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Abstract
Feature selection is applied to reduce the number of features in many applications where data has
hundreds or thousands of features. Existing feature selection methods mainly focus on finding rele-
vant features. In this paper, we show that feature relevancealone is insufficient for efficient feature
selection of high-dimensional data. We define feature redundancy and propose to perform explicit
redundancy analysis in feature selection. A new framework is introduced that decouples relevance
analysis and redundancy analysis. We develop a correlation-based method for relevance and redun-
dancy analysis, and conduct an empirical study of its efficiency and effectiveness comparing with
representative methods.
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1. Introduction

In classic supervised learning, one is given a training set of labeled fixed-length feature vectors
(instances). An instance is typically described as an assignment of valuesf = ( f1, ..., fN) to a set
of featuresF = (F1, ...,FN) and one ofl possible classesc1, ...,cl to the class labelC. The task is to
induce a hypothesis (classifier) that accurately predicts the labels of novel instances. The learning of
the classifier is inherently determined by the feature-values. In theory, more features should provide
more discriminating power, but in practice, with a limited amount of training data, excessive features
will not only significantly slow down the learning process, but also cause the classifier to over-fit
the training data as irrelevant or redundant features may confuse the learning algorithm.

Feature selection has been an active and fruitful field of research anddevelopment for decades
in statistical pattern recognition (Mitra et al., 2002), machine learning (Liu et al., 2002b; Robnik-
Sikonja and Kononenko, 2003), data mining (Kim et al., 2000; Dash et al., 2002) and statistics (Hastie
et al., 2001; Miller, 2002). It has proven in both theory and practice effective in enhancing learning
efficiency, increasing predictive accuracy, and reducing complexity of learned results (Almuallim
and Dietterich, 1994; Koller and Sahami, 1996; Blum and Langley, 1997).Let G be some subset of
F and fG be the value vector ofG. In general, the goal of feature selection can be formalized as se-
lecting a minimum subsetG such thatP(C | G= fG) is equal or as close as possible toP(C | F = f ),
whereP(C | G = fG) is the probability distribution of different classes given the feature valuesin
G andP(C | F = f ) is the original distribution given the feature values inF (Koller and Sahami,
1996). We call such a minimum subset anoptimalsubset, illustrated by the example below.
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Example 1 (Optimal subset)Let features F1, ...,F5 be Boolean. The target concept is C= g(F1, F2)
where g is a Boolean function. With F2 = F3 and F4 = F5, there are only eight possible instances.
In order to determine the target concept, F1 is indispensable; one of F2 and F3 can be disposed of
(note that C can also be determined by g(F1, F3)), but we must have one of them; both F4 and F5

can be discarded. Either{F1, F2} or {F1, F3} is an optimal subset. The goal of feature selection is
to find either of them.

In the presence of hundreds or thousands of features, researchers notice (Yang and Pederson, 1997;
Xing et al., 2001) that it is common that a large number of features are not informative because they
are either irrelevant or redundant with respect to the class concept. Inother words, learning can be
achieved more efficiently and effectively with just relevant and non-redundant features. However,
the number of possible feature subsets grows exponentially with the increase of dimensionality.
Finding an optimal subset is usually intractable (Kohavi and John, 1997) and many problems related
to feature selection have been shown to be NP-hard (Blum and Rivest, 1992).

Researchers have studied various aspects of feature selection. One of the key aspects is to
measure thegoodnessof a feature subset in determining an optimal one (Liu and Motoda, 1998).
Different feature selection methods can be broadly categorized into thewrapper model (Kohavi
and John, 1997; Kim et al., 2000) and thefilter model (Liu and Setiono, 1996; Liu et al., 2002b;
Hall, 2000; Yu and Liu, 2003). The wrapper model uses the predictive accuracy of a predetermined
learning algorithm to determine the goodness of the selected subsets. These methods are compu-
tationally expensive for data with a large number of features (Kohavi and John, 1997). The filter
model separates feature selection from classifier learning and selects feature subsets that are inde-
pendent of any learning algorithm. It relies on various measures of the general characteristics of the
training data such as distance, information, dependency, and consistency (Liu and Motoda, 1998).
Searchis another key problem in feature selection. To balance the tradeoff of result optimality and
computational efficiency, different search strategies such as complete,heuristic, and random search
have been studied to generate candidate feature subsets for evaluation (Blum and Langley, 1997;
Dash and Liu, 2003). According to the availability of class labels, there arefeature selection meth-
ods forsupervised learning(Dash and Liu, 1997; Yu and Liu, 2003) as well as forunsupervised
learning(Kim et al., 2000; Dash et al., 2002). Feature selection has found success in many applica-
tions like text categorization (Yang and Pederson, 1997; Forman, 2003), image retrieval (Swets and
Weng, 1995; Dy et al., 2003), genomic microarray analysis (Xing et al., 2001; Yu and Liu, 2004),
customer relationship management (Ng and Liu, 2000), and intrusion detection (Lee et al., 2000).

Despite the impressive achievements in the current field of feature selection, we observe great
challenges arising from domains such as genomic microarray analysis and text categorization where
data may contain tens of thousands of features (Yu and Liu, 2004; Forman, 2003). First of all, the
nature of high dimensionality of data can cause the so-called problem of “curse of dimensional-
ity” (Hastie et al., 2001). Secondly, high-dimensional data often contains many redundant features.
Both theoretical analysis and empirical evidence show that along with irrelevant features, redundant
features also affect the speed and accuracy of learning algorithms andthus should be eliminated
as well (Koller and Sahami, 1996; Kohavi and John, 1997; Hall, 2000).Existing feature selection
methods mainly exploit two approaches: individual (feature) evaluation and subset evaluation (Blum
and Langley, 1997; Guyon and Elisseeff, 2003). Methods of individual evaluation rank features ac-
cording to their importance in differentiating instances of different classesand can only remove
irrelevant features as redundant features likely have similar rankings.Methods of subset evalua-
tion search for a minimum subset of features that satisfies some goodness measure and can remove
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irrelevant features as well as redundant ones. However, among existing heuristic search strategies
for subset evaluation, even greedy sequential search which reduces the search space fromO(2N) to
O(N2) can become very inefficient for high-dimensional data. The limitations of existing research
clearly suggest that we should pursue a different framework of feature selection that allows efficient
analysis of both feature relevance and redundancy for high-dimensional data.

The remainder of this paper is organized as follows. In Section 2, we review notions of feature
relevance, identify the need for redundancy analysis, and provide a formal definition of feature
redundancy. In Section 3, we analyze in detail the limitations of current approaches and propose
a new framework of efficient feature selection. In Section 4, we describe correlation measures,
and present a correlation-based method for efficient relevance and redundancy analysis under the
new framework. Section 5 contains an empirical study of our method in terms ofefficiency and
effectiveness comparing with representative methods. Section 6 concludes this work and points out
some future directions.

2. Feature Relevance and Feature Redundancy

Traditionally, feature selection research has focused on searching for relevant features. Although
some recent work has pointed out the existence and effect of feature redundancy (Koller and Sa-
hami, 1996; Kohavi and John, 1997; Hall, 2000), there is little work on explicit treatment of feature
redundancy. In the following, we first present a classic notion of feature relevance and illustrate
why it alone cannot handle feature redundancy, and then provide ourformal definition of feature
redundancy which paves the way for efficient elimination of redundant features.

2.1 Feature Relevance

Based on a review of previous definitions of feature relevance, John,Kohavi, and Pfleger classified
features into three disjoint categories, namely, strongly relevant, weakly relevant, and irrelevant
features (John et al., 1994). LetF be a full set of features,Fi a feature, andSi = F −{Fi}. These
categories of relevance can be formalized as follows.

Definition 1 (Strong relevance)A feature Fi is strongly relevant iff

P(C | Fi , Si) 6= P(C | Si) .

Definition 2 (Weak relevance)A feature Fi is weakly relevant iff

P(C | Fi , Si) = P(C | Si), and

∃ S′i ⊂ Si , such thatP(C | Fi , S′i) 6= P(C | S′i) .

Corollary 1 (Irrelevance) A feature Fi is irrelevant iff

∀ S′i ⊆ Si , P(C | Fi , S′i) = P(C | S′i) .
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Strong relevance of a feature indicates that the feature is always necessary for an optimal subset;
it cannot be removed without affecting the original conditional class distribution. Weak relevance
suggests that the feature is not always necessary but may become necessary for an optimal subset
at certain conditions. Irrelevance (following Definitions 1 and 2) indicatesthat the feature is not
necessary at all. According to these definitions, it is clear that in previousExample 1, featureF1 is
strongly relevant,F2, F3 weakly relevant, andF4, F5 irrelevant. An optimal subset should include
all strongly relevant features, none of irrelevant features, and a subset of weakly relevant features.
However, it is not given in the definitions which of weakly relevant features should be selected and
which of them removed. Therefore, it is necessary to define feature redundancy among relevant
features.

2.2 Defining Feature Redundancy

Notions of feature redundancy are normally in terms of feature correlation. It is widely accepted
that two features are redundant to each other if their values are completelycorrelated (for example,
featuresF2 andF3 in Example 1). In reality, it may not be so straightforward to determine feature
redundancy when a feature is correlated (perhaps partially) with a set of features. We now formally
define feature redundancy in order to devise an approach to explicitly identify and eliminate redun-
dant features. Before we proceed, we first introduce the definition ofa feature’s Markov blanket
given by Koller and Sahami (1996).

Definition 3 (Markov blanket) Given a feature Fi , let Mi ⊂ F (Fi /∈ Mi), Mi is said to be a Markov
blanket for Fi iff

P(F −Mi −{Fi}, C | Fi , Mi) = P(F −Mi −{Fi}, C | Mi) .
The Markov blanket condition requires thatMi subsume not only the information thatFi has

aboutC, but also about all of the other features. It is pointed out in Koller and Sahami (1996) that
an optimal subset can be obtained by a backward elimination procedure, known asMarkov blanket
filtering: let G be the current set of features (G = F in the beginning), at any phase, if there exists
a Markov blanket forFi within the currentG, Fi is removed fromG. It is proved that this process
guarantees a feature removed in an earlier phase will still find a Markov blanket in any later phase,
that is, removing a feature in a later phase will not render the previously removed features necessary
to be included in the optimal subset. According to previous definitions of feature relevance, we can
also prove that strongly relevant features cannot find any Markov blanket. Since irrelevant features
should be removed anyway, we exclude them from our definition of redundant features.

Definition 4 (Redundant feature)Let G be the current set of features, a feature is redundant and
hence should be removed from G iff it is weakly relevant and has a Markov blanket Mi within G .

From the property of Markov blanket, it is easy to see that a redundant feature removed earlier
remains redundant when other features are removed. Figure 1 depicts the relationships between
definitions of feature relevance and redundancy introduced so far. It shows that an entire feature set
can be conceptually divided into four basic disjoint parts: irrelevant features (I), redundant features
(II, part of weakly relevant features), weakly relevant but non-redundant features (III), and strongly
relevant features (IV). An optimal subset essentially contains all the features in parts III and IV. It is
worthy to point out that although parts II and III are disjoint, different partitions of them can result
from the process of Markov blanket filtering. In previous Example 1, either of F2 or F3, but not
both, should be removed as a redundant feature.
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III IV

I: Irrelevant features

IV: Strongly relevant features

II: Weakly relevant and 

III + IV: Optimal subset

redundant features

non−redundant features

III: Weakly relevant but

I II

Figure 1: A view of feature relevance and redundancy.

3. Efficient Feature Selection via Relevance and Redundancy Analysis

We now review two major approaches in dealing with feature relevance and redundancy, analyze
their limitations for high-dimensional data, and then propose a new frameworkof efficient feature
selection based on relevance and redundancy analysis.

3.1 Existing Approaches in Dealing with Relevance and Redundancy

As mentioned earlier, there exist two major approaches in feature selection:individual evaluation
andsubset evaluation. Individual evaluation, also known as feature weighting/ranking (Blum and
Langley, 1997; Guyon and Elisseeff, 2003), assesses individual features and assigns them weights
according to their degrees of relevance. A subset of features is oftenselected from the top of a
ranking list, which approximates the set of relevant features (II, III, and IV in Figure 1). With its
linear time complexity in terms of dimensionalityN, this approach is efficient for high-dimensional
data. However, it is incapable of removing redundant features because redundant features likely
have similar rankings. As long as features are deemed relevant to the class, they will all be selected
even though many of them are highly correlated to each other. For high-dimensional data which may
contain a large number of redundant features, this approach may produce results far from optimal.

Many feature selection methods take the subset evaluation approach whichhandles feature re-
dundancy with feature relevance. The diagram in Figure 2 exhibits a traditional framework of
feature selection via subset evaluation (Liu and Motoda, 1998). Subsetgeneration produces can-
didate feature subsets based on a certain search strategy. Each candidate subset is evaluated by a
certain evaluation measure and compared with the previous best one with respect to this measure.
If a new subset turns out to be better, it replaces the previous best subset. The process of subset
generation and evaluation is repeated until a given stopping criterion is satisfied. Distinguished
from individual evaluation, evaluation measures used by this approach are defined against feature
subsets, taking into account the existence and effect of redundant features. A feature subset selected
by this approach approximates the optimal subset (parts III and IV in Figure 1). Many methods have
proven effective to some extent in removing both irrelevant features andredundant features (John
et al., 1994; Koller and Sahami, 1996; Bell and Wang, 2000; Hall, 2000).However, methods in
this framework can suffer from an inevitable problem caused by searching through feature sub-
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sets required in the subset generation step. Although there exist variousheuristic search strategies
such as greedy sequential search, best-first search, and genetic algorithm (Liu and Motoda, 1998),
most of them still incur time complexityO(N2), which prevents them from scaling well to data sets
containing tens of thousands of features.

Subset


Generation


Subset


Evaluation


Stopping


Criterion


Original


Set


Current Best Subset


Candidate


Subset


Selected Subset


Yes


No


Figure 2: A traditional framework of feature selection.

3.2 A New Framework of Efficient Feature Selection

From previous discussions, it is clear that in order to eliminate redundant features, the state-of-the-
art feature selection methods have to rely on the approach of subset evaluation which implicitly
handles feature redundancy with feature relevance. These methods can produce better results than
methods without handling feature redundancy, but the high computational cost of the subset search
makes them inefficient for high-dimensional data. Therefore, in our solution, we propose a new
framework of feature selection which avoids implicitly handling feature redundancy and turns to
efficient elimination of redundant features viaexplicitly handling feature redundancy.

Relevance definitions divide features into strongly relevant, weakly relevant, and irrelevant ones;
redundancy definition further divides weakly relevant features into redundant and non-redundant
ones. Our goal is to efficiently find the optimal subset (parts III and IV in Figure 1). We can achieve
this goal through a new framework of feature selection (shown in Figure 3) composed of two steps:
first, relevance analysis determines the subset of relevant features byremoving irrelevant ones, and
second, redundancy analysis determines and eliminates redundant features from relevant ones and
thus produces the final subset. Its advantage over the traditional framework of subset evaluation lies
in that by decoupling relevance and redundancy analysis, it circumventssubset search and allows a
both efficient and effective way in finding a subset that approximates anoptimal subset.
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Figure 3: A new framework of feature selection.

1210



EFFICIENT FEATURE SELECTION VIA ANALYSIS OF RELEVANCE AND REDUNDANCY

It is sensible to use efficient heuristic methods to approximate the computation ofrelevant fea-
tures and redundant features under our new framework for two reasons. On one hand, searching
for an optimal subset based on the definitions of feature relevance and redundancy is combinatorial
in nature. It is obvious that exhaustive or complete search is prohibitive with a large number of
features. On the other hand, an optimal subset is defined based on the full population where the true
data distribution is known. It is generally assumed (Mitchell, 1997; Miller, 2002) that a training data
set is only a small portion of the full population, especially in a high-dimensional space. Therefore,
it is not proper to search for an optimal subset from the training data as over-searching the training
data can cause over-fitting (Jensen and Cohen, 2000). We next present our approximation method.

4. A Correlation Based Method

Correlation is widely used in machine learning and statistics for relevance analysis. In this section,
we first introduce our choice of correlation measure in Section 4.1, then describe our correlation-
based method for both relevance and redundancy analysis in Section 4.2,and present and analyze
the algorithm in Section 4.3.

4.1 Correlation Measures

There exist broadly two types of measures for the correlation between tworandom variables: linear
and non-linear. Of linear correlation, the most well known measure islinear correlation coefficient.
For a pair of variables(X, Y), the linear correlation coefficientρ is given by

ρ =
∑
i
(xi −xi)(yi −yi)

√

∑
i
(xi −xi)2

√

∑
i
(yi −yi)2

,

wherexi is the mean ofX, andyi is the mean ofY. The value ofρ lies between -1 and 1, inclusive.
If X andY are completely correlated,ρ takes the value of 1 or -1; ifX andY are independent,ρ is
zero. It is a symmetrical measure for two variables. Other measures in this category are basically
variations of the above formula, such asleast square regression errorand maximal information
compression index(Mitra et al., 2002). However, it is not safe to always assume linear correlation
between features in the real world. Linear correlation measures may not be able to capture corre-
lations that are not linear in nature. It can also be observed that linear correlation coefficient is not
suitable for nominal data.

Among non-linear correlation measures, many measures are based on the information-theoretical
concept ofentropy, a measure of the uncertainty of a random variable. The entropy of a variableX
is defined as

H(X) = −∑
i

P(xi) log2(P(xi)) ,

and the entropy ofX after observing values of another variableY is defined as

H(X|Y) = −∑
j

P(y j)∑
i

P(xi | y j) log2(P(xi | y j)) ,

whereP(xi) is the prior probabilities for all values ofX, andP(xi | yi) is the posterior probabilities
of X given the values ofY. The amount by which the entropy ofX decreases reflects additional
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information aboutX provided byY and is calledinformation gain(Quinlan, 1993), given by

IG(X | Y) = H(X)−H(X | Y) .

According to this measure, featureY is regarded more correlated to featureX than to featureZ,
if IG(X | Y) > IG(Z | Y). It is easy to prove that information gain is a symmetrical measure.
Symmetry is a desired property for a measure of correlations between features. It ensures that the
order of two features ((X, Y) or (Y, X)) will not affect the value of the measure. Since information
gain tends to favor features with more values, it should be normalized with theircorresponding
entropy. Therefore, we choosesymmetrical uncertainty(Press et al., 1988), defined as

SU(X, Y) = 2

[

IG(X | Y)

H(X)+H(Y)

]

.

It compensates for information gain’s bias toward features with more valuesand restricts its values
to the range[0,1]. A value of 1 indicates that knowing the values of either feature completely
predicts the values of the other; a value of 0 indicates thatX andY are independent. In addition,
it still treats a pair of features symmetrically. Entropy-based measures handle nominal or discrete
features, and therefore continuous features need to be properly discretized (Liu et al., 2002a) in
order to use entropy-based measures.

4.2 Efficient Relevance and Redundancy Analysis

Using symmetrical uncertainty (SU) as the correlation measure, we are ready to develop an approx-
imation method for both relevance and redundancy analysis under our newframework introduced
in Section 3.2. We first differentiate two types of correlation between features (including the class).

Definition 5 (C-correlation) The correlation between any feature Fi and the class C is called C-
correlation, denoted by SUi,c .

Definition 6 (F-correlation) The correlation between any pair of features Fi and Fj (i 6= j) is called
F-correlation, denoted by SUi, j .

Aiming to achieve high efficiency, we calculateC-correlation for each feature, and heuristically
decide a featureFi to be relevant if it is highly correlated with the classC, i.e., if SUi,c > γ, where
γ is a relevance threshold which can be determined by users. The selected relevant features are
then subject to redundancy analysis. Similarly, we can evaluate the correlation between individ-
ual features for redundancy analysis without considering the correlation between various feature
subsets. However, there are two difficulties in determining feature redundancy via pair-wiseF-
correlation calculation: (1) when two features are not completely correlated with each other, it may
be hard to determine feature redundancy and which one to be removed; and (2) it may still require
F-correlation calculation for a total ofN(N−1)

2 pairs, which is inefficient for high-dimensional data.
Below, we try to efficiently determine feature redundancy by substantially reducing the number of
feature pairs evaluated forF-correlation.

In Section 2, we apply Markov blankets toexactlydetermine feature redundancy. When it comes
to approximatelydetermine feature redundancy, the key is to find approximate Markov blankets for
the selected relevant features. We assume that a feature with a largerC-correlation value contains
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by itself more information about the class than a feature with a smallerC-correlation value. We
determine the existence of an approximate Markov blanket between a pair ofcorrelated features
Fi andFj based on theirF-correlation levelSUi, j as follows. WhenSUj,c ≥ SUi,c, we choose to
evaluate whether featureFj can form an approximate Markov blanket for featureFi (instead ofFi

for Fj ) in order to maintain more information about the class. In addition, we heuristically useSUi,c

as a threshold to determine whether theF-correlationSUi, j is strong or not. An approximate Markov
blanket can be defined as follows.

Definition 7 (Approximate Markov blanket) For two relevant features Fi and Fj (i 6= j), Fj forms
an approximate Markov blanket for Fi iff SUj,c ≥ SUi,c and SUi, j ≥ SUi,c .

Recall that Markov blanket filtering, a backward elimination procedure based on a feature’s
Markov blanket in the current set, guarantees that a redundant feature removed in an earlier phase
will still find a Markov blanket in any later phase when another redundantfeature is removed. It is
easy to verify that this is not the case for backward elimination based on a feature’s approximate
Markov blanket in the current set. For instance, ifFj is the only feature that forms an approximate
Markov blanket forFi , andFk forms an approximate Markov blanket forFj , after removingFi based
on Fj , further removingFj based onFk will result in no approximate Markov blanket forFi in the
current set. However, we can avoid this situation by removing a feature only when it can find an
approximate Markov blanket formed by a predominant feature, defined as follows.

Definition 8 (Predominant feature) A relevant feature is predominant iff it does not have any
approximate Markov blanket in the current set.

Predominant features will not be removed at any stage. If a featureFi is removed based on
a predominant featureFj in an earlier phase, it is guaranteed that it will still find an approximate
Markov blanket (the sameFj ) in any later phase when another feature is removed. To summarize,
our method for redundancy analysis consists of (1) selecting a predominant feature, (2) removing all
features for which it forms an approximate Markov blanket, and (3) iterating steps (1) and (2) until
no more predominate features can be selected. An optimal subset can therefore be approximated by
a set of predominant features.

4.3 Algorithm and Analysis

The approximation method for relevance and redundancy analysis presented before can be realized
by an algorithm, named FCBF (Fast Correlation-Based Filter). It involves two connected steps:
(1) selecting a subset of relevant features, and (2) selecting predominant features from relevant
ones. As shown in Figure 4, for a data setS with N features and classC, the algorithm finds a
set of predominant featuresSbest. In the first step (lines 2-7), it calculates theSU value for each
feature, selects relevant features intoS′list based on a predefined thresholdδ, and orders them in a
descending order according to theirSU values. In the second step (lines 8-18), it further processes
the ordered listS′list to select predominant features. A featureFj that has already been determined
to be a predominant feature can always be used to filter out other features for whichFj forms an
approximate Markov blanket. Since the feature with the highestC-correlation does not have any
approximate Markov blanket, it must be one of the predominant features. So the iteration starts
from the first element inS′list (line 8) and continues as follows. For all the remaining features (from
the one right next toFj to the last one inS′list), if Fj happens to form an approximate Markov blanket
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input: S(F1,F2, ...,FN,C) // a training data set
δ // a predefined threshold

output: Sbest // a selected subset

1 begin
2 for i = 1 toN do begin
3 calculateSUi,c for Fi ;
4 if (SUi,c > δ)
5 appendFi to S′list ;
6 end;
7 orderS′list in descendingSUi,c value;
8 Fj = getFirstElement(S′list);
9 do begin
10 Fi = getNextElement(S′list ,Fj);
11 if (Fi <> NULL)
12 do begin
13 if (SUi, j ≥ SUi,c)
14 removeFi from S′list ;
15 Fi = getNextElement(S′list ,Fi);
16 end until (Fi == NULL);
17 Fj = getNextElement(S′list ,Fj);
18 end until (Fj == NULL);
19 Sbest= S′list ;
20 end;

Figure 4: FCBF Algorithm.

for Fi (line 13),Fi will be removed fromS′list . After one round of filtering features based onFj , the
algorithm will take the remaining feature right next toFj as the new reference (line 17) to repeat the
filtering process. The algorithm stops until no more predominant features can be selected. Figure 5
illustrates how predominant features are selected with the rest features removed as redundant ones.
In Figure 5, six features are selected as relevant ones and ranked according to theirC-correlation
values, withF1 being the most relevant one. In the first round,F1 is selected as a predominant
feature, andF2 andF4 are removed based onF1. In the second round,F3 is selected, andF6 is
removed based onF3. In the last round,F5 is selected.
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Figure 5: Selection of predominant features

We now analyze the time complexity of FCBF before an empirical study of its efficiency. As
we can see from Figure 4, major computation of the algorithm involvesSU values forC- andF-
correlations, which has linear complexity in term of the number of instances in adata set. In terms
of dimensionalityN, to determine relevant features, the algorithm has linear complexityO(N); to
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determine predominant features from relevant ones (assuming all features are selected as relevant
ones), it has a best-case complexityO(N) when only one feature is selected and all of the rest of the
features are removed, and a worse-case complexityO(N2) when all features are selected. These time
complexity results are comparable to subset evaluation based on greedy sequential search in which
features are, one at a time, added to the current subset (i.e., sequentialforward selection) or removed
from the current subset (i.e., sequential backward elimination). However, in general cases whenk
(1 < k < N) features are selected, the number of evaluations performed by FCBF will typically be
much less (and certainly never more) than the number of evaluations performed by greedy sequential
search because features removed in each round are not consideredin the next round and FCBF
typically removes a large number of features (instead of only one by greedy sequential search) in
each round. This makes FCBF substantially faster than algorithms of subsetevaluation based on
greedy sequential search, as will be demonstrated by the running time comparisons reported in
Section 5. The more features removed in an earlier round, the faster FCBFis. Moreover, selecting
a subset of relevant features in the first step can further improves its efficiency.

In summary, our method approximates relevance and redundancy analysisby selecting all pre-
dominant features and removing the rest features. It uses bothC- andF-correlations to determine
feature redundancy and combines sequential forward selection with elimination so that it not only
circumvents full pair-wiseF-correlation analysis but also achieves higher efficiency than pure se-
quential forward selection or backward elimination. However, our method issuboptimal due to the
way C- andF-correlations are used for relevance and redundancy analysis and the approximates
that it uses. It is fairly straightforward to improve the optimality of the results byconsidering differ-
ent combinations of features in evaluating feature relevance and redundancy, which in turn increases
time complexity. Another way to improve result optimality is to find better heuristics in determining
a feature’s approximate Markov blanket.

5. Empirical Study

In this section, we empirically evaluate the efficiency and effectiveness ofour method by comparing
FCBF with representative feature selection algorithms. We describe experimental setup in Section
5.1, discuss results on synthetic data and benchmark data in Sections 5.2 and5.3 respectively, and
summarize the findings in Section 5.4.

5.1 Experimental Setup

The efficiency of a feature selection algorithm can be directly measured byits running time over
various data sets. As to effectiveness, a simple and direct evaluation criterion is how similar the
selected subset and the optimal subset are, but it can only be measured over synthetic data for which
we know beforehand which features are irrelevant or redundant. For real-world data, we often do
not have such prior knowledge about the optimal subset, so we use the predictive accuracy on the
selected subset of features as an indirect measure.

In terms of the above criteria, we limit our comparisons to the filter model as FCBFis a fil-
ter algorithm designed for high-dimensional data. We choose representative algorithms from both
approaches (i.e., individual evaluation and subset evaluation). One algorithm, from individual eval-
uation, is ReliefF (Robnik-Sikonja and Kononenko, 2003) which searches for nearest neighbors of
instances of different classes and weights features according to how well they differentiate instances
of different classes. Another algorithm, from subset evaluation, is a variation of CFS (Hall, 2000),
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denoted by CFS-SF (Sequential Forward). CFS exploits best-first search based on some correlation
measure which evaluates the goodness of a subset by considering the individual predictive ability
of each feature and the degree of correlation between them. Sequential forward selection is used
in CFS-SF as initial experiments show CFS-SF runs much faster to produce similar results than
CFS. A third one, also from subset evaluation, is a variation of FOCUS (Almuallim and Dietterich,
1994), denoted by FOCUS-SF. FOCUS exhaustively examines all subsets of features, selecting the
minimal subset that separates classes as consistently as the full set can. It is prohibitively costly
even for data sets with moderate dimensionality. FOCUS-SF replaces exhaustive search in FOCUS
with sequential forward selection. In our experiments, we heuristically setthe relevance thresholdγ
to be theSU value of thebN/logNcth ranked feature for each data set. To test how the selection of
threshold affects the performance of FCBF, we also include in our comparisons the results of FCBF
with γ set to the default value 0. We use FCBF(log) to represent a version of FCBF with the former
setting, and FCBF(0) with the latter setting in the rest of the paper.

In addition to feature selection algorithms, we use two learning algorithms, NBC (Witten and
Frank, 2000) and C4.5 (Quinlan, 1993), to evaluate the predictive accuracy on the selected subset of
features. All these selected algorithms are from Weka’s collection (Witten and Frank, 2000). FCBF
is also implemented in Weka environment.

5.2 Results and Discussions on Synthetic Data

We use three synthetic data sets to illustrate the strengthes and limitations of FCBF and compare it
with ReliefF, CFS-SF, and FOCUS-SF. The first data set is the widely usedCorral data (John et al.,
1994) which contains six Boolean features (A0, A1, B0, B1, I , R) and a Boolean classY defined
by Y = (A0∧A1)∨ (B0∧B1). FeaturesA0, A1, B0, andB1 are independent to each other, feature
I is uniformly random, and featureR matches the classY 75% of the time. It is obvious that an
optimal subset includesA0, A1, B0, andB1. I is irrelevant, andR is redundant. The other two data
sets, Corral-47 and Corral-46, are obtained by introducing more irrelevant features and redundant
features to the original Corral data. As its name says, Corral-47 containsa total of 47 Boolean
features including 5 original featuresA0,A1,B0,B1, andR, 14 irrelevant features, and 28 additional
redundant features. Among the 14 irrelevant features, only two features are uniformly random and
each of the remaining 12 is completely correlated with either of the two. Among the 28 additional
redundant features, for each ofA0, A1, B0, andB1, there are 7 features that are correlated with it at
various levels. The ratios of non-matches are 0,1/16,2/16, ...,6/16 respectively. Corral-46 is the
same as Corral-47 except that it excludesR. Table 1 shows features selected by each algorithm. We
useA0, A1, B0, B1 combined with subscripts 0,1, ...,6 to represent the newly introduced redundant
features, with the value of the subscripts indicating the ratio of non-matches.

We can see that for Corral, all the algorithms in comparison remove the irrelevant featureI ,
but fail to remove the redundant featureR. FCBF(log) misses three features due to the setting of an
improper threshold. For Corral-47, these algorithm also remove all the irrelevant features, but fail
to removeR. The difference is that FCBF(log), FCBF(0), and CFS-SF successfully remove all the
additional redundant features. For Corral-46, only FCBF(log) and FCBF(0) find the optimal subset.
In Corral-47 and Corral-46, the threshold in FCBF(log) does not affect the selection results. These
results suggest that when feature redundancy can only be identified based on feature subsets (e.g.,
the redundancy ofR is defined by the subset ofA0, A1, B0, andB1), FCBF may not successfully
remove redundant features. This is a hard problem for most heuristic search algorithms as well.
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FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Corral R A0 R A0 A1 B0 A0 B0 R B1 A0 A1 B0 B1 R

B1 A1 R
Corral-47 R A0 A1 B0 R A0 A1 B0 R B11 A0 A00 A0 A1 B0 B1 A0 A1 A12 B0

B1 B1 B1 B10 B0 B00 R B1 R
B02 A1 A10

Corral-46 A0 A1 B0 B1 A0 A1 B0 B1 A0 A00 B11 B0 A0 A03 A04 A1 A0 A1 A13 A14
B00 B1 B10 B02 A12 A14 B0 B00 B0 B1

A1 A10 B1 B11

Table 1: Features selected by each feature selection algorithm on syntheticdata.

However, in high-dimensional data which often contains a large portion of irrelevant and/or redun-
dant features (as in Corral-47 and Corral-46), FCBF can effectively remove redundant features.
We next further verify its effectiveness as well as efficiency compared to other algorithms through
various real-world data of high dimensionality.

5.3 Results and Discussions on Benchmark Data

In various machine learning domains, there are two forms of high-dimensional data. Traditionally,
the dimensionality is usually thought high if data contains tens or hundreds of features. In this form
of data, the number of instances is normally much larger than the dimensionality. In new domains
such as text categorization and genomic microarray analysis, the dimensionality is in the order of
thousands or even higher, and often greatly exceeds the number of instances. Therefore, we evaluate
our method in comparison with others on high-dimensional data of both forms.

5.3.1 UCIBENCHMARK DATA

Title Features Instances Classes
Lung-cancer 56 32 3
Promoters 57 106 2
Splice 60 3190 3
USCensus90 67 9338 3
CoIL2000 85 5822 2
Chemical 150 936 3
Musk2 166 6598 2
Arrhythmia 279 452 16
Isolet 617 1560 26
Multi-features 649 2000 10

Table 2: Summary ofUCI benchmark data sets.

All together 10 data sets in the traditional form are selected from the UCI Machine Learning
Repository1 and the UCI KDD Archive.2 These data sets contain various numbers of features, in-
stances, and classes, as shown in Table 2. For each data set, we first run all the feature selection algo-

1. http://www.ics.uci.edu/∼mlearn/MLRepository.html
2. http://kdd.ics.uci.edu
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rithms in comparison, and obtain the running time and selected features for each algorithm. For data
sets containing features with continuous values, we apply the MDL discretization method (Fayyad
and Irani, 1993) before applying FCBF, CFS-SF, and FOCUS-SF. For ReliefF, we use 5 neigh-
bors and 30 instances throughout the experiments as suggested by Robnik-Sikonja and Kononenko
(2003). We then apply NBC and C4.5 on both the original data set and eachof the newly obtained
data sets (with only selected features), and obtain overall accuracy of 10-fold cross-validation. All
experiments were conducted on a Pentium IV PC with 1 GB RAM.

Table 3 records the running time for each feature selection algorithm. We canobserve that
FCBF(0) is consistently faster than CFS-SF and FOCUS-SF. The time savings from FCBF(0) be-
come more obvious when the data dimensionality increases. In many cases especially compared
with FOCUS-SF, the time savings are in degrees of magnitude. These results verify the superior
computational efficiency of sequential forward selection with elimination applied by FCBF over
greedy sequential search applied by CFS-SF and FOCUS-SF. Comparison between FCBF(0) and
ReliefF shows that ReliefF is unexpectedly slow even though its time complexity is linear to di-
mensionality. The reason lies in that searching for nearest neighbors in ReliefF involves distance
calculation which is more costly than the calculation of symmetrical uncertainty. When we compare
FCBF(0) with FCBF(log), it is clear that the setting of a larger relevance thresholdγ further speeds
up FCBF.

Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Lung-cancer 0.001 0.02 0.09 0.05 0.08
Promoters 0.001 0.02 0.06 0.03 0.16
Splice 0.20 0.55 0.89 0.55 16.59
USCensus90 0.30 0.50 2.94 0.52 77.67
CoIL2000 0.25 0.50 4.25 1.98 143.94
Chemical 0.05 0.05 1.36 0.28 6.56
Musk2 0.53 0.88 9.55 4.84 85.78
Arrhythmia 0.06 0.08 1.19 0.78 13.70
Isolet 0.42 3.05 10.05 93.94 107.33
Multi-Features 1.19 19.42 11.42 71.00 67.56

Table 3: Running time (seconds) for each feature selection algorithm onUCI data.

Table 4 records the number of features selected by each feature selection algorithm. We can see
that all these algorithms achieve significant reduction of dimensionality by selecting only a small
portion of the original features. FCBF(log) on average selects the smallest number of features.

Tables 5 and 6 show the 10-fold cross-validation accuracy of NBC and C4.5 respectively. For
each data set, we conduct Student’s paired two-tailed t-Test in order to evaluate the statistical sig-
nificance of the difference between two averaged accuracy values: one resulted from FCBF(log) and
the other resulted from one of FCBF(0), the full set, ReliefF, CFS-SF, and FOCUS-SF. Each value
in a p-val column records the probability associated with the t-Test. The smaller the value, the more
significant the difference of the two average values is. The last row (L/W/T) in each table summa-
rizes over all data sets the losses/wins/ties in accuracy (at significance level 0.1) comparing various
feature sets with those selected by FCBF(log). We can see that in general FCBF(log) achieves similar
accuracy as FCBF(0). Therefore, the effectiveness of FCBF can be verified from the following two
general trends: (1) FCBF(log) improves or maintains the accuracy of both NBC and C4.5, and the
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Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Lung-cancer 4 6 5 8 4
Promoters 6 6 4 4 4
Splice 9 22 11 6 10
USCensus90 3 4 2 1 13
CoIL2000 3 5 12 10 29
Chemical 4 5 7 7 11
Musk2 2 2 2 10 11
Arrhythmia 5 12 25 25 24
Isolet 5 32 23 137 11
Multi-Features 27 130 14 87 7

Average 7 22 11 30 12

Table 4: Number of features selected by each feature selection algorithm on UCI data.

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 83.33 86.67 0.34 78.33 0.34 84.17 0.85 86.67 0.34 87.5 0.46
Promoters 93.27 93.27 1 91.55 0.55 87.82 0.25 95.18 0.17 90.45 0.40
Splice 93.95 96.14 0.00+ 95.52 0.00+ 91.32 0.00− 93.54 0.24 94.36 0.08+

USCensus90 97.94 97.88 0.19 93.49 0.00− 97.97 0.17 97.99 0.65 97.87 0.44
CoIL2000 93.94 93.92 0.34 78.68 0.00− 93.89 0.66 92.92 0.01− 83.22 0.00−

Chemical 71.91 67.73 0.02− 60.90 0.00− 71.26 0.77 70.51 0.35 66.35 0.00−

Musk2 84.59 84.59 1 84.78 0.51 84.59 1 64.87 0.00− 83.53 0.01−

Arrhythmia 67.48 65.73 0.45 60.88 0.01− 55.79 0.00− 69.05 0.45 69.06 0.56
Isolet 50.06 83.33 0.00+ 84.10 0.00+ 60.90 0.00+ 87.31 0.00+ 71.03 0.00+

Multi-feat 95.9 95.65 0.50 94.1 0.01− 67.65 0.00− 96.15 0.64 93.7 0.02−

L/W/T - 1/2/7 5/2/3 3/1/6 2/1/7 4/2/4

Table 5: Accuracy ofNBC on selected features forUCI data: Acc records 10-fold cross-validation
accuracy rate(%) andp-Val records the probability associated with a paired two-tailed t-
Test. The symbols “+” and “−” respectively identify statistically significant (at 0.1 level)
wins or losses over FCBF(log).

improvement is more pronounced for NBC; and (2) FCBF(log) can achieve similar or even higher
accuracy compared with other algorithms.

5.3.2 NIPSBENCHMARK DATA

Three data sets with very high dimensionality but relatively few instances areselected from the
NIPS 2003 feature selection benchmark data sets.3 All these data sets contain two classes and a
large number of artificially introduced random features in addition to real features. A summary of
the data sets is given in Table 7. For each data set, we conduct experimentsfollowing the same
procedure as that used in UCI data. The results are shown in Tables 8, 9, 10, and 11.

From Table 8, we observe similar trends as those from UCI data except that (1) for Dexter and
Dorothea data, CFS-SF did not produce running time results (hence, neither selected features nor

3. http://clopinet.com/isabelle/Projects/NIPS2003/
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FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Lung-cancer 86.67 86.67 1 80.83 0.17 84.17 0.34 84.17 0.34 84.17 0.34
Promoters 80.18 80.18 1 78.09 0.42 82.36 0.55 80.18 1 81.36 0.67
Splice 94.01 94.14 0.64 93.98 0.89 90.53 0.00− 93.39 0.00− 93.79 0.11
USCensus90 98.12 98.12 1 98.19 0.39 98.12 1 97.99 0.00− 98.21 0.11
CoIL2000 94.02 94.02 1 93.87 0.12 94.02 1 94.02 1 93.97 0.39
Chemical 95.41 95.41 1 94.13 0.01− 95.94 0.14 95.94 0.14 95.31 0.86
Musk2 91.35 91.35 1 96.91 0.00+ 88.00 0.00− 95.79 0.00+ 95.45 0.00+

Arrhythmia 71.47 68.80 0.19 67.70 0.04− 69.02 0.07− 68.58 0.13 67.02 0.04−

Isolet 49.17 75.77 0.00+ 79.87 0.00+ 59.10 0.00+ 81.35 0.00+ 68.84 0.00+

Multi-feat 92.45 93.65 0.04+ 94.3 0.01+ 78.65 0.00− 94.7 0.00+ 91.75 0.42
L/W/T - 0/2/8 2/3/5 4/1/5 2/3/5 1/2/7

Table 6: Accuracy ofC4.5on selected features forUCI data: Acc records 10-fold cross-validation
accuracy rate(%) andp-Val records the probability associated with a paired two-tailed t-
Test. The symbols “+” and “−” respectively identify statistically significant (at 0.1 level)
wins or losses over FCBF(log).

Features Instances
Title Total Real Random Total Class 1 Class 2
Arcene 10000 7000 3000 100 44 56
Dexter 20000 9947 10053 300 150 150
Dorothea 100000 50000 50000 800 78 722

Table 7: Summary ofNIPS benchmark data sets.

accuracy results) because the program ran out of memory after a period of considerably long time
due to its quadratic space complexity; and (2) FCBF achieves tremendous time savings for this
group of data sets, for instance, roughly 1 minute by FCBF(log) versus 4.5 hours by FOCUS-SF in
Dorothea data. Results in Table 9 show that all the algorithms in comparison candramatically reduce
the dimensionality for this group of data sets. In spite of its impressive efficiency and capability of
dimensionality reduction, the effectiveness of FCBF can still be clearly revealed by the results in
Tables 10 and 11. As we can see, FCBF either improves or maintains the accuracy of both NBC
and C4.5 for all the three data sets. In addition, for each of the three data sets, the highest accuracy
is achieved by applying NBC on the feature subset selected by FCBF.

Title FCBF(log) FCBF(0) ReliefF CFS-SF FOCUS-SF
Arcene 0.42 0.75 9.16 1108.66 21.39
Dexter 1.80 2.63 45.43 N/A 928.78
Dorothea 68.95 393.80 349.27 N/A 16470.92

Table 8: Running time (seconds) for each feature selection algorithm onNIPS data.
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Title FCBF(log) FCBF0 ReliefF CFS-SF FOCUS-SF
Arcene 24 39 45 50 4
Dexter 35 35 71 N/A 23
Dorothea 50 96 137 N/A 21

Table 9: Number of features selected by each feature selection algorithm on NIPS data.

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Arcene 91.0 93.0 0.34 69.0 0.00− 69.0 0.02− 92.0 0.68 59.0 0.00−

Dexter 90.0 90.0 1 88.0 0.26 73.00 0.00− N/A N/A 90.0 1
Dorothea 97.5 98.38 0.01+ 90.25 0.00− 94.38 0.00− N/A N/A 95.25 0.00−

Table 10: Accuracy ofNBC on selected features forNIPS data: Acc records 10-fold cross-
validation accuracy rate(%) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbols “+” and “−” respectively identify statistically significant
(at 0.1 level) wins or losses over FCBF(log).

5.4 Summary

From the previous empirical study, we can conclude that FCBF can efficiently achieve high degree
of dimensionality reduction and enhance or maintain predictive accuracy withselected features. Its
proven efficiency and effectiveness compared with other algorithms through various synthetic and
benchmark data sets suggest that FCBF is practical for feature selectionof high-dimensional data.
It is worthy to emphasize that feature subsets selected by FCBF are decoupled from the choice
of learning algorithms. In other words, FCBF does not directly aim to increase the accuracy of a
particular learning algorithm as wrapper algorithms do. In order to achievebetter accuracy within
affordable time, a wrapper algorithm based on an intended learning algorithm can be applied to the
significantly reduced subset obtained from FCBF.

In FCBF, there is one parameter, the relevance thresholdγ. As consistently shown from the
benchmark data, different settings ofγ affect the speed of FCBF. The closerγ is set to 1, the faster
FCBF is. As shown from Corral-47 and Corral-46 as well as many of the benchmark data sets which
may contain a large number of irrelevant and/or redundant features, speeding up the algorithm by

FCBF(log) FCBF(0) Full Set ReliefF CFS-SF FOCUS-SF
Title Acc Acc p-Val Acc p-Val Acc p-Val Acc p-Val Acc p-Val
Arcene 83.0 82.0 0.76 76.0 0.17 65.0 0.04− 79.0 0.40 75.0 0.26
Dexter 83.67 83.67 1 76.33 0.02− 76.67 0.08− N/A N/A 90.00 0.01+

Dorothea 92.88 93.0 0.76 90.38 0.01− 93.38 0.68 N/A N/A 96.5 0.00+

Table 11: Accuracy ofC4.5 on selected features forNIPS data: Acc records 10-fold cross-
validation accuracy rate(%) and p-Val records the probability associated with a paired
two-tailed t-Test. The symbols “+” and “−” respectively identify statistically significant
(at 0.1 level) wins or losses over FCBF(log).
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settingγ to a reasonably large value does not sacrifice the goodness of the selected subsets. However,
a close look at the accuracy of individual data sets in Tables 5 and 6 reveals that in certain cases
(e.g., Isolet data), FCBF(log) results in significantly reduced accuracy than FCBF(0) due to the setting
of overly high threshold. Therefore, when we do not have prior knowledge about data, an easy and
safe way of applying FCBF is to setγ to the default value 0.

6. Conclusions

In this paper, we have identified the need for explicit redundancy analysis in feature selection,
provided a formal definition of feature redundancy, and investigated therelationship between feature
relevance and redundancy. We have proposed a new framework of efficient feature selection via
relevance and redundancy analysis, and a correlation-based method which usesC-correlation for
relevance analysis and bothC- andF-correlations for redundancy analysis. A new feature selection
algorithm FCBF is implemented and evaluated through extensive experiments comparing with three
representative feature selection algorithms. The feature selection resultsare further verified by two
different learning algorithms. Our method demonstrates its efficiency and effectiveness for feature
selection in supervised learning in domains where data contains many irrelevant and/or redundant
features.

Some future works are planed along the following directions. First, since symmetrical uncer-
tainty measure only handles nominal or discrete values, our current methodrequires continuous
values be discretized, which opens the opportunity to investigate how different discretization meth-
ods affect the performance of FCBF. Second, it would be interesting to explore measures that can
handle all types of values or ways of combining different measures under our framework of rele-
vance and redundancy analysis. Another direction is to investigate how our method can be extended
to deal with regression problems in which the class contains continuous values. Moreover, addi-
tional effort is needed to experiment our method on genomic microarray datafor informative gene
selection and investigate how small samples affect the performance of feature selection.
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