications of one of the equations q(x,zeros) = q(x,0 :
zeros) or q(zeros,y) = q(0 : zeros,y)).

We also need the stream ones to yield as many 1 bits as requested with head/tail-
observations, which can be easily achieved by adding the following:

head(ones) = 1

tail(ones) = ones

Note that we do not need equations of the form head(b : x) = b and tail(b : x) = x, because
we do not assume that streams in our hidden models are necessarily constructed with :.
Finally, to express the question in the TOTALITY problem, we add one more symbol to Σ,
istotal :: S→ S, and two more equations to E:

head(istotal(x)) = qs(zeros,x)

tail(istotal(x)) = istotal(1 : x)

where qs is the operation symbol corresponding to the starting state of the Turing machine
U . Note that the head and tail equations above do not interfere with the other equations
of E, so a result similar to Proposition 4.5 also holds in our context here, that is, U halts
on input w if and only if E |= q0(zeros,w1 : w2 : . . . : w|w| : zeros) = 1. Moreover, by the
property (2) proved at the beginning of the proof of this theorem, the above holds if and
only if EB |= q0(zeros,w1 : w2 : . . . : w|w| : zeros)= 1 (because all the equations in E relevant
for such derivations are also in EB).

Given k ∈ N, let ek be the stream equation

istotal(0 : (1 :)k : zeros) = ones

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 31

By the property (2) at the beginning of the proof of this theorem, E |≡ ek if and only if

EB |= head(tailn(istotal(0 : (1 :)k : zeros))) = head(tailn(ones))

for all n ∈ N, if and only if

EB |= q0((1 :)n : 0 : (1 :)k : zeros) = 1

which holds if and only if U halts on the input 1n01k. Therefore, TOTALITY(k) has a
positive solution if and only if E |≡ ek, which completes the proof.

6 Equality in Behavioral Models and Extensional Models

In this section we study two extensions of the hidden models semantics:

(A) We consider behavioral algebras that extend hidden algebras with the requirement
that behavioral equivalence≡ being a congruence. As we have shown in Section 3,
behavioral algebras are equivalent to extensional algebras.

(B) We consider full models which require that the domain of the algebras contains all
streams over {0,1}.

We consider these semantics with respect to the following problems:

(i) equality in all models,
(ii) the existence of at most one solution over all models,

(iii) the existence of at least one solution over all models,
(iv) the existence of precisely one solution over all models.

We show that the extension (A) lifts the complexity of deciding equality in all models to the
level Π1

1 of the analytical hierarchy, and extension (B) yields a complexity that subsumes
the entire analytical hierarchy.

6.1 Auxiliary Bitstream Specifications

We give some (systems of) equations that are used repeatedly throughout this section.

iszeros(zeros) = ones

iszeros(0 : x) = iszeros(x)

iszeros(1 : x) = zeros

 (18)

This function does what its name suggests; it checks whether the argument is the stream of
zeros. We use the stream of zeros for false, and the stream of ones for true.

Note that the equations are on terms, but when we speak of the functions they define,
we refer to the set of possible interpretations in models of specifications that contain these
equations. So for this example, in every model, the interpretation [[iszeros]] is forced to
satisfy [[iszeros]](0ω) = 1ω (interpretation of the first equation), and [[iszeros]](w) = 0ω for
every w ∈ AS \{0ω} (due to the second and third equation).

Streams of natural numbers are encoded as bitstreams, by a unary representation of
numbers separated by zeros, as follows:

nat2bit(nx) = 1n 0 nat2bit(x)

ZU064-05-FPR main 26 September 2019 14:45

32 Endrullis et al.

for all n ∈ N and streams x ∈ NN, e.g., the stream 3102 . . . is encoded as 1110100110
Next we define functions [[uhd]] and [[utl]] that are the unary counterpart for [[head]] and

[[tail]] on streams of natural numbers, as follows:

uhd(0 : x) = zeros

uhd(1 : x) = 1 : uhd(x)

utl(0 : x) = x

utl(1 : x) = utl(x)

 (19)

For instance, we have

uhd(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 1 : 1 : zeros ,

utl(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 0 : 0 : 1 : 1 : . . .

Lemma 6.1. In every extensional model A = 〈A, [[·]]〉 of a specification including the
equations from (18) and (19) we have:

(i) [[iszeros]](0ω) = 1ω ,
[[iszeros]](w) = 0ω for every w ∈ AS \{0ω},

(ii) [[uhd]](1n 0w) = 1n 0ω for every w ∈ AS ,
[[uhd]](1ω) = 1ω ,

(iii) [[utl]](1n 0w) = w for every w ∈ AS .

Remark 6.2. The restriction to extensional models is crucial in Lemma 6.1. For hidden
models in general, it seems impossible to devise equations for iszeros that guarantee that in
the model

(i) [[iszeros]](σ)≡ [[ones]] whenever σ ≡ [[zeros]], and
(ii) [[iszeros]](σ)≡ [[zeros]] whenever σ 6≡ [[zeros]].

For example, note that the Equations (18) do not ensure this property in hidden models. The
equation iszeros(zeros) = ones only guarantees that [[iszeros]]([[zeros]])≡ [[ones]], but it does
not ensure that [[iszeros]](σ)≡ [[ones]] for elements σ ∈ AS that are behaviorally equivalent
with but not identical to [[zeros]], σ ≡ [[zeros]] and σ 6= [[zeros]].

However, we emphasize that iszeros is not the reason that the main results of this section
do not generalize to hidden models. In particular, iszeros is not essential for the proof of
Theorem 6.6; the result can be obtained without iszeros as in the proof of Theorem 6.9. We
crucially employ iszeros only for results on the uniqueness of solutions.

The crucial point why the results do not generalize to hidden models is the definition
of natstr (below). In hidden models, there seems to be no possibility (for similar reasons
as above) to enforce that the interpretation [[X]] of a stream constant X contains always
eventually a 0, and thus can be interpreted as a stream of natural numbers.

Taking a closer look at Lemma 6.1, we note that all interpretations are uniquely defined,
apart from [[utl]](1ω) which can be any stream depending on the model. One way to avoid
this problem is to ensure that a certain bitstream is a valid encoding of a stream of natural

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 33

numbers, where we call a bitstream a valid encoding when it contains infinitely many zeros:

natstr(ones) = zeros

natstr(0 : x) = 1 : natstr(x)

natstr(1 : x) = natstr(x)

 (20)

Then an equation natstr(X) = ones guarantees that in every model, the interpretation [[X]]

contains an infinite number of zeros, and thus represents a stream of natural numbers:

Lemma 6.3. In every extensional model A = 〈A, [[·]]〉 of a specification including the
equations from (20) we have: [[natstr]](w) = 1z where z ∈ N∪{ω} is the number of zeros
in w.

Proof. The second and third equation ‘walk’ over the stream, deleting 1’s and converting
0’s to 1’s. If the stream contains infinitely many 0’s, then an infinite stream of 1’s will
be produced. However, if some tail of the stream contains only 1’s then the top equation
ensures that the interpretation is unequal to 1ω .

Definition 6.4. Let T = 〈Q,q0,δ 〉 be a Turing machine, and fix m ∈ N. The canonical
model A = 〈A, [[·]]〉 for the union of the specifications ET , Zm (Definition 4.2), and (18),
(19) and (20) introduced above, is defined to consist of the domain AS = {0,1}ω with
interpretations [[·]] as given in Lemmas 4.3, 6.1, and 6.3, extended by

(i) [[utl]](1ω) = 1ω ,
(ii) [[q]](~x,~y) = 1 whenever q(~pxq, ~pyq)→∗ 1, and [[q]](~x,~y) = 0 otherwise,

for all streams x1, . . . ,xm and y1, . . . ,yk, where for a stream x we denote by pxq the
infinite term such that [[pxq]] = x.

In item (ii) of the above definition the intention is that the arguments~x represent oracles
(sets of integers), and that the arguments~y represent input integers. The reason for doing it
like this is that the rewrite relation→ is defined on terms, while at the same time [[q]] has
to be defined on all streams.

Lemma 6.5. The canonical model is a model of the union of the equational specifications
ET , Zm, (18), (19) and (20).

Proof. The rewrite system RT is orthogonal, consequently we have infinitary unique nor-
mal forms, see (Terese, 2003). Hence, we can employ a normal forms semantics for [[q]]
(where we map terms without normal forms to 0); this justifies Definition 6.4 (ii). For the
remaining equations for zeros, ones, zipn, iszeros, uhd, utl and natstr it is straightforward to
check that the interpretation forms a model of the equations, that is, that the interpretation
of the left-hand sides coincides with the interpretation of the right-hand sides for every
valuation of the variables.

6.2 Equality in All Extensional Models

In this section, we consider the complexity of deciding the following problems for specifi-
cations of bitstreams:

(i) equality in all extensional models,

ZU064-05-FPR main 26 September 2019 14:45

34 Endrullis et al.

(ii) the existence of at most one solution over all extensional models,
(iii) the existence of at least one solution over all extensional models,
(iv) the existence of precisely one solution over all extensional models.

Deciding equality in all models (i) turns out to be Π1
1-complete. Let us sketch the ideas

for both membership and hardness.

– The membership in the class Π1
1 follows from the Downward Löwenheim–Skolem

theorem. The idea is that if there exists a model that fulfills the specification, but
invalidates the goal equality, then there exists a countable model that does so. This
countable model can basically be constructed by taking the values of the variables
that invalidate the goal equation, and then close this set under all function interpre-
tations in the model (thus in particular the interpretations of stream constants). The
quantification over countable models can be done by using a Π1

1-formula.

– To show Π1
1-hardness we reduce the well-foundedness problem (Proposition 2.15)

to an equality problem. The idea is to employ an underspecified stream constant X to
‘guess’ a non-well-founded path. Here the term ‘guessing’ refers to the fact that the
interpretation of X is determined by the model. Then the question of the existence
of a non-well-founded path translates to the question whether there exists a model
that invalidates the goal equation. The only requirement on X is natstr(X) = ones

to ensure that [[X]] contains an infinite number of zeros, and thus encodes a stream
of natural numbers n1,n2,n3 . . . in the form 1n1 01n2 01n3 0 Then by recursion
on X we can define a stream term run = T (n1,n2) : T (n2,n3) : T (n3,n4) : . . . where
T (n,m) is 0 if and only if the pair 〈n,m〉 is in the relation computed by T . Then
the stream iszeros(run) is the stream 1ω if the path X is not well-founded, and 0ω

otherwise. Thus iszeros(run) is equal to the stream 0ω in all models if and only if
every path is well-founded.

As an immediate consequence we obtain that the problem (ii) of deciding whether there is
at most one solution is a Π1

1-complete problem as well. The term iszeros(run) has the single
solution 0ω if and only if every path X is well-founded. If there is a non-well-founded
path X, then the term iszeros(run) allows for the solution 1ω as well.

For Σ1
1-completeness of problem (iii), the existence of at least one solution, we extend

the equational system with iszeros(run) = ones. Then this system has a model if and only
if there exists a non-well-founded path. This is the complement of the well-foundedness
problem, and the complement of the class Π1

1 is Σ1
1.

For problem (iv), having precisely one solution, note that the specifications for problems
(ii) and (iii) have precisely one solution if they have at most one solution, and at least one
solution, respectively. Hence, the problem (iv) is both Π1

1-hard and Σ1
1-hard. On the other

hand, having precisely one solution is the conjunction of having at least one, and at most
one solution. Thus the problem can be described by the conjunction of a Π1

1-formula and
a Σ1

1-formula, and hence it is strictly contained in the class ∆1
2. Beyond these observations,

the precise complexity of problem (iv) remains open.
For the complexity of equality in all extensional models we obtain:

Theorem 6.6. The following problem is Π1
1-complete:

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 35

INPUT: Bitstream specification E, terms s, t :: S.

QUESTION: Are s and t equal in all extensional models of E?

Proof. We reduce the well-foundedness problem (see Proposition 2.15) to an equality
problem. Let M ⊆N×N be a decidable predicate, and T = 〈Q,q0,δ 〉 be the corresponding
Turing machine. We define the following specification E:

S = iszeros(run(1,X))

natstr(X) = ones

run(0,x) = ones

run(1,x) = 0 : run(T (zeros;uhd(x),uhd(utl(x)))︸ ︷︷ ︸
Φ(x)

,utl(x))

together with the equations from ET and Definition 4.2, (18), (19) and (20). We prove that:
E |≡ext S = zeros if and only if M is well-founded.

For the direction ‘⇒’ let M be non-well-founded, and let n0 M n1 M n2 M · · · be an
infinite chain. We construct an algebra A = 〈A, [[·]]〉 such that A |≡ E but not A |≡ S =

zeros. We define A as an extension of the canonical model (Definition 6.4). The values of
[[Φ(x)]] and [[utl(x)]] are determined by the canonical model, and together with the above
equations for the symbol run we obtain, for every stream ξ ∈ {0,1}ω , that [[run]](0,ξ) =
1ω , and [[run]](1,ξ) = 0 : [[run]]([[Φ(ξ)]], [[utl]](ξ)). Hence, there is a unique interpretation
[[run]] that results in a model for the equations of run. We define κi = 1ni 01ni+1 01ni+2
and we let n = 1n 0ω . Then for i ∈ N we have

[[run]](1,κi) = 0 : [[run]]([[Φ]](κi),κi+1)

= 0 : [[run]]([[T]](ni,ni+1),κi+1)

= 0 : [[run]](1,κi+1)

since we have that [[uhd]](κ j) = n j and [[utl]](κ j) = κ j+1 for all j ∈ N by Lemma 6.1.
Thus, [[run]](1,κ0) = 0ω . Let [[X]] = κ0 and [[S]] = 1ω . Then [[natstr]]([[X]]) = [[ones]] by
Lemma 6.3, and [[S]] = [[iszeros]]([[run]](1, [[X]])) by Lemma 6.1. We have constructed a
model, where [[S]] = 1ω , and, hence, E 6|≡ext S = zeros.

For the direction ‘⇐’ let M be well-founded. Let A be an algebra such that A |≡
E. We show that [[S]] = 0ω . Since [[natstr]]([[X]]) = [[ones]], [[X]] contains infinitely many
zeros by Lemma 6.3. Thus, [[X]] = 1n0 01n1 01n2 . . . for some n0, n1,n2, . . . ∈ N. Let κi =

1ni 01ni+1 01ni+2 . . . for i ∈ N. Then

[[run]](1,κi) = 0 : [[run]]([[T]](ni,ni+1),κi+1)

=

{
[[run]](1,κi+1) if [[T]](ni,ni+1) = 1 ,

[[run]](0,κi+1) = 1ω if [[T]](ni,ni+1) = 0 .

Hence, [[run]](1, [[X]]) = 0ω if and only if [[T]](ni,ni+1) = 1 for all i ∈ N. But this would
contradict well-foundedness of M. As a consequence, we obtain that [[run]](1, [[X]]) 6= 0ω

and [[S]] = iszeros([[run]](1, [[X]])) = 0ω by Lemma 6.1. This concludes the Π1
1-hardness

proof.

ZU064-05-FPR main 26 September 2019 14:45

36 Endrullis et al.

For the Π1
1-membership we show that in “∀A .A |≡ E ⇒A |≡ s = t” we only need to

quantify over countable models, which corresponds to a single ∀A ⊆ N set quantifier. For
this purpose it suffices to prove that if there exists an uncountable extensional model A

such that (∗) A |≡ E but A 6|≡ s = t, then there exists a countable model A ′ with the same
property. Let A = 〈A, [[·]]〉 be an uncountable model with the property (∗). Let α be an
interpretation of the variables such that [[s,α]] 6= [[t,α]]. Let V be the finite set of variables
occurring in s and t. Let A′ be the smallest set that contains {0,1} and {[[v]] | v ∈ V } and is
closed under [[f]] for all f ∈ Σ. Then obviously A′ is countable, and we define A ′ to be the
restriction of A to the domain A′. By construction we have A ′ |≡ E and A ′ 6|≡ s = t.

Due to the equivalence of extensional and behavioral models we obtain:

Theorem 6.7. The following problem is Π1
1-complete:

INPUT: Bitstream specification E, terms s, t :: S.

QUESTION: Are s and t equal in all behavioral models of E?

Proof. Follows directly from Theorem 6.6 and Proposition 3.15.

The following three results are obtained by slight adaptations of the proof of Theo-
rem 6.6. In the proof of Theorem 6.6, we have E |≡ext S= zeros if and only if S has a unique
solution over all extensional models of E. As a consequence, we obtain the following
results concerning (unique) solvability:

Theorem 6.8. The following problem is Π1
1-complete:

INPUT: Bitstream specification E, term s.

QUESTION: Does s have at most one solution over all extensional models of E?

Proof. The Π1
1-hardness follows from the proof of Theorem 6.6, as S has ≤ 1 solutions if

and only if M is well-founded.
The proof of membership in Π1

1 uses that it suffices to consider countable models as in
the proof of Theorem 6.6. Then the formula characterizes the property having at most one
solution: ∀A1.∀A2.(A1 |≡ E)∧(A2 |≡ E)⇒ [[s]]A1 = [[s]]A2 . The two ∀ set quantifiers can
be merged into one, and the properties A |≡ E, and [[s]]A1 = [[s]]A2 are arithmetic. Hence,
the property is in Π1

1.

Theorem 6.9. The following problem is Σ1
1-complete:

INPUT: A bitstream specification E, a term s.

QUESTION: Does s have at least one solution over all extensional models of E?

Proof. The Σ1
1-hardness follows from a tiny adaptation of the proof of Theorem 6.6. We

replace the equation S = iszeros(run(1,X)) by the equations S = run(1,X) and S = zeros.
Then every model where [[run(1,X)]] 6= 0ω is ruled out, and hence, the specification has a
model, and S a solution, if and only if M is not well-founded.

The membership in Σ1
1 can be described by the following formula (we again use that

we only need to quantify over countable algebras): ∃A .A |≡ E. Hence, the property is in
Σ1

1.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 37

Theorem 6.10. The following problem is Π1
1-hard, Σ1

1-hard and strictly contained in ∆1
2:

INPUT: A bitstream specification E, a term s.

QUESTION: Does s have exactly one solution over all extensional models of E?

Proof. The Π1
1-hardness follows from the fact that the specification used in the proof of

Theorem 6.8 always has a solution; then unique solvability coincides with at most one
solution.

The Σ1
1-hardness is a consequence of the fact that the specification used in the proof of

Theorem 6.9 always has at most one solution (due to the equation S = zeros); then unique
solvability coincides with at least one solution.

For the ∆1
2-membership we observe that a term s has a unique solution if and only if s

has at least and s has at most one solution. Therefore unique solvability can be described
by the conjunction of a Π1

1- and a Σ1
1-formula.

6.3 Equality in Full Extensional Models

In Section 6.2 we have considered models whose domain was allowed to be any non-empty
set of bitstreams (AS ⊆ {0,1}ω). However, when writing equations such as

even(a : b : x) = a : even(x) ,

the intended semantics is often that these equations should hold for all streams, that is, in
full models with domain AS = {0,1}ω . We find that the restriction to full models results in
a huge jump of the complexity, which then subsumes the entire analytical hierarchy.

In this section, we consider the complexity of deciding the following problems for
specifications of bitstreams:

(i) equality in all full extensional models,
(ii) the existence of at most one solution over all full extensional models,

(iii) the existence of at least one solution over all full extensional models,
(iv) the existence of precisely one solution over all full extensional models.

It turns out that the complexity of each of these problems subsumes the arithmetical and
analytical hierarchies. This means that their precise complexity resides above the analytical
hierarchy, that is, in a hierarchy of third-order arithmetic or higher. We leave the determi-
nation of their precise complexity to future work.

Definition 6.11. A problem P is said to subsume the arithmetical and analytical hierarchy
if every problem that is a member of these hierarchies can be reduced to P.

The idea of the proof is as follows. Every formula of the analytical hierarchy can be
written in the form

∀ξ1.∃ξ2.∀ξ3. . . .∃ξ2n. ∀x1.∃x2. M(ξ1,ξ2, . . . ,ξ2n,a,x1,x2)

where n ∈ N and M is a decidable predicate. First we replace the existential set quantifiers
∃ξ2,∃ξ4, . . . ,∃ξ2n by existential quantification over Skolem functions mapping sets to sets:

ZU064-05-FPR main 26 September 2019 14:45

38 Endrullis et al.

g2,g4, . . . ,g2n :℘(N)→℘(N). We obtain a formula of the form

∃g2.∃g4. . . .∃g2n.

∀ξ1.∀ξ3. . . .∀ξ2n−1. ∀x1.∃x2. M(ξ1,g2(ξ1),ξ3, . . . ,g2n(ξ1,ξ3, . . . ,ξ2n−1),a,x1,x2)

When translating this formula into an equality problem, we use stream functions to model
g2,g4, . . . ,gn. We leave these functions unspecified so that the model of the specifica-
tion can freely determine their interpretations [[g2]], . . . , [[g2n]]. Then the question of the
existence of a model (invalidating the equality) translates into the existence of functions
g2,g4, . . . ,g2n satisfying the remainder of the formula.

Now the universal quantifiers ∀ξ1, . . . ,∀ξ2n−1 can be translated into an equation

S(ξ1, . . . ,ξ2n−1) = . . .

where ξ1, . . . ,ξ2n−1 are stream variables. By definition of models, the equations have to be
valid for every interpretation of the variables by the streams in the domain of the model.
At this point it is essential that the models are full, and thus the equations have to hold for
all assignments of the variables.

To prepare for the proof, we introduce some auxiliary specifications. We define nat such
that an equation nat(X) = ones guarantees that the interpretation [[X]] represents a natural
number in unary encoding, that is, [[X]] = 1n 0ω for some n ∈ N, as follows:

nat(0 : 1 : x) = zeros (21a)

nat(1 : x) = nat(x) (21b)

nat(0 : 0 : x) = nat(0 : x) (21c)

nat(ones) = zeros (21d)

 (21)

Note that [[nat]](X) = 1ω implies that [[X]] encodes a natural number. The reverse impli-
cation does not hold. In particular, the above equations (21) allow for the interpretation
[[nat]](w) = 0ω for every w∈ AS. For our purposes it is sufficient that an equation nat(X) =

ones in the specification guarantees [[nat]](X) = 1ω , and so [[X]] encodes a natural number.

Lemma 6.12. In every extensional model A = 〈A, [[·]]〉 of a specification including the
equations from (21) the following implication holds: if [[nat]](w) = 1ω , then w = 1n 0ω for
some n ∈ N.

Proof. If a stream is not of the form 1n 0ω for some n∈N then it is 1ω or contains . . .01
The equation (21d) rules out the case 1ω (ensures that the interpretation is not 1ω).

The equations (21a), (21b) and (21c) are exhaustive in the sense that every stream can
be matched by one of them. The equation (21a) rules out streams that contain a 1 after a
0, and the equations (21b) and (21c) ‘walk’ step by step over the stream (proceed with the
tail).

We moreover define a function leq such that leq(x,y) = ones guarantees that the inequal-
ity [[x]]≤ [[y]] holds pointwise:

leq(0 : x,a : y) = leq(x,y)

leq(1 : x,1 : y) = leq(x,y)

leq(1 : x,0 : y) = zeros

 (22)

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 39

We note that the interpretation [[leq]](u,v) = 0ω for every u,v ∈ AS gives rise to a model
of this specification. For our purposes, it suffices that an equation leq(X,Y) = ones in a
specification implies [[leq]]([[X]], [[Y]]) = 1ω and hence [[X]]≤ [[Y]] in the model.

Lemma 6.13. In every extensional model A = 〈A, [[·]]〉 of a specification including the
equations from (22) we have that if [[leq]](x,y) = 1ω , then x is pointwise ≤ than y , for all
x,y ∈ AS.

Lemmas 6.12 and 6.13 are valid for non-full models as well. As explained before, the
assumption of full models is crucial to guarantee that equations with variables have to hold
for all streams (assigned to the variables) and not only the streams in the model.

Theorem 6.14. The following problem subsumes the analytical hierarchy:

INPUT: Bitstream specification E, terms s, t :: S.

QUESTION: Are s and t equal in all full extensional models of E?

Proof. For every analytical set A, we reduce the membership problem in A to an equality
problem. Every set A of the analytical hierarchy can be defined by

a 6∈ A ⇐⇒ ∀ξ1.∃ξ2.∀ξ3. . . .∃ξn. ∀x1.∃x2. M(ξ1, . . . ,ξn,a,x1,x2) (23)

where n ∈ N is even (without loss of generality since Π1
n ⊂ Π1

n+1) and M a decidable
predicate. Let T = 〈Q,q0,δ 〉 be the Turing machine corresponding to M. Let a ∈ N be
given. We define E to be the following system of equations:

S(τ1,τ3, . . . ,τn−1) = run(1, zipn(τ1,g2(τ1),τ3,g4(τ1,τ3),

. . . ,τn−1,gn(τ1,τ3, . . . ,τn−1)), zeros)

S(τ1,τ3, . . . ,τn−1) = zeros

run(0,τ,γ1) = ones

run(1,τ,γ1) = 0 : run(T (τ;A,γ1,h2(τ,γ1)), τ, 1 : γ1)

A = (1 :)a zeros

nat(h2(τ,γ1)) = ones

together with the equations from ET , Definition 4.2, and (21). The symbols g2i are typed
Si → S. We claim: E |≡full zeros = ones if and only if a ∈ A. For this purpose it suffices
to show that the specification has a model (∃A .A |≡ E) if and only if the formula in the
right-hand side of (23) is valid.

The specification models a Skolem normal form of the analytical formula in (23), namely

∃g2 :℘(N)→℘(N), g4 :℘(N)2→℘(N), . . . , gn :℘(N)
n
2 →℘(N).

∃h2 :℘(N)
n
2 ×N→ N.

∀ξ1.∀ξ3. . . .∀ξn−1. ∀x1.

M(ξ1,g2(ξ1),ξ3,g4(ξ1,ξ3), . . . ,g4(ξ1,ξ3, . . . ,ξn−1), a, x1,h2(ξ1, . . . ,ξn−1,x1))

The ∃ set quantifiers are modeled by Skolem functions g2,g4, . . . ,gn which in the specifi-
cation are stream functions that get the value of the preceding ∀ quantifiers as arguments,
and the number quantifier ∃x2 is modeled by the Skolem function h2.

ZU064-05-FPR main 26 September 2019 14:45

40 Endrullis et al.

In the equational specification, the ∀ set quantifiers are modeled by an equation with
stream variables; recall that equations have to hold for all assignments of the variables.
In particular, the variables τ1,τ3, . . . ,τn−1 in the first equation S(τ1,τ3, . . . ,τn−1) = . . .

model the set quantifiers ∀ξ1, . . . ,∀ξn−1, respectively. The specification contains stream
functions g2i which are unspecified and therefore can be ‘freely chosen’ by the model A .
Thus, the existential quantification over the Skolem functions corresponds to the existential
quantification over all models in ∃A .A |≡ E.

The streams τ1,g2(τi), . . . ,τn−1,gn(τ1,τ3, . . . ,τn−1) that represent the values of the set
quantifiers are then interleaved by zipn, and passed as the second argument, named τ , to
run; this argument serves as the left side of the tape for every invocation of the Turing
machine T .

The ∀x1 number quantifier is modeled by the third argument γ1 of run. The initial value
of γ1 is zeros, and ‘1 : 2’ is prepended (corresponding to counting up) each time the Turing
machine halts with output 1. The number quantifier ∃x2 is modeled by the Skolem function
h2 for which the equation nat(h2(τ,γ1)) = ones ensures by Lemma 6.1 that the interpreta-
tion [[h2(τ,γ1)]] is a unary encoding of a natural number. Then the term T (τ;A,γ1,h2(τ,γ1))

with τ = zipn(τ1,g2(τ1),τ3,g4(τ1,τ3), . . . ,τn−1,gn(τ1,τ3, . . . ,τn−1)) corresponds precisely
to M(ξ1, . . . ,ξn,a,x1,x2) in (23).

For ‘⇐’, assume that the formula in (23) is valid. We construct a model A = 〈A, [[·]]〉 as
an extension of the canonical model (Definition 6.4). For [[g2]], [[g4]], . . . , [[gn]], [[h2]] we pick
the Skolem functions for the quantifiers ∃ξ2,∃ξ4, . . . ,∃ξn,∃x2, respectively (where [[h2]] is a
stream function that works on the unary encoding of natural numbers). For σ ∈ {0,1}ω , we
define [[nat]](σ) = 1ω if σ is of the form 1n 0ω , and 0ω , otherwise. The definition of [[run]]

is analogous to the proof of Theorem 6.6. Finally, we define [[S]](τ1,τ2, . . . ,τn−1) = 0ω for
all τ1,τ2, . . . ,τn−1 ∈ {0,1}ω , and [[A]] = 1a 0ω . Then it is straightforward to verify that A

is a model of the specification.
For ‘⇒’, let A = 〈A, [[·]]〉 be a model of the specification. Then we let the existen-

tial quantifiers ∃ξ2,∃ξ4, . . . ,∃ξn and ∃x2 in (23) behave according to the interpretations
[[g2]], [[g4]], . . . , [[gn]], [[h2]], respectively (here the translation from sets ξ ⊆N to streams ξ is
as usual). Assume that there exists an assignment of the ∀ quantifiers ∀ξ1,∀ξ2, . . . ,∀ξn−1

and ∀x2 for which the formula in (23) is not valid, that is, M(ξ1, . . . ,ξn,a,x1,x2) does
not hold where the existential choices are governed by the model as described above. We
translate this ‘counterexample’ back to the model by considering [[S]](ξ1,ξ3 . . . ,ξn−1). As
in the proof of Theorem 6.6, it is then straightforward to show that [[S]](ξ1,ξ3 . . . ,ξn−1) 6=
0ω . However, this contradicts the assumption of A being a model due to the equation
S(τ1,τ3, . . . ,τn−1) = zeros.

For the proof of the following theorem, we slightly adapt the specification in the proof
of Theorem 6.14 such that it always has a solution, and has more than one solution if and
only if the analytical formula in (23) holds.

Theorem 6.15. The following problem subsumes the analytical hierarchy:

INPUT: Bitstream specification E, term s.

QUESTION: Does s have at most one solution over all full extensional models of E?

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 41

Proof. We take the specification from the proof of Theorem 6.14, but replace the two
equations S(. . .) = . . . by the following equation:

ones = leq(S, iszeros(run(1, Z, zeros)))

where Z abbreviates the term

zipn(τ1,g2(τ1),τ3,g4(τ1,τ3), . . . ,τn−1,gn(τ1,τ3, . . . ,τn−1))

In this way an interpretation [[S]] = 0ω always yields a solution. In addition, by Lemma 6.13
we have that [[S]] 6= 0ω only if [[iszeros(run(1, Z, zeros))]] 6= 0ω for every assignment of the
variables τ1,τ2, . . . ,τn−1. But then [[iszeros(run(1, Z, zeros))]] = 1ω by Lemma 6.1, and as
a consequence [[run(1, Z, zeros)]] = 0ω . Then it follows as in the proof of Theorem 6.14,
[[run(1, Z, zeros)]] = 0ω for all τ1,τ2, . . . ,τn−1 if and only if the formula in (23) holds.

The proof of Theorem 6.14 immediately yields the following:

Theorem 6.16. The following problem subsumes the analytical hierarchy:

INPUT: Bitstream specification E, term s.

QUESTION: Does s have at least one solution over all full extensional models of E?

Proof. It suffices to observe that in the proof of Theorem 6.14, the term zeros has a solution
over all models of E if and only if E has a model.

Theorem 6.17. The following problem subsumes the analytical hierarchy:

INPUT: Bitstream specification E, term s.

QUESTION: Does s have precisely one solution over all full extensional models of E?

Proof. Again, it suffices to observe that in the proof of Theorem 6.14, the term zeros has
precisely one solution if and only if E has a model.

6.4 Comparing Sets of Solutions

In this section, we study the complexity of deciding whether terms have the same set of
solutions over all (full) extensional models. It is easy to see that the hardness of these
problems is at least that of deciding equality in all (full) extensional models. When con-
sidering all extensional models, the problem turns out Π1

2-complete, and, thus, higher than
the degree Π1

1 of equality in all extensional models.

Remark 6.18. Let us briefly discuss the applicability of equality in all extensional models
for the comparison of terms s, t that are specified in independent specifications Es and
Et . First, we rename the symbols of one of the specifications such that Σs ∩Σt = {0,1, :}.
Thereafter, we consider the validity of s = t in the union Es∪Et .

We show on two examples that this approach does not always yield the intended results.
Let EM consist of the single equation M = 1 : M, and EN of

N = flip(N) flip(0 : σ) = 1 : flip(σ) flip(1 : σ) = 0 : flip(σ)

Then M has the stream of ones as its unique solution, but N has no solution. Since EN does
not have model, the union EM ∪EN also does not admit one. Thus, EM ∪EN |≡ext M = N

ZU064-05-FPR main 26 September 2019 14:45

42 Endrullis et al.

holds for trivial reasons. Nevertheless, we would not like to consider M and N as equivalent
(at least if they are given by independent specifications).

Even if the specifications have unique solutions, a similar effect can occur. Let M= zeros

and let EM consist of the following equations:

iszeros(nxor(σ)) = zeros

nxor(0 : 0 : σ) = 1 : nxor(σ) nxor(0 : 1 : σ) = 0 : nxor(σ)

nxor(1 : 0 : σ) = 0 : nxor(σ) nxor(1 : 1 : σ) = 1 : nxor(σ)

together with the equations (18) for iszeros on page 31. Further let N = blink and let EN

consist of the equation blink = 0 : 1 : blink. Both specifications have models, and zeros

and blink have unique solutions. For example, EM admits a model whose domain consists
of all eventually constant streams. However, EM rules out models for which there exist
elements x ∈ AS with [[nxor]](x) = 0ω . In particular, the stream 0101 . . . is excluded from
the domain AS. Hence the union EM∪EN has no models, and EM∪EN |≡ext zeros = blink

holds trivially.

For the equality of sets of solutions over full extensional models we obtain the following
theorem as an immediate consequence of the proof of Theorem 6.14:

Theorem 6.19. The following problem subsumes the analytical hierarchy:

INPUT: Bitstream specifications Es, Et , ground terms s, t ::S.

QUESTION: Do s and t have equal solutions over all full extensional models, that is,
[[s]]Es, full = [[t]]Et, full ?

Proof. Let Es be the specification in the proof of Theorem 6.14, and s = zeros. Then
[[s]]Es, full = {0ω} if Es has a model, and ∅ otherwise. Let Et = {zeros′ = 0 : zeros′} and
t ′= zeros′, then we have [[t]]Et, full = {0ω}. Thus, [[s]]Es, full = [[t]]Et, full is equivalent to E |≡ext

zeros = ones in the proof of Theorem 6.14.

We continue with the investigation of the complexity of deciding whether two terms have
the same set of solutions over all extensional models. The proof of Theorem 6.6 yields
only Π1

1-hardness. In order to show Π1
2-hardness, we employ Proposition 2.17, a result

of (Castro & Cucker, 1989), stating that it is a Π1
2-complete problem to decide whether the

ω-language of a non-deterministic Turing machine contains all words {0,1}ω .
Therefore, we consider non-deterministic Turing machines with one-sided tapes. With-

out loss of generality, we may restrict the non-determinism δ : Q×Γ→℘(Q×Γ×{L,R})
to binary choices in each step, that is, |δ (q,b)| ≤ 2 for every q∈Q and b∈ {0,1}. (Broader
choices then are simulated by sequences of binary choices.) Moreover, for our purposes,
it suffices to consider Turing machines that never halt. For the ω-language, halting always
corresponds to rejecting a run, and this rejection can be simulated by alternating moving
forth and back eternally.

That is, a non-deterministic Turing machine T = 〈Q,q0,δ0,δ1〉 has two transition func-
tions δ0,δ1 : Q×Γ→ Q×Γ×{L,R} and we allow a non-deterministic choice between
these functions in each step. Note that, for modeling non-determinism in an equational
specifications, we cannot take the union of the specifications E〈Q,q0,δ0〉 and E〈Q,q0,δ1〉, since
multiple equations having the same left-hand side do not model choice, but additional

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 43

restrictions on the models of the specification. To this end, we introduce a third argument
for the binary function symbols q ∈ Q in Definition 4.4. This argument then governs
the non-deterministic choice. In order to model one-sided tapes, we introduce a fourth
argument that stores the position on the tape, and is increased, when moving right, and
decreased, when moving left. That is, we adapt Definition 4.4 to:

q(x,b : y, i : z, p) = q′(b′ : x,y,z,1 : p)

q(a : x,b : y, i : z,1 : p) = q′(x,a : b′ : y,z, p)

for δi(q,b) = 〈q′,b′,R〉 and δi(q,b) = 〈q′,b′,L〉, respectively. We use En
T to denote this

specification, and Rn
T for the corresponding term rewriting system. In the initial config-

uration, the third argument should be an underspecified stream, allowing for any non-
deterministic choice. We pass zeros as fourth argument, thereby ensuring that the head
cannot move to negative tape indices.

A run of T on a stream w ∈ {0,1}ω is a Rn
T rewrite sequence starting from a term

q0(zeros,w,N,zeros) where N ∈ {0,1}ω determines the non-deterministic choices; here w
is the term w(0) : w(1) : . . . A run of T is complete if every tape position p ≥ 0 is visited
(that is, positions right of the starting position), and it is oscillating if some tape position
is visited infinitely often. A run is accepting if it is complete and not oscillating, that it, it
visits every position p ≥ 0 at least once, but only finitely often. The ω-language L ω(T)
of T is the set of all ω-words w ∈ {0,1}ω such that T has an accepting run w. We recall
Proposition 2.17 (Castro & Cucker, 1989): the set {T |L ω(T) = {0,1}ω} is Π1

2-complete.
We are now ready for the proof of Π1

2-completeness of equality of the set of solutions
over all extensional models. In the proof, we introduce a fifth argument for the symbol
q ∈ Q in En

T which enforces progress and rules out exactly the oscillating runs.

Theorem 6.20. The following problem is Π1
2-complete:

INPUT: Bitstream specifications Es, Et , ground terms s, t ::S.

QUESTION: Do s and t have equal solutions over all extensional models, that is,
[[s]]Es,ext = [[t]]Et ,ext ?

Proof. Let T = 〈Q,q0,δ0,δ1〉 be a non-deterministic Turing machine. We reduce the prob-
lem in Proposition 2.17 to a decision problem for the equality of the set of solutions over
all full models. We let s = X and define the specification Es to consist of:

q0(zeros,X,N,zeros,P) = zeros (24)

natstr(P) = ones (25)

q(x,b : y, i : z, p,1 : v) = q′(b′ : x,y,z,1 : p,v) (26)

for δi(q,b) = 〈q′,b′,R〉
q(a : x,b : y, i : z,1 : p,1 : v) = q′(x,a : b′ : y,z, p,v) (27)

for δi(q,b) = 〈q′,b′,L〉
q(x,y,z,1 : p,0 : v) = 0 : q(x,y,z, p,v) (28)

q(x,y,z,0 : p,0 : v) = ones (29)

q(a : x,b : y, i : z,0 : p,1 : v) = ones (30)

ZU064-05-FPR main 26 September 2019 14:45

44 Endrullis et al.

for δi(q,b) = 〈q′,b′,L〉

Equation (24) starts T on the stream X with non-deterministic choices governed by N

and P for enforcing progress. The streams X and N are unspecified, thus arbitrary. The
equation (25) ensures that [[P]] contains infinitely many zeros. The equations (26) and (27)
model the computation of T as discussed before, but now in each step removing the context
1 : 2 from the fifth argument. If the fifth argument starts with a 0, then (28) decrements
the position counter (the fourth argument). Recall that the position counter determines
how many steps the Turing machine T is permitted to move left. Thus, always eventually
decrementing the counter rules out the oscillating runs. The equations (29) and (30) rule
out models where the head move left of the envisaged progress [[P]].

It is important to note that for any non-oscillating run σ , we can define a function p :
N→ N such that after p(n) steps, T visits only tape indices ≥ n. Then an assignment
[[P]] = 1p(0) 01p(1) 01p(2) 0 . . . in the model will permit this run to happen, that is, the head
will never fall behind the envisaged progress and Equations (29) and (30) do not apply.

As a consequence, we have [[s]]Es,ext = {0,1}ω if and only if for every [[X]] ∈ {0,1}ω

there exists a non-oscillating run (that is, an appropriate choice [[N]]) of T on [[X]]. Now
we define t = Y and Et = {Y = Y} for which obviously [[t]]Et ,ext = {0,1}ω . Therefore,
[[s]]Es,ext = [[t]]Et ,ext if and only if L ω(T) = {0,1}ω . This concludes the proof of Π1

2-
hardness.

For Π0
2-membership, the problem can be characterized by the following analytical for-

mula: ∀〈As,At〉.∃〈A ′
s ,A

′
t 〉. (As |≡ Es⇒A ′

t |≡ Et ∧ [[s]]As = [[t]]A
′

t)∧ (At |≡ Et ⇒A ′
s |≡

Es ∧ [[t]]At = [[s]]A
′

s). As in the proof of Theorem 6.6, here, it suffices to quantify over
countable models.

7 Hidden Models for Streams of Natural Numbers

We briefly study hidden models for streams of natural numbers. A N-stream specification
is now defined like a bitstream specification, except that the sorts are S = {N,S}, and the
symbols are 0 :: N, s :: N→ N and ‘:’ of type N×S→ S. We adapt the definition of hidden
Σ-algebras accordingly.

Definition 7.1. A hidden Σ-algebra A = 〈A, [[·]]〉 consists of

(i) an S -sorted domain A and AN = N,
(ii) for every f :: s1× . . .× sn→ s ∈ Σ an interpretation [[f]] : As1 × . . .Asn → As,

(iii) 0,s ∈ Σ with [[0]] = 0 and [[s]](x) = x+1,

The definitions of behavioral equivalence and satisfaction are the same as for bitstream
specifications. A slight modification of the proof of Theorem 6.9 results in the following.

Theorem 7.2. The following problem is Π1
1-complete:

INPUT: N-stream specification E, terms s, t :: S.

QUESTION: Does E |≡ s = t hold? That is, is s = t behaviorally satisfied in all hidden
models of E?

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 45

Proof. We reduce the well-foundedness problem for decidable binary relations to an equal-
ity problem. Let M⊆N×N be a decidable predicate, and T = 〈Q,q0,δ 〉 be the correspond-
ing Turing machine. We define the following specification E:

zeros = run(1,X) unary(0) = zeros

run(0,σ) = ones unary(s(x)) = 1 : unary(x)

run(1,σ) = 0 : run(T (zeros;unary(head(σ)),

unary(head(tail(σ)))), tail(σ))

together with the equations from ET and Definition 4.2. In contrast with the proof of Theo-
rem 6.9, X is now a stream of natural numbers. Since X is unspecified, its interpretation in
the model can be an arbitrary stream of natural numbers. As in the proofs of Theorems 6.6
and 6.9, we employ X to guess an infinite path through M. Instead of uhd(·) and utl(·) on
bitstreams, we now take unary(head(·)) and tail(·), respectively, where the function unary

converts natural numbers to unary representations in forms of streams. As in the proof of
Theorem 6.9, it follows that there exists a hidden Σ-algebra A with A |≡ E if and only if
M is not well-founded. Thus, E |≡ zeros = ones if and only if M is well-founded.

8 Conclusions

We have investigated different model-theoretic and rewriting based semantics of equality
of infinite objects, specified by systems of equations. It turns out that the complexities for
these notions vary from the low levels of the arithmetical hierarchy Π0

1 and Π0
2, up to Π1

1
and Π1

2 of the analytical hierarchy, and some even subsume the entire arithmetical and
analytical hierarchy.

Apart from Π0
1, none of these classes are recursively enumerable or co-recursively enu-

merable. Thus, there exists no complete proof systems for proving or disproving equality.
An exception is the equality of normal forms for productive specifications for which in-
equalities can be recursively enumerated (Grabmayer et al., 2012).

References

Aczel, P. (1988). Non-well-founded Sets. Lecture Notes, no. 14. Center for the Study of Language
and Information, Stanford University.

Bidoit, M., Hennicker, R., & Kurz, A. (2003). Observational Logic, Constructor-Based Logic, and
their Duality. Theoretical Computer Science, 298, 471–510.

Böhm, C. (ed). (1975). Lambda-Calculus and Computer Science Theory, Proceedings of the
Symposium Held in Rome, March 25-27, 1975. LNCS, vol. 37. Springer.

Buss, S.R., & Roşu, G. (2000). Incompleteness of Behavioral Logics. Electronic Notes in Theoretical
Computer Science, 33, 61–79.

Castro, J., & Cucker, F. (1989). Nondeterministic ω-Computations and the Analytical Hierarchy.
Logik und Grundlagen der Mathematik, 35, 333–342.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., & Talcott, C. (2003). The
Maude 2.0 System. Pages 76–87 of: Proc. Conf. on Rewriting Techniques and Applications (RTA
2003). Lecture Notes in Computer Science, no. 2706. Springer.

Coquand, Th. (1993). Infinite Objects in Type Theory. Pages 62–78 of: Proc. Conf. on Types for
Proofs and Programs (TYPES 1993). Lecture Notes in Computer Science, vol. 806. Springer.

ZU064-05-FPR main 26 September 2019 14:45

46 Endrullis et al.

Danielsson, N.A. (2010). Beating the Productivity Checker Using Embedded Languages. Pages 29–
48 of: Proc. Workshop on Partiality and Recursion in Interactive Theorem Provers (PAR 2010).
EPTCS, vol. 43.

Dershowitz, N., Kaplan, S., & Plaisted, D.A. (1991). Rewrite, rewrite, rewrite, rewrite, rewrite.
Theoretical Computer Science, 83, 71–96.

Ehrig, H., & Mahr, B. (1985). Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science. Springer.

Endrullis, J., Grabmayer, C., & Hendriks, D. (2008). Data-Oblivious Stream Productivity. Pages 79–
96 of: Proc. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR 2008).
Lecture Notes in Computer Science, no. 5330. Springer.

Endrullis, J., Grabmayer, C., & Hendriks, D. (2009). Complexity of Fractran and Productivity. Pages
371–387 of: Proc. Conf. on Automated Deduction (CADE 22). LNCS, vol. 5663.

Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., & Klop, J.W. (2010a). Productivity of Stream
Definitions. Theoretical Computer Science, 411, 765–782.

Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J.W., & van Oostrom, V. (2010b). Unique Normal
Forms in Infinitary Weakly Orthogonal Rewriting. Pages 85–102 of: Proc. Conf. on Rewriting
Techniques and Applications (RTA 2010). LIPIcs, vol. 6.

Endrullis, J., Hendriks, D., & Klop, J.W. (2011a). Degrees of Streams. Journal of integers, 11B(A6),
1–40. Proceedings of the Leiden Numeration Conference 2010.

Endrullis, J., Geuvers, H., Simonsen, J. G., & Zantema, H. (2011b). Levels of Undecidability in
Rewriting. Information and Computation, 209(2), 227–245.

Endrullis, J., Hendriks, D., & Klop, J.W. (2012a). Highlights in Infinitary Rewriting and Lambda
Calculus. Theoretical Computer Science, 464, 48–71.

Endrullis, J., Hendriks, D., & Bakhshi, R. (2012b). On the Complexity of Equivalence of
Specifications of Infinite Objects. Pages 153–164 of: Proc. ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP 2013). ACM.

Endrullis, J., Hendriks, D., & Bodin, M. (2013). Circular Coinduction in Coq Using Bisimulation-
Up-To Techniques. Pages 354–369 of: Proc. Conf. on Interactive Theorem Proving (ITP 2013).
Lecture Notes in Computer Science, vol. 7998. Springer.

Finkel, O., & Lecomte, D. (2009). Decision problems for Turing machines. Information Processing
Letters, 109(23–24), 1223 –1226.

Friedman, D. P., & Wise, D. S. (1976). CONS Should Not Evaluate its Arguments. Pages 257–284
of: Proc. Int. Coll. on Automata, Languages and Programming (ICALP 1976).

Geuvers, H. (1992). Inductive and Coinductive Types with Iteration and Recursion. Pages 193–217
of: Proc. Workshop on Types for Proofs and Programs (TYPES 1992).

Goguen, J. (1991). Types as Theories. Pages 357–390 of: Topology and Category Theory in
Computer Science. Oxford University. Proc. Conf. held at Oxford, June 1989.

Goguen, J., & Malcolm, G. (2000). A Hidden Agenda. Theoretical Computer Science, 245(1),
55–101.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., & Wright, J. B. (1977). Initial Algebra Semantics and
Continuous Algebras. Jacm, 24(1), 68–95.

Grabmayer, C., Endrullis, J., Hendriks, D., Klop, J.W., & Moss, L.S. (2012). Automatic
Sequences and Zip-Specifications. Pages 335–344 of: Proc. Symp. on Logic in Computer Science
(LICS 2012). IEEE Computer Society.

Harel, D. (1985). Recurring Dominoes: Making the Highly Undecidable Highly Understandable.
Pages 51–71 of: Topics in the Theory of Computation, Selected Papers of the International
Conference on Foundations of Computation Theory, FCT 1983, vol. 102. North-Holland.

Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic Logic. Foundations of Computing. MIT Press.

ZU064-05-FPR main 26 September 2019 14:45

On the Complexity of Stream Equality 47

Henderson, P., & Morris, Jr., J. H. (1976). A Lazy Evaluator. Pages 95–103 of: Proc. ACM SIGACT-
SIGPLAN Symp. on Principles on Programming Languages (POPL 1976). ACM.

Hennicker, R. (1991). Context Induction: A Proof Principle for Behavioural Abstractions and
Algebraic Implementations. Formal Aspects of Computation, 3(4), 326–345.

Hinman, P.G. (1978). Recursion-Theoretic Hierarchies. Perspectives in Mathematical Logic, vol. 9.
Springer.

Kennaway, J.R., Klop, J.W., Sleep, M.R., & de Vries, F.-J. (1997). Infinitary Lambda Calculus.
Theoretical Computer Science, 175(1), 93–125.

Ketema, J., & Simonsen, J.G. (2010). Infinitary combinatory reduction systems: Normalising
reduction strategies. Logical methods in computer science, 6(1:7), 1–35.

Klop, J.W., & de Vrijer, R. (2005). Infinitary Normalization. Pages 169–192 of: We Will
Show Them: Essays in Honour of Dov Gabbay (2). College Publications. Available at:
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R0516.pdf.

Landin, P.J. (1965). Correspondence between Algol 60 and Church Lambda-Notation: part I.
Communications of the ACM, 8(2), 89–101.

Lucanu, D., Goriac, E.-I., Caltais, G., & Rosu, G. (2009). CIRC: A Behavioral Verification Tool
Based on Circular Coinduction. Pages 433–442 of: Proc. Conf. on Algebra and Coalgebra in
Computer Science (CALCO 2009). Lecture Notes in Computer Science, vol. 5728. Springer.

Malcolm, G. (1997). Hidden Algebra and Systems of Abstract Machines. Proc. Symp. on New
Models for Software Architecture (IMSA).

Meyer, A.R., Streett, R.S., & Mirkowska, G. (1981). The Deducibility Problem in Propositional
Dynamic Logic. Pages 238–248 of: Even, S., & Kariv, O. (eds), Proc. 8th Coll. on Automata,
Languages and Programming (ICALP 1981). Lecture Notes in Computer Science, vol. 115.

Niqui, M. (2009). Coalgebraic Reasoning in Coq: Bisimulation and the λ -Coiteration Scheme. Pages
272–288 of: Proc. Workshop on Types for Proofs and Programs (TYPES 2008). Lecture Notes in
Computer Science, vol. 5497. Springer.

Odifreddi, P.G. (1992). Classical Recursion Theory. The theory of functions and sets of natural
numbers, vol. 1. Studies in Logic and the Foundations of Mathematics, vol. 125. Elsevier.

Odifreddi, P.G. (1999). Classical Recursion Theory. The theory of functions and sets of natural
numbers, vol. 2. Studies in Logic and the Foundations of Mathematics, vol. 143. Elsevier.

Peyton-Jones, S. (2003). Haskell 98 Language and Libraries, The Revised Report. Cambridge
University Press.

Roşu, G. (2000). Hidden Logic. Ph.D. thesis, University of California.
Roşu, G. (2006). Equality of Streams is a Π0

2-complete Problem. Pages 184–191 of: Proc. ACM
SIGPLAN Conf. on Functional Programming (ICFP 2006). ACM.

Rogers, Jr., H. (1967). Theory of Recursive Functions and Effective Computability. New York:
McGraw-Hill.

Rutten, J. J. M. M. (2000). Universal Coalgebra: A Theory of Systems. Theoretical Computer
Science, 249(1), 3–80.

Rutten, J. J. M. M. (2003). Behavioural Differential Equations: a Coinductive Calculus of Streams,
Automata, and Power Series. Theoretical Computer Science, 308(1-3), 1–53.

Rutten, J. J. M. M. (2005). A Coinductive Calculus of Streams. Mathematical Structures in Computer
Science, 15, 93–147.

Shoenfield, J. R. (1971). Degrees of Unsolvability. North-Holland.
Sijtsma, B. A. (1989). On the Productivity of Recursive List Definitions. ACM Transactions on

Programming Languages and Systems, 11(4), 633–649.
Sleep, M. R., Plasmeijer, M. J., & van Eekelen, M. C. J. D. (eds). (1993). Term graph rewriting:

Theory and practice. John Wiley.

ZU064-05-FPR main 26 September 2019 14:45

48 Endrullis et al.

Terese. (2003). Term Rewriting Systems. Cambridge University Press.
Turner, D. A. (1986). An Overview of Miranda. SIGPLAN Notices, 21(12), 158–166.
Zantema, H., & Endrullis, J. (2011). Proving Equality of Streams Automatically. Pages 393–408 of:

Proc. Conf. on Rewriting Techniques and Applications (RTA 2011).

