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Abstract

A variational Bayesian blind restoration reconstruction based on shear wave transform for low-dose medical
computed tomography (CT) image is proposed. The proposed algorithm eliminates the effects of the point spread
function in the process of low-dose medical CT image reconstruction and improves the reconstructed image
quality. The shear wave transform is used to sparsely represent the CT image, which can speed up the efficiency of
image processing. In the Bayesian framework, a posteriori probability objective function with unknown parameters
is constructed. These unknown parameters include the shear wave coefficients, the point spread function, and the
hyper parameters. It specified a Laplacian distribution model for the prior probability distribution of the shear wave
coefficients. The autoregressive model is used as the prior model of the point spread function. All of hyper
parameters follow the gamma distribution. The variational Bayesian method is used to estimate all of unknown
parameters and solve the above posteriori probability objective function. These generalized parameter estimators
are used to realize the low-dose CT image blind restoration reconstruction. Computer simulation results indicate
that a good performance-reconstructed image can be obtained and some metrics such as peak signal-to-noise
ratio (PSNR), universal image quality index (UIQI), structural similarity index metric (SSIM), and sum of square
differences error (SSDE) are improved.
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1 Introduction
Previous studies have established that high doses of X-ray
radiation can cause cancer, leukemia, or other genetic dis-
eases [1–3]. To reduce the damage of X-ray to the human
body, it is necessary to study the low-dose CT imaging
problem without sacrificing the clinical diagnosis informa-
tion. Low-dose medical CT imaging is to reconstruct CT
image by incomplete projection data or coarse data. How-
ever, some reconstruction methods based on the Nyquist
sampling theorem restrict low-dose medical CT recon-
struction by incomplete projection data. Moreover, in the
process of CT image formation, it is often affected by the
point spread function of the system. This will result in
image degradation and artifacts. In addition, when the
image is reconstructed from incomplete projection data,

the influence of noise will be more serious. Therefore, it is
of great significance to study how to eliminate the effects
of the point spread function and realize the accurate low-
dose medical CT reconstruction.
The basic idea of compress sensing (CS) is that if there

is a sparse signal or the signal is sparse in a transform
domain, the original signal can be reconstructed through
a small amount of samples with high precision [4, 5]. If
CS is applied in the field of CT image reconstruction,
the decrease of the measurement value can greatly
shorten the scanning time and reduce the scanning dose.
However, due to the fact that most of the CT images are
not sparse, it is necessary to find the appropriate trans-
form domain to achieve the sparsity. For CT medical
imaging system, the finite difference is often treated as
the sparse transform [6, 7], and it is only suitable for the
CT image with local smoothness. For the actual human
CT images, the use of finite difference transform for
image sparse representation is not very ideal. To solve
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the above problem, many sparsity methods are used in
the CT image reconstruction, such as wavelet transform
[8] and dictionary learning [9, 10]. Furthermore, the
abovementioned methods can easily lead to the
phenomenon of over smoothness. This is attributed to
the lack of statistical information about the specific sig-
nal and noise in the image reconstruction. The Bayesian
inference offers the potential to exactly estimate the ori-
ginal signal or effectively reduce the radiation dose by
compress sensing. Consequently, the Bayesian method
can provide a variety of probability distribution predic-
tion mechanisms to estimate the different parameters.
In low-dose medical CT image reconstruction, the ill-

posed problem is often caused by noise. At present, in
the CS framework, there are a lot of specialized CT
denoising algorithms [11–14]. However, the single-CT
denoising method will increase the complexity of CT
image processing. If we can get the anti-noise ability of
compressed sensing CT reconstruction algorithm, which
will be more conducive to the development of CT tech-
nology. To solve the ill-posed problem caused by noise,
some algorithms improve the performance by adding a
priori regularization term in the objective function [15–
19]. These methods are of great significance to avoid the
ambiguity of the solution and obtain the high-precision
reconstruction image. The Bayesian inference method
based on statistical iteration can effectively utilize the
physical effects of the system, the statistical properties of
the projection data, and the noise [20–24]. The statis-
tical iterative reconstruction method considers the statis-
tical distribution of signal and noise, but it has the
problem of high computational complexity and the slow
convergence speed.
At present, the CT image reconstruction algorithm

based on CS often does not consider the influence of the
point spread function. However, this assumption is un-
reasonable. Because the CT image is often affected by
the point spread function of the system, it will cause the
image degradation [25]. Some literatures use an image
blind restoration method to eliminate the effects of the
point spread function [26, 27]. Therefore, under the CS
framework, the existing CT image reconstruction algo-
rithms have the problem of ignoring the effects of the
point spread function.
Because the point spread function of CT system is

often unknown, the effects of point spread function can
be eliminated by blind image restoration in the Bayesian
framework. To this end, this paper proposes a variational
Bayesian blind restoration reconstruction based on shear
wave transform for low-dose medical CT image. The key
problem of medical CT image restoration and recon-
struction by Bayesian compressed sensing is to establish
an accurate prior distribution model, including sparse
coefficients, the point spread function, model

parameters, and so on. Therefore, a joint distribution
model is established. In image reconstruction, the effects
of point spread function is considered and eliminated.
The shear wave transform is used for CT image sparse
representation. The variational Bayesian method is used
to estimate all of unknown parameters and speed up the
convergence. Finally, the low-dose CT image blind res-
toration reconstruction is realized.

2 Method
2.1 Medical CT image blind restoration reconstruction
The following model of the complete CT imaging is
used in vector form.

P ¼ AHψαþ n ð1Þ
where P is the noisy projection; A is the system matrix

of a CT scanning; H is the degradation matrix, which is
composed of point spread function (h); ψ is the sparse
transform matrix; α is the sparse transform coefficient
matrix; and n is the noise matrix.
To get better performance, the reconstructed CT was

represented by the shear wave transform. The recon-
structed CT image is f =ψα. The sparse coefficient con-
tains the maximal amount of necessary information.
The target of low-dose medical CT image blind restor-

ation reconstruction based on Bayesian compressed
sensing is that the values of the sparse coefficient (α)
and the degradation matrix (H) are estimated based on
the noisy projection (P) and parameters’ prior distribu-
tions. Different a priori models are adopted to describe
the sparse coefficient (α) and the point spread function
(h). The parameters of the model are defined (Ω). After
defining the prior models, the hierarchical Bayesian
model is used to establish the joint distribution model of
the projection (P) and the other parameters.
The joint probability distribution model is given by

p Ω;α;h;Pð Þ ¼ p Ωð Þp αjΩð Þp hjΩð Þp Pjα;h;Ωð Þ ð2Þ
where p(Ω) is the prior distribution of the model pa-

rameters, p(α|Ω) is a priori distribution of the sparse
coefficient, p(h|Ω) is the prior distribution of the point
spread function, and p(P| α, h,Ω) is the prior distribu-
tion of the noisy projection.
The prior models of the noisy projection, the unknown

sparse coefficients, and the point spread function are re-
lated to the unknown model parameters (Ω). The un-
known model parameters are defined by hyper
parameters, and the hierarchical Bayesian method is
adopted to estimate parameters. Based on the noisy pro-
jection (P), the posterior distribution (p(α, h,Ω| P)) of
unknown parameters is estimated by the variational
Bayesian method. To accurately estimate the posterior
distribution (p(α, h,Ω| P)), the paper assumes that the
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approximate distribution has a closed form solution. All
of parameters (α, h, and Ω) are mutually independent.
On the basis of the maximum a posteriori estimation

theory, the model parameters are obtained

Ω̂ ¼ arg max
Ω

p ΩjPð Þ

¼
Z
α

Z

h

p Ω;α;h;Pð Þdαdh ð3Þ

Then, α̂ and ĥ are estimated by maximizing the pos-
terior distribution of the model parameters (Ω) and the
noisy projection. That is

α̂; ĥ ¼ arg max
α;h

p α;hjΩ̂;P
� � ð4Þ

2.2 Shear wave transform
The theoretical basis of the shear wave transform is the
synthetic wavelet theory. Furthermore, the shear wave
transform has shown better results than the traditional
wavelet because of its characteristics. These characteris-
tics include multi-scale, multi-directional, and multi-
precision. The matrix ψ represents a set of basis func-
tion, which is obtained by scaling, translation, and rota-
tion transformation of function ψ. Then, the image f can
be represented by the sparse shear wave. The
optimization problem can be described as follows:

min
α

αk k0 s:t: f ¼ ψα ð5Þ

where α is a sparse shear wave coefficient matrix, in
which only a small amount of nonzero elements exists.
In the paper, the reconstructed image is projected into

the shear wave domain, and the Laplacian distribution
model is used to characterize the shear wave coefficients.

The Laplacian distribution model is used as the prior
probability density function of the shear wave coefficients.

2.3 Prior distribution
Based on the Bayesian approach, CT image blind restor-
ation reconstruction is realized. It is important that the
likelihood function and the prior distribution function of
parameters are determined.

2.3.1 Priori distribution of the noisy projection
The probability density P(P|h, α) is usually derived from
the noise.

P Pjh;αð Þ ¼ 1
2πσ2n

� �N=2

exp −
1
2σ2n

P−AHψαk k2
� �

ð6Þ

where σ2
n is the variance of the noise and N is the num-

ber of the noisy projection.

2.3.2 Priori distribution of the coefficients from shear wave
transform
For the shear wave transform, the coefficients from
shear wave transform are self-similar and heavy-tail dis-
tributed. The Laplacian distribution model can be used
to match the distribution of the coefficients. The Lapla-
cian density function is defined as follows:

P αð Þ ¼ 1ffiffiffi
2

p
σ2co

exp −

ffiffiffi
2

p
αj j

σ2co

� �
ð7Þ

where σ2co is the variance of α.

2.3.3 Priori distribution of the point spread function
The autoregressive model is used as the prior model of
the point spread function. As the statistical distribution
of the point spread function, the probability density
function of the Gauss distribution is

p h σ2
bl

		� � ¼ 1
σ2bl

� �M=2

exp −
1

2σ2bl
Chk k2

� �
ð8Þ

where C is the Laplacian operator, σ2bl is the variance
of the Gauss distribution, σ2bl is the other model parame-
ters, and M is the size of the point spread function h.

2.3.4 Priori distribution of the model parameters
To estimate the model parameters in the above mathem-
atical expression, the hierarchical Bayesian model is used
to estimate the model parameters σ2co , σ

2
bl , and σ2n . It is

assumed that the unknown model parameters σ2
co , σ

2
bl ,

and σ2n are independent. Then, the joint distribution

Fig. 1 CT image
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p σ2co; σ
2
bl; σ

2
n;α;h;P

� � ¼ p σ2co; σ
2
bl; σ

2
n

� �
p α σ2co

		� �
p h σ2bl

		� �
p P σ2n;α;h

		� � ð9Þ
The prior distribution and the posterior distribution de-

rived from the prior distribution. Therefore, when the un-
known model parameters are estimated in the Bayesian
framework, the prior distribution can be described as a
conjugate prior distribution. In the algorithm, Γ distribu-
tion is used as the prior distribution of the unknown
model parameters. Γ distribution is defined as follows:

p ωð Þ ¼ Γ ωjaoω; boω
� � ¼ boω

� �aoω
Γ aoω
� � ωaoω−1 exp −boωω


 � ð10Þ

where ω∈ σ2co; σ
2
bl; σ

2
n

� 

represents a parameter, boω is

the scale parameter (boω > 0), and aoω is the shape param-
eter(aoω > 0).

2.4 Variational Bayesian medical CT image blind
restoration reconstruction
Equation (9) is transformed into another form, then

p σ2
co; σ

2
bl; σ

2
n;α;h;P

� � ¼ p σ2co; σ
2
bl; σ

2
n;α;h Pj� �

p Pð Þ
ð11Þ

To facilitate the derivation of mathematical form, all
unknown parameters in the algorithm are expressed as

Θ ¼ σ2co; σ
2
bl; σ

2
n;α;h

� � ð12Þ
Based on the Bayesian paradigm, the posterior distri-

bution is deduced.

p Θ Pjð Þ ¼ p σ2
co; σ

2
bl; σ

2
n;α;h Pj� �

¼ p σ2
co; σ

2
bl; σ

2
n;α;h;P

� �
p Pð Þ

¼ p σ2co; σ
2
bl; σ

2
n

� �
p αjσ2

co

� �
p hjσ2bl
� �

p Pjα;h; σ2
n

� �
p Pð Þ

ð13Þ

In this paper, the posterior distribution p(Θ|P)
needs to be computed, so that the derivation of
mathematical principle can be carried out. Accord-
ing to Eq. (13), once the posterior distribution
p(Θ|P) can be calculated, α and h can be estimated
by the posterior distribution p σ2co; σ

2
bl; σ

2
n Pj

� �
of the

model parameters. In fact, it is difficult to obtain a
closed form solution (p(P)), so that the posterior
distribution p(Θ|P) cannot be expressed as a closed
form.
The variational Bayesian method is often used to

find the approximate distribution of the posterior
distribution. Moreover, the approximate distribution
has a closed form solution. The variational approxi-
mation method was used to approximate p(Θ|P) by
finding an approximate posterior distribution (q(Θ)).
In other words, when the Kullback-Leibler diver-
gence between the two distributions attains a mini-
mum, p(Θ|P) and q(Θ) are approximately equal.
The Kullback-Leibler divergence between the two
distributions is defined as follows:

Fig. 3 Comparison of reconstructed images with different blind restoration reconstruction methods (SNR = 40 dB)

Fig. 2 Comparison of reconstructed images with different blind restoration reconstruction methods (SNR = 20 dB)
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CKL q Θð Þ p Θ Pjð Þkð Þ ¼
Z

Θ

q Θð Þ log q Θð Þ
p Θ Pjð Þ

� �
dΘ

¼
Z

Θ

q Θð Þ log q Θð Þ
p Θ;Pð Þ

� �
dΘþ const

ð14Þ

where CKL(q(Θ)‖p(Θ|P)) is a nonnegative number.
When q(Θ) = p(Θ|P), CKL(q(Θ)‖p(Θ|P)) = 0.
The variational method is used to estimate the poster-

ior distribution p(Θ|P) by the approximate posterior dis-
tribution q(Θ). Then, q(Θ) is defined first. Assuming
that all unknown parameters are independent of each
other, that is

q Θð Þ ¼ q αð Þq hð Þq αcoð Þq αblð Þq βð Þ ð15Þ

After defining the closed form of q(Θ) distribution, it
is necessary to optimize the distribution to get the best
model. Θθ represents a subset of Θ that does not include
the parameter θ. For example, θ = α, then Θα

¼ σ2co; σ
2
bl; σ

2
n;h

� �
. Thus, the Kullback-Leibler divergence

of q(Θ) and p(Θ|P) is as follows:

CKL q Θð Þ p Θ Pjð Þkð Þ ¼ CKL q θð Þq Θθð Þ p Θ Pjð Þkð Þ

¼
Z

Θ

q θð Þq Θθð Þ log q θð Þq Θθð Þ
p Θ Pjð Þ

0
@

1
AdΘ

¼
Z

θ

q θð Þ �
Z

Θθq Θθð Þ log q θð Þq Θθð Þ
p θ;Θθ;Pð Þ

0
@

1
AdΘθ

0
@

1
Adθ þ const

ð16Þ

where q(Θθ) =∏ρ ≠ θq(ρ). The unknown parameters are
independent to each other. If θ = α, then

q Θαð Þ ¼ q αco; ; αbl; β;hð Þ
¼ q αcoð Þq αblð Þq βð Þq hð Þ ð17Þ

Thus, for each unknown parameter, the approximate
posterior distribution q(θ) can be solved by means of
Eq. (18).

q̂ θð Þ ¼ arg min
q θð Þ

CKL q θð Þq Θθð Þ p Θ Pjð Þkð Þ

¼ const� exp E logp Θð Þp P Θjð Þ½ �q Θθð Þ
� �

ð18Þ

where E logp Θð Þp P Θjð Þ½ �q Θθð Þ ¼
R

logp Θð Þp P Θjð Þq
Θθð ÞdΘθ .
The smaller the value of CKL(q(θ)q(Θθ)‖p(Θ|P)), the

closer p(Θ|P) and q(θ)q(Θθ) become. In this way, after
the initial values (q1 σ2co

� �
, q1 σ2bl

� �
, q1 σ2

n

� �
) of the model

parameters σ2co , σ
2
bl, and σ2

n are defined, the posterior dis-
tributions of all of the unknown parameters are obtained
by Eq. (25)

qkþ1 αð Þ ¼ arg min
q αð Þ

�CKL q αð Þqk hð Þqk σ2co
� �

qk σ2bl
� �

qk σ2n
� �

p Θ Pjð Þk� �

ð19Þ

qkþ1 hð Þ ¼ arg min
q hð Þ

�CKL q hð Þqk αð Þqk σ2co
� �

qk σ2bl
� �

qk σ2n
� �

p Θ Pjð Þk� �

ð20Þ
qkþ1 σ2co

� � ¼ arg min
q σ2coð Þ

�CKL q σ2co
� �

qk αð Þqkþ1 hð Þqk σ2bl
� �

qk σ2n
� �

p Θ Pjð Þk� �

ð21Þ
qkþ1 σ2bl

� � ¼ arg min
q σ2blð Þ

�CKL q σ2bl
� �

qk αð Þqkþ1 hð Þqk σ2co
� �

qk σ2n
� �

p Θ Pjð Þk� �

ð22Þ

Fig. 5 Comparison of local amplification details with different blind restoration reconstruction methods (SNR = 40 dB)

Fig. 4 Comparison of local amplification details with different blind restoration reconstruction methods (SNR = 20 dB)
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qkþ1 σ2n
� � ¼ arg min

q σ2nð Þ
�CKL q σ2n

� �
qk αð Þqkþ1 hð Þqk σ2

co

� �
qk σ2bl
� �

p Θ Pjð Þk� �

ð23Þ

where k = 1, 2, 3… until the stop criterion is met.
The stopping criterion is

E α½ �qk αð Þ−E α½ �qk−1 αð Þ
���

���2= E α½ �qk−1 αð Þ
���

���2 < ε ð24Þ

where ε is the specified accuracy range. If the criterion
is satisfied, the iteration is stopped and the correspond-
ing results are obtained. Otherwise, the iterations are
repeated.
To compute the posterior distribution of the unknown

parameters, the mean and covariance matrix of h in the
kth iteration are assumed to be

E h½ �qk hð Þ ¼ Ek hð Þ; cov h½ �qk hð Þ ¼ covk hð Þ ð25Þ

Similarly, the mean values of the model parameters are

E σ2
co


 �
qk σ2coð Þ ¼ σ2

co

� �k
;E σ2bl


 �
qk σ2blð Þ

¼ σ2
bl

� �k
; E σ2n


 �
qk σ2nð Þ ¼ σ2

n

� �k ð26Þ

Then, according to Eq. (18), we can estimate the pos-
terior conditional distribution of the sparse transform
coefficient α. With Eqs. (6) and (7), the two sides of
Eq. (18) carried out the logarithm

−2 logqk αð Þ ¼ const þ σ2
co

� �k
αk k2 þ σ2

n

� �k
E P−AHψαk k2
 �

qk hð Þ

ð27Þ
Suppose qk(α) =N(α|Ek(α), covk(α)), the mean value of

the normal distribution is the solution of ∂2 logqk αð Þ
∂α ¼ 0.

The covariance of the normal distribution is covk αð Þ

¼ − ∂2 logqk αð Þ
∂α2

h i−1
. This can be derived

Ek αð Þ ¼ Mk αð Þ� �−1
σ2n
� �k

Ek hð ÞtP ð28Þ

covk αð Þ ¼ σ2co
� �k

CtC þ σ2n
� �k

Ek hð ÞtEk hð Þ þ σ2n
� �k

covk hð Þ
� �−1

ð29Þ
qk(α) can be produced by the mean and covariance of

α. Similarly, qk + 1(h) can also be calculated by the same
procedure.

qkþ1 hð Þ ¼ N hjEkþ1 hð Þ; covkþ1 hð Þ� � ð30Þ

Ekþ1 hð Þ ¼ σ2
bl

� �k
CtC þ σ2

n

� �k
covk αð Þ

� �−1
σ2
n

� �k
Ek αð ÞtP

ð31Þ

covkþ1 hð Þ ¼ αkblC
tC þ βk covk αð Þ� �−1 ð32Þ

Based on the prior model defined by the former,
Eq. (33) is used to solve the problem

E logp Θð Þp P Θjð Þ½ �qk αð Þqkþ1 hð Þ

¼ E logp σ2co; σ
2
bl; σ

2
n;α;h;P

� �
 �
qk αð Þqkþ1 hð Þ

¼ E logp σ2co; σ
2
bl; σ

2
n

� �
p α σ2co

		� �
p hjσ2bl
� �

p Pjα;h; σ2n
� �
 �

qk αð Þqkþ1 hð Þ

¼ constþ
X

ω∈ σ2co;σ
2
bl ;σ

2
nf g

aoω−1
� �

logω−ωboω
� �þ N logσco þM logσbl þ N logσn

−
1
2
σ2coE αk k2
 �

qk αð Þ−
1
2
σ2blE Chk k2
 �

qkþ1 hð Þ− 1
2
σ2nE P−AHψαk k2
 �

qk αð Þqkþ1 hð Þ

ð33Þ
According to the nature of mathematical expectation

in probability theory, E[x2] = E2[x] + var(x), var(x) is the
variance of x. trace(x) is the trace of x. Then

E αk k2
 �
qk αð Þ ¼ Ek αð Þ�� ��2 þ trace covk αð Þ� � ð34ÞFig. 6 The CT image in the second experiment

Table 1 Comparison of image evaluation parameters of
different reconstruction algorithms (SNR = 20 dB)

Metrics Methods

FBP + BIR SART + BIR SART + TV + BIR The proposed method

PSNR 57.4383 58.3425 58.8898 60.1005

SSIM 0.9973 0.9978 0.9981 0.9986

UIQI 0.0472 0.0555 0.0394 0.0701

SSDE 4084.1 1433.5 1481.1 979.2
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E Chk k2
 �
qkþ1 hð Þ ¼ CEkþ1 hð Þ�� ��2

þ trace CCt covkþ1 hð Þ� � ð35Þ

E P−AHψαk k2
 �
qk αð Þqkþ1 hð Þ

¼ P−AEkþ1 Hð ÞψEk αð Þ�� ��2
þ trace covk αð Þ covkþ1 hð Þ� �
þ trace Ekþ1 Hð ÞEkþ1 Hð Þt covk αð Þ� � ð36Þ

Ek(α), covk(α), Ek + 1(h), and covk + 1(h) have been ob-
tained in Eqs. (28), (29), (31), and (32). Ek + 1(H) and
covk + 1(H) are composed of Ek + 1(h) and covk + 1(h).
To calculate qk + 1(ω) (ω∈ σ2co; σ

2
bl; σ

2
n

� 

), we need to cal-

culate the corresponding mean. In the paper, it is assumed
that the model parameters σ2co , σ

2
bl , and σ2n follow the Γ

distribution. The mean of Γ distribution is E ω½ � ¼ aoω
boω

.

When the model parameters are performed in the kth iter-

ation, the Γ distribution is qkþ1 ωð Þ ¼ Γ ωjakþ1
ω ; bkþ1

ω

� �
, and

the mean value is E ω½ � ¼ akþ1
ω

bkþ1
ω
. By Eq. (33), we know

akþ1
σ2co

¼ aoσ2co þ
N
2

ð37Þ

bkþ1
σ2co

¼ boσ2co þ
1
2
E αk k2
 �

qk αð Þ ð38Þ

akþ1
σ2bl

¼ aoσ2bl
þM

2
ð39Þ

bkþ1
σ2bl

¼ boσ2bl
þ 1
2
E Chk k2
 �

qkþ1 hð Þ ð40Þ

akþ1
σ2n

¼ aoσ2n þ
N
2

ð41Þ

bkþ1
σ2n

¼ boσ2n þ
1
2
E P−AHψαk k2
 �

qk αð Þqkþ1 hð Þ ð42Þ

Then, the mean values of the model parameters in the
kth iteration are as follows:

E σ2
co


 �
qkþ1 σ2co

� � ¼ aoσ2co þ
N
2

boσ2co þ 1
2E αk k2
 �

qk αð Þ
ð43Þ

E σ2
bl


 �
qkþ1 σ2bl

� � ¼ aoσ2bl
þ M

2

boσ2bl
þ 1

2 E Chk k2
 �
qkþ1 hð Þ ð44Þ

E σ2
n


 �
qkþ1 σ2

n

� � ¼ aoσ2n þ
N
2

boσ2n þ 1
2 E P−AHψαk k2
 �

qk αð Þqkþ1 hð Þ
ð45Þ

The mean values of the above model parameters are
used in the iterative process of calculating the approxi-
mate distribution of α and h.
Equations (35), (38), (43), (44), and (45) are used to es-

timate all of unknown parameters. And then, f =ψα is
used to obtain the reconstructed image.

3 Discussion and experiment results
To verify the validity of the proposed algorithm, a low-
dose CT image model is proposed in the literature [28].
According to the literature, it is shown that the noisy
projection (P) of low-dose CT image approximately fol-
lows the Gauss distribution, and the relationship be-
tween the mean and variance can be described as

σ2j ¼ gj exp
pj
κ

� �
ð46Þ

where Pj and σ2j represent the mean and variance of

pixel j, respectively, and gj and κ are two related parame-
ters of the system. For a given system, the two can be
regarded as a known quantity.
According to the above model, a low-dose CT image

with a size of 512 × 512 pixels is designed to simulate

Fig. 7 Comparison of reconstructed images with different blind restoration reconstruction methods (the second CT phantom image)

Table 2 Comparison of image evaluation parameters of
different reconstruction algorithms (SNR = 40 dB)

Metrics Methods

FBP + BIR SART + BIR SART + TV + BIR The proposed method

PSNR 58.9723 60.0051 61.2560 62.1375

SSIM 0.9990 0.9992 0.9996 0.9997

UIQI 0.1449 0.2101 0.2588 0.2745

SSDE 3495.9 2815.2 1545.1 591.4
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the digital model of the human thorax, and the simula-
tion CT phantom image is shown in Fig. 1. The fan
beam scanning mode is used in the experiment. Accord-
ing to Eq. (46), the Gauss noise is added into the ideal
projection data, and the low-dose noise projection data
is simulated (gj = 200, κ = 4 × 104). The degradation
process of CT image is approximated by a Gauss point
spread function with σ2 = 1. And, the Gauss white noise
with the noise power of σ2n is added. Signal-to-noise ratio

(SNR) is defined as SNR ¼ 10 log10 fk k22=σ2
n

� �
. The

experimental analysis is carried out under the condition
of SNR of 20 and 40 dB, respectively (ε = 10−4). Under
the same test condition, some commonly used algo-
rithms and the proposed algorithm are used to recon-
struct the low-dose CT images. These commonly used
algorithms such as filtered back projection (FBP) [29],
simultaneous algebraic reconstruction technique (SART)
[30], and total variation (TV) regularization [31] com-
bine iterative blind image restoration to obtain recon-
struction image. MATLAB 2016a programming was
used through the experiment, with the hardware envir-
onment for Intel (R) i7-4770 60GHz, 16G memory.
Obviously, in the case of sparse projection angles, an

idea of using FBP algorithm and blind image restoration
(BIR) is still easily affected by the noise. Especially, in low
signal-to-noise ratio, the algorithm performance become
worse rapidly. A method by combining SART with blind
image restoration algorithm has good performance, but
the artifacts are serious in image reconstruction from in-
complete projections. A method combined by SART, TV
regularization algorithm, and BIR can be used in the case
of sparse projection angles, but it would result in a
smooth image with missing details. The proposed

algorithm eliminates the effects of the point spread func-
tion in the process of low-dose medical CT image recon-
struction and improves the reconstructed image quality.
With this approach, low-dose medical CT image recon-
struction becomes an iterative process and a set of param-
eters is refined over successive optimization. By
comparison, the proposed algorithm is the best in terms
of clarity, contrast, and detail preservation.
To clearly see the details, local amplification of Figs. 2

and 3 is carried out for comprehensive evaluation, as
shown in Figs. 4 and 5. As can be seen from the figure,
the method can effectively suppress the noise and preserve
the image details. The proposed method is superior to the
other methods in the removal of artifacts and the preser-
vation of edges.
To quantify the comparative algorithm performance, the

external evaluation was useful, and peak signal-to-noise ra-
tio (PSNR), universal image quality index (UIQI) [32],
structural similarity index metric (SSIM) [33], and sum of
square differences error (SSDE) are good criterions when
improving a restoration reconstruction method. With re-
gard to these four metrics, the ideal value of PSNR is +∞,
the ideal values of both UIQI and SSIM are 1, and the ideal
values of SSDE are 0. These four metrics can only be used
in the simulated experiments because they require a re-
ferred image. The above four metrics tabulated for each ex-
periment are the average values over 10 times repetitions.
The results are shown in Tables 1 and 2.
Compared with the other methods, the proposed algo-

rithm can obtain a better visual effect and can be more ro-
bust in detail reconstruction. It can be seen from Tables 1
and 2 that the proposed algorithm improves the objective
image quality metrics such as the PSNR, SSIM, UIQI,
SSDE, and so on. At the same time, under different param-
eters, the new algorithm has a better restoration and recon-
struction effect. However, the initial estimation of the
parameter is random. To obtain good estimation, we need
to establish a relatively good estimation criterion and intro-
duce the confidence parameter. It is helpful to eliminate
the influence of various random factors and enhance the
robustness of parameter estimation.
To verify the versatility, the second simulation experi-

ment is completed to reconstruct the other CT images as
shown in Fig. 6. The CT image size is 512 × 512 pixels.

Fig. 8 Comparison of local amplification details with different blind restoration reconstruction methods (the second CT phantom image)

Table 3 Comparison of image evaluation parameters of
different reconstruction algorithms (the CT phantom image in
the second simulation experiment)
Metrics Methods

FBP + BIR SART + BIR SART + TV + BIR The proposed method
PSNR 58.68 58.81 59.63 61.82

SSIM 0.9967 0.9933 0.9966 0.9983

UIQI 0.0297 0.0460 0.1357 0.1830

SSDE 6183.8 4201.0 2323.6 1256.1
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The limited-angle projection was used to simulate the
low-dose medical CT imaging. The number of projec-
tion angle was set as 180. FBP + BIR, SART + BIR, SART
+ TV + BIR, and the proposed method are used to
realize low-dose medical CT image blind restoration re-
construction, respectively.
The reconstructed images are shown in Fig. 7. To ob-

serve the simulation procedure more directly, a part of
an image is amplified, as shown in Fig. 8. As shown in
Figs. 7 and 8, the reconstructed images by FBP + BIR
and SART + BIR have some artifacts in the case of low-
dose CT imaging. The problem with SART + TV + BIR
is that the reconstructed image is too smooth, and some
visible details will be lost. The proposed algorithm has
the best effects such as sharpness, contrast, and detail
preservation.
To quantitatively evaluate the effectiveness of the pro-

posed algorithm, the reconstructed images shown in
Fig. 7 and the ideal phantom shown in Fig. 6 are com-
pared using SSIM, PSNR, UIQI, and SSDE, as shown in
Table 3.
As is shown in Table 3, the value of SSIM by the pro-

posed algorithm is closer to 1. By Comparison, PSNR,
UIQI, and SSDE are improved. That means the method
proposed can get a good reconstructed image that is
highly similar to the ideal CT image.

4 Conclusion
This paper proposes a variational Bayesian blind restor-
ation reconstruction based on shear wave transform for
low-dose medical CT image. The shear wave coefficients
are subject to Laplacian function. According to the
Bayesian statistical theory, the parameters such as the
hyper parameters of the shear wave coefficient, the pa-
rameters of the point spread function, and the inverse
variance of the noise can be regarded as the random var-
iables, and these parameters follow the gamma distribu-
tion. The values of the parameters are estimated by the
maximum a posteriori estimation method. Finally, in the
Bayesian framework, the CT restoration reconstruction
of low-dose medical image is transformed into an
optimization problem, and the variational approximation
method is used to solve the problem. Experiments show
that the Bayesian model can describe the local structure
information adaptively. The proposed algorithm can pre-
serve the image edge details and obtain the satisfactory
visual effect. The proposed algorithm takes into account
the noisy projection and eliminate the effects of the
point spread function. The experimental results show
that the proposed algorithm is superior to other algo-
rithms in subjective visual effect. In the low signal-to-
noise ratio environment, the proposed algorithm can re-
construct the high-quality image. At the same time, in
the aspect of objective evaluation, the proposed

algorithm improves the objective image quality metrics
such as PSNR, SSIM, UIQI, SSDE, and so on. The con-
vergence of the algorithm is greatly affected by the initial
value. Several experiments show that similar initial
values can improve the computational speed for the
same type of image. Therefore, in order to improve the
speed of the algorithm, the reference value can be pro-
vided in the same kind of image, also known as expert
experience.
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