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Abstract

Rademacher penalization is a modern technique for obtathata-dependent bounds on the gener-
alization error of classifiers. It appears to be limited tatieely simple hypothesis classes because
of computational complexity issues. In this paper we, ribedess, apply Rademacher penaliza-
tion to the in practice important hypothesis class of umigted decision trees by considering the
prunings of a given decision tree rather than the tree gmpwimase. This study constitutes the
first application of Rademacher penalization to hypothelsisses that have practical significance.
We present two variations of the approach, one in which thpothesis class consists of all prun-
ings of the initial tree and another in which only the prumirigat are accurate on growing data
are taken into account. Moreover, we generalize the ewantling approach from binary classifi-
cation to multi-class situations. Our empirical experitsdandicate that the proposed new bounds
outperform distribution-independent bounds for decisiers prunings and provide non-trivial error
estimates on real-world data sets.

Keywords: generalization error analysis, data-dependent genatializerror bounds, Rademacher
complexity, decision trees, reduced error pruning

1. Introduction

Data-dependent bounds on generalization error of classifiers idggry the gap that has existed
between theoretical and empirical results since the introduction of compuatialéamning theory.
They allow to take situation specific information into account, whereas distribuitependent
results need to hold in all imaginable situations. UdRaglemacher complexifiKoltchinskii, 2001;
Bartlett and Mendelson, 2002) to bound the generalization error of d@ngaé@rror minimizing
classifier is a fairly new approach that has not yet been tested in pragtem@sively.

Rademacher penalization is in principle a general method applicable to anthbgfs class.
However, in practice it does not seem amenable to complex hypothesisscheszause the standard
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method for computing Rademacher penalties relies on the existence of an ahr@kieninimiza-
tion algorithm for the hypothesis class in question. The first practicargrpats with Rademacher
penalization used real intervals as the hypothesis class (Lozano,. 2B@0haa and Kariainen
(2002) have applied Rademacher penalization to two-level decision tuésh can be learned
efficiently in the agnostic PAC model (Auer et al., 1995).

General decision tree growing algorithms are necessarily heuristicdeeofthe computational
complexity of finding optimal decision trees (Grigni et al., 2000). Moreptlex hypothesis class
consisting of unrestricted decision trees is so vast that traditional dizaécn error analysis tech-
niques cannot provide non-trivial bounds for it. Nevertheless, mprdnduction of decision trees
by, e.g., C4.5 (Quinlan, 1993) produces results that are very compéatifivediction accuracy with
better motivated approaches. We consider the usual two-phase pafadscision tree learning;
after growing a tree, it is pruned in order to reduce its dependency agrélaéng data and to bet-
ter reflect characteristics of future data. Because of the practice¢ssiof decision tree learning,
prunings of an induced decision tree can be considered an exgretse of hypotheses.

We apply Rademacher penalization to general decision trees by congidesirthe tree grow-
ing phase, but rather the pruning phase. The idea is to view decisionrtng@ag as empirical risk
minimization in the hypothesis class consisting of all prunings of an inducadidedree. First
a heuristic tree growing procedure is applied to growing data to produeegisiah tree. Then a
pruning algorithm, for example theduced error pruning REP) algorithm of Quinlan (1987), is
applied to the grown tree and a set of pruning data. A& R known to be an efficient empirical
risk minimization algorithm for the class of prunings of a decision tree (Elomda<@ariainen,
2001), it can be used to compute the Rademacher penalty for this hypatlassisThus, by view-
ing decision tree pruning as empirical risk minimization in a data-dependeptisgis class, we
can bound the generalization error of prunings by Rademacher pditaliz&Ve also extend this
generalization error analysis framework to the multi-class setting.

Standard Rademacher penalization still requires to take the whole hypatlassiinto account.
All possible prunings of the decision tree have to be evaluated. The gruthat evaluate best on
randomly relabeled data—and, therefore, badly on the original dataentesdly determine the error
bound. However, in practice only prunings that have relatively small écaperror on the set of
growing data are viable candidates for the final hypothesis. For thismees restrict the pruning
algorithm to operate on the much smaller class of hypotheses that consistsefpttunings that
make few mistakes on the set of growing data. To apply Rademacher p&oalizethis restricted
class of hypotheses, we devise an empirical risk minimization algorithm for i. nBw pruning
algorithm, calleck-REP, finds the most accurate pruning with respect to a set of pruning datagamon
those prunings that make at méahistakes on the set of growing data. The algorithm is based on
dynamic programming and works in time cubic in the number of growing examptesregar in
the number of pruning examples and the size of the decision tree to be pruned.

We evaluate the practical application potential of data-dependent ewadb empirically. Our
experiments show that Rademacher penalization applied to prunings fouRdrygrovides rea-
sonable generalization error bounds on real-world data sets. THesresk-REP are even better.
Although the bounds still overestimate the test set error, they are much ttgatedistribution-
independent bounds for prunings when the data sets are large.

This paper is organized as follows. In Section 2 we recapitulate the mainfidataedependent
generalization error analysis. We concentrate on Rademacher penalizetich we also extend
to cover the multi-class case. Section 3 concerns pruning of decision teelesed error pruning
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of decision trees being the main focus. ThREP algorithm together with a correctness proof and
time complexity analysis is presented in Section 4. Combining Rademacher compégitiation
and decision tree pruning is the topic of Section 5. Empirical evaluation ofrtmped approach
is presented in Section 6 and, finally, Section 7 presents the concludingkeeofighis study.

2. Rademacher Penalties

LetS={(x,yi)|i=1,...,n} be a sample ofi examplegX;,yi) € X x 9 each of which is drawn
independently from some unknown probability distribution26rx 9. In the PAC and statistical
learning settings one usually assumes that the learning algorithm choosgsoitisdsish: X — 9~
from some fixed hypothesis clags. Under this assumption generalization error analysis provides
theoretical results bounding the generalization error of hypothese&é which is allowed to depend
on the sample, the learning algorithm, and the properties of the hypothess \@lasconsider the
multi-class setting, wher@” may contain more than two labels.

Let P be the unknown probability distribution according to which the examples awedrThe
generalization errorof a hypothesid is the probability that a randomly drawn examgiey) is
misclassified:

ep(h) = P(h(x) #Y).

The general goal of learning, of course, is to find a hypothesis with # gerwaeralization error.
However, since the generalization error depend®,ahcannot be computed directly based on the
sample alone. We can try to approximate the generalization erdobgfits training error on n
examples:

where/ is the (/1 loss function

fyy) = {1, ify+£Y;

0, otherwise.

Empirical Risk MinimizatiofERM) (Vapnik, 1982) is a principle that suggest choosing the
hypothesish € # with minimal training error. In relatively small and simple hypothesis classes
finding a minimum training error hypothesis is computationally feasible. To gtegahat ERM
yields hypotheses with small generalization error, one can try to bound,slg»(h) —€,(h)|. Un-
der the assumption that the examples are independent and identically didtikiude, whenever
A is not too complex, the difference of the training error of the hypothesisn examples and its
true generalization error converges to 0 in probability ésnds to infinity.

The most common approach to deriving generalization error boundsdd baghe VC dimen-
sion of the hypothesis class (Vapnik and Chervonenkis, 1971; Bluradr, €i989). The problem
with this approach is that it provides optimal results only in the worst casesrlie underlying
probability distribution is as bad as it can be. Thus, the generalization lestords based on VC
dimension tend to be overly pessimistic. Moreover, the VC dimension bourdsaad to extend
to the multi-class setting. Data-dependent generalization error boundse ather hand, can be
provably almost optimal for any given domain (Koltchinskii, 2001). In théfeing we review the
foundations of a recent promising approach to bounding the generatizatior.
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A Rademacher random variabiekes values-1 and—1 with probability 1/2 each. Let,ro,...,r,
be a sequence of Rademacher random variables independent offeaciind the date, y1), .. ., (Xn, Yn)-
TheRademacher penalf the hypothesis clas¥ is defined as

n

1 > ril(h0s). )

Rn(#) = sup
heH

Rademacher penalty is, thus, a random variable depending both ondloerahoice of the learning
sample(x1,y1), - . ., (Xa, Yn) @nd on the randomness injected through the random variables, ry,.
The following symmetrization inequality (Van der Vaart and Wellner, 200@jctvalso covers the
multi-class setting, connects Rademacher penalties to generalization eiy®isan

Theorem 1 The inequality
E [SUD\SP(h) - ?in(h)!] < 2E[Rn(H)]
he H

holds for any distribution P, number of examples n, and hypothesis #lass

The random variables syp, |ep(h) — €n(h)| andRy(H) are sharply concentrated around their
expectations (Koltchinskii, 2001). The concentration results are basdteofollowing McDi-
armid’s (1989) bounded difference inequality.

Lemma 2 (McDiarmid’s inequality) Let Z,...,Z, be independent random variables taking their
values in a set A. Let:fA" — R be a function such thatoverall z..,z,,Z € A

sup/f(z,...,2,...,z0) — f(z,...,Z,...,Z7)| <G
for some constantsit...,c, € R. Then for alle > 0

P(f(Zy,...,Zn) —E[f(Z4,...,Z0)] > €) and
P(E[f(Zy,...,Z0)] - f(Zs,...,Z0n) > €)

are upper bounded by

exp(—ZeZ/iiciz> .

Using McDiarmid’s inequality one can bound the generalization error obthgses using their
training error and Rademacher penalty as follows.

Lemma 3 Let he # be arbitrary. Then with probability at leadt—
ep(h) < () + 2Ry () +5n(3,n), (1)

wheren(d,n) = +/In(2/8)/(2n) is a hypothesis class independent error term that goes to zero as
the number of examples increases.
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Proof Observe that replacing a pditxi, i), ri) consisting of an example,yi) and a Rademacher
random variable; by any other paif(x,y/),r/) may change the value &,(#) by at most 2n.
Lemma 2 applied to the i.i.d. random variablgsi,y1),r1),..., ((Xa,Yn),rn) and the function
Rn(#) yields

N o1

P(Rn(#) < E[Ra(H)] —2n(3,n)) < (@)

Similarly, changing the value of any examyile,y;) can change the value of sy, |ep(h) — €n(h)|
by no more than An. Thus, applying Lemma 2 again {®,Y1), ..., (%, Yn) and sup., |ep(h) —
€n(h)| gives

3)

I\)_l (o]

P(suprepm) —&n(h)| > E [supepm) —&a(h)|
he# he H

+n<6,n)> <

To bound the generalization error of a hypothesis # observe that

ep(g) < €n(9) + suplep(h) —En(h)|.
he H

Hence, by inequality (3), with probability at least-1/2

IN

suplep(h) —&n(h)|
he#

< &n(9) +2E[Ry(H)] +n(3,n),

ep(0) €n(0) +E +n(d,n)

where the second inequality follows from Theorem 1. Finally, applyinguaéty (2) yields that
with probability at least + o

ep(9) < €n(g) +2Rn(#) +5n(5,n).
[ |

The usefulness of inequality (1) stems from the fact that its right-handdgigends only on
the training sample and the Rademacher random variables, but i®doectly. Hence, all the
data that is needed to evaluate the generalization error bound is availak@dearthing algorithm.
Furthermore, Koltchinskii (2001) has shown that in the two-class situateR#demacher penalty
can be computed by an empirical risk minimization algorithm applied to relabelethgalata. \We
now extend this method to the multi-class setting.

The expression foR,(#) is first written as the maximum of two suprema in order to remove
the absolute value inside the original supremum:

1 n
Ra(#) = maX<Sup{i— Zrif(h(n),yi)D :
heH ni<
The sum inside the supremum with positive sign is maximized by the hypothetigt tries to

correctly classify those and only those training exampey;) for whichr; = —1. To formalize
this, we associate each class 9" with a complement class labglthat represents the set of all
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classes buy. We denote the set of these complement classe¥ layd extend the domain of the
loss function? to cover pairgy,z) € 9" x 9 by setting/(y,z) = 1 if z=y and 0 otherwise. Using
this notationh; is the hypothesis that minimizes the empirical error with respect to a newly labeled

training set{ (x,z) }!"_;, where
7 = i, if ri = -1,
~lyi, otherwise.

The case for the supremum with negative sign is similar.
Altogether, the computation of the Rademacher penalty entails the following steps

e Toss a fair coim times to obtain a realization of the Rademacher random variable sequence
rl, ey rn.

e Change the labsgj; toy; if and only if rj = +1 to obtain a new sequence of labels..., z,.

e Find functionshy, h, € 7 that minimize the empirical error with respect to the set of lahels
andz, respectively. Here, we follow the convention that zforallze YU Y.

e Evaluate the Rademacher penalty given by the maximudiafri = +1}| /n—€&(h;) and
[{i:ri=-1}|/n—¢€(h2), where the empirical erroigh;) and€(hy) are with respect to the
labelsz andz, respectively.

In the two-class setting, the seof all classes buy, 9"\ {y}, is a singleton. Thus, changing
classy to y amounts to flipping the class label. It follows that a normal ERM algorithm carsbd
to find the hypothesels; andh, and hence the Rademacher penalty can be computed efficiently
provided that there exists an efficient ERM algorithm for the hypothesis atequestion.

In the multi-class setting, however, a little more is required, since the sample ich e
empirical risk minimization is performed may contain labels frofrand the loss function differs
from the standard (L-loss. This, however, is not a problem with the variants aPRovered in
this paper nor with T2, a decision tree learning algorithm used in our eatlidy,ssince all the
algorithms can be easily adapted to handle this more general setting. ThHercR&® is covered
in the next sections and for T2 in the paper by Auer et al. (1995).

3. Growing and Pruning Decision Trees

A decision tree (Breiman et al., 1984) is a rooted tree in which the inner ravdesquipped with
branching functionsand the leaves are labeled with classes. A branching function routes exam-
ples reaching a node to its children, thus defining for each example a umiqukeaf path. The
classification of an example is determined by the label of the leaf to which timepdsds routed.

A common approach in top-down induction of decision trees is to first groeeathat fits the
training data well and, then, prune it to reflect less the peculiarities of timénigedata; i.e., to gen-
eralize better. Here, pruning means replacing some inner nodes of théttréeaves and removing
the parts of the tree that become unreachable from the root. Many heapgticaches (Quinlan,
1987; Mingers, 1989; Esposito et al., 1997) as well as more analytieal(@tansour, 1997; Kearns
and Mansour, 1998) to pruning have been proposed. A specialafl@ssning algorithms are the
on-line ones (Helmbold and Schapire, 1997; Pereira and Singer,.1288) these algorithms work
by the two-phase approach: An initial decision tree is fitted to the data anduitings are then
used as experts that collectively predict the class of observed instance
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Reduced error pruning was originally proposed by Quinlan (1987prdtuces an optimal
pruning of a given tree—the smallest tree among those with minimal error wipecet a given
set ofpruning examplegEsposito et al., 1997; Elomaa an@ddiainen, 2001). The Rp algorithm
works in two phases: First the set of pruning examdés classified using the given trdeto be
pruned. Counters that keep track of the number of examples of eastpalssing through each node
are updated simultaneously. In the second phase—a bottom-up prunisgrptiese parts of the
tree that can be removed without increasing the error of the remaininghegie are pruned away.
The pruning decisions are based on the node statistics calculated in thewtopethssification
phase.

REP can be viewed as an ERM algorithm for the hypothesis class consistingmtiaihgs of

a given decision tree. Thus, it can be used to efficiently compute Radenaamalties and, hence,
also generalization error bounds for the class of prunings of a dedigien This leads us to the
following strategy. First, we use a standard heuristic decision tree indualgnithm to grow a
C4.5-type decision tree based on a set of growing examples. The tves ssra representation of
the data-dependent hypothesis class that consists of its prunings. .Bsi&dlly performs quite
well on real-world domains, it is reasonable to assume—even though ibthamproved—that the
class of prunings contains some good hypotheses.

Having grown a decision tree, we use a separate pruning data set toosedeaf the prunings
of the grown tree as our final hypothesis. In this paper, we useaR our pruning algorithm, but in
principle any other pruning algorithm using the same basic pruning operatidd be used instead.
However, since RPis an empirical risk minimization algorithm, the derived error bounds will be
the tightest when combined with the prunings produced by.R

3.1 Reducing the Number of Prunings

As argued above, the set of prunings of a decision tree is likely to contaurate hypotheses.
Still, most of the prunings—the ones performing badly on the growing setikalg to be very
inaccurate on the pruning data. If the growing and the pruning data setsipée each other to any
extent, which is a necessary condition for the two-phase learning paradignake sense in the
first place, the pruning algorithm will not select any of these hypotheghs/ery bad performance
on the set of growing data. Keeping these inaccurate prunings asf plaet loypothesis class only
makes the hypothesis class more complex and, hence, increases the etagigraaalty associated
with it.

Following the line of thought above, it would seem reasonable to restrigirtiveng algorithm
to select the final pruning from among those hypotheses that are rlat@irate on the set of
growing data. In Section 4 we present in detail khREP pruning algorithm, which does exactly
this by solving the following problem: given a decision tree and sets of ggpama pruning data,
find the most accurate pruning (w.r.t. the pruning data) of the tree among phesings that make
at mostk mistakes on the growing data. The restriction to prunings that are accuartite growing
data adds to the combinatorial complexity of the search problem, but we abilto solve the
problem in cubic time by using dynamic programmindgREP is an efficient ERM algorithm for
the restricted class of prunings. Thus, it can be used to evaluate tgstéya error bounds based
on Rademacher penalties in the same way BB ¢an be used in connection with the class of all
prunings (Kaariainen and Elomaa, 2003). SinkeREP operates on a subclass of the class of all
prunings, the Rademacher penalties are in this case smaller.
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In order to us&-REP one has to devise some strategy of choosing a value fbat is, to define
exactly what it means for a hypothesis to be accurate on a set of growatag ik is very large,
k-RepPboils down to standard & since a loose bound on mistakes does not rule any of the prunings
out. On the other hand, too smalkanay shrink the hypothesis class too small or even empty if
none of the prunings meets the strict accuracy requirement. A theoreticglynwetivated solution
would be to consider all values kfand employ standard model selection techniques to pick the one
that gives the best error bounds. However, the model selection pltadd loosen the bounds as
the confidence parametd@mwould have to be split among the different valuekoHence, the best
bound obtainable using model selection would unavoidably be larger thheshbound achievable
if one could somehow pick a single fortunate choicekior

In practice, the number of errors the original decision tree makes on thod geowing data
is a good baseline to which the accuracy of the prunings can be relatedvamiethe prunings
considered byk-REP to be almost as accurate on the growing data as the original decision tree.
Thus, we will seleck to be some constant factor> 1 times the number of errors the original tree
makes on the growing data. This way of choosing the valuleisf of course, just an intuitively
motivated heuristic, but so is the whole decision tree growing procedurddtermines the original
class of prunings in the first place. Our empirical experiments show thisgyrevorks well on real
world data sets.

A similar idea to the one behindREPis employed in theshell decomposition bounad$ Lang-
ford and McAllester (2000), who show that the effective complexity ofpdthesis class can be
measured by the complexity of the sub-class (or shell of hypothesis)ahsists of only the almost
most accurate hypotheses of the original class. The shells, howsvelefined based on the same
data that is used for selecting the final hypothesis, whereas in the ckdeesfthe sub-class of
accurate hypotheses is selected based on the growing data and thggisthkisis is chosen based
on the pruning data. Also local Rademacher complexities (Bartlett et al., 2002; Lugosi and
Wegkamp, 2004) and other local complexity measures (Koltchinskii anchieéako, 2000; Massart,
2000; Mendelson and Philips, 2003) aim at taking into account only thaxts of the model that
are relevant for the given learning task. However, these methodsbabeen tested in practice as
evaluating the local complexity measures involves some computational anghdbgcal problems
that have not been attacked yet.

3.2 Related Pruning Algorithms

REP produces the smallest of the most accurate prunings of a given decis@gminere accuracy
is measured with respect to the pruning set. Other approaches forcprgdiptimal prunings for
different optimality criteria have also been proposed (Breiman et al., I1®84anec and Bratko,
1994; Oliver and Hand, 1995; Almuallim, 1996). These criteria typically tadgh the size of
the resulting pruning and its accuracy on growing data into account. Asngriéends to reduce
growing set accuracy, one typically has to make a compromise between magttia initial
growing set accuracy and finding a small pruning. For example, BatamBratko (1994) as well
as Almuallim (1996) have studied how to efficiently find the smallest pruning #isffies a given
minimum accuracy requirement.

The strategy of using one data set for growing a decision tree and afatipeuning it closely
resembles the on-line pruning setting (Helmbold and Schapire, 1997; #arairSinger, 1999).
In it the prunings of the initial decision tree are viewed as a pool of expdrtais, pruning is
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performed on-line, while giving predictions to new examples, rather thanseparate pruning
phase. The main advantage of these on-line methods is that no statisticapieas about the data
generating process are needed and still the combined prediction ardgostnategy can be proved
to be competitive with the best possible pruning of the initial tree. Howevesethpproaches do
not choose or maintain one pruning of the given decision tree, but ratiweighted combination
of prunings, which may be impossible to interpret by human experts. Alsdp#isebounds are
meaningful only for very large data sets and there exists no empiricaleiaiiof the performance
of the on-line pruning methods.

The pruning algorithms of Mansour (1997) and Kearns and Mans®@®8{lare very similar
to RepP in spirit. The main difference with these algorithms angPRs the fact that they do not
require the sampl& on which pruning is based to be independent of the Treee., T may well
have been grown based & Moreover, the pruning criterion in both methods is a kind abat-
complexitycondition (Breiman et al., 1984) that takes both the observed classificatimmamd
(sub)tree complexity into account. Both algorithms pessimistic They try to bound the true
error of a (sub)tree by its training error. Since the training error is yreaptimistic, the pruning
criterion has to compensate it by being pessimistic about the error approximation

Both Mansour (1997) and Kearns and Mansour (1998) providerghregion error analyses for
their algorithms. The bound presented in (Mansour, 1997) measuresrtipexity of the class of
prunings by the size of the tree to be pruned. If this size or an uppeddouitis known in advance,
the bound applies also when the pruning data is not independent of the tseepruned. Kearns
and Mansour (1998) prove that the generalization error of the prymioduced by their algorithm
is bounded by that of the best pruning of the given tree plus a complexiigitye However, the
penalty term can grow intolerably large and cannot be evaluated bechitselependence on the
unknown optimal pruning and hidden constants.

One shortcoming of the two-phase decision tree induction approach is ¢hatdbes not exist
any well-founded approach for deciding how much data to use for thértgaémd pruning phases.
Only heuristic data set partitioning schemes are available. However, the simplaf using, e.g.,
two thirds of the data for growing and the rest for pruning has beenradx$do work well in
practice (Esposito et al., 1997). If the initial data set is very large, it magdoeputationally
infeasible to use all the data for growing or pruning. In that case oneigameuristic sequential
sampling methods for selecting the size of the growing set and determine tloé thizgoruning set,
e.g., by using progressive Rademacher sampling (Elomaa aédéiten, 2002). BecauseeR is
an efficient linear-time algorithm, it is not hit hard by overestimated pruningpgasize.

4. k-Optimal REP Prunings

Given a decision tree to be pruned and a set of pruning exampiesiirls the pruning that min-
imizes error on the pruning set; no consideration is given to the growingrsetof the resulting
hypothesis. In Section 3.1, we motivated the idea of imposing a restriction malg® @rowing set
error of REP prunings. Clearly, in order to be able to prune at all, one has to giverap accuracy
on the data that was used to grow the tree. This naturally leads to the idedin§flREP prunings
with growing set error at most some threshold va{ue

Let T be a (subtree of a) decision treg(T) its growing set erro(T) its pruning set error,
and|T| its size. LetP(T) be the set of all the prunings of
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Definition 4 A k-optimal Rep pruningof a decision tree T is a’Te P(T) that haséy(T’) <Kk, if
one exists, and for which

o Ep(T)=min{€x(T") | T" € P(T), &(T") <k}, and
o [T'|=min{|T"||T" € P(T), Ex(T") =Ep(T") },
If there is no T € P(T) satisfying the criteria, k-optimaReP pruning of T is undefined.

For clarity, we consider only binary trees at first. Jebe a decision tree with root nodé
Assume that, for each 0 <i < k, we knowi-optimal Rep prunings of the childref; andT, of
the root nodeN of T. Denote these by?,..., T¥ andT?,..., T, respectively. Choosing any pair
(T, T)) of these prunings defines a pruning®fin the obvious way; letN, T}, T)) denote this
pruning.

In this paper we assume that leaf labels for decision tree prunings armietd by the growing
data. Alternative leaf labeling strategies are discussed by Elomaa @@ihiken (2001) and a
k-ReP pruning algorithm resembling the one presented next could be derivatidse labeling
strategies as well. Lély denote the single-leaf pruning @f i.e., a leaf labeled with the majority
class of growing examples reachiiig The following result suggests a dynamic programming
technique for finding-optimal ReP prunings, which is described subsequently.

Theorem 5 If the k-optimalREP pruning of a decision tree T is defined, it is either the legfoN
of the form(N, T, T.'), where u+-v =k and T' and T, are u- and v-optimaREP prunings of the
left and the right subtree of T, respectively.

Proof Let T’ be thek-optimal Rep pruning of a decision tre€. If T’ is Ng, then we have the claim.
Otherwise T’ consists of a root nodd and two subtree$ andT,, which respectively are prunings
of the subtreed; andT, of T. Now, £4(T’) = €4(T{) + &4(T;) < k, which means that there must
existu andv such thau+v =k, £g(T{) < uandéy(T;) <v.

Let T be au-optimal Rep pruning of T; and assume thaf is not. By Definition 4 either
€p(T{) > €p(Ty") or [T]| > |T}'|. Both cases contradict theoptimality of pruningT’, because the
tree(N, T, T;) would be better than it. E,(T;) > €,(T;"), then

Ep(T') = €p(T) +Ep(T3) > Ep(Ty') +Ep(T2) = Ep(N, T, T3)).
If, on the other handT/| > |T|, then
T =T+ T2 + 1> [T+ [T+ 1= (N, T, T) |-
Therefore,T] has to be ar-optimal REp pruning of T;. Similar argumentation also proves the

optimality of T;. [ |

What Theorem 5 effectively says is that tk@ptimal REP pruning of a tre€T is eitherNg or
a combination ofl- andv-optimal Rep prunings of the children of its root node for somendv
summing up t&. Therefore, by going through each of the mentioned prunings, and mingrozer
them first by pruning error, then by size, we can fiadptimal REP prunings ofT. Thek-optimal
REP prunings are easy to find for trees consisting of single leafs. Combiningvitiisa bottom
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Algorithm 6 Find k-optimalREP prunings.

1 for eachi € {0,...,min(n,k) } do

2 Ep(T') e oo;

3 ]Twe—-m

4 od;

5 if N is not a leathen

6 for eachi € {0,...,min(n,k) } do

7 for each (u,v) such that u-v=ido
8 T — (N, ', T));

9 if €5(T') < &p(T') then T' « T’ fi;
10 else ifép(T') = Ep(T) and [T'] < |T'| then T « T’ fi
11 od

12 od

13 fi;

14 for eachi, i € {€4(Ng),...,min(n,k) } do

15 if £p(Ng) < &p(T') then T! «— N fi

16 od;

up sweep ofT yields a dynamic programming technique for the task at hand. The step afmilyn
programming is given as Algorithm 6, which find@$ for eachi, 0 < i < min(n,k), wheren is the
number of growing examples that reach the nddés undefined for anyfor which [T'| = o after
running the algorithm.

The generalization of Theorem 5 (and Algorithm 6) to non-binary treesagbtforward. For
at-way split, one has to go through all the partitions of eadh< i < min(n,k), intot addends.
This makes the time complexity exponential in the number of branches in the splie asmber
of such partitions grows exponentiallytin

Let us consider the time complexity of Algorithm 6. Clearly, the loop on lines &4axdrks
in time linear in mir{n,k). In the loop on lines 6-12, one has to chegkartitions for each,

0 <i <min(n,k). This makes the time complexity of processing a single node with a binary split
O(min(n,k)2), wheren is the number of growing examples that reach the node.

Now consider a binary tree grown onexamples. First note that at masgrowing examples
reach the nodes of any particular level of the tree. Consider an aydéxeal withw < n nodes, with
ny,...,Nw growing examples reaching them. By the above bound for a single nodmripitation
on the level take®(5 ¥, min(n;,k)?) steps. Now, it is clear that}" ; min(n;, k) < n holds, and this
implies $1¥., min(n;,k)? < n?, soO(n?) is an upper bound for the time complexity on any single
level of the tree. A tree grown on examples has at moatlevels, which makes the worst case
complexityO(n?).

The above result assumes that the pruning errors on lines 9, 10, arah lfeevaluated in
constant time. This can be achieved by equipping the nodes of the origiealith counters telling
the class frequencies of pruning examples going through them. Initializiciy cawunters can be
done in time linear in the number of pruning examples and the size of the tree tariedp As the
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algorithm does not need to access the pruning data after this prepnocgtep, the time complexity
with respect to the amount of pruning data is linear.

The O(n®) time complexity result can be strengthened if we make more assumptions on the
decision tree to be pruned or the distribution of the growing examples to theRoeexample, if
the depth of the tree can be assumed tdiolegn), the upper bound on the time complexity of
k-REPis reduced t@(n?logn). As another special case, assume that the set of growing examples
is halved in each node of a tree witHeaves. Then, the time complexity reduces to

clio;g:zi . (min (ﬂlk)>2 — o(n?),

where each addend corresponds to a single level of the tree.

5. Combining Rademacher Penalization and Decision Tree Pning

When using RP or k-REP, the data sets used in growing the tree and pruning it are independent
of each other. Therefore, any standard generalization error @édehnique can be applied to
the resulting pruning as if the hypothesis class from which the pruning &lasted was fixed in
advance. A formal argument justifying this would be to carry out the gdization error analysis
conditioned on the training data and then to argue that the bounds holdditmoally by taking
expectations over the selection of the training data set.

By the above argument, the theory of Rademacher penalization can bedajoptiee data-
dependent class of prunings. Therefore, we can use the resudentad in Section 2 to provide
generalization error bounds for prunings found bgPRk-REP, or any other pruning algorithm.
Moreover, since both B» andk-RepP are efficient ERM algorithms (linear and cubic time, re-
spectively) for the related classes of prunings, the generalization leotmds can be evaluated
efficiently.

To summarize, we propose the following decision tree learning strategyrthatles a general-
ization error bound for the hypothesis it produces:

1. Split the available data into a growing set and a pruning set.
2. Use, e.g., C4.5 (without pruning) on the growing set to induce a dedigien

3. Find the smallest most accurate pruning of the tree built in the previousisitegp Rep (or
any other pruning algorithm) on the pruning set. This is the final hypothédtistnatively,
choose a suitableand us&-REPto find the most accurate pruning from the class of prunings
making at mosk errors on the set of growing data.

4. Evaluate the error bound as explained in Section 2 by runnigmtio more times. In case
k-REpPwas used in step 3, ukeRePin place of Rep here, too.

Even though the tree growing process is heuristic, the generalizatiarbeurnds for the prun-
ings are provably true under the i.i.d. assumption. They are valid even ifgdgtowing heuristic
fails, that is, when none of the prunings of the grown tree generalize imethat case the bounds
are, of course, unavoidably large. The situation is similar to, e.g., margedlgeneralization error
analysis (Cristianini and Shawe-Taylor, 2000), where the error dmare good provided that the
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training data generating distribution is such that a hypothesis with a good ntisgilbution can
be found. In our case the error bounds are tight provided that Cédupes a decision tree that
has good prunings and is still relatively small so that the Rademacher péwrathe class of its
prunings does not blow up. A good choicelofay help in keeping the penalty term in control,
a situation resembling choosing the marginal parameter in margin-basedlgei®mn error anal-
ysis. The existing empirical evidence overwhelmingly demonstrates that Gddlyifares quite
well, and our experiments presented in Section 6 indicate that a good clidiceally results in a
notable decrease in the complexity term on real world data sets.

The value ofk should ideally be so large that the hypothesis class associated with it includes
the most accurate pruning w.r.t. pruning data and, at the same time, as smadiséseto limit
the complexity of the remaining hypothesis class to a minimum. This trade-off issb@alve in
general, since the decision on whicto choose has to be done prior to seeing the set of pruning data.
In the following we will choosé to be somes > 1 times the number of errors the original decision
tree makes on the set of growing data. This way we take into account thtbdacthe original tree
most likely overfits the growing data set and thus has a smaller error thapecaxpected from
prunings with good generalization. The empirical experiments indicate thdt 1 is a reasonable
choice for all data sets we experimented with.

Generalization error bounds can be roughly divided into two categoiibese based on a
training set only and those requiring a separate test set (Langfd).2Qur generalization error
bounds for prunings may be seen to lie somewhere between these two exttieenbound fok-
REP being the one closer to test set bounds. We use only part of the data iedhgrdwing phase
that determines our hypothesis class. The rest—the set of pruning dataedisnly for selecting a
pruning and evaluating the generalization error bound. Thus, some ifftilmmation contained in
the pruning set may be lost as it cannot be used in the tree induction ptasever, the pruning
set is still used for the non-trivial task of selecting a good pruning, dostirae of the information
contained in it can be exploited in the final hypothesis. The pruning setsatded as a test set for
the outcome of the tree growing phase and also as a proper learning spmuiing phase.

6. Empirical Evaluation

Before reporting and discussing the results obtained in our tests, webdesite distribution-
independent bound used as comparison point to Rademacher penakatibriefly outline other
aspects of the test setting.

6.1 Test Setting for Performance Comparison

The obvious performance reference for Rademacher penalizatiomesision tree prunings is to
compare it to existing generalization error bounds. The bound of Keachd/ansour (1998) is
impossible to evaluate in practice because it requires knowing the depthzanadf she pruning

with the best generalization error. The bound presented by Mans@ar ) bnly requires knowing
the maximum size of prunings in advance and would, thus, be applicable setiing. However,

Mansour’s bound is clearly inferior to the simpler Occam’s Razor type ahtldo be introduced
next and will, hence, be excluded from the empirical comparison. Bodexsoped in the on-line
pruning setting (Helmbold and Schapire, 1997) are incomparable with th@resented in this
paper because of the different learning model. Thus, they will not bsidered here.
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The simplest—and as it turned out in our experiments, the tightest—existingatigagon
error bound which the Rademacher bound can be compared to is to oulekige an Occam’s
Razor bound (Blumer et al., 1987; Langford, 2003) that is obtained&igaing equal-length codes
to all prunings of the original decision tree. Equivalently, we assign lgoyi@ probability to all
prunings of the original tree. Since the leaf labels of the prunings arentieted by the growing
data, all that needs to be encoded is the set of those inner nodes ttrabameplaced by leaves. A
simple way to do so is to assign a bit for each of tte- 1) /2 inner nodes of d node tree telling
whether the node is pruned or not.

The simplistic code outlined above contains some redundancy as, e.g., tiregpcansisting
of a single leaf is represented b{f2b/2-1 different codewords. However, it is easy to see that
a binary tree withd nodes can have at least'2 prunings; consider, e.g., the prunings obtainable
from a balanced tree by pruning a subset of inner nodes next to thesleahus, no less than
d/4 bits will suffice if nothing but the size of the tree to be pruned is taken intowadc To find
out the optimal uniform code length given the whole tree to be pruned asampter, one would
essentially have to count the number of prunings of the tree. We are rawe af an efficient
algorithm for this task. On the other hand, using a non-uniform code lemgid introduce a bias
to the bound that is not present in our proposed bounds. Thus, ixpariements we will use the
code length approximatiod/4, giving worst-case optimistic error bounds. Plugging this into the
Chernoff Occam’s Razor bound (Langford, 2003) we get that withhalility at least 1 9,

n(h) < Ea(h) + \/In2-d/42: In(1/6)’

whered is the number of the nodes of the tree arid the size of the pruning set. This bound could
be further improved by using the exact Occam’s razor bound (Ladg2®03) instead, but we have
not tried how significant the improvement would be. Note that this bound ism#¢a@endent in the
sense that the pruning data is taken into account only through the prunamg.gh).

The error bounds based on Rademacher penalization depend on thistiddation so that their
true performance can be evaluated only empirically. In our experimentsavelgnary decision
trees using a C4.5-type decision tree algorithm distributed in the Weka pafRéigen and Frank,
1999). As a benchmark we use 15 data sets from the UCI Machine LgdReository (Blake and
Merz, 1998). In each experiment we allocate 10 percent of the datadting and split the rest to
growing and pruning sets. As the split ratio we chose 2:1 as suggestexpbgito et al. (1997). For
the generated data setb, we use 300,000 instances with 10 percent attribute noisek-Rar we
choosec=1.1, i.e.,kis 11 times the training error of the unpruned tree.

6.2 Empirical Observations

Table 1 and Figure 1 summarize the results over 10 random splits of the tatdrs&able 1 we
present the decision tree sizes before and after pruning kwiREP and Rep. Observe that the
unpruned decision trees are very large, which means that the claasnifigs may potentially be
very complex. The results indicate thaERmanages to decrease the tree sizes considerably. The
sizes ofk-REP prunings fall in many cases roughly halfway between the unprunedizearsd the

size of the P pruned tree.

Figure 1 presents the test set accuracies and error bounds b&®ademacher penalization and

Occam’s Razor. In all bounds, we et 0.01. Even though both bounds based on Rademacher
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DATA SET UNPRUNED k-REP REP

ADULT 7,507.6 3,8986 1,6006
ANNEAL 320 248 208
CENSUS 20,5134 12 3786 48194
CONNECT 13,9538 8,5838 4,2890
COVER 31,4836 253740 18 3964
ISOLET 664.8 5176 2720
KROPT 7,3174 53288 35724
LED24-10 90564.8 436894 9,0416
LETTER 2,5438 1,907.0 12924
MUSHROOM 22.8 228 220
MUSK 2248 1860 1200
NURSERY 3920 3494 3068
OPTDIGITS 4104 3198 2222
PAGE-BLOCKS 1232 856 426
PEN-DIGITS 4110 3240 2458

Table 1: Average sizes of trees over 10 random splits of the data sets.

penalization clearly overshoot the test set accuracies, they still pr@adenable estimates in many
cases. Note that in the multi-class settings even error bounds abovec&dtpae non-trivial.

Both bounding methods, the one based on Rademacher penalties and blasethen Occam’s
Razor, outperform the other on a number of data sets; there seems tochEmanoverall winner.
Notably, in many cases the difference between the better and worse methoik imrge. On large
data sets, the Rademacher bounds are consistently better; the comlésdehthe small sets. The
small amount of data blows up the hypothesis class independentigm) to the extent that it
starts to dominate the actual Rademacher penalty. The Occam’s Razoriboleatly better when
the unpruned tree is small, since this situation keeps the penalty term relateddeiitcontrol.

Rademacher bounds fwREP turn out to be better than theeRbound in most cases. The only
notable exception is thedD domain, where the pruning error of the best pruning is significantly
lower than that of the best restricted pruning, while the Rademacher psrfaltieoth classes are
almost the same. In€ENsuUs INCOMEthe decrease of pruning error and growth of the Rademacher
penalty cancel each other out so that the bounds for&dk-Rep are nearly equal.

We also conducted a set of experiments in order to see how the bounebeisea function af.
The results indicate that decreasuypically yields tighter bounds, but at the same time the actual
quality of the prunings obtained deterioratescagets closer to 1. In the limiting case= 1 there
is no room left for pruning, so this extreme case effectively coincides wgiihg the pruning set as
a set of test data. Increasingelaxes the restrictions on the pruning decisions and enkdRer
to find prunings with better empirical performance. The trade-off heresfgeaial case of the fact
that test error bounds are typically the tightest in practice even though alsitme data in learning
might yield a hypothesis with better generalization error. Our choiee-oi..1 seems to be a good
compromise between the tightness of the bound and the actual generalizafiomm@ance of the
obtained pruning.

The relative test performancelofREpPand RePis varied and neither method seems to be a clear
winner. Ask-REP produces larger prunings and is computationally more demanding tharitiere
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seems to be little motivation for usihgREP independently as a pruning method if error guarantees
are not called for.

Our intention has been to carry out a feasibility study of the new techniqiradémacher
penalization, rather than to aim at generalization error bounds directlicalple in the real world.
However, the bounds that were obtained on larger data sets are sometintesttign one could
have expected in advance. In the best cases the theoretical bowratdyahpproach usability as
performance guarantees of practical algorithms. Even though eveesheflihe proposed bounds
always overestimates the test error, it is never totally unrealistic. Thubaweedemonstrated that
Rademacher penalization represents a step toward the use of well-fowaihéng set bounds in
practical applications. Though, at the same time it is, unfortunately, nailpeso draw too far-
reaching positive conclusions from this study, because in the worss &esdemacher penalization
fails to deliver usable bounds and does not fare as well as the Occazts Bound on smaller data
sets.

7. Conclusion

Modern generalization error bounding techniques that take the olosdata distribution into ac-
count give far more realistic sample complexities and generalization eppooxmations than the
distribution-independent methods. We have shown how one of theségaebmnamely Rademacher
penalization, can be applied to bound the generalization error of decis®pitunings, also in the
multi-class setting. According to our empirical experiments the proposedetiedrbounds are
often tighter than distribution-independent generalization error bowrddeicision tree prunings.
However, the new bounds still appear unable to faithfully describe tHerpgance attained in prac-
tice.

As future work, we intend to carry out more thorough empirical experimemthe proposed
methods. Also, we will look for better motivated ways of tuning the value afid of determining
the proportion of learning data allocated for pruning purposes. It walslilbe interesting to extend
the two-phase generalization error analysis approach introduceddetieer hypothesis classes,
too.
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