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Abstract

Image segmentation plays a vital role in MRI abnormality detection. This paper presents a robust MRI segmentation
method to outline potential abnormality blobs. Thresholding and boundary tracing strategies are employed to
remove background noises, and hence, the ROIs in the whole process are set. Subsequently, a polyfit surface evolution
is proposed to approximately estimate bias field, which makes segmentation robust to image noises. Simultaneously,
customized initial level set functions are devised so as to detect subtle bright and dark blobs which are highly potential
abnormality regions. The proposed method improves bias field estimation and level set method to acquire fine
segmentation with low computational complexities. Analysis of experimental results and comparisons with existing
algorithms demonstrates that the proposed method can segment weak-edged, low-resolution MR brain images, and
its performance prevails in accuracy and effectiveness.
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1 Introduction

With the exploration of magnetic resonance imaging
(MRI) technology, dramatic changes have been made in
visualization of anatomical structures [1, 2]. MRI is a pow-
erful imaging modality driven by its flexibility and sensi-
tivity to a broad range of tissue properties [3]. However,
a CT scan is best suited for viewing bone injuries, diag-
nosing lung and chest problems, and detecting cancers
[4, 5]. MRI is used to find other problems, such as tumors,
bleeding, injury, blood vessel diseases, and infections. For
example, researchers strive to detect brain abnormalities
in MR images [6, 7]. In this paper, our goal is to segment
MR brain images to assist doctors’ diagnosis.

Intensity inhomogeneity or bias field in MR image,
which arises from the imperfections of the image acqui-
sition process and manifests itself as slow intensity vari-
ation over the image domain [8]. This inherent artifact is
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difficult for a human to perceive. However, many segmen-
tation methods are very sensitive to spurious inten-
sity variations. In 1986, Haselgrove and Prammer [9]
first discussed MRI intensity inhomogeneity correction.
However, Haselgrove and Prammer assumed that the
position and orientation of the surface coil were known,
as obstructed its practical application. In the past
two decades, many bias field correction algorithms
have been presented. The authors in [8] noted that
two main approaches, namely prospective [10-14] and
retrospective approaches [15-21], had been applied to
minimize the intensity inhomogeneity in MR images.
Among these abovementioned methods, Andersen et al.
[15] incorporated radio frequency inhomogeneity correc-
tion into probabilistic classification model to partition an
MR image. In addition, Li et al. [22] proposed a new
approach for bias field estimation and tissue segmentation
in an energy minimization framework. They mathemati-
cally justified that the proposed energy is convex in each
of its variables. Quantitative evaluations and comparisons
verified its robustness and accuracy. The bias field estima-
tion proposed by Li et al. needs no previous knowledge
of noise distribution, which makes it more applicable.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0209-y&domain=pdf
http://orcid.org/0000-0002-0301-5262
mailto: liuchangjiang@189.cn
http://creativecommons.org/licenses/by/4.0/

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:60

However, it is a region-based segmentation method and
cannot extract small homogeneous regions as level set
methods do.

Image segmentation is a fundamental process in many
medical imaging applications [23]. Segmentation methods
can be roughly divided into eight categories [24—26]: (a)
thesholding approaches, (b) region growing approaches,
(c) classifiers, (d) clustering approaches, (e¢) Markov ran-
dom field models, (f) artificial neural networks, (g)
deformable models, and (h) atlas-guided approaches. The
level set method, as one of the deformable models, was
first introduced to delineate region boundaries by using
closed parametric curves [27]. It is able to acquire closed
contours of regions from an image, which helps partition
of a medical image accurately. The authors in [28—30] con-
sidered a two-phase level set formulation, in which only
one level set function was used to construct two mem-
bership functions to segment the image domain into two
disjoint regions. The two-phase level set method can only
partition images into two parts, making it unsuitable for
multi-class segmentation in some medical applications.
Recently, researchers have developed multi-phase level set
methods [31, 32], using two or more level set functions
to define more than two membership functions, which
makes it more practical in medical applications. Li et al.
[31] have combined bias field estimation with multi-phase
level set method. In this framework proposed by Li’s, the
formation of initial level set functions was not mentioned
yet. Experimental results show initial level set functions
influence final segmentation to some extent, especially
in certain small regions. At the same time, bias field
estimation in [31] lacks denoising capability as well.

Focusing on noise depression and widely applicable ini-
tial level set functions, we import ROI (region of interest),
bias field polyfit estimation, and customize initial level
set functions to multi-phase level set methods. The main
contributions in this paper include:

(1) A coarse to fine segmentation method is proposed.
Otsu’s method is employed not only to remove
background noise but also to set the ROI for the level
set method.

A multi-phase level set method with bias field polyfit
estimation is proposed. This method can partly
depress image noise latent in tissues.

Customized initial level set functions are formulated.
The initial level set functions are widely applicable to
detect small tissues in MR images.

()

3)

This remainder of this paper is organized as follows.
We first review MRI bias field estimation and multi-
phase level set method in Section 2. Section 3 presents
a robust MRI abnormality detection method, including
background removal or ROI setting, multi-phase level set
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method with bias field polyfit estimation, and customized
initial level set functions. Experimental results and com-
parison with existing methods are outlined in Section 4.
Finally, concluding remarks are given in Section 5.

2 Literature review on MRI bias field estimation
and multi-phase level set method
In previous works [8, 22, 31], the model of an MR image
has been widely accepted as:
1(x) = b(x)] (x) + n(x) (1)
where b(x) is bias field that accounts for the intensity
inhomogeneity in the observed image /(x), n(x) is the
additive Gaussian noise with zero mean, J(x) is the true
image without bias field and noise, and x is a tuple like
(%, y) representing image coordinates.
An energy minimization formulation [22] in the image
domain €2 for bias field estimation is defined by:

et = [ 1100~ b0 @

In this paper, the domain of integration 2 is omitted for
simplicity. Obviously, the solution for the multiplicative
intrinsic components b and J is an ill-posed problem with-
out constraints on the variables b and J. Thus, Li et al. [22]
have made the two following assumptions:

(1) Image domain €2 can be partitioned into disjoint
parts as described below:

N
Q=) "Q, Q=2 G#)
i=1

in which ] is approximately constant c; for the ith
region €2;. Furthermore, ¢; is regarded as class center
of fuzzy c-means algorithm [33].

The bias field b varies slightly in a small neighborhood
region of any point y on the ith region €2;, and leads to
the approximate relation in Eq. (2):

2)

b(X)J(x) ~ b(y)ci, x € Oy [ | 2

where Oy 2 x:x—y| <p}

Furthermore, a non-negative window function K (y — x)
is introduced, being K(y — x) = 0 for x ¢ Oy, to represent
the energy function bounded on region €; as follows:

N
& = Zl [ () = b(y)ci*dx
i= N 0oy
N (3)
= K(y —)I(x) — b(y)c;|dx
i=1Q;

i
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Finally, extending the integral domain y € €; in (3) to
the entire image domain, the energy minimization in (2) is
formulated as:

e= [ 5 [ K=l - biyapax|ay @

i= IQ
Li et al. [31] proposed level set functions to construct
membership functions, which form partitions €2;. For the

case of N > 3, two or more level set functions ¢1, .. ., ¢i
are used to define membership functions M;, given by:

1, x e Q;
0, otherwise

M;(¢1 (X), B ¢k(x)) = { (5)

Putting (5) into (4), the energy functional is given by:

N
e (Z [ o= - b(y)ci|2M,~(<1>(x))dx> dy
i=1

(6)

where ® = (¢1, ..., ¢r) is a vector valued function.
Reversing the order of integration in (6), the energy
functional can be rewritten as:

N
. / (Z / Ky — 0l - b(y)cmdy) Mi(®())dx
i=1

(7)
Denoting the constants cj,...,cy by a vector ¢ =
(c1,--.,¢n), Eq. (7) is simplified as:
N
E(®,¢,b) = / > ei(x)Mi(®(x))dx )
i=1

where ¢;(x) = [ K(y — x)|I(x) — b(y)ci|*dy.
The level set formulation is given as follows:

k k
F(®,¢,b)=E(®,¢,b)+vY _Lg)+1Y_ R(g)v,p = 0)

j=1 j=1
)
The energy term L(¢;) in (9) computes the length of
the zero level set of ¢; in the conformal metric and it is
defined by:

L@ = [ IVH@0ldx (10
where V is the vector differential operator, namely gradi-
ent operator, H is the heaviside function.

The energy term R(¢;) in (9) is introduced in [28] to for-
mulate level set evolution without re-initializations. R(¢;)
is given by:

1
R(;()) = f S (V60| — 1P (11)
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The energy functional F(®,c,b) is minimized itera-
tively with respect to each of the variables @, c, b, given
that the other two have been updated in the previous
iteration.

(1) Optimization of ¢;:

3
% _ Z 8M;(<I>) e+ U5(¢l)dlv<‘v¢ ‘)

) [A¢, div (9]
ei(x) = I* - (1 %K) — 2¢;I - (b K) + 2 (b* * K)
G=12,...,k
(12)

where - calculates the per-element product of two
matrices, * is the convolution operator, 1 is a matrix
of ones with the same size as I, §(+) is the derivative of
the heaviside function and div(-) is the divergence.

(2) Optimization of ¢:

S G KIM(®(y)dy

¢ = i=1,...,N 13
J(B* x K)M;(®(y))dy ( )
(3) Optimization of b:
gV % K
= 0K (14)

where

N
JO =3 a:Mi(®(y))

i=1

~ )
J® =3 c?Mi(@(y))
=1

3 Methods

Repeated trials expose imperfections of Li et al’s method
[22, 31] in detecting abnormalities from MR images: (a)
background noise gives rise to redundant contours, (b)
unsmooth bias field estimation exists, and (c) some possi-
ble abnormalities are omitted. We propose a robust MRI
abnormality detection method to fix these problems based
on a multi-phase level set method in combination with
bias field estimation.

3.1 Background removal (ROl setting)

As we know, MRI is vulnerable to noise contamination.
The MRI signal is complex valued, with the real and
imaginary components affected by independent Gaussian
noises. The magnitude of the noise of this complex valued
signal has a Rician distribution [34]. Assuming the signal
in the image background is zero, Santiago et al. [35] esti-
mated noise in a MRI using background pixels. If noise
in background pixels is severe, it will influence final curve
evolution using Li et al’'s method mentioned in Section 2,
see Fig. 1a.
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b Contours after background noise removal. € Contours by our method

Fig. 1 Inaccurate curve evolution by Li et al.'s [31] method with background noises: a Final contours without background noise suppression.

Fortunately, the gray values of MRIs differ greatly in
background and organs. Thus, thresholding is a simple but
efficient method to remove the background from MRIL
In our method, we first extract coarse regions of a tar-
get using Otsu’s method [36]. Subsequently, we retrieve
connected components from the binary image and select
the contour outlines in the image whose areas are greater
than a predefined A value (step (iii) below). Finally, we fill
the regions bounded by the preceding selected contours,
which serve as the ROl in this paper. Assuming gray values
of background are much lower than the foreground ones,
the procedure can be outlined as follows:

1. Compute the optimal threshold value using Otsu’s
algorithm and denote it by T.

2. Apply a fixed-level threshold to each array element
of image f and obtain the binary image g:

255, f(i,j) = nT

0, otherwise (15)

g@)) ={

where constant 0 < 1 < 1 can guarantee that the
regions of foreground with lower gray values are not
ignored. Based on empirical observations, this
constant commonly takes values in the interval
[0.7,0.9].

3. Trace only the outer contours of image g. For the ith
contour, if the area is greater than A, fill the area
bounded by the contour with the gray value 255 and
denote the corresponding mask image by B;. The
constant A can skip small regions incurred by noise.
Actually, A can be easily defined by professionals’
prior knowledge about the area of the target region.
The union set of such B;, denoted by B = | J B, is

the final ROI image, with the notation R in which the
value 1 represents the points to be further processed:

1, B(i,j) = 255

0, otherwise (16)

R(G,j) = {
Background noise is likely to bring out spurious con-
tours by Li et al’s method, shown in Fig. 1a. After the R
is calculated, background noise is removed with the val-
ues of background pixels assigned to zero. However, it
is apparent that there are still some faulty contours with
open contours, see Fig. 1b. For this reason, it is wise to
neglect the background region which causes abnormali-
ties. Furthermore, only the pixels in these locations whose
corresponding values are 1 in the ROI R are considered
in our proposed method, not only to obtain accurate final
contours (see Fig. 1c) but also to speed up calculation.

3.2 Multi-phase level set method with bias field polyfit
estimation
In Section 3.1, ROI is introduced to eliminate the nega-
tive effect of background noises. Noise in the target region
of a MRI does harm to the estimation of bias field. As
described in (7), local neighboring pixels are contributive
with the definition of the window function K. Confined to
a local domain, the b can be approximately represented as
a linear combination of simple functions [22]:
b(y) = w'G(y) (17)
Naturally, we introduce bias field polyfit estimation
to the multi-phase level set method. Experiments in
Section 4 on detecting abnormalities from MR images
demonstrate that this can significantly improve segmen-
tation results.
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In mathematics, polynomial bases have been widely
used. In this paper, we employ the basis of polynomials
with degree p that fits the bias field. It is presented as:

Gy) ={¥y7lo<i<p0<j<i}. (18)

The relationship between the degrees p and terms L is
described in Table 1.

Substituting (17) into (8), the energy functional & is
converted into:

E(W,c, ®) = / Exdx (19)

N
where & = 3~ [ K(y — 0)|I(x) — wlG(y)|2M;(®(x))dy.
i=1

Therefore, %—JWT = —2v + 2Aw, where
N
v=[[GWIX (Z ciMi(®(x)K (y — x)) dydx
i=1

N
= [1(x) Y. aiM(@(x)) (f GY)K(y — x)dy) dx
i=1
N
A=[[GWG () (Z M (®(x)K (y — x)) dydx
i=1

N
= [ Mi(@x) ([ Gy)GT(NK (y — x)dy) dx
i=1
(20)

Applying the convolution operation, the equations
above will be given by:

N
v=[(GxK)IX) Y c:M;(®(x))dx
i=1 (21)

N
A = [(GGT xK) Y ?M;(®(x))dx
i=1

Note that v e RIX1, A e REXE, Let g—f: = 0, we get:

w=A"lv (22)

and,

b(y) = w'G(y) (23)

Bias field polyfit estimation can retain the smoothness,
as shown in Fig. 2. Compared to existing literature [22]
and [31], one of the differences in our approach is the
additional convolution operations in Eq. (21), which help
localize and remove noise.

Table 1 The relationship of the degrees and terms for basis

function
Degrees 3 4 5 6 7 e p
Terms L 10 15 21 28 36 et\)e+2)
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Fig. 2 Bias field estimation by a Li's method [22]; b the proposed

method in this paper

3.3 Customized initial level set functions to detect
abnormalities

One of the disadvantages of traditional level set meth-
ods is that it requires manual placement of a closed curve
near the desired boundary. Recently, researchers have
employed random initial level set functions. Normally,
once level set functions are stable, the process of evolution
stops. Nevertheless, it is a challenge to jump out of a local
extremum in (9). Moreover, some abnormalities occur as
negligible patches, therefore no suitable initial level set
functions can result in such abnormalities being detected.
As a result, we introduce level set functions which inter-
sect the target region in MRIs as much as possible. When
level set functions during adjacent iterations are invariant,
corresponding contours are the exact boundaries of tar-
get regions including abnormalities. These initial level set
functions help us find out the abnormalities automatically,
especially the negligible patches.

In order to segment more regions of interest, such
as bright and dark blobs, we formulate initial level set
functions so as to make initial contours scatter linearly,
equally spaced in image domain. Classification of anatom-
ical structure appearances in a MRI slice of the brain
[37], suggests that the ROI mentioned in this paper can
be classified into light, gray, and dark parts; namely, two
level set functions constructing three membership func-
tions (k = 2,N = 3). The initial contours are illustrated
in Fig. 3. Here, red and blue contours in Fig. 3b are a
visual presentation of the level set functions ¢? and ¢g
respectively, which guarantees that initial contours inter-
sect the tissues extremely, merge or split to evolve to the
final desirable contour.
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Fig. 3 Initial contour: a ROI-based initial contour and b partial enlarged view

Table 2 Definition of ¢ (x,y), $9(x, )

Function InitialLevelSetFunction(H, W, p)

//Initialization
fory <~ 0toH—1do
forx <~ 0toW —1do
V) = p, $3(xy) = p
repeat
X <—x+1
endfor
repeat
y—y+1
endfor
//Evaluation 1
fory < Ymin 10 ¥Ymax do
for x <= Xmin 1O Xmax do
Py =—p, dIx+1,y) = —p
repeat
X< X+2
endfor
repeat
y<y+2
endfor
//Evaluation 2
fory <= Ymin + 110 ymax do
for X <= Xmin O Xmax dO
Py = —p pIX+ 1Y) = —p
repeat
X < X+2
endfor
repeat
y<y+2
endfor
//ROI clipped
$»=¢1-R
h=¢2-R

The pseudo-code for definition of d)?(x, y),q}g (x,y) is
shown in Table 2, where the image dimension is W x H,
p > 0is a constant with any value, and the ROl is bounded
by a rectangle: {(%, ¥)|%min <% < ¥max, Ymin < ¥ < Ymax)-
In this case, the relationship between membership func-
tions and level set functions is given by:

My(x) =1 - H($1(x))
My (x) = H(¢1(x))H(p2(x)) (24)
M3z(x) = H(¢1(x))(1 — H(¢2(x)))

It is worth pointing out that the member functions

3
mentioned meet 0 < M;(x) < land } M;(x) = 1.
i=1

3.4 ROI-based numerical implementation
In order to remove the influence of noise in the back-
ground and reduce computational cost, we propose
an ROI-based implementation for the aforementioned
algorithm.

In numerical practice, the Dirac function §(x) in (12) is
smoothed as:

5e() = =€ (25)
X)) = ——F>
¢ T €2+ x2
Iteration for ¢; is proposed by:
a¢;
n+l _ n -7
¢j = ¢,’ +T 9t (26)
Table 3 Parameters for MRI in this paper
Width 9 Modality MR
Height 192 Repetition time 36s
Bit depth 12 Echotime 92s
Slice thickness 1 mm Imaging frequency 63.6250
Pixel spacing (1.0417mm, Protocol name COR3D
1.0417mm) PreSc Norm
OFF1'S
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Table 4 Parameters related to experiments

N n p o v I € T
3 0.7 4 4.0 4.0 1.0 1.0 0.1

In this paper, the window function K is taken as a Gaus-
sian function with a standard deviation o, denoted by
K. Our proposed ROI-based numerical implementation
is presented as follows:

1. ROImask.I=1-R.

2. Initialization. Set the following parameters: N, 1, p,
o, V, I, € and 1. Initialize b and ¢1, . .., ¢r. Due to
their invariability during iterative procedures, we
prepare G, GGL,1xK,, A %K) -I2, (GxK,) -1
and GGT * K.

3. Iterative procedure. For the ith iteration, first update
c via (13). Second, update & via (25), (12), and (26).
Finally, update b via (21), (22), and (23).

4. ROI'mask. ¢; = ¢; - R for next iteration.

5. Redo step (iii) until i exceeds the predefined
maximal iteration.

4 Results and discussion

We analyzed 112 frames of MR brain images; detailed
information can be seen in Table 3. The algorithm was
implemented using the Microsoft Visual Studio devel-
opment platform with the Open CV (Computer Vision)
library, and Matlab. In this paper, we have used the same
parameters listed in Table 4, except the specific statement.
In the experiments, the number for the maximal iteration
needed is 50. The energy objective function in (9) keeps
descending, shown in Fig. 4. This shows that our proposed
method has good convergence.

x10

25| 4

0.5F \—

0 | L | | | L | 1 L
0 5 10 15 20 25 30 35 40 45 50
Iterations

Fig. 4 Energy functional values in the iterations
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4.1 Segmentation results

An overview of the proposed method for MRI segmenta-
tion is shown in Fig. 5. Here, the original image is shown
in Fig. 5a, whose coarse segmentation result, namely ROI,
is shown in Fig. 5b. After 10 iterations, the curve evolves
as shown in Fig. 5c. After 50 iterations, the final con-
tour and segmentation results are illustrated in Fig. 5d—f.
Three split parts of segmentation results in Fig. 5g—i
demonstrate the capability of our method to segment
the bright and dark blobs (high likelihood of potential
abnormality) simultaneously. Here, in order to retain the
running results by our scripts, contours in red and blue

Fig. 5 Segmentation processes for the 88th frame: a the original MR
image, b ROI, ¢ contour after 10 iterations, d final contour after 50
iterations, f segmentation results, g one part segmented, h bright
blob in MR image, and i dark blob in MR image
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imply that the boundaries are induced by different level
set functions, as mentioned in Section 3.3. Without loss
of generality, we henceforth adopt red contours later in
this paper.

Experimental results for the other frames are shown in
Fig. 6. The relevant parameters are employed as shown in
Table 4. The segmentation performance verifies that the
listed parameters are image independent.

Outside the data set mentioned above, we experi-
ment on the MR brain images [38], which includes 60
images (width 256, height 256, bit depth 16). Taking
the 6th image (see Fig. 7a) as an example, our pro-
posed method can segment the images into parts: skull
(see Fig. 7b), white matter (see Fig. 7c, d), and other
parts.
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4.2 Segmentation assessment
For objective evaluation of our method, we consider man-
ual contours drawn by specialists as the ground truth. We
introduce two metrics to segmentation assessment. One
metric m; is defined to estimate the difference between
the ground truth and the contours extracted by our
method. For one specific ground truth contour, we first
select its nearest contour edge in contours from our pro-
posed method, then we calculate the distance between the
contour pair. The other metric m; is to account for how
many accurate possible abnormal blobs are detected.
Assuming ground truth contours are denoted by

C = [Cg}, Cé%, e, ng], and contours from the pro-

posed method are denoted by C, = lCl, CI%, RS CZ” }

Fig. 6 Segmentation processes for the other frames: a the 14th MR image, b-d segmented parts, e the 50th MR image, f-h segmented parts, i the

67th MR image, and j-I segmented parts
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67th MR image, and j-l segmented parts

Fig. 7 Segmentation processes for the other frames: a the 14th MR image, b-d segmented parts, e the 50th MR image, f-h segmented parts, i the

For the ith contour, the corresponding best matching
contour in the proposed method is defined by:

ki = argmin Z d(p,v,C},f) tk=1,2,...,m
k Gy

where d (pj, C};) is the distance from point p; to contour

edge CII;.

Therefore, the measurement depicting the difference
of the contours representing the ground truth and the
proposed method is given by:

(27)

where ‘Cllﬁi‘ is the number of elements in Cll,fi.

Assuming N, is the number of potential abnormality
blobs detected by the proposed method and N, is the
number of possible abnormality blobs provided by spe-
cialists, the metric m; is defined by the ratio of N, to Nj:

Table 5 Comparison of segmentation metrics

Metrics Li's method [22] Our method
m 1.64 0.62
ms 29% 97%

Np
my = — x 100%
Ng
The smaller m; or the bigger my is, the better the
segmentation result is. Comparison results between Li’s
method and our method using these metrics are shown in
Table 5 and Fig. 8.

(28)

4.3 Comparisons with existing methods

Without less noise affected MRI [39], our and Li’s method
[31] give similar contours, shown in Fig. 9, which demon-
strates the validity of our method. Our method prevails in

7 T T T v v

Proposed Method
— Li's Method

Error

0 10 20 30 40 50 60 70
Sequence of Contours

Fig. 8 Comparison of errors in different contours
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Fig. 9 Comparison with the work [31]: a original MR image, b result via [31], and ¢ result based on our method

two aspects: (1) the outer contour is more smooth than
Li’s method, and (2) it detects more subtle bright or dark
blobs which are potential abnormalities.

Compared to bias field estimation [22]-based segmen-
tation (see Fig. 10b), our method produces more accurate
segmentation result with fine localization of regions of
interest, as shown in Fig. 10d. However, result based on
[22] cannot give the contour directly and it misses the
black blob. Furthermore, it cannot output accurate closed
regions, such as the gray matter region (polygon bounded
by a closed yellow curve in Fig. 10d). In comparison with
our method, traditional level set method [28] only extracts
the outermost contours, as shown in Fig 10c. Our method
detects complete contours (see Fig. 10d), in which the con-
tour is highlighted in yellow, including missed detections
in [28].

The authors in [31] take intensity inhomogeneities
and level set method into account for image segmen-
tation. The difference between ours and the one in
[31] lies in that we minimize the w, while the latter

minimizes the b directly. Therefore, our method can seg-
ment more regions of interest, including bright and dark
blobs simultaneously, as shown in Fig. 11, which helps to
improve diagnosis in medical applications.

4.4 Discussion

In this paper, we introduced Otsu algorithm to remove
background noise from original image. It is simple but
effective in coarse segmentation. Such course segmen-
tation helps to improve accuracy in final segmentation.
Additionally, bias field polyfit estimation gives a more
continuous bias field map, see Fig. 2b. Furthermore,
customized initial level set functions proposed in this
paper helps to segment weak-edged, low-resolution MR
brain images. In a sense, we incorporate bias field esti-
mation into multi-phase level set method to acquire
fine segmentation with low computational complexity.
The proposed method can outline possible abnormali-
ties. However, lesion recognition is to be determined in
future work.

Fig. 10 Comparison with the works [22, 28]: a the 87th MR image, b result via [22], ¢ result via [28], and d result based on our method
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Fig. 11 Comparison with [31]: a the 84th MR image, b the result via [31], and ¢ the result based on our method

5 Conclusions

In this paper, we proposed a robust MRI abnormal-
ity detection method, which utilized background noise
removal and polyfit level set method. Note that we
improve the work in [22, 31], with our method being
able to segment subtle bright or dark blobs automatically.
Background removal helped us to exclude background
noise, which also provided ROI to speed up successive
processing. Polyfit level set method with customized ini-
tial level set functions in this paper does segment MRIs
into individual parts, including tiny tissues. Experimental
results demonstrate that our method has good perfor-
mance in extracting all the blobs in MRIs, in which, there
are potential lesions. But, as for each divided part, whether
it is abnormal is yet to be determined. In future work, we
will apply our technique on brain injury detection, such as
for white matter injury detection.
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