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Abstract

Compressed sensing (CS) is a signal processing framework, which reconstructs a signal from a small set of random
measurements obtained by measurement matrices. Due to the strong randomness of measurement matrices, the
reconstruction performance is unstable. Additionally, current reconstruction algorithms are relatively independent of
the compressed sampling process and have high time complexity. To this end, a deep learning based stacked sparse
denoising autoencoder compressed sensing (SSDAE_CS) model, which mainly consists of an encoder sub-network
and a decoder sub-network, is proposed and analyzed in this paper. Instead of traditional linear measurements, a
multiple nonlinear measurements encoder sub-network is trained to obtain measurements. Meanwhile, a trained
decoder sub-network solves the CS recovery problem by learning the structure features within the training data.
Specifically, the two sub-networks are integrated into SSDAE_CS model through end-to-end training for
strengthening the connection between the two processes, and their parameters are jointly trained to improve the
overall performance of CS. Finally, experimental results demonstrate that the proposed method significantly
outperforms state-of-the-art methods in terms of reconstruction performance, time cost, and denoising ability. Most
importantly, the proposed model shows excellent reconstruction performance in the case of a few measurements.

Keywords: Compressed sensing, Stacked sparse denoising autoencoder, Deep learning, Multiple nonlinear
measurement, Signal reconstruction

1 Introduction
With the increasing demand of information process-
ing, the information sampling rate and device processing
speed of signal processing framework are also getting
higher increasingly. To reduce the cost of storage, process-
ing, and transmission of massive information, Donoho [1]
first proposed a compressed sensing (CS) method, which
merges sampling and compression steps. The traditional
method samples the data uniformly and then compresses
them. The CS method just needs to store and transmit
a few non-zero coefficients, which further reduces the
time of data acquisition and the complexity of sampling
process.
CS method has been applied successfully in many fields,

such as biomedical [2, 3], image processing [4, 5], com-
munication [6, 7] and sensor network [8, 9], but there
are still two significant challenges in the CS that need
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to be resolved. On the one hand, due to the strong ran-
domness of measurement matrix, it is difficult to realize
measurement matrix on the hardware and the recon-
struction performance is unstable. On the other hand,
current high-performance reconstruction algorithms just
take into account the recovery process while the connec-
tion with compressed sampling process is neglected.
For the former challenge, it is critical to design a suit-

able measurement matrix in the process of compressed
sampling. Generally, measurement matrices are divided
into random matrices and definite matrices. On the one
hand, Gaussian [10] and Bernoulli [11] random matri-
ces are used as the sampling matrices in most previous
works because they meet the restricted isometry property
[12] with a large probability. However, it always suffers
some problems such as high computation cost, vast stor-
age, and uncertain reconstruction qualities. On the other
hand, definite matrix had been proposed as an alterna-
tive solution to reduce the high cost problem of random
matrix, such as Toeplitz polynomial [13] and Circulant
matrice [14]. However, the reconstruction quality of the
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definite matrix is worse than a randommatrix. A gradient
descent method [15] is designed to minimize the mutual
coherence of measurement matrix, which is described
as absolute off-diagonal elements of the corresponding
Gram matrix. Gao et al. [16] designed a local structural
sampling matrix for block-based CS coding of natural
images by utilizing the local smooth property of images.
As previously mentioned, these measurement matrices
still have some disadvantages because they are not opti-
mally designed for signals, and neglect the structure of the
signals.
For the latter challenge, the most crucial work in CS

is to construct a stable reconstruction algorithm with
low computational complexity and less restriction on the
number of measurements to accurately recover signals
from measurements. According to the volume of data,
the CS reconstruction algorithms are divided into two
categories: hand-designed recovery methods and data-
driven recovery methods. Most of the existing algo-
rithms can be considered “hand-designed” in the sense
that they use some sort of expert knowledge, i.e., prior,
about the structure of x. The hand-designed methods
have three directions: convex optimization, greedy iter-
ative, and Bayesian. Convex optimization algorithms get
the approximate solution by translating the non-convex
problem into a convex one, e.g., basis pursuit denoising
(BPDN) algorithm [17], the minimization of total vari-
ation (TV) [18]. Greedy iterative algorithms approach
gradually the original signal by selecting a local opti-
mal solution in iteration, e.g., orthogonal matching pur-
suit (OMP) [19], compressive sampling matching pursuit
(CoSaMP) [20], and iterative hard thresholding (IHT)
[21]. Bayesian algorithms solve the sparse recovery prob-
lem by taking into account a prior knowledge of the sparse
signal distribution, e.g., Bayesian via Laplace Prior (BCS-
LP) [22] and Bayesian framework via Belief Propagation
(BCS-BP) [23]. Unfortunately, these algorithms are too
slow for many real-time applications and the potential
information in training data is typically underutilized
[24]. The second category is data-driven method that
builds deep learning framework to solve the CS recov-
ery problem via learning the structure within the training
data. For instance, the SDA model [25] was proposed to
recover structured signal by capturing statistical depen-
dencies between the different elements of certain signals.
Another reference [26] used RBM-OMP-like and DBN-
OMP-like CS model, which are based on restricted Boltz-
mann machines and deep belief network, respectively, to
model the prior distribution of the sparsity pattern of sig-
nals. Other work in this area used either DeepInverse
[27] based on convolutional neural network or Recon-
Net [28] based on combination of convolutional and fully
connected layers to solve the CS recovery problem. The
data-driven methods can compete with state-of-the-art

methods in terms of performance while running hundreds
of times faster compared to the hand-designed methods.
However, they need a lot of time and data to train model.
The main reason is that these previous methods only con-
sider the recovery process, ignoring the connection with
compressed sampling process.
Noting the above discussions and previous work, this

paper proposes a SSDAE_CS model based on sparse
autoencoder (SAE) [29, 30] and denoising autoencoder
(DAE) [31, 32] to solve the two important issues in
CS. This model mainly consists of an encoder sub-
network and a decoder sub-network. Given enough train-
ing data, neural network is acted as universal function
approximator to represent arbitrary functions. Thus, two
sub-networks are used to learn the mapping functions
of the compressed sampling and the recovery process,
respectively. A trained encoder sub-network, which uses
multiple nonlinear measurements and specially designs
for the type of signals, is used to obtain measure-
ments during the compressed sampling process (address-
ing problem one). Then, these traditional signal recon-
struction algorithms are replaced with a trained decoder
sub-network to recover original signals from measure-
ments. It just needs a few times matrix-vector multi-
plications and nonlinear mapping; hence, the proposed
approach reduces the time cost in the reconstruction
process. In the previous CS researches, the compres-
sion process was relatively independent of the recovery
process. For this motivation, SSDAE_CS method inte-
grates compressed sampling and recovery processes into
a deep learning network to strengthen the connection.
Through end-to-end training, the two sub-networks can
be jointly optimized to improve the overall performance
of CS, but they can also extend to different scenarios
as two independent networks (addressing problem two).
Finally, experiment results demonstrate that the proposed
model significantly outperforms state-of-the-art methods
in terms of reconstruction performance, time cost, and
denoising ability. Especially, the SSDAE_CS model shows
the excellent performance of signal reconstruction in the
case of a few measurements.
The rest of this paper is organized as follows: a deep

learning model for compressed sensing and the train-
ing method of model is presented in Section 2. Experi-
ment results for the proposed method and comparisons
with other CS reconstruction algorithms are performed
in Section 3. Finally, Section 4 includes the conclusion
of this work.

2 Methods
In this section, a deep learning CSmodel, which integrates
the advantages of denoising and sparse autoencoders
into CS theory, will be introduced in detail. The follow-
ing notations are used throughout this paper: boldfaced
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capital letters such as W for matrices, small letters such
as x are reserved for vectors and scalars, and italic small
letters such as xi denotes the ith element of the vec-
tor. W(l) and b(l) denote the weight matrix and the bias
vector associated between layer l and layer l + 1, respec-
tively. a(l) denotes the feature vector of the l hidden
layer. f (·) represents the activation function, and the sig-
moid function f (x) = 1

1+e−x is used as the activation
function.

2.1 Overall framework of SSDAE_CSmodel
This paper proposes a deep learning model named
stacked sparse denoising autoencoder compressed sens-
ing which integrates advantage of denoising and sparse
autoencoders into CS theory. The corrupted input is
trained to reconstruct the clean version through DAE.
In SAE, sparse regularization inhibits the activity of
neurons to improve the overall performance of the
model. It is similar to the human brain that a small
number of neurons are activated and most neurons
are inhibited.
As discussed above, traditional CS methods consist

of two steps including linear measurement sampling
and non-linear reconstruction algorithm. As shown in
Fig. 1, our proposed model contains two corresponding

modules: an encoder sub-network and a decoder
sub-network. Instead of traditional linear measure-
ments, a multiple nonlinear measurement encoder
sub-network is trained to obtain measurements during
the compressed sampling process. Then, these traditional
signal reconstruction algorithms are replaced with a
trained decoder sub-network to recover original signals
from measurements. The framework of the proposed
SSDAE_CS model constituting the training stage and
testing stage is illustrated in the upper part of Fig. 1. The
training stage is employed to learn a prior parameter
for encoder and decoder sub-networks. When trained
on a set of representative signal, the network learns
both a feature representation to obtain measurements
and an inverse mapping to recover signals. The goal of
training stage is to learn the optimal encoder and the
signals recovery decoder simultaneously. At the test
stage, the test set is fed into the training model to test the
performance of the model in all aspects.

2.2 Encoder and decoder sub-networks
The architecture of the SSDAE_CS model constituting
five layers is illustrated in Fig. 2. The SSDAE_CSmodel is a
deep neural network consisting of multiple layers of basic
SAE andDAE, in which the outputs of each layer are wired

Fig. 1 Comparison between traditional CS model and the proposed model
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Fig. 2 Architecture of the SSDAE_CS Layer_5 whenM = 64

to the inputs of each successive layer. It is remarkable that
the proposed model is robust to the input because it can
reconstruct the original signals from the corrupted input.
The proposed model extracts robust features by sparse
penalty term, which punishes and inhibits the larger
change in the hidden layer. In the corruption stage, the
original signals are corrupted by additive white Gaussian
noise x̃ = x + λn, where n denotes the additive Gaussian
sampling noise of zero mean and variance one, and λ

denotes the degree of the corruption of signals. In the
encoder sub-network, the signal can be compressed to M
measurements by utilizing multiple nonlinear measure-
ment method. The decoder sub-network reconstructs the
original signals from measurements by minimizing the
reconstruction error between input and output. Finally,
the two sub-networks are integrated into SSDAE_CS
model by jointly optimizing parameters to improve the
overall performance of CS.
The encoder sub-network can be represented as a deter-

ministic mapping Te(•), which transforms an input x ∈
R
dx into hidden representation space y ∈ R

dy . In the com-
pression process of traditional CS, linear measurement

y = �x is used, but linear measurements are not opti-
mal. In the SSDAE_CS model, multiple nonlinear mea-
surements are applied to obtain measurements in CS, as
shown in the encoding part of Fig. 2. It is found from [25]
that nonlinear measurements can preserve more effec-
tive information compared to traditional linear measure-
ments. The encoder consists of three layers, (a) an input
layer withN nodes, (b) the first hidden layer withK nodes,
and (c) the second hidden layer with M nodes, where
N > K > M. The first hidden feature vector is the value
of the first hidden layer, which receives the signals as its
input in Eq. (1). The final measurement vector y is the
value of the second hidden layer, which receives the first
hidden feature vector as its input in Eq. (2).

a(1) = f
(
z(1)

)
= f

(
W(1)x̃ + b(1)

)
. (1)

y = f
(
z(2)

)
= f

(
W(2)a(1) + b(2)

)

= f
(
W(2)f

(
W(1)x̃ + b(1)

)
+ b(2)

)
.

(2)
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In the SSDAE_CS model, measurements are obtained
by two matrix multiplications and nonlinear transforma-
tions, so this method is called multiple nonlinear mea-
surement method. Measurement vector y can also be
written as:

y = Te(x̃,�e), (3)

where �e = {
W(1),W(2);b(1),b(2)} denotes the set of

encoded parameters and Te(•) denotes the encoding non-
linear mapping function.
The decoder sub-network is used to map the measure-

ment vector y back to input space x ∈ R
dx by capturing

the feature representation in signal reconstruction pro-
cess. Among the traditional signal recovery algorithms,
each iteration in these greedy or iterative algorithms
includes multiple matrix-vector multiplication, which has
the computational cost. In this paper, a nonlinear map-
ping is learned from measurements y to its original
signal x by training; it just needs two matrix-vector mul-
tiplications and two nonlinear mappings. The decoder
whose nodes are symmetric with the encoder consists of
three layers: input layer with M nodes, the first hidden
layer with K nodes, and the second hidden layer with N
nodes. The decode function Eqs. (4) and (5) are used to
recover the reconstruction signals x̂ from measurement
vector y.

a(3) = f
(
z(3)

)
= f

(
W(3)y + b(3)

)
. (4)

x̂ = f
(
z(4)

)
= f

(
W(4)a(3) + b(4)

)

= f
(
W(4)f

(
W(3)y + b(3)

)
+ b(4)

)
.

(5)

The reconstruction signals x̂ can also be represented as:

x̂ = Td(y,�d), (6)

where �d = {
W(3),W(4);b(3),b(4)} denotes the set of

decoded parameters and Td(•) denotes the decoding non-
linear mapping function.

2.3 Offline training algorithm
Given enough training data, the neural networks can learn
to represent arbitrary functions as universal function
approximators. The major objective of this training phase
is to extract the structural features of signals and learn
the nonlinear mapping function of signal reconstruction.
Specifically, the encoder and decoder sub-networks are
integrated into SSDAE_CS model through end-to-end
training for strengthening the connection between the
two processes. The parameters will be updated constantly
to achieve the optimal training model by reducing the loss
function.
The SSDAE_CS model is a typical unsupervised learn-

ing model, in which the training set Dtrain has N signals
whose label is the same as the sample, i.e., Dtrain =

{(x1, x1), (x2, x2), · · · , (xn, xn)}. A trained nonlinear map-
ping Te(•) acts as the measurement matrix � to obtain
the measurements y from the original signals x, and
a trained inverse nonlinear mapping Td(•) acts as the
reconstruction algorithm to recover the reconstruction
signals x̂ from y in the proposed model. To ensure the
reconstruction signal x̂ close to the original signals x, the
squared error is set as the error function for all data, as
shown in Eq. (7):

JSDAE(W,b) = 1
N

N∑
i=1

(
1
2
||x̂i − xi||2

)

+ 1
2
α

∑
||W||2+β

∑
j=1

KL(ρ||ρ̂j).
(7)

To prevent model overfitting, the second term limits the
weight parametersWwith L2 norm as a weight decay term
that helps to penalize large weight. α denotes the strength
of the penalty term. The third term is a sparse penalty
term. ρ̂j represents the average activation value of the j-
th neuron in each batch of training set, β controls the
strength of the sparsity penalty term, and ρ denotes the
expected activation.
The train goal minimizes JSDAE(W,b) to update the

SSDAE_CS’s weights W and biases b; the detailed train-
ing process is shown in Algorithm 1. Firstly, parameters
�e and�d are randomly initialized to serve the purpose of
symmetry breaking. And then the measurement vector y
and the reconstruction signals x̂ are obtained through the
encoder and decoder sub-networks, respectively. Next,
the loss function JSDAE(W,b) is computed by Eq. (7) and

Algorithm 1 Training SSDAE_CS model
Input:

training data x = {x1, x2, x3, · · · , xn}; the number of
measurementsM;
the coefficient of noise intensity λ; sparse factor ρ.

Output:
parameters of encoder �e = {

W(1),W(2);b(1),b(2)};
measurement vector y;
parameters of decoder �d = {

W(3),W(4);b(3),b(4)};
reconstruction signals x̂.

1: Randomly initialize �e and �d.
2: for i = 1 to k do
3: Measurement vector y = Te(x̃,�e).
4: Reconstruction signals x̂ = Td(y,�d).
5: Compute loss JSDAE(W,b).
6: Optimize JSDAE(W,b) by Eqs. (8) and (9).
7: Update �e and �d.
8: end for
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batch gradient descent algorithm is performed to compute
the gradients and update �e and �d. Each iteration of the
gradient descent method updates the parameters W and
b by Eqs. (8) and (9), respectively.

W(l)
ij := W(l)

ij − α
∂

∂W(l)
ij
JSDAE(W,b), (8)

b(l)
i := b(l)

i − α
∂

∂b(l)
i
JSDAE(W,b), (9)

where α is the learning rate. Computing the partial deriva-
tives is the key thing in this process. The partial derivative
is given by the back-propagation algorithm:

∂

∂W(l)
ij
JSDAE(W,b)= 1

n

n∑
k=1

∂JSDAE(W,b; xk , yk)
∂W(l)

ij
=
1
n

n∑
k=1

a(l)
j

[
δ
(l+1)
i + β

(
− ρ

ρ̂i
+ 1 − ρ

1 − ρ̂i

)
f ′ (z(l+1)

i

)]
+ αW(l)

ij ,

(10)

∂

∂b(l)
i
JSDAE(W,b) = 1

n

n∑
k=1

∂JSDAE(W,b; xk , yk)
∂b(l)

i
= 1

n
n∑

k=1

[
δ
(l+1)
i + β

(
− ρ

ρ̂i
+ 1 − ρ

1 − ρ̂i

)
f ′ (z(l+1)

i

)]
,

(11)

where δ
(l)
i =

(
∑
j=1

W(l)
ji δ

(l+1)
j + β

(
− ρ

ρ̂i
+ 1−ρ

1−ρ̂i

))
f ′

(
z(l+1)
i

)

denotes error term of node i in layer l, and n denotes the
number of training samples.

3 Results and discussion
In this section, a series of experiments are made to
evaluate the performance of the SSDAE_CS model. In
the first part, performance indicator is introduced and
the MNIST dataset is used for training and testing.
Then, the detailed experimental results are given in the
final part.

3.1 Dataset and performance indicators
The MNIST dataset, which contains 70,000 grayscale
images of handwritten digits of size N = 28 × 28, is
employed for the experiments. The dataset is divided into
55,000 samples for training, 5000 samples for validation,

and 10,000 samples for testing. K denotes the number of
non-zero entries in a grayscale image. It can be seen from
Table 1 that the K of most grayscale images is concen-
trated in the range of 100–200. It shows from average that
the number of non-zero items is about 19% of the total in a
grayscale image. The handwritten digit images are almost
sparse in the spatial domain; therefore, the sparse repre-
sentation of CS is not necessary or 
 = I, where I is the
unit matrix.
Peak signal-to-noise ratio (PSNR), which is based on

the error between the corresponding pixel points, is often
used as a performance indicator to evaluate signal recon-
struction quality in the field of image compression. The
PSNR is defined as:

PSNR(dB)=10log10
peakval2

MSE
, (12)

where peakval is either specified by the user or taken
from the range of the image data type (e.g., for unit
image it is 255). Mean square error (MSE) is defined as

MSE = 1
N

N∑
i=1

(x̂i − xi)2.

3.2 Results analysis
As mentioned earlier, one of the main goals recovers
signals from undersampled measurements. To verify the
impact of the parameters, a series of experiments are
examined for finding the best parameter settings. The
motivation of these experiments is to prevent parameter
estimation errors from propagating into the reconstruc-
tion model during training. Set the number of model
layers from L = 3 to L = 9 for verifying the effect of
the number of model layers on the experimental results.
The number of neuron nodes per layer is set as follows:
the number of nodes in input layer and output layer is
784 (28 × 28) and the number of measurements ranges
from 8 to 512, so the neuron nodes are set to 784, 8–
512, 784 in the three-layer network; the neuron nodes are
set to 784, 512, 8–512, 512, 784 in the five-layer network,
respectively; the neuron nodes are set to 784, 512, 256,
8–512, 256, 512, 784 in the seven-layer network, respec-
tively; and the neuron nodes are set to 784, 512, 512,
256, 8–512, 256, 512, 512, 784 in the nine-layer network,
respectively.
Figure 3 reveals that the reconstruction performance is

not effectively improved when the number of model lay-
ers L > 5. This is because the loss function converges

Table 1 The distribution of non-zero entries in the MNIST dataset

K 0–50 51–100 101–150 151–200 201–250 251–784 Total Average

Training set 75 6661 21,204 20,821 5717 522 55,000 149.93

Validation set 5 607 1918 1905 533 32 5000 149.63

Testing set 13 1163 3770 3942 996 116 10,000 151.12
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Fig. 3 The experimental results of compared BAE with SSDAE_CS

to a local minimum value rather than a global optimal
value as the number of hidden layers increases. Therefore,
a SSDAE_CS with five layers is selected as optimal testing
model. The mean PSNR of SSDAE_CS is higher than that
of basic autoencoder (BAE) without sparsity penalty term,
as shown in Fig. 3. And it proves that sparse penalty term
improves themodel performance by inhibiting the activity
of neurons.

To find the optimal sparse factor, different values ρ

are tested on SSDAE_CS model with different layers.
Figure 4 shows the variation tendency of mean PSNR with
sparse factor of hidden units. Experiments show that the
model achieves optimal performance when sparse factor
ρ = 0.005.
Additionally, a series of comparative experiments have

been done to evaluate the performance of the proposed

Fig. 4 The variation tendency of mean PSNR with different sparse factor
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algorithm in the reconstruction quality and time com-
plexity. Four comparative algorithms are selected from
the two categories of reconstruction algorithms: BPDN
[17] and OMP [19] based on hand-designed recovery
method; DBN-OMP-like and RBM-OMP-like [26] based
on data-driven recovery method.
Figure 5 illustrates the variation tendency of mean

PSNR of the proposed method and others; it can
be clearly seen that the reconstruction performance
of the proposed model is significantly better than
other algorithms. Firstly, the proposed model not only
require fewer measurements than conventional OMP and
BPDN to achieve stable recovery but also attain higher
mean PSNR values for the entire range of measure-
ments. The main reason for this problem is that the
SSDAE_CSmodel can obtain an optimal function approx-
imator (decoder) by capturing the structural features of
training signals in the training process. However, the
reconstructed object is a signal in OMP and BPDN,
not a batch of signals. Once the signal loses too much
information during the compression process, OMP and
BPDN cannot reconstruct the signal or the quality
of reconstruction is poor. Then, Fig. 5 displays that
the reconstruction performance of DBN-OMP-like and
RBM-OMP-like, which are based on data-driven recov-
ery method, are significantly better than OMP and BPDN.
However, the SSDAE_CS model attains higher PSNR
values in the range of measurements M < 350 and
requires fewer measurements to achieve stable recovery
than DBN-OMP-like and RBM-OMP-like. The recon-
struction performance of SSDAE_CS is slightly lower
than that of DBN-OMP-like and RBM-OMP-like when

M > 350. The reason for this result is that DBN-
OMP-like and RBM-OMP-like use the traditional linear
measurement matrix method in the compressed sampling
process. Furthermore, they relatively tear the intrinsic
relationship between compressed sampling and signal
reconstruction. However, the SSDAE_CS model adopts
multiple nonlinear measurement methods to preserve
more effective information in the compressed sampling
process. Through end-to-end training, compressed sam-
pling and signal reconstruction process are perfectly inte-
grated into the proposed model to improve the overall
performance of CS.
Table 2 compares the running time of the decoder net

of SSDAE_CS with other CS recovery algorithms. The
reconstruction time of SSDAE_CS is an order of mag-
nitude faster than OMP and BPND. The main reason
for this problem is that SSDAE_CS needs to consider
the reconstruction of a batch of signals, but the sig-
nal is gradually reconstructed one by one in OMP and
BPDN. And the decoder sub-network of SSDAE_CS just
needs two matrix-vector multiplications and two nonlin-
ear mappings while other CS recovery algorithms need
hundreds of iterations which include multiple matrix-
vector multiplications. More precisely, the five-layer
SSDAE_CS model requires from 812,824 to 1,329,424
parameters. Although the SSDAE_CS model takes a
lot of time to train parameters, the SSDAE_CS model
is still very attractive when dealing with large num-
bers of signals. The SSDAE_CS model spends less time
than the RBM-OMP-like and DBN-OMP-like model in
the reconstruction process. The reason for this result
is that the RBM-OMP-like model requires 4,924,304

Fig. 5 Evaluation of the reconstruction performance of the MNIST dataset in different reconstruction algorithms
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Table 2 Average reconstruction time of MNIST testing set for differentM and reconstruction algorithms

M 8 1 6 3 2 64 128 256 512

Reconstruction time(s) OMP -a - - - - 0.41 0.74

BPDN - - - - - 5.54 4.89

DBN-OMP-like - - - - - 0.03 0.04

RBM-OMP-like - - - - - 0.04 0.04

SSDAE_CS 0.01 0.01 0.01 0.01 0.01 0.01 0.01

a“-” denotes that the signal cannot be recovered or the mean PSNR is less than 10 (dB)

parameters and the DBN-OMP-like model only requires
1,847,104 parameters. RBM-OMP-like, DBN-OMP-like,
and SSDAE_CS model use neural networks to learn how
to best use the structure within the data, so they are still
in the same order of magnitude.
Finally, some experiments have also been made to

prove that the proposed model is stable and has a
strong denoising ability. In Fig. 6, visual evaluation of a
reconstructed test image using the proposed CS model
is presented. In the experiments, the white Gaussian
noise is added to the training and testing sets and the
SSDAE_CS model with different layers are retrained for
experimental comparison. Figure 7 shows the tendency
of the mean PSNR with the number of measurements in
SSDAE_CSmodel. It can be seen from Fig. 7 that themean
PSNR of the noisy SSDAE_CS model is 3–5 dB lower
than themodel without noise. To verify the effect of differ-
ent coefficient noises on the signal reconstruction process
of SSDAE_CS model, the comparative experiments are

performed when the number of measurements isM = 64,
and the results are shown in Fig. 8.

4 Conclusions
In this paper, to solve the twomost important issues in CS,
a SSDAE_CS model has been developed, which contains
two sub-networks: an encoder sub-network and a decoder
sub-network, respectively, used for compressed sampling
and signal recovery. The two sub-networks are integrated
into SSDAE_CS model by jointly training parameters to
improve the overall performance of CS, but they can be
applied to different scenarios as two independent individ-
uals. It is found from simulations that the proposed model
requires less the number of measurements to achieve suc-
cessful reconstruction than other CS reconstruction algo-
rithms, and has a good denoising performance, especially
in the case of a fewmeasurements, the performance of the
proposed model is better than other methods. In run time
of signal reconstructions, the SSDAE_CS model is also

Fig. 6 Visual evaluation of the SSDAE_CS Layer_5 when λ=0.1
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Fig. 7 The variation tendency of mean PSNR in testing set when λ=0.1

faster than other signal recovery algorithms. Consider-
ing reconstruction performance, time cost, and denoising
ability, the proposed model has a strong attraction for the
recovery problems of a large number of signals.
The above paragraph summarizes the advantages of

our work, but there are still shortcomings in our work,
mainly focusing on accurately reconstructing signals with
a few measurements, which requires lots of time and data
for training. In further work, transfer learning, which is

a convenient alternative for leveraging existing models
and updating them on smaller computational platforms
and target data sets [33], could be taken into account to
address this issue. Additionally, there still exist some com-
pressed sensing problems of big-size nature images; it is
worthy to develop convolutional method [34] for sense
images, so as to reduce the memory of measurement
matrix. Last but not least, residual learning [35] could also
be introduced to further increase the depth of network.

Fig. 8 The mean PSNR for different coefficient in the testing dataset whenM = 64
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