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Abstract

This paper presents a video summarization method that is specifically for the static summary of consumer videos.
Considering that the consumer videos usually have unclear shot boundaries and many low-quality or meaningless
frames, we propose a two-step approach where the first step skims a video and the second step performs
content-aware clustering with keyframe selection. Specifically, the first step removes most of redundant frames that
contain only little new information by employing the spectral clustering method with color histogram features. As a
result, we obtain a condensed video that is shorter and has clearer temporal boundaries than the original. In the
second step, we perform rough temporal segmentation and then apply refined clustering for each of the temporal
segments, where each frame is represented by the sparse coding of SIFT features. The keyframe selection from each
cluster is based on the measure of representativeness and visual quality of frames, where the representativeness is
defined from the sparse coding and the visual quality is the combination of contrast, blur, and image skew measures.
The problem of keyframe selection is to find the frames that have both representativeness and high quality, which is
formulated as an optimization problem. Experiments on videos with various lengths show that the resulting
summaries closely follow the important contents of videos.
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1 Introduction
The wide spread use of mobile phones and wearable cam-
eras has brought a culture that many people enjoy cap-
turing and sharing images and videos with one another.
It is especially notable that users are capable of storing
and accessing more and larger videos than before. Hence,
it is also becoming important to efficiently search for
the videos that contain the desired contents, where video
summaries can help them to efficiently catch the main
points and look for relevant data [1].
Video summarization is the condensation of a video

into a storyboard that contains keyframes or several video
segments [2], the goal of which is to make the video as
small as possible while keeping the flow of the story and
essential parts of frames and/or video clips. There have
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been a huge number of methods for the summarization
of well-edited videos such as movies and TV contents
[3–6], where a well-edited video means that it has clear
shot boundaries and was shot under well-controlled envi-
ronments with stable and high-quality cameras. In con-
trast to these well-edited videos, consumer videos (shot
by hand-held mobile cameras, camcorders, or egocentric
cameras such as sports glasses and action cams) usually
have unclear or no shot boundaries and also contain many
low-quality frames or even meaningless ones. Hence,
above mentioned video summarization methods, which
were designed for the well-edited videos, do not work
well for consumer videos, so recent studies are targeting
consumer videos [2, 7–9].
In general, there are some challenges related to the

consumer video summarization. First, it should work for
various lengths of shots; especially it has to be able to
treat a shot that may be very long in duration. This also
means that it does not have to focus too much on visual
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details in a frame and should avoid using amodel that can-
not represent the whole visual contents of a long video.
Second, for treating various kinds of videos, it is desired
to use features that can play important roles in any type
of video. One may assume that the frames containing a
person’s face or moving objects are important, but this
is not always the case. The third one is that in address-
ing the keyframe selection problem, we are given the
difficult choice between two things: choosing represen-
tative frames or quality ones. Last, because the desired
number of keyframes is itself subjective, a video summa-
rization method should be able to adjust the number of
keyframes.
Considering the challenges stated above, we propose

a new algorithm that is especially suited for summa-
rizing long consumer videos in reasonable computation
times. The proposed algorithm consists of two steps: the
first step is skimming a video, i.e., reducing the number
of frames by using spectral clustering with simple color
histograms, which greatly reduces time for the refined
clustering and keyframe selection in the second step. The
refined clustering in the second step is to cluster the
images based on the sparse coding of SIFT features. In this
process, we can also define the representativeness with the
sparse coding coefficients. We also formulate the quality
measures of each frame in this step such as contrast, blur,
and image skew. The main problem is to find the frames
that have both representativeness and high quality, which
is formulated as an optimization problem in the form of
graph matching [10, 11]. Also, since not every method can
meet the various requirements of users or diverse kinds of

videos, the algorithm is designed to easily adopt new fea-
tures if needed. Figure 1 shows a flowchart of our method,
where each block contains notations for showing what is
obtained from each processing step. Many experimental
video clips and their step-by-step results produced by our
algorithm are available in http://ispl.snu.ac.kr/~jeongdj/
videosummary.html.
The rest of this paper is organized as follows: The

second section introduces the related works on video
summarization, the third section presents video skim-
ming and temporal segmentation, and the fourth section
describes measuring the quality of frames and selecting
keyframes. The experimental results and the conclusion
are presented in the last two sections.

2 Related works
The conventional algorithms for video summary were
developed for videos that are manipulated by pro-
fessional editors. These well-edited contents have
mostly clear shot boundaries but sometimes ambiguous
ones such as fade in/out and camera view changes.
Hence, the conventional algorithms focused on finding
the ambiguous shot boundaries and also finding the
keyframes in a shot that represent the shot. For example,
Omidyeganeh et al. [3] developed a keyframe extrac-
tion algorithm, where they exploited features extracted
from the wavelet transform subbands of each frame to
partition the whole video into subshots and select the
final keyframes. Chasanis et al. [4] proposed an algo-
rithm that uses shot boundary detection and the spectral
clustering method, and they formulated the scene detec-

Fig. 1 A flowchart of our method. Each block shows its step in the algorithm and the items produced there
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tion as keyframe alignment. Although there are also
many methods that do not detect shot boundaries [5,
12, 13], dividing the whole video into subshots con-
tributes to stabilize the keyframe extraction results
[3, 4, 14–17]. Given its importance, shot boundary
detection is still a much studied topic [18–20].
However, as stated in the introduction, the above stated

methods do not work well for unstructured videos (ama-
teur and consumer videos) because they are poorly shot
and edited. These videos have many unclear shot bound-
aries, and they also have meaningless, redundant, or low-
quality frames. Hence, studies focusing on unstructured
videos have recently been gaining attention, which are
focused on static or dynamic summaries of consumer
and/or egocentric videos. For some examples of static
summarization methods that we study in this paper, Cong
et al. [7] considered video summarization as a dictionary
selection problem, where keyframes that represent the
whole video content form the dictionary. But this method
is not suitable for long and complex videos because the
long content is not well represented by a dictionary.
The algorithm proposed by Ejaz et al. [8] was based on
the assumption that visual attention would indicate the
importance of each frame in general videos. They used
spatial and temporal attention values and emphasized the
motion information. However, this framework is vulner-
able to some factors such as the capturers’ or objects’
movement and quality of frames and depends on how
much time one determines to make a scene. Meanwhile,
there have been some algorithms targeting only egocen-
tric videos [2, 9]. They are similar to those for general
consumer videos in that they perform temporal segmen-
tation and score the frames based on certain criteria.
However, they make use of information that is confined to
the first-person views and needs high computatonal loads,
which makes them unsuitable for videos not captured by
first-person cameras and/or long videos. There are also
several methods that focus on temporal segmentation of
consumer videos [1, 9, 21, 22], where “temporal segmen-
tation” may work as “shot boundary detection” for well-
edited videos and it is also applied to video annotation
algorithms [23, 24].

3 Video skimming and temporal segmentation
Consumer videos usually have redundant frames, when
compared with movie or TV contents that are well edited.
Hence, we first skim the video, i.e., remove the redun-
dant frames by using spectral clustering with simple color
histograms. The skimmed video is then temporally seg-
mented for the second step.

3.1 Video skimming by spectral clustering
To remove the redundant frames very fast, we first apply a
clustering method with simple features. Then, from each

of the clusters, we find some frames that are nearest to
the center of the cluster. This results in a skimmed video,
where redundant frames are naturally reduced and the
scenes are represented by a relatively small number of
frames, and also most of the transient scenes are elimi-
nated.
To be specific, the video is first divided into evenly

spaced subshots X1, . . . ,XK , each of which is about 3–4
min long in our implementation. Note that the first step
is to roughly skim the video, and that the length of even
spacing is not so important but needs to be short enough
not to miss some important frames. For each subshot, we
apply spectral clustering [25] with the normalized HSV
histogram as a feature, for the fast grouping of similar
frames as in [4]. Also, according to the report in [26] that
the Hellinger distance measure instead of the Euclidean
distance gives more plausible image retrieval results, we
also apply this measure for the comparison of histogram
features. Specifically, we L1 normalize the histograms and
then square root each element so that each of them has
unit L2 norm.
To be more precise with the spectral clustering of each

subshot defined above, let us denote the kth subshot as
Xk =[ x1, x2, x3, . . . , xNk ] , k ∈ {1, . . . ,K} where K is the
number of subshots andNk is the size ofXk . For each sub-
shot, the similaritymatrixA ∈ R

Nk×Nk and thematrix L =
D−1/2AD−1/2 are computed, whereD is the degree matrix
each of whose diagonal entries is the sum of the elements
belonging to the same row. Thematrix L is used as a proxy
of the Laplacian matrix I − L [25], where I is the iden-
tity matrix. Then, the spectral clustering to divide the kth
subshot into M clusters is to solve a relaxed optimization
problem:

max
Y

trace(YTLY) s.t. YTY = IM (1)

where Y is the relaxed version of Z ∈ R
Nk×M defined as

Z(i, j) =
{
1 if xi ∈ (jth cluster)
0 otherwise. (2)

It is known that the maximum value of trace(YTLY)

in (1) is equal to the sum of the M largest eigenvalues
of L [27].1 Thus, in our clustering process, the num-
ber of clusters is determined based on the eigenvalues of
the Laplacian matrix defined for the spectral clustering,
i.e., as the number of eigenvalues that are larger than a
threshold θa. For more details about spectral clustering,
refer to [4, 27, 28]. From each of the clusters obtained
by the above process, we extract several frames that are
close to the center of the cluster where the number of
extracted frames is defined to be proportional to the
cluster size. The extracted frames are ordered chrono-
logically, which is referred to as the skimmed video in
this paper. With the appropriate threshold θa (which
will be specified in the experiment section), we obtain a
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decent number of frames for each cluster that contains
many similar frames and sometimes rare and transient
frames. Thus, it is possible to remove the redundant
frames and leave only a small number of frames by select-
ing only the ones that are close to the cluster centers.
The results of the first step, i.e., the skimmed videos for
the input videos, are also available at the above stated
site. For the rest of this paper, the “frames” refer to
the frames in this skimmed video, which are denoted as
F = {f1, . . . , fn}.

3.2 Temporal segmentation
The clustering in the above procedure is somewhat rough
in that we use small θa that produces many frames sim-
ilar to the cluster centers, and also that the neighboring
clusters contain almost the same results because the video
is first evenly segmented so that neighboring segments
may contain the same scene. The purpose of this rough
clustering is just to obtain a skimmed video and also to
remove redundant or unimportant frames for reducing
computations for the following keyframe selection steps.
For the keyframe selection, we need to apply refined clus-
tering to the skimmed video and then find keyframes
from each cluster. Temporal segmentation provides some
video segments in each of which the clustering is per-
formed. In this way, we force each segment to produce one
or more keyframes because each segment is sufficiently
large and important enough to have a keyframe. Without
the temporal segmentation step, the clustering would be
performed with all the frames in F, and some frame repre-
senting an important part of the video might be precluded
from the video summary.
For the temporal segmentation, we perform the kernel

temporal segmentation (KTS) method [21], which detects
the change points of a signal (a video stream here) sta-
tistically. Since any kind of features can be used for this
method, we reuse the color histograms that were used
in the above process for saving the computations. Let
H =[π(f1), . . . ,π(fn)] denote the color histograms of the
frames. We define a kernel function K : H × H → R as

K
(
π(fi),π(fj)

) = �(fi) · �(fj)

= 1 − 1√
2
‖π(fi) − π(fj)‖2 (3)

where � : H → H is the feature mapping indirectly
defined by K, and H is the associated feature space. The
KTS algorithm performs segmentation by minimizing
an objective function such that the sum of within-
segment variances is minimized, while penalizing over-
segmentation simultaneously:

min
m; t1,...,tm

Jm,n := Lm,n + C· g(m, n) (4)

where m is the number of segment boundaries at
t1, . . . , tm, and Lm,n is defined as

Lm,n =
m∑
i=0

vti,ti+1 , vti,ti+1 =
ti+1−1∑
t=ti

‖�(ft) − μi‖22,

μi =
∑ti+1−1

t=ti �(ft)
ti+1 − ti

, t0 = 1, tm+1 = n + 1,

(5)

and g(m, n) can be computed as

g(m, n) = m(log (n/m) + 1). (6)

Note that Lm,n is the sum of all the within-segment vari-
ances and g(m, n) increases when we add more segments,
which penalizes over-segmentation. The constant C con-
trols the trade-off between under- and over-segmentation.
The within-segment variances in (5) can be computed as

vti ,ti+1 =
ti+1−1∑
t=ti

‖�(ft)‖22 − 2
ti+1−1∑
t=ti

�(ft) · μi + (ti+1 − ti)‖μi‖22

=
ti+1−1∑
t=ti

‖�(ft)‖22 − 1
ti+1 − ti

∥∥∥∥∥∥
ti+1−1∑
t=ti

�(ft)

∥∥∥∥∥∥
2

2

=
ti+1−1∑
t=ti

K(π(ft),π(ft)) − 1
ti+1 − ti

ti+1−1∑
s=ti

ti+1−1∑
t=ti

K(π(fs),π(ft)).

(7)

Since nothing but the inner products between �’s needs
to be known, our own kernel function and the Gram
matrix can be efficiently exploited in the algorithm. Opti-
mization of the objective function is based on dynamic
programming, and it was reported in [21] that the time
complexity of the algorithm is O(mmaxn2) where mmax
is the largest possible number of segment boundaries.
Also, the n × n Gram matrix and its cumulative sums
are calculated for the within-segment variances, and the
amount of memory they take up is one of the major
problems. Because the runtime and memory complex-
ity increase quadratically with n, reduction of redundant
frames (decrease in n) in the above process is very effec-
tive. For example, a 3-h-long video is reduced to 739
frames in the video skimming step, and the temporal seg-
mentation and the next procedures are performed with
n = 739.

4 Image qualitymeasure and keyframe extraction
A keyframe is an image frame that represents a shot
very well. In addition to this, in the case of a consumer
video, we need to consider the quality of frames because
there are many low-quality frames in consumer videos
due to uncontrolled illumination, shaking, skewed shots,
out-of-focus blur, etc. Hence, we balance the measure of
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representativeness and quality of a frame when selecting
keyframes.
Specifically, our task of keyframe extraction is to find the

optimal keyframe set z∗ = {z1, . . . , zk} from the
entire candidate frame set F, where k is the number of
keyframes, according to an optimization criterion:

z∗ = argmin
z⊂F

λE1(z) + E2(z) (8)

where E1 and E2 are the cost functions related to frame
quality and representativeness, respectively. To solve this
problem, we formulate our task as a graph matching prob-
lem, which can be effectively used to consider both frame
quality and representativeness.

4.1 Measuring the quality and representativeness of a
frame

In order to give a narrow chance of being a keyframe to the
low-quality images, we measure the contrast as variance
of pixels. The metric of blurriness is measured according
to [29] and the skewness from [30]. For encoding these
measures into the cost function E1, we denote the badness
of contrast, blur, and skewness of the ith frame as ci, bi,
and si, respectively, which are normalized into the range of
[ 0, 1] by the sigmoid function (a larger value means worse
quality):

ci = 2/(1 + exp(−τ1· c′i)), bi = 2/(1 + exp(−τ2· b′
i)),

si =
{

τ3· s′i if τ3· s′i < 1
1 otherwise ∀i ∈ {1, . . . , n}

(9)

where c′i, b′
i, and s′i are the original measures of ci, bi,

and si, respectively. Because c′i ∈[ 0, 0.25] with normalized
intensities and b′

i ∈ [ 0, 1] as in [29], we choose different
parameters τ1 = −20 and τ2 = −5 for the sigmoid
functions. Also, since the value of s′i means the degree of
skewness in radians, we set si to be proportional to s′i with
τ3 = 2. These types of metrics can be used for the sum-
marization of any type of video and the quality measures
may also be replaced with othermetrics according to some
specific input video types.
In addition, we observe that the users try to keep the

cameras still (in the case of consumer video shots) or keep
the sight for a while (in the case of egocentric video) when
they are taking important scenes or observing prominent
objects. Hence, in the consumer videos, the shots from
still camera works are usually important ones, and also
the image qualities are good due to stillness of a cam-
era. Hence, we define one more measure of image quality
for this, as the distance of a frame from its cluster center.
Specifically, since the frames have small differences in the
still scenes, the distance of the ith frame from its cluster

center, denoted as di, is used as an additional measure of
image quality.
For this, we apply more refined clustering to the tem-

poral segments obtained in the above procedure and find
the distance of each frame from its cluster center. We refer
“refined clustering” as the one using the SIFT vectors,
rather than the simple color histograms that were used in
the first step, for considering the patterns of objects in the
scene and alleviating the demerits of color features. More
specifically, we adopt the idea of spatial pyramid match-
ing with dense SIFT descriptors (ScSPM) [31] devised for
image classification, because we may regard the clustering
as an image classification task and the ScSPM vector is a
kind of feature that can overcome the limitation of color
features; they do not distinguish some scenes with simi-
lar color distributions [3]. The ScSPMmethod is based on
sparse representation, but l2 regularizer can also be used
with a sufficiently over-complete dictionary according to
the studies of collaborative representation [32, 33]. That
is, if we denote y, x∗, and D as a SIFT descriptor, its coef-
ficient vector, and a visual dictionary respectively, then x∗
is given by

x∗ = argmin
x

‖y − Dx‖22 + α‖x‖22
= (DTD + αI)−1DTy

(10)

so it is possible to obtain x∗ by simply multiplying y by
a pre-computed matrix (DTD + αI)−1DT , where D is
from a dataset containing diverse image categories such
as Caltech-101 dataset [34] whose images can provide the
atoms of a dictionary with sufficiently various shapes. One
can use the atoms of a visual dictionary even though they
would not be used to classify the images with which they
are trained. Thus, the visual dictionary D does not have
to be trained with our experimental videos, and the frame
clustering yields reliable results as shown in Fig. 2 that
shows the examples of frames belonging to the same clus-
ter. Now that each frame is represented by the coefficient
vector defined above, let us denote the center of the vec-
tors in the qth cluster of the pth temporal segment as
mp,q. Then, the distance of each frame fi from its center
is denoted as di, which is added to the image quality mea-
sures. In this situation, each cluster may be either small
or big, which would give rise to an unbalanced distance
measure. To alleviate this problem, we use Mahalanobis
distance to compute dis.
In summary, the quality measure for fi (the i-th frame)

is defined as the combination of the distance di, contrast
ci, blurriness bi, and skewness si in the form of

ai = di
√
ci + bi + g(ci + bi + si), i = 1, . . . , n (11)

where g(x) = x/(1 + |x|l)1/l (l = 10 in our experiments),
and this is also normalized into range of [ 0, 1]. g(x)
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Fig. 2 An example of images belonging to the same cluster. Frames that look similar to each other can agglomerate to form a cluster. The number
of its members increases with the time duration of the scene they show

behaves like g(x) = x when x ∈ [ 0, 1] and like g(x) =
1 when x ∈ [ 1,∞). When ai is close to 0, then fi is
regarded as a good-quality frame. Because skewness does
not have any meaning for severely low-contrast or blurred
images, it should be used only to find out good frames
among high-contrast and non-blurred images. For this
reason, we use the g(ci + bi + si) term where si loses

its importance when ci or bi is large. Besides, the square
root computation is intended to give similar ai values to
low-contrast or blurred images, and lastly, ai is multiplied
by di to consider whether or not the scene caught the
capturer’s attention as mentioned above. Figure 3 shows
some frames with the lowest or highest ai values in their
clusters to compare these two classes of frames. Finally,

Fig. 3 Examples of (a) low-quality and (b) high-quality frames. The frames with the maximum or the minimum cost values in the clusters of some
videos are listed. Each image of (b) has good quality itself or shows the stable (or static) scene in its cluster
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E1(z) in (8) is the sum of ais of the frames belonging to a
keyframe set.
Based on the clustering result, the representativeness of

the keyframes is defined as “how the selected keyframe
set is close to the set of cluster centers {mp,q},” which is
conceptually defined as

E2(z) = Diff(z, {mp,q}). (12)

4.2 Formulation of cost function and its optimization
With the above conceptual definitions of E1(z) and E2(z),
the optimization of (8) is actually formulated as a graph
matching problem [10, 11, 35]. Specifically, we define a
complete graph G = (V,E), where V is a set of mp,qs and
every pair of vertices is connected by a single edge. The
representativeness of keyframes in (12) is defined as “the
similarity of their patterns to those of the cluster centers.”
For this, suppose that a vector mp,q can be reconstructed
by the linear combination of the other ones. If the num-
ber of mp,qs is k, and we denote the concatenated matrix
P = [m1,1,m1,2, . . . ,mp,q, . . . ]∈ R

d×k (d is the dimension
ofmp,q), then the coefficients of their linear combinations
are given by

min
wp,q∈Rk

‖Pwp,q − mp,q‖22 + η‖wp,q‖22
s.t. wT

p,q1k = 1,w(p,q),i = 0
(13)

where i is the index of mp,q in P. In (13), the first term
is for reconstruction errors, and the second is a regular-
ization term that suppresses some big weights and gets
wp,q to prefer to learn small weights. The smaller η gets,
the more the role of mp,q’s neighbors is emphasized for
its reconstruction. By solving this problem, we can get
the concatenated matrix W = [w1,1,w1,2, . . . ,wp,q, . . . ]∈
R
k×k .
Since each keyframe is extracted from its cluster, let

us define a binary association matrix G ∈ {0, 1}k×n that
encodes this, where G(i, j) = 1 if the jth frame belongs to
the ith cluster. In addition, let the cost matrix A ∈ R

k×n

contain the overall frame costs, where A(i, j) = aj if
G(i, j) = 1. Also, the feature vectors of all the n frames
given by ScSPM form a matrix of the candidates Q =
[q1,q2,q3, . . . ,qn]T ∈ R

n×d . Given the matrices G, A, Q,
andW, we find the optimal correspondences X by solving
the following problem:

min
z⊂F

λE1(z) + E2(z) ⇔
min
X

λtrace(AXT ) + ‖(Ik − W)XQ‖1
s.t. X ∈ {0, 1}k×n, X1n = 1k ,

X(i, j) = 0 if G(i, j) = 0

(14)

where λ is a regularization weight for the trade-off
between the frame cost and the reconstruction error.

Finding X is to get the keyframe set z∗ ⊂ F, so E1(z)
and E2(z) correspond to trace(AXT ) and ‖(Ik − W)XQ‖1
respectively where the former means the sum of ais of
the selected keyframes and the latter decreases as the pat-
terns of the keyframe set and P get similar to each other.
Multiplying a frame cost by di in (11) allows this optimiza-
tion problem to be stable, which means that it reduces the
influence of λ’s variation. However, the problem of (14) is
NP-hard and nonlinear with integer constraints. To effi-
ciently solve this problem, the reconstruction error term
is linearized and the binary constraint X ∈ {0, 1}k×n is
relaxed to the continuous domain [ 0, 1]k×n, leading to the
following problem:

min
z⊂F

λE1(z) + E2(z) ⇔
min
X,U ,V

λtrace(AXT ) + 1Tk (U + V)1d

s.t.U ≥ 0k×d, V ≥ 0k×d , (Ik − W)XQ = U − V

X ∈ [ 0, 1]k×n , X1n = 1k ,
X(i, j) = 0 if G(i, j) = 0

(15)

whereU,V ∈ R
k×d are the auxiliarymatrices representing

upper- and lower-bounds respectively for ‖(Ik−W)XQ‖1,
soU+Vmeans the size of the interval for (Ik−W)XQ, the
norm of which is minimized along with 1Tk (U+V)1d. This
problem can be solved with linear programming. Last, to
discretize X, we perform the iterated conditional modes
(ICM) row by row for every entry of X. As a result of the
above procedure, X has only k 1s. Hence, if the ith col-
umn of X has a non-zero entry, then it means that fi is
selected as a keyframe. After sorting by time, we obtain
the final storyboard. Finally, the overview of our method
is illustrated in Fig. 4.

5 Experimental results
In our experiments, the UTE (UT Egocentric) [2] and the
ADL (activities of daily living) [36] databases were used.
The UTE dataset consists of 4 videos that are about 3–
5 h long, and the ADL dataset contains 20 videos, most
of which are less than an hour long. For the comparison,
we selected 5 different baselines: (1) uniform sampling,
(2) clustering-based (with color histograms) [4], (3) visual
attention-based [8], (4) object-driven (only for the UTE
dataset) [2], and (5) our method without the optimiza-
tion procedure. What we intend by the last one is that the
frame that has the lowest cost in each cluster is selected as
a keyframe.
Several parameters are involved in our algorithm: θa, θb

for spectral clustering, C in the KTS step, α in the fea-
ture extraction step, and η, λ in the optimization step.
We set θa = 10−3, α = 0.15, η = 10−1 in all the
experiments, and θb ∈ [ 0.05, 0.15], C ∈ [ 1, 3] where we
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Fig. 4 Overview of our method. {f1, f2, f3, . . . , fn} is the set of remaining frames after redundant frame pruning, andmp,qs combine to form a fiducial
graph described in this figure. k frames are selected as the keyframes and sorted by time to result in the final summary

controlled them depending on the length of a video. Also,
the value of λ was adjusted between 101 and 103. The
value of η can be determined by examining the recon-
struction error in (14), and it could be set as the value
with the minimum reconstruction error for each input
video; but we used the value of η consistent in every
experiment for simplicity—to avoid repeating the same
steps.
It has often been seen in the literature that only mean-

opinion scores (MOS) are used for evaluation, while some
researchers recently exploited the precision and recall
criterion [1, 8] for objectiveness, especially for static sum-
marization. For this, a human subject makes his/her own
summary and then it is compared to the summaries made
by automatic methods. Because comparing two images is
itself subjective, it is important to reduce the subjectiv-
ity in this work. Hence, we asked 11 subjects to take the
following steps with the videos of the two datasets in the
experiments: (1) summarize a video with a series of events
in words, (2) label the keyframes corresponding to the
events in an automatic summarization result, and lastly
(3) score each video summary from 0 to 5. We made every
subject sure that an event may be matched to nothing or
to more than one keyframe. Given the questionnaires sub-
mitted by the subjects, we counted the number of labeled
keyframes (NLK ) and events reflected in a summary
(NRE) to compute precision and recall scores. These are
given by

Precision = NLK
NK

, Recall = NRE
NE

F-measure = 2
Precision × Recall
Precision + Recall

(16)

where NK and NE are the numbers of keyframes and
events respectively. Tables 1 and 2 show these quantitative

results on the UTE and the ADL datasets, respec-
tively. The clustering-based and the visual attention-based
methods shared the temporal segmentation results with
ours, but the latter one performed temporal segmenta-
tion once more on each video segment to get more and
shorter segments so that one frame with the highest score
could be selected in each segment. The methods used to
compare with each other resulted in the similar number
of keyframes in our experiments, and we believe that it is
the appropriate way to make both the best results of each
method and a fair comparison. Some examples of video
summaries are shown in Figs. 5 and 6.
The MOS criterion reflects the overall quality of a

summary, particularly regarding image quality, impor-
tant objects, and so on. Because each subject has his/her
own scoring criterion, we used the standard scores (i.e.,
score ← 5 + 1 · (score − mean)/std_dev) and confidence
intervals. Table 3 shows the MOSs, and it means that the
general criteria on keyframe quality (i.e., contrast, blurri-
ness, skewness, and duration of its scene) are efficient for
video summarization. These criteria do not require much
computational load and can be applied to videos with vari-
ous lengths. TheMOS results also show that the proposed
method attained better scores than the other ones, as the
precision-recall results do.
It can be seen with the quantitative results that the

clustering-based algorithm produce better summaries for
the ADL dataset than for the UTE dataset, and we infer
that it is because the videos in the ADL dataset have
large variations in color, and the scenes with different
color distributions tend to correspond to different activi-
ties. Since the clustering-based method depends only on
color histogram features, it may have trouble finding out
a meaningful frame from a scene with consistently col-
ored frames. In Fig. 5, the fifth image in the second row
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Table 1 UTE dataset results averaged w.r.t. subjects

Method Video name NRE NE NLK NK Precision Recall F-measure

Uniform sampling P01 6.3 9.5 7.6 12 0.636 0.711 0.656

P02 7.8 10.2 8.9 15 0.594 0.778 0.668

P03 4.5 8.3 5.9 12 0.492 0.545 0.513

P04 6.4 9.0 7.6 16 0.477 0.718 0.565

Avg. 6.2 9.3 7.5 13.8 0.550 0.688 0.600

Clustering-based [4] P01 6.7 9.5 7.6 11 0.694 0.755 0.709

P02 8.4 10.2 10.5 16 0.653 0.823 0.720

P03 5.5 8.3 7.5 14 0.532 0.664 0.588

P04 7.9 9.0 10.1 18 0.561 0.894 0.677

Avg. 7.1 9.3 8.9 14.8 0.610 0.784 0.674

Attention-based [2] P01 7.1 9.5 7.9 12 0.659 0.790 0.708

P02 6.0 10.2 6.8 13 0.524 0.601 0.555

P03 5.5 8.3 7.0 12 0.583 0.661 0.611

P04 7.3 9.0 8.5 16 0.534 0.811 0.634

Avg. 6.5 9.3 7.6 13.3 0.575 0.716 0.627

Object-driven [8] P01 7.0 9.5 9.4 13 0.720 0.776 0.731

P02 7.5 10.2 10.9 19 0.574 0.741 0.641

P03 6.0 8.3 8.2 12 0.682 0.720 0.692

P04 7.0 9.0 8.5 16 0.534 0.793 0.632

Avg. 6.9 9.3 9.3 15.0 0.628 0.758 0.674

Proposed (w/o optimization) P01 6.1 9.5 6.5 10 0.655 0.686 0.659

P02 7.1 10.2 8.1 13 0.622 0.704 0.655

P03 5.8 8.3 7.4 11 0.669 0.707 0.683

P04 7.7 9.0 8.8 15 0.588 0.867 0.689

Avg. 6.7 9.3 7.7 12.3 0.634 0.741 0.672

Proposed P01 7.1 9.5 7.8 10 0.782 0.791 0.773

P02 8.2 10.2 9.3 13 0.713 0.811 0.756

P03 6.8 8.3 8.5 11 0.777 0.830 0.798

P04 7.9 9.0 9.5 15 0.630 0.889 0.725

Avg. 7.5 9.3 8.8 12.3 0.726 0.830 0.763

of this method’s result is an example that shows this case
very well. It represents the scene at a kitchen, but it fails
to show us what the capturer is mainly doing there. Using
only color features also has the limit that it has trou-
ble detecting a shot boundary between two video shots

similar in color [3]. Although the attention-based method
extracts good keyframes in static scenes, it also selects
the frames with strong motions as keyframes as shown
in Fig. 6, which shows many transient scenes where the
capturer is moving. It made us adjust the weight between

Table 2 ADL dataset results averaged w.r.t. subjects and videos

Method NRE NE NLK NK Precision Recall F-measure

Uniform sampling 5.5 8.3 6.2 9.2 0.685 0.705 0.685

Clustering-based [4] 6.4 8.3 6.8 8.8 0.778 0.789 0.772

Attention-based [8] 5.8 8.3 6.6 9.5 0.705 0.746 0.710

Proposed (w/o optimization) 6.3 8.3 7.0 9.2 0.779 0.784 0.769

Proposed 6.6 8.3 7.3 9.2 0.810 0.803 0.793
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Fig. 5 The video summaries of UTE P03.mp4 that is about 3 h long. Its scenes start at home, and the capturer goes grocery shopping, has a meal,
and then washes the dishes. The result of our method shows a series of frames by which one could figure out the plot, while the others, especially
the first three results, have many frames that would be bad to contain in a video summary

Fig. 6 The video summaries of ADL P_20.mp4 that is about 27 min long. The capturer does many things in the video: brushing his teeth, going to a
laundry room, studying, watching TV, and washing dishes. The clustering-based method lost some important scenes, and the attention-based
method tends to extract some keyframes when the camera wearer is moving, which makes a bad frame likely to be included in a consumer video’s
summary
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Table 3 Average standard MOS results with 95 % confidence
intervals in our experiments

Dataset Method MOS

UTE Uniform sampling 4.17 ± .30

Clustering-based [4] 5.10 ± .29

Attention-based [8] 4.49 ± .23

Object-driven [2] 5.36 ± .32

Proposed (w/o optimization) 5.18 ± .22

Proposed 5.69 ± .29

ADL Uniform sampling 4.41 ± .20

Clustering-based [4] 5.25 ± .18

Attention-based [8] 4.57 ± .16

Proposed (w/o optimization) 5.26 ± .14

Proposed 5.51 ± .16

the spatial and the temporal attention values described
in [8] to obtain better results with the longer and more
complicated videos. For this reason, the attention-based
method seems to be more suitable for edited videos or
those with lesser motions. The object-driven method has
the superior abilities to find out keyframes with good
quality of frames themselves, but it may give rise to false
positives in a scene. If a scene shows many conspicuous
things such as objects, hands, and faces, the algorithm
tends to extract more keyframes in that scene than in oth-
ers, which may make a subject regard them as false posi-
tives. For example, this method’s result in Fig. 5 has many
keyframes—in a certain sense, too many as compared to
the video’s length—that show the scene at the kitchen and
the fifth and sixth keyframes are almost the same. As a
results, the object-drivenmethod attained better results in
evaluation onMOS scores than on precision-recall scores.
Themethods using clustering such as the clustering-based

one and ours have a problem with the number of clus-
ters, because it determines the number of keyframes and
whether or not some scene is reflected in a video sum-
mary. The first two frames of our result in Fig. 6 show
the same activity, so some of the subjects regarded one
of them as a redundant keyframe. Also, the first keyframe
of our result in Fig. 5 may be regarded as a false positive
because the capturer stays home for a short time at the
beginning of this video. Figure 7 shows a worse case with
such problem. These redundant keyframes would disap-
pear with a shorter summary’s length setting, but it might
cause other proper keyframes to also be removed because
of clustering with a constant threshold.
As mentioned above, we are given the choice between

choosing representative frames and quality ones, so we
formulate the last step in our algorithm as an optimization
problem. Figure 8 shows the frames with the minimum
values of ai or di in their clusters and the keyframes
resulted from our optimization step with various values
of λ. This figure confirms that the keyframes with a small
λ value are similar to those closest to the centers of their
clusters, while the ones with a larger λ value tend to be
similar to those with the minimum ai values, as expected.
In our experiments, the frames at the second row in Fig. 8
had little differences in the values of ai and di with one
another, so the keyframe results did not have exactly the
same frames with theminimum ai or di values in that clus-
ter. While any image may be qualified as a good keyframe
at the second row, the summary that has a laundry room
image as the first keyframe is more suitable in terms of the
video’s story, which led to the higher scores on both the
precision and the recall criteria. However, someone might
prefer the first frame at the first row, and this is basically a
matter of opinion.
We conducted additional experiments to confirm how

our method deals with the videos showing camerawork
such as camera pan and zoom. The SumMe dataset [1]
contains both first-person and third-person videos, which

Fig. 7 A part of our summary on UTE P_02.mp4 showing the problem with the number of clusters. Clustering with a constant threshold may
produce several clusters similar to each other. Most of the subjects regarded roughly half of the keyframes in this part as of little importance
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Fig. 8 Comparison of parts of the summaries on ADL P_07.mp4 with various λ values at the optimization step. This video shows the scenes, “going
to a laundry room” and “using a computer.” Each row contains the frames in the first or second cluster of the video. The first two columns show the
frames obtained with the minimum (a) ai or (b) di values, and (c–e) show the resultant keyframes with λ = 0, λ = 101, and λ = 102, respectively. In
the first row, even though the frames of (a) and (e) have high contrast, they are less appropriate ones as story board images of “laundry room,” while
the frames of (b–d) would be more appropriate ones

are a few minutes long, so we summarized the third-
person videos with strong camerawork as shown in Fig. 9.
A scene with camera zoom probably has important infor-
mation (e.g., prominent objects), and if so, one of the
frames within the scene qualifies for a keyframe. Those
scenes are usually long or stable enough to clearly show
important information, which can be encoded by our
representativeness measure. The keyframes with red bor-
ders in Fig. 9 were captured at the moments of zoom,
and they hold a majority in the summaries. On the one
hand, a scene with camera pan is probably transient and
not suitable to have a keyframe; in fact, the video skim-
ming and keyframe selection steps are likely to preclude
those scenes from a summary. However, they sometimes
have stable and meaningful information when the camera
keeps tracking some objects as the third image in Fig. 9a.
Even though this scene was captured at themoment of pan

and is rather short, many frames that look similar to each
other formed a cluster and yielded a keyframe. Measuring
duration of a scene can help to decide whether or not a
scene with zoom or pan deserves to be included in a sum-
mary, and the duration is one of our criteria for selecting
keyframes.
As shown in Figs. 5 and 6, the summaries are different

in length, which is because all but the uniform sampling
method cannot set the exact number of keyframes in the
experiments. This may be a limitation of our algorithm.
Finally, as stated previously, some of the skimmed videos
and static summary results are shown in http://ispl.snu.ac.
kr/~jeongdj/videosummary.html.

6 Conclusions
We have proposed a video summarization algorithm for
consumer videos, which is specifically designed for the

Fig. 9 The summaries of the videos with strong camerawork. a Jumps.mp4 and (b) Statue of Liberty.mp4 in the SumMe dataset show consistent
camerawork such as zoom and pan. Red and blue borders indicate that their frames were captured at the moments of zoom and pan, respectively

http://ispl.snu.ac.kr/~jeongdj/videosummary.html
http://ispl.snu.ac.kr/~jeongdj/videosummary.html
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long and unedited videos. For the fast processing, the
video is first roughly segmented and clustered to be a
skimmed video, and then the keyframes with good qual-
ity and representativeness are selected. At the first video
skimming step, our method removes most of the redun-
dant frames very fast by applying spectral clustering on
the evenly spaced segments with simple color histogram
features. In the second keyframe selection step, we formu-
late the keyframe extraction as an optimization problem,
where we consider the representativeness as the effective-
ness of being a linear combination of other keyframes,
and also consider quality in terms of contrast, blurri-
ness, skewness, and distinctiveness. Experimental results
show that the proposed method works well on the UTE
and the ADL datasets but shows some limitation in that
the number of keyframes is not finely controlled, which
needs further research in the clustering and optimization
processes.

Endnote
1 The notations related to the spectral clustering are

only for this section.
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