
RESEARCH Open Access

RIDE: real-time massive image processing
platform on distributed environment
Yoon-Ki Kim, Yongsung Kim and Chang-Sung Jeong*

Abstract

As the demand for real-time data processing increases, a high-speed processing platform for large-scale stream data
becomes necessary. For fast processing large-scale stream data, it is essential to use multiple distributed nodes. So far,
there have been few studies on real-time massive image processing through efficient management and allocation of
heterogeneous resources for various user-specified nodes on distributed environments. In this paper, we shall present a
new platform called RIDE (Real-time massive Image processing platform on Distributed Environment) which efficiently
allocates resources and executes load balancing according to the amount of stream data on distributed environments. It
minimizes communication overhead by using a parallel processing strategy which handles the stream data considering
both coarse-grained and fine-grained parallelism simultaneously. Coarse-grained parallelism is achieved by the automatic
allocation of input streams onto partitions of broker buffer each processed by its corresponding worker node, and
maximized by adaptive resource management which adjusts the number of worker nodes in a group according to the
frame rate in real time. Fine-grained parallelism is achieved by parallel processing of task on each worker node and
maximized by allocating heterogeneous resources such as GPU and embedded machines appropriately. Moreover, it
provides a scheme of application topology which has a great advantage for higher performance by configuring the
worker nodes of each stage using adaptive heterogeneous resource management. Finally, it supports dynamic fault
tolerance for real-time image processing through the coordination between components in our system.

Keywords: Real-time, Image processing, Distributed and parallel processing, Heterogeneous computing

1 Introduction
Today, data generated in real time, such as CCTV
images, web logs, satellite images, and stock data, is
increasing in volume, and there is a need to process
large-scale data rapidly. Distributed processing technolo-
gies such as Hadoop [1] using multiple nodes have been
developed to process large-scale data. It has become
popular, due to its Mapreduce model using the Hadoop
Distributed File System (HDFS) [2] and automatic data
management. However, Hadoop is designed for batch
processing. That means, Hadoop takes a large dataset in
input all at once, process it, and write a large output.
The concept of Mapreduce is geared toward batch but
not real-time.
Some frameworks adopt the micro batch processing

on Mapreduce model for real-time processing [3, 4]
which performs the map and reduce operation many
times whenever input data occurs in real time. It is a

special case of batch processing when the batch size is
small. It can simply process real-time streams using
existing Mapreduce models. However, it is even less
time-sensitive than near real-time. Generally, batch pro-
cessing involves three separate processes such as data
collection, map, and reduce. For this reason, it could
incur latency costs when processing large-scale images.
There is another approach for stream data processing,

Storm [5] which is a representative framework of
real-time distributed processing. It is a task parallel con-
tinuous computational engine. It defines its workflows in
DAG (directed acyclic graphs) called topologies. These
topologies run until shutdown by the user or encounte-
ring an unrecoverable failure. There has been an attempt
on Storm for distributed processing of stream images in
real time [6]. However, it has a problem of processing
speed degradation due to assignment of excessive over-
lapping areas for each image among distributed nodes.
Moreover, Storm does not support the management and
allocation of heterogeneous resources considering the* Correspondence: csjeong@korea.ac.kr

Department of Electrical Engineering, Korea University, Seoul, Korea

EURASIP Journal on Image
and Video Processing

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39
https://doi.org/10.1186/s13640-018-0279-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0279-5&domain=pdf
http://orcid.org/0000-0001-9654-8406
mailto:csjeong@korea.ac.kr
http://creativecommons.org/licenses/by/4.0/

performance of each resource for real-time image
processing.
The aforementioned distributed processing systems

exploit high-speed processing technology for massive
repetitive operations of simple task. They use a
coarse-grained parallelism, allowing distributed nodes to
concurrently process the largely divided task assigned to
them. However, they can only achieve the maximum
performance when there is no data dependency between
the tasks. Therefore, they are not proper for image pro-
cessing applications with large data dependency within
each image.
Also, there have been attempts to process the massive

stream data such as satellite image using a GPU acceler-
ator on single node [7–11]. GPU-based image processing
showed better performance than CPU based one. It uses
fine-grained parallelism on single node, allowing single
node to process the finely divided tasks. However, the
higher speed stream images are generated, the more un-
processed images are accumulated, which leads to sharp
increase in latency.
In this paper, we shall present a new platform called

Real-time massive Image processing platform on distrib-
uted Environment (RIDE) which can process real-time
massive image stream on distributed parallel environment
efficiently by providing a multilayered system architecture
which supports both coarse-grained and fine-grained
parallelisms simultaneously in order to minimize the com-
munication overhead between the tasks on distributed
nodes. Coarse-grained parallelism is achieved by the
automatic allocation of input streams onto partitions each
processed by its corresponding worker node, and maxi-
mized by adaptive resource management which adjusts
the number of worker nodes in a group according to the
frame rate in real time. Fine-grained parallelism is
achieved by parallel processing of task on each worker
node and maximized by allocating heterogeneous
resources such as GPU and embedded machine appropri-
ately. RIDE provides a user friendly programming
environment by supporting coarse-grained parallelism
automatically by the system while the users only need to
consider fine-grained parallelism by careful parallel pro-
gramming on multicore or GPU. For real-time massive
stream image processing, we design a distributed buffer
system based on Kafka [12] which enables each of distri-
buted nodes to access and process the buffered image in
parallel [13], improving its overall performance sharply.
Besides, it supports dynamic allocation of partitions to
worker nodes which maximizes the throughput by
preventing worker nodes from being idle. Moreover, it
provides a scheme of application topology which has a
great advantage for higher performance by configuring the
worker nodes of each stage using the adaptive heteroge-
neous resource management. Finally, it supports dynamic

fault tolerance for real-time image processing through the
coordination between components in our system.
The rest of the paper is organized as follows: In section

2, we give an overview about our system, In section 3, we
explain about the main methods of RIDE, and then, in
section 4, we present a system architecture for RIDE. In
section 5, we describe about the experimental result and
discussion about RIDE. Finally, section 6 summarizes the
conclusion of our research.

2 System overview
RIDE is designed as a system suitable for processing
large-scale stream image such as satellite, CCTV, and
drone images in real time. It can receive and process
data from multiple channels of real-time sensors or
cameras. Its architecture consists of four layers: user
interface, master, buffer, and worker as shown in Fig. 1.
In the application layer, the user creates an application
for massive image processing and submits it to the mas-
ter layer. In the master layer, the master node allocates
broker and worker nodes in buffer and worker layers
respectively and then distributes stream images onto
partitions in broker nodes. Finally, it divides the applica-
tion into tasks, and assigns them to worker nodes each
processing one partition in buffer layer.
The buffer layer consists of several topics, each of

which stores real-time images which are distributed onto
multiple partitions residing in the single or distributed
broker nodes based on the file system using Kafka. Each
topic consists of multiple partitions coming from the
same source, and each of multiple partitions in the topic
is processed by a single worker so that multiple parti-
tions can be processed simultaneously by several
workers as shown in Fig. 2.
The worker layer is made up of worker nodes each of

which executes the task assigned from the master layer by
accessing and processing one partition of the topic in the
buffer layer. We can achieve coarse-grained parallelism by
making each worker node work on the different partition
in the same topic simultaneously, while improving
fine-grained parallelism by further dividing the image into
sub-images each being processed on heterogeneous re-
sources such as GPU and multicores in each worker node.

3 Methods
In this section, we shall describe several methods of our
system RIDE: hybrid parallelism, adaptive heterogeneous
dynamic resource management, application topology,
and fault tolerance.

3.1 Hybrid parallelism
The previous distributed processing systems based on
Hadoop divide input data into a block of HDFS and
push them into the worker nodes [1–4]. In this case, the

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 2 of 13

Fig. 1 System overview of RIDE

Fig. 2 Partitioning of input stream for multiple nodes processing

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 3 of 13

input data is divided into the same size regardless of the
user application. Therefore, when processing an image,
it is divided into blocks of predefined size, and they may
be transmitted to different nodes. Due to the nature of
image processing, one frame is represented by a matrix
or vector, and the most of operations required for image
processing have dependencies within the same matrix.
Thus, in case dependent data may be distributed to dif-
ferent nodes, there arises large overhead due to frequent
communication between distributed nodes. Therefore,
the previous distributed processing systems based on
Hadoop cannot efficiently support coarse-grained paral-
lelism for image processing applications due to the data
dependency between the partitioned data. Figure 3
shows the characteristics of the previous systems based
on HDFS.
RIDE supports coarse-grained parallelism by distribut-

ing each whole frame into one of multiple partitions
within topic without no division based on Kafka buffer
system. Since each worker node accesses one partition
each consisting of non-partitioned frames, it can effi-
ciently perform coarse-grained data parallel processing
without communication overhead.

After importing the data from the partition, each
worker node performs the fined grained parallelism on
multicores or GPU. Therefore, RIDE efficiently supports
coarse- and fine-grained parallelisms simultaneously by
distributing frames to each worker node and then pro-
cessing them on multicore or GPU. The former is
achieved by the automatic allocation of partitions to
each worker node, while the latter by parallel processing
of each partition on each worker node using multicores
or GPU. Since coarse-grained parallelism is automatic-
ally supported by the system, the users only need to
consider fine-grained parallelism by careful parallel pro-
gramming on multicore or GPU. These characteristics
are shown in Fig. 4 below.

3.2 Adaptive heterogeneous dynamic resource
management
RIDE maximizes hybrid parallelism by supporting the
following three types of resource management schemes:

Adaptive resource management: The number of
processing nodes can be flexibly adjusted considering
the amount of image frames generated in real time.

Fig. 3 Data partitioning on HDFS

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 4 of 13

User can set up a group of multiple worker nodes each
of which processes the same task. As shown in Fig. 5,
several workers can be grouped together by user, and
each group is assigned the same task. Each worker in a
group is mapped to one distinct partition and granted
its ownership. Then, each worker can only access the
partition with its ownership. Therefore, user can
achieve coarse-grained parallelism by adaptive resource
management which adjusts the number of worker
nodes in a group according to the frame rate in real
time.
Heterogeneous resource management: User can
maximize the fine-grained parallelism of image pro-
cessing task given to a group by allocating heteroge-
neous resources in each worker node of the group.
According to the type of task, user can choose the
optimal memory capacity, the number of CPU cores
and/or GPU. For example, in case the task contains
many conditional and branching statements, multi-
core may be advantageous over GPU, and hence, the
workers in the group may be configured into multi-
cores for higher performance, while in case the task
requires high processing power, they may be config-
ured into GPUs.

Dynamic resource management: If a worker node is
statically assigned data, each worker node can have a
different processing speed, so the total throughput is
determined by the worker node that most recently
completed the task, which may cause the overall
performance degradation. To overcome this problem,
after resource allocation, the partitions in a topic are
dynamically assigned to each node in a group.
Whenever each worker node completes the processing
of a partition assigned to it, it is allocated another
partition dynamically. The dynamic allocation of
partitions to worker nodes maximizes the throughput
by preventing worker nodes from being idle.

3.3 Application topology
In RIDE, user can define a workflow called application
topology which defines the flow of stages for image pro-
cessing job. Each stage of workflow consists of three
components: a topic of partitions, a task, and a group of
worker nodes as shown in Fig. 6. Each worker node exe-
cutes the same task to process the unique partition
assigned to it. Each stage in an application topology is a
unit of processing the task, and the whole application
topology has a great advantage for higher performance,

Fig. 4 Data partitioning on RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 5 of 13

since it may configure the worker nodes of each stage
using the adaptive heterogeneous resource management.

3.4 Fault tolerance
RIDE supports dynamic fault tolerance for real-time image
processing. Each frame from stream source is stored into

one of multiple partitions in a round-robin manner and
processed by the task in the node with the ownership over
the partition as shown in steps 1 and 2 of Fig. 7. Each frame
is stamped with ACK (Acknowledgement) after it has been
completely processed by the task in the node with the ow-
nership over the partition containing the frame.

Fig. 6 Application topology on RIDE

Fig. 5 Resource allocation on RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 6 of 13

For fault tolerance, user may request several spare
worker nodes among the remaining available resources.
Resource monitor in master node periodically checks
the status of each worker node by sending heartbeat. If
it detects the failure of a worker node, the master node
moves one of spare nodes into the working group to
which the failed node belongs to, and then deploys the
task into the new spare node with the ownership of the
partition which the failed node have processed so far at
step 3 of Fig. 7. Then, it executes the task which begins
to process the frames starting from the oldest one with
no ACK at step 4 of Fig. 7.

4 System architecture
In this section, we shall describe a system architecture of
RIDE in detail. Our resource management scheme is in-
fluenced by multilayered based architectures [14, 15]. As
shown Fig. 8, RIDE consists of four layers: application,
master, buffer, and worker layers. In application layer,
users develop applications for image processing jobs and
execute them through job management service after
assigning the proper resources by resource management
service based upon the information collected through
resource monitoring service. In the master layer, the user
defines the configuration of broker nodes and partitions
in each topic through topic manager, allocates the re-
sources for broker and worker nodes through resource
agent manager, and submits the job onto the worker
nodes through task manager. In the buffer layer, broker
nodes connect the input image stream and worker nodes

by providing the intermediate storage on Kafka buffer
system for storing the input stream into partitions each
of which in turn is processed by the corresponding
worker node. In the worker layer, multiple workers are
defined as a group in charge of processing the partitions
in a topic by executing the same task. Each worker in a
group has the ownership over one distinct partition and
executes the task over it.

4.1 User interface layer
User interface layer provides an interface for application
development, resource management service, resource
monitoring service, and job management service. Users
collect the available resource information including the
number of resources, memory capacity, and performance
via the resource monitoring service. Users request the
specification of resources necessary to execute their ap-
plication to the resource management service, which in
turn assigns the most appropriate resources based upon
the current resource information by sending the re-
source specification to the resource agent manager in
the master layer for creating the proper environment for
each allocated resource. There are two types for allo-
cated resources: broker nodes and worker nodes in the
broker layer and worker layer, respectively. For the
former, Kafka buffer system is installed automatically for
buffering the data between input stream and worker
nodes, while for the latter the necessary modules for
executing the task such as JCUDA [16]. Users submit
their application through the job management service,

Fig. 7 Fault tolerance of RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 7 of 13

which in turn asks the job submitter in the master layer
to execute it on the allocated resources. The resource
management service exploits adaptive resource manage-
ment which adjusts the number of worker nodes in a
group according to the frame rate in real time.

4.2 Master layer
Master Layer is responsible for resource management,
application deployment, execution and fault tolerance.
Resource requester in the master layer asks the resource
agent manager to allocate the proper resources for bro-
ker nodes and worker nodes based on the information
about resource specification received from the user
interface layer and to create resource agent, resource
status monitor, task agent, and task executor in each of
broker and worker nodes in the buffer and worker
layers, respectively. The resource agent manger creates
resource controllers in the master layer each of which is
connected to one of broker and worker nodes and in
charge of its life cycle and status monitoring through the
resource agent and resource status monitor, respectively.

The task manager creates and manages task controller
in the master layer each of which is connected to one of
broker and worker nodes and in charge of deploying and
executing the task through the task agent and task ex-
ecutor, respectively. The topic manager creates the topic
controller in the master layer each of which is connected
to one of broker nodes and controls the lifecycle of
topics and the configuration of partitions in the buffer
layer. The job submitter requests the task controller in
the task manager to execute the Kafka buffer system
through the task executor in broker nodes, and the topic
controller in the topic manager requests the Kafka buffer
system to create each topic and its partitions in the
buffer layer according to the application configuration
received from the user interface layer.
Meanwhile, the job submitter asks the task controller

in the task manager to deploy the task onto each
allocated worker node through the task agent and then
execute it through the task executor in the worker layer
automatically. The resource monitor collects informa-
tion about the status of nodes through the resource

Fig. 8 RIDE architecture

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 8 of 13

controller interacting with the resource status monitor
and transfers the current status to users via the resource
monitoring service in the user interface layer.

4.3 Buffer layer
The buffer layer serves as a temporary repository be-
tween input image stream and worker nodes. It consists
of several broker nodes each storing input stream data
which are processed by worker nodes. Broker nodes in
the buffer layer are allocated, and Kafka buffer system is
automatically installed in broker nodes by the resource
agent manager in the master layer. Whenever a broker
node is allocated, the resource agent manager creates a
resource controller within itself to manage the life cycle
of a broker node through the resource agent in broker
node. After the Kafka buffer system is being activated by
the task manager, it creates topics and partitions in each
topic onto broker nodes by the command issued from
the topic manager according to the application

configuration and transfers input images to the parti-
tions in the buffer of the broker node in round-robin
manner for load balancing.

4.4 Worker layer
Worker Layer consists of several worker nodes each
with the resource agent, resource status monitor, task
agent, and task executor. The resource agent is in charge
of the lifecycle of a worker node, and the resource status
monitor periodically sends the available resource states
and heartbeat to the resource monitor in the master
layer for fault tolerance and resource information. The
task agent deploys the task, and the task executor exe-
cutes it on heterogeneous resource such as multicores
or GPUs after receiving the corresponding command
from the task controller in the master layer. Each task
allocated in the worker node is mapped to one unique
partition in a topic and has the ownership over it ac-
cording to the preconfigured information received from
the topic manager. It fetches data by accessing the

Table 1 System specifications for experiments

Type CPU RAM Accelerator The number of nodes Remarks

Master Duo
E8400
3.00 GHz

4GB N/A 1

Worker Quad
i7-7700

16GB GTX1070
8GB

6

Broker Duo
E6750
2.66 GHz

4GB N/A 3 HDD 3T

Streaming source node Quad
i5-3570
3.40 GHz

12GB N/A 1 30 fps
streaming

N/A not applicable

Fig. 9 Comparison of parallelizing performance on two modes of RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 9 of 13

partition with ownership and process it on single or
multiple heterogeneous resources.

5 Experimental results and discussion
Our experiment environment for RIDE is constructed as
a cluster of nodes: a stream node, a master node, three
broker nodes, and six worker nodes. Table 1 shows the
specifications of our system environment used to evalu-
ate RIDE. A worker node has two types of resource
mode: CPU-only mode and heterogeneous mode using
CPU and GPU. Input images are transferred to the parti-
tions in the buffer of the broker node at 30 fps in a
round-robin manner for load balancing. Since all the
stream data used in the experiments are generated only
for the processing time measurement, randomly
generated dummy data are used. For the validity of
experimentation, stream data of various resolutions are
generated.
First, we evaluate the performance of four image

processing applications on CPU only mode and

heterogeneous mode using GPU respectively on RIDE:
standard deviation filter [17], surf [18], matrix multipli-
cation [19], and FFT [20]. Figure 9 shows the execution
time of four applications for 24,160 × 25,720 resolution
input images after storing them in the topic of three
broker nodes. It shows that heterogeneous mode has
much better performance over CPU-only mode. Also,
our system can prevent the problem of processing speed
degradation as in Storm due to the communication
overhead arising [6] from the assignment of partitioned
sub-images among distributed nodes by each worker
node working on the whole image frame in the partition
of a topic.
Second, we evaluate the performance of standard devi-

ation filter on CPU-only mode and heterogeneous mode
using GPU with respect to the number of worker nodes
on RIDE in Figs. 10 and 11 respectively. Figures 10 and
11 show the execution time for processing 1000 input
images each with variable resolutions 900 × 900, 1600 ×
1600, and 2500 × 2500 while increasing the number of

Fig. 10 Performance comparison of CPU resource with respect to the number of nodes on RIDE

Fig. 11 Performance comparison of GPU resource with respect to the number of node on RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 10 of 13

worker nodes after storing input images in three broker
nodes. Each worker node is mapped onto one partition,
that is, the number of partitions is identical to that of
worker nodes. They show that the total execution time
decreases as the number of resources increases, but the
overall efficiency is maximized due the low communica-
tion overhead when the number of worker nodes is
identical to that of the broker nodes, since a broker node
is mainly in charge of only one worker node.
Third, we evaluate the dynamic node scalability of

RIDE when increasing the number of worker nodes dur-
ing standard deviation filter processing without system
shutdown for the input stream generated at 30 fps. Input
stream resolution is 900 × 900. Initially, each of three
broker node has one partition which is processed by one
of three worker nodes. In Fig. 12, the red line indicates
the amount of unprocessed stream data so far after gen-
erated in real time, and the light blue line indicates the
amount of processed stream data by worker nodes.
Stream image data is not processed for 45 s after start of
input stream generation. At 45 s, one worker node starts
to process the frames with processing speed of 3.4
frames per second. After 80 s, two worker nodes process
the frames with processing speed of 7.8 frames per
second. After 120 s, three nodes process the stream data
with processing speed of 11.89 frames per second.

During period between 45 and 80 s, the amount of
unprocessed data increases, since the rate of incoming
input stream data is much greater than that of process-
ing data. During the period between 80 and 120 s, the
amount of unprocessed data begins to decrease with the
rate of incoming input stream data being smaller than
that of processing data. During the period between 120
and 180 s, the amount of unprocessed data decreases
sharply with the rate of processing data becoming much
greater than that of incoming input stream data. That is,
as shown in Fig. 12, the red line falls down sharply, and
the slope of light blue line gets higher. Stream data is
generated until up to 167 s, and all the data is processed
about at 180 s with the red line converging to zero.
Figure 12 shows that as the number of nodes increases
dynamically during real-time image processing, we can
achieve coarse-grained parallelism more efficiently.
Finally, we experiment the fault tolerance in order to

show whether it is possible to recover by using the avail-
able spare nodes when fault occurs by forcibly removing
some worker nodes during standard deviation filter pro-
cessing. We use input stream of 900 × 900 resolutions.
In Fig. 13, the blue line represents the amount of
generated stream data while the light blue line the
amount of processed stream data. At 45 s, one
worker node starts to process data, and after 80 s,

Fig. 12 Performance of dynamic node scalability

Fig. 13 Dynamic fault tolerance on RIDE

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 11 of 13

three worker nodes simultaneously process the data.
After fault occurs at two worker nodes at 110 s, it is
detected and recovered by replacing them with two
other spare worker nodes. Figure 13 shows that im-
mediately after the failure of the nodes, the process-
ing speed is 3.1 frames per second, but it is
recovered to 11.3 frames per second within 10 s.

6 Conclusions
In this paper, we have presented a new platform called
RIDE which can process real-time massive image stream
on distributed environment efficiently by providing a
multilayered system architecture which can support
coarse- and fine-grained parallelisms simultaneously in
order to minimize the communication overhead between
the tasks on distributed nodes. Coarse-grained parallel-
ism is achieved by the automatic allocation of input
streams onto partitions in the broker layer each proc-
essed by its corresponding worker node, and maximized
by adaptive resource management which adjusts the
number of worker nodes in a group according to the
frame rate in real time. Fine-grained parallelism is
achieved by parallel processing of task on each worker
node and maximized by allocating heterogeneous
resources such as GPU and embedded machine appro-
priately. For real-time massive stream image processing,
we design a distributed buffer system based on Kafka
which enables each of distributed nodes to access and
process the buffered image in parallel, improving its
overall performance sharply. Also, RIDE provides a user
friendly programming environment by supporting
coarse-grained parallelism automatically by the system
while the users only need to consider fine-grained paral-
lelism by careful parallel programming on multicore or
GPU. Besides, it supports dynamic allocation of parti-
tions to worker nodes which maximizes the throughput
by preventing worker nodes from being idle. Moreover,
it provides a scheme of application topology which has a
great advantage for higher performance by configuring
the worker nodes of each stage using the adaptive het-
erogeneous resource management. Finally, it supports
dynamic fault tolerance for real-time image processing
through the coordination between components in the
master layer and worker layer (Fig. 13).
Our system can be efficiently exploited as a distributed

parallel image processing platform for processing
large-scale real-time image stream data based on deep
learning model, since our system architecture for imple-
menting coarse-grained and fine-grained parallelisms
can be directly used for real-time image processing using
deep learning based model. Also, we believe that our
system can be efficiently used as distributed parallel plat-
form for other AI areas for processing big data such as

natural language processing for fake news detection,
chat bot, robotics, and game.

Abbreviations
ACK: Acknowledgement; DAG: Directed Acyclic Graphs; FFT: Fast Fourier
Transform; HDFS: The Hadoop Distributed File System; RIDE: Real-Time
Massive Image Processing Platform on Distributed Environment

Funding
This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (2017R1D1A1B03035461), the Brain Korea 21 Plus Project in 2018,
and the Institute for Information & communications Technology
Promotion(IITP) grant funded by the Korean government (MSIP) (No. 2018-0-
00739, Deep learning-based natural language contents evaluation technology
for detecting fake news).

Availability of data and materials
All data is included in the manuscript.

Authors’ contributions
Y-KK presented the main idea and designed and developed the system. YSK
provided the experimental data and conducted the experiments. C-SJ is a
project director for the researches on the topic of the paper, designed the
overall system architecture, and edited the manuscript. All authors discuss
and revise the manuscripts. All authors read and approved the final
manuscript.

Authors’ information
Yoon-Ki Kim is currently working toward the Ph. D. degree in Electronic and
Computer Engineering at the Korea University. His research interests include
high -performance computing, real-time distributed, and parallel data
processing for IoT, Sensor data processing.
Yongsung Kim received the M.S. degree in Electrical and Computer
Engineering from the Korea University, Seoul, Korea, in 2013. He is a Ph. D.
student in School of Electrical Engineering from the Korea University, Seoul,
Korea. His current research interests include educational technology,
e-learning system, machine learning, and semantic web application in
education.
Chang-Sung Jeong is a professor at the Department of Electrical Engineering
at Korea University. Before joining Korea University in 1992, he was a
professor at POSTECH during 1982–1992. He was on editorial board for
Journal of Parallel Algorithms and Application in 1992–2002. Also, he was a
chair of IEEE Seoul Section and has been working as a chairman of
Computer Chapter at Seoul Section of IEEE region 10. He was a chairman of
EE department in Korea University and a leader of BK21 project. His research
interests include distributed parallel computing, cloud computing,
networked virtual environment, and distributed parallel deep learning for
real-time image processing and visualization.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 15 January 2018 Accepted: 17 May 2018

References
1. D Jeffrey, S Ghemawat, MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1), 107–113 (2008)
2. K Shvachko, H Kuang, S Radia, R Chansler, The Hadoop Distributed File

System. IEEE 26th Symposium in Mass Storage Systems and Technologies
(2010), pp. 1–10

3. Condie, Tyson, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled
Elmeleegy and Russell Sears, MapReduce online. In Proceedings of NSDI.
10(4), 20(2010)

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 12 of 13

4. M Zaharia, M Chowdhury, T Das, A Dave, J Ma, M McCauley, MJ Franklin, S
Shenker, I Stoica, in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation. Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing (2012), p. 2

5. A Toshniwal, S Taneja, A Shukla, K Ramasamy, JM Patel, S Kulkarni, J Jackson,
et al., in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data. Storm@ twitter (2014), pp. 147–156

6. D-H Hwang, Y-K Kim, C-S Jeong, Real-Time Pedestrian Detection Using Apache
Storm in a Distributed Environment. Seventh International Conference on
Networks & Communications (2010), pp. 211–218

7. L Fang, M Wang, D Li, J Pan, CPU/GPU near real-time preprocessing for ZY-
3 satellite images: relative radiometric correction, MTF compensation, and
geocorrection. ISPRS J. Photogramm. Remote Sens. 87, 229–240 (2014)

8. L Fang, M Wang, D Li, J Pan, MOC-based parallel preprocessing of ZY-3
satellite images. IEEE Geosci. Remote Sens. Lett. 12(2), 419–423 (2015)

9. Y Ma, L Chen, P Liu, L Ke, Parallel programing templates for remote sensing
image processing on GPU architectures: design and implementation.
Computing 98(1-2), no. 7–no.33 (2016)

10. F Zhang, G Li, W Li, H Wei, H Yuxin, Accelerating spaceborne SAR
imaging using multiple CPU/GPU deep collaborative computing. Sensor
16(4), 494 (2016)

11. I-K Jeong, E-J Im, J Choi, Y-S Kim, C Kim, in Proceeding of the 33rd Asian
Conference on Remote Sensing. Performance comparison of GPU and CPU
for high-resolution satellite image processing (2012), pp. 1489–1493

12. J Kreps, N Narkhede, J Rao, Kafka: A Distributed Messaging System for Log
Processing. Proceedings of the NetDB (2011), pp. 1–7

13. Y-K Kim, C-S Jeong, Large Scale Image Processing in Real-Time Environments
with Kafka. Proceedings of the 6th AIRCC International Conference on Parallel,
Distributed Computing Technologies and Applications (PDCTA) (2017), pp.
207–215

14. I-Y Jung, B-J Han, H Lee, C-S Jeong, DIVE-C: Distributed-parallel Virtual
Environment on Cloud computing platform. Intl J Multimed Ubiquitous
Engineering 8(5), 19–30 (2013)

15. AJ Younge, G Von Laszewski, L Wang, S Lopez-Alarcon, W Carithers, in Green
Computing Conference. Efficient resource management for cloud computing
environments (2010), pp. 357–364

16. JCUDA, Java bindings for CUDA. http://www.jcuda.org/. Accessed 22 Apr
2018.

17. AS Awad, Standard deviation for obtaining the optimal direction in
the removal of impulse noise. IEEE Signal Processing Letters 18(7),
407–410 (2011)

18. H Bay et al., Speeded-up robust features (SURF). Comput. Vis. Image
Underst. 110(3), 346–359 (2008)

19. K Fatahalian, J Sugerman, P Hanrahan, Understanding the Efficiency of GPU
Algorithms for Matrix-Matrix Multiplication. Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS Conference on Graphics Hardware (2004), pp. 133–137

20. HJ Nussbaumer, Fast Fourier Transform and Convolution Algorithms, 2.
(Springer, Berlin Heidelberg New York, 2012)

Kim et al. EURASIP Journal on Image and Video Processing (2018) 2018:39 Page 13 of 13

http://www.jcuda.org/

	Abstract
	Introduction
	System overview
	Methods
	Hybrid parallelism
	Adaptive heterogeneous dynamic resource management
	Application topology
	Fault tolerance

	System architecture
	User interface layer
	Master layer
	Buffer layer
	Worker layer

	Experimental results and discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Authors’ information
	Competing interests
	Publisher’s Note
	References

