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Abstract 

Background Identifying chemical mentions within the Alzheimer’s and dementia literature can provide a powerful 
tool to further therapeutic research. Leveraging the Chemical Entities of Biological Interest (ChEBI) ontology, which 
is rich in hierarchical and other relationship types, for entity normalization can provide an advantage for future down‑
stream applications. We provide a reproducible hybrid approach that combines an ontology‑enhanced PubMedBERT 
model for disambiguation with a dictionary‑based method for candidate selection.

Results There were 56,553 chemical mentions in the titles of 44,812 unique PubMed article abstracts. Based on our 
gold standard, our method of disambiguation improved entity normalization by 25.3 percentage points compared 
to using only the dictionary‑based approach with fuzzy‑string matching for disambiguation. For the CRAFT corpus, 
our method outperformed baselines (maximum 78.4%) with a 91.17% accuracy. For our Alzheimer’s and dementia 
cohort, we were able to add 47.1% more potential mappings between MeSH and ChEBI when compared to BioPortal.

Conclusion Use of natural language models like PubMedBERT and resources such as ChEBI and PubChem provide 
a beneficial way to link entity mentions to ontology terms, while further supporting downstream tasks like filtering 
ChEBI mentions based on roles and assertions to find beneficial therapies for Alzheimer’s and dementia.
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Introduction
Despite advances in identifying the biological basis of 
Alzheimer’s disease (AD) and dementia, there are few 
chemical therapeutic interventions. Approved drugs are 
largely limited to cholinesterase inhibitors and meman-
tine, which provide symptomatic management, and 
two drugs reported to reduce progression, aducanumab 

and lecanemab [1–3]. Animal studies tend to report 
high rates of success, but translation of therapies from 
animals to humans is generally poor. Several factors 
undermine the usefulness of animal studies, including 
insufficient rigor in animal study design, reporting and 
reproducibility, publication bias, over-reporting of sig-
nificance, and over-reliance on non-clinical outcome 
measures [4–7]. The most challenging aspect of neu-
rodegenerative diseases are their biological complex-
ity, and the associated inability of animal models to fully 
recapitulate disease mechanisms [5–7]. When combined 
with reductionist approaches inherent in the modern sci-
entific method, results obtained in animal models fail to 
translate to more complex systems (e.g. patient popula-
tions) with emergent properties [5, 8]. One approach to 
overcome the challenges is to assess the generalizability 
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of therapeutic mechanisms over diverse preclinical sys-
tems. This approach is not unprecedented, and is utilized 
to develop therapeutics that cannot be tested in humans 
using the Food and Drug Administration (FDA) Animal 
Rule [9]. Zeiss et. al. applied this approach in the con-
text of Parkinson’s disease by using text mining to extract 
translation-related characteristics across pre-clinical sys-
tems from scientific publications [10]. We build on that 
work by refining the methodology for capturing chemi-
cal interventions in the AD and dementia literature. This 
expands our capacity to associate translationally rele-
vant data (e.g. animal model, outcome measures used to 
establish efficacy and biomarker data [10]) with chemical 
interventions to assess generalizability of interventional 
studies across animal systems and humans.

Extracting chemical interventions, or chemical men-
tions, can be done using a variety of methods. PubTator 
Central is an automated text mining tool that extracts 
entity mentions from PubMed titles, abstracts, and full 
text [11]. PubTator uses TaggerOne [12] to recognize 
chemical named entities and normalize them to Medi-
cal Subject Headings (MeSH). While MeSH is a rich 
vocabulary for the purpose of indexing literature, it does 
not contain extensive ontological assertions with linked 
chemical structure information [13]. In addition, a large 
portion of MeSH terms are supplementary chemical 
records (SCR) that are not organized in the tree hierar-
chy. Using an ontology, as opposed to a terminology like 
MeSH, can allow for further application of the found 
chemical intervention mentions. For instance, mentions 
can be classified based on their properties and roles or 
mentions can be grouped under parents using the hier-
archical structure. In addition, ontologies provide the 
ability to link between chemical structures and their bio-
logical processes, which can be used for further down-
stream inference-based analysis including knowledge 
graph embeddings, drug design, and improved efficacy 
[14].

There are many additional sources of chemical infor-
mation, including chemical structure databases (e.g. 
ChEMBL [15]), chemical literature databases (e.g. 
PubChem [16, 17]), and chemical ontologies (e.g. Chemi-
cal Entities of Biological Interest (ChEBI) [18]). Unlike 
MeSH, ChEBI is a fully curated database and OBO 
Foundry ontology [19] for molecular entities, contain-
ing hierarchical structure, relationships, definitions, 
structure information, and synonyms [18]. Therefore, 
using ChEBI with its associated ontological assertions 
and additional database information provides a marked 
improvement over MeSH. Normalization to ChEBI enti-
ties from PubTator Central chemical named entity men-
tions would be trivial if there existed a direct one-to-one 
map between MeSH identifiers and ChEBI identifiers. 

However, this is not the case. First, ChEBI identifiers 
tend to be more specific than MeSH identifiers. In addi-
tion, popular databases, such as DrugBank and ChEMBL, 
do not have MeSH identifiers directly in their down-
loadable databases, making it difficult to convert from 
one resource to another [15, 20]. Other resources, such 
as BioPortal and PubChem’s Identifier Exchange, allow 
mapping between MeSH and ChEBI [16, 21]. However, 
the coverage is severely lacking, only covering 14.4% of 
the ChEBI ontology.

Prior research concerning chemical entity normaliza-
tion consists primarily of lexical or rule-based approaches 
[22, 23],  PageRank methods [24], knowledge graph dis-
ambiguation methods [14], and vector-based methods 
[14]. The main source of difficulty in mining chemical 
mentions from the literature and normalizing them to 
standard identifiers is the lack of standardized naming 
conventions to represent the chemical structural infor-
mation [14]. For example, the trivial name carvedilol has 
brand names (i.e., Coreg, Dilatrend), identifier numbers 
(CAS RN: 72956-09-3), and systematic names (e.g., 
(+−)− 1− (Carbazol − 4 − yloxy)− 3− ((2− (o−methoxyphenoxy)

ethyl)amino)− 2− propanol , 1− (9H − carbazol − 4 − yloxy)− 3

−[2− (2−methoxyphenoxy)ethyl]amino propan− 2− ol) that 
incorporate the structure or part of the structure. Sys-
tematic names can have variations on how hyphens, 
commas, or dashes are located. In addition, there can be 
abbreviations or acronyms and misspellings. While these 
methods often perform well on higher-level chemical 
mentions, accuracy degrades as mentions become more 
granular.

Here, we provide a reproducible hybrid approach that 
incorporates machine learning and a dictionary-based 
method for normalizing the chemical mentions extracted 
by PubTator Central. We have curated a large hierarchi-
cal synonym database from chemical databases to find 
candidate ChEBI entities for each textual mention. Then, 
we used a Bidirectional Encoder Representations from 
Transformers (BERT) language model-based task to 
identify the best entity from the candidates. Transformer 
models for normalization have been explored and pri-
marily focus on non-chemical entities and normalizing 
to MeSH identifiers [25, 26]. For instance, PhenoTagger 
uses a dictionary-based method  and continues training 
BERT models using the Human Phenotype Ontology for 
a classification task [27]. However, PhenoTagger requires 
a distantly supervised training set and generation of both 
positive and negative labels. Chemical mentions, as we 
have discussed, suffer from non-standardized naming 
conventions [14, 28]. This makes it difficult to automati-
cally generate reliable true negative samples for a training 
set without manual curation by an expert, since an addi-
tion of a dash or number can be referencing a different 
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chemical or an author may use a more generic term 
that is referencing a child chemical or a related/similar 
chemical. Additionally, since chemical ontologies and 
knowledge bases store only positive samples and have an 
open-world assumption, we cannot simply assume that 
an absence of relationship means that there is no rela-
tionship to generate negative samples. Therefore, instead 
of framing our disambiguation task as a classification 
task, we took a more unsupervised approach to incorpo-
rate the ontological structure and synonymy contained in 
ChEBI. In addition, we generated a context-based map-
ping between MeSH and ChEBI, making use of external 
synonym databases and ontological parent-child rela-
tionships in ChEBI, improving upon the lack of coverage 
found between the two resources. Finally, through this 
process, we identified potential new candidate entities 
related to AD and dementia.

Materials and methods
Resources used
As of December 2021, we extracted 286,484 abstracts 
from the approximately 30 million PubMed abstracts 
using the key terms ‘Alzheimer’ or ‘dementia.’

PubTator Central
PubTator Central uses TaggerOne for named entity rec-
ognition (NER) and normalization (entity linking) to 
ontologies [11, 12]. PubTator Central normalizes to 
MeSH for chemicals [13]. For example, Simvastatin can 
be mapped to the MeSH ‘Simvastatin’ with unique ID 
D019821. We filtered PubTator Central annotations for 
chemical mentions and removed mentions of ‘water.’

PubChem
PubChem is an open chemistry database funded by the 
National Institute of Health that collects chemical mol-
ecule information: chemical structures, identifiers, 
chemical and physical properties, and synonyms [16]. 
We extracted synonyms, listings of the names aggregated 
from all substances whose standardized form is the com-
pound identifier (CID). We removed names that have 
inconsistent structure.

Chemical Entities of Biological Interest (ChEBI)
ChEBI (http:// www. ebi. ac. uk/ chebi) is available as a 
database and an ontology for molecular entities with 
a focus on small chemical compounds that are prod-
ucts in nature or synthetic products used to inter-
vene in the processes of living organisms [18]. ChEBI 
is part of the OBO Foundry with Basic Formal Ontol-
ogy as the upper level ontology, meaning that the 
ontology is well-formed and interoperable with other 
OBO Foundry ontologies such as the Gene Ontology 

(GO; http:// geneo ntolo gy. org) and Protein Ontology 
(PRO; https:// proco nsort ium. org), allowing for link-
age between chemicals and biological processes. ChEBI 
release 201 has 143,263 entities with 59,214 fully anno-
tated (placement within the hierarchical ChEBI struc-
ture and definitions). In addition, it has almost 300,000 
relationships. For example, Simvastatin can be mapped 
to CHEBI:9150. ChEBI provides relational information 
such as Simvastatin ‘ is a ’ ‘CHEBI:40303 lovastatin’ and 
‘ has role ’ ‘CHEBI:50266: prodrug’. Status ‘C’ (curated by 
a ChEBI team member and released in the public ver-
sion) or ‘E’ (exists, but has not been curated by a ChEBI 
team member) were retained. The statuses removed 
were entities just submitted, deleted, or obsolete. Once 
these statuses were filtered, we retained either a 2 or 3 
star rating, with a 3-star rating having been annotated 
manually by the ChEBI team and a 2-star rating hav-
ing been manually annotated by a third party [18]. We 
incorporated entities not fully curated in order to cap-
ture the breadth of possible entities in the PubMed lit-
erature. This resulted in 112,658 unique entities.

Data pre‑processing and hierarchical dictionary method
We then matched the set of textual mentions found by 
the chemical TaggerOne model in PubTator Central to 
a set of candidate ChEBI entities. Figure 2 illustrates the 
schema pipeline for matching the set of textual men-
tions found by to a set of candidate ChEBI entities and 
subsequently disambiguating them. Similar to the tools 
tmChem and NLM-CHEM used by PubChem, we take 
the hierarchical dictionary method approach [22, 23]. 
Pre-processing was done in a hierarchical manner such 
that exact matches were used first. Then, we performed 
data cleaning: lemmatization, lower-case, abbreviation 
resolution and removal of dashes, parentheses and com-
mas. We used the Schwartz-Hearst algorithm for iden-
tifying abbreviations (Python package abbreviations) in 
each abstract. Abbreviations were then replaced before 
the candidate list was selected. Since our task deals with 
chemical entity mentions, we did not stem because this 
may remove an important part of the chemical meaning. 
Finally, if no match occurred, we implemented fuzzy-
string matching. We have used the following hierarchical 
method such that once a result is obtained within a level 
of the hierarchy, the search for candidate ChEBI entities 
stops. The hierarchy follows (1) exact match to ChEBI 
name or synonym (2) relaxed match to ChEBI name or 
synonym which was retained as possible candidate for 
disambiguation (3) any match obtained by exact or relax 
match to PubChem or a fuzzy- string match to PubChem 
or ChEBI was used as potential candidate entities and 
disambiguation was done.

http://www.ebi.ac.uk/chebi
http://geneontology.org
https://proconsortium.org
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Exact match to ChEBI name
First, we extracted the ChEBI name from the ChEBI 
ontology. This is the name recommended for use by the 
biological community and conforms to current Interna-
tional Union of Pure and Applied Chemistry (IUPAC) 
recommendations of chemical nomenclature [18]. For 
example, the title ‘Investigation of Low Dose Cabazi-
taxel Potential as Microtubule Stabilizer in Experimen-
tal Model of Alzheimer’s Disease: Restoring Neuronal 
Cytoskeleton’ extracted the named entity ‘Cabazitaxel,’ 
which was mapped to ChEBI:63584.

Exact match to ChEBI synonym
Then, we extracted the ChEBI synonym list which con-
sists of alternative names for an entity derived from 
external sources or devised by the annotators based 
on recommendations of IUPAC, Nomenclature Com-
mittee of the International Union of Biochemistry and 
Molecular Biology (NCIUBMB), or their associated 
bodies. For example, the title ‘Novel analogues of chlo-
rmethiazole are neuroprotective in four cellular mod-
els of neurodegeneration by a mechanism with variable 
dependence on GABA(A) receptor potentiation’ extracts 
the named entity ‘chlormethiazole,’ which is linked 
to a candidate entity ChEBI:92875 with ChEBI name 
‘5-(2-chloroethyl)-4-methylthiazole.’

Relaxed match
Using Python 3.8.10 and the Natural Language 
Toolkit(NLTK) package we removed punctuation, lower-
cased the text, and lemmatized, removing pluralization. 
For example, the pluralized entity mention ‘ α-keto esters’ 
becomes ‘ α-keto ester’ and is matched to CHEBI:51848 
‘ α-ketoester’ from the title ‘Oxidative cross-dehydrogen-
ative [2 + 3] annulation of α-amino ketones with α-keto 
esters: concise synthesis of clausenamide analogues.’

PubChem and other resources synonym dictionary
Synonyms in PubChem can be attributed to multiple 
PubChem compound identifiers (CIDs) and therefore, 
with the remaining unmatched entity mentions, we 
did an exact match, followed by a relaxed match, to the 
PubChem filtered synonym list for the ChEBI entity’s 
associated CID. This procedure often produced multiple 
possible ChEBI matches for which entity disambiguation 
was done as described in the next section. For example, 
the title ‘The therapeutic effect of kavain and magnesium 
orotate on traumatic and vascular brain lesions’ had the 
named entity ‘kavain’ extracted. Using the set of syno-
nyms provided by PubChem, this maps to ChEBI:6117 
‘kawain,’ ChEBI:91863 ‘4-methoxy-2-(2-phenylethenyl)-2, 
3-dihydropyran-6-one’, and ChEBI:92164 ‘(2R)-4-meth-
oxy-2-(2-phenylethenyl)-2, 3-dihydropyran-6-one.’

Finally, on the remaining entity mentions we leveraged 
the Python package fuzzywuzzy using the Levenshtein 
Distance (an edit distance) and kept candidates with 
a ratio greater than 50% , matching in the same order of 
the hierarchical process: ChEBI name, ChEBI synonym, 
PubChem synonym. Fuzzy matching can produce an 
intractable and inefficiently large number of candidates. 
Therefore, we have included options to set the ratio larger 
than 50% and to set a threshold for the maximum number 
of candidates to include per mention ranked by Leven-
shtein Distance. For the entity mentions relying on fuzzy 
matching, the models were run with 500 top-ranked 
candidates by Levenstein distance for each mention to 
minimize computational time and scalability. Given the 
degradation after 500 matches (Supplement 1) and since 
it takes 0.136 seconds for each additional candidate using 
CPUs and 0.0267 when GPUs are enabled, we chose to 
keep 500 matches to balance efficiency, accuracy, and 
completeness.

Entity disambiguation for generated candidates 
by dictionary method
Figure 2 depicts the pipeline for normalization to ChEBI 
entities. Using our hierarchical dictionary and processing 
method, we disambiguated between a set of candidate 
ChEBI entities. If there was an exact match between the 
entity mentions and any entity, we retained that entity 
and no candidate list was built. However, for relaxed 
matches, matches using PubChem, and matches using 
fuzzy string matching, a set of candidates was produced. 
For example, folate can refer to either folate in the body, 
namely serum folate, or folate taken as a supplement, folic 
acid, providing us with two candidate entities. In Fig. 1, 
‘a diet rich in taurine, cysteine, folate, B12, and betaine 
may lessen risk for Alzheimer’s disease by boosting brain 
synthesis of hydrogen sulfide’ refers to the supplement, 
meaning that the mention should be disambiguated to 
’CHEBI:627470: folic acid’.

We formulated entity disambiguation of the gener-
ated candidates as a sentence-pair classification task 
using contextual information in the title and informa-
tion from ChEBI’s ontological structure. A visual inter-
pretation of this can be found in the gray box in Fig. 2. 
Transformer architectures such as BERT, pretrained 
on large amounts of text in an unsupervised manner, 
have advanced the state-of-the-art in many NLP tasks, 
including entity normalization [25, 29]. We used Pub-
MedBERT, a BERT variant trained from scratch on 
PubMed abstracts and PubMed Central full-text arti-
cles, shown to outperform baseline BERT, as our base 
model to do additional pretraining with the ChEBI 
ontology converted to natural language form [30–32]. 
Therefore, the pipeline follows: (1) pretraining BERT 
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Fig. 1 Folate Entity Disambiguation. A mention of folate (blue box) can be mapped to multiple ChEBI terms (yellow boxes). The mention refers 
to the supplement, meaning that the mention should be disambiguated to ‘CHEBI:627470: folic acid’

Fig. 2 ChEBI entity normalization pipeline. 286,484 PubMed Abstracts were queried with the keywords ‘Alzheimer’ and ‘Dementia’ resulting 
in 56,553 chemical mentions. Using chemical entity database resources (ChEBI ontology, PubChem), a hierarchical dictionary‑based method 
was used to generate ChEBI entity candidates. These candidates were disambiguated using a sentence‑pair classification task where they were 
ranked by cosine similarity. We developed two models for this (1) using the pretrained PubMedBERT and (2) continuing pretraining on PubMedBERT 
using ChEBI converted into natural language. The maximum cosine score between the original named entity and the candidate was retained. Our 
method was validated using our annotated gold standard dataset and compared to the MeSH normalized TaggerOne mentions



Page 6 of 12Mullin et al. Journal of Biomedical Semantics           (2024) 15:13 

model for entities using the ChEBI ontology, (2) train 
a sentence-level BERT model, (3) calculate cosine simi-
larity for each candidate.

To continue pretraining PubMedBERT with the ChEBI 
ontology (1), we converted ChEBI into natural language. 
For each triple, synonym, and definition contained in 
the ChEBI ontology for an entity, we created a human-
readable sentence (e.g. The set of triples: diacylglycerol 
44:4 | is a | diglyceride and diacylglycerol 44:4 | SYNO-
NYM | DAG 44:4, becomes the human readable natural 
language sentence ‘diacylglycerol 44:4, otherwise known 
as DAG 44:4, is a diglyceride’). Relations and synonyms 
were given natural language equivalents, such that 
‘has_part’ became ‘is partially made up of ’ and ‘IUPAC 
NAME’ was transformed into ‘has preferred name.’ These 
natural language chunks for each entity were then used 
as a validation and training set to continue pretraining 
PubMedBERT with a sample size of 164,849 human read-
able sentences. We used the huggingface transformers 
4.14.0 package, the initial ‘microsoft/BiomedNLP-Pub-
MedBERT-base-uncased-abstract-fulltext’ PubMedBERT 
model, and PyTorch 1.10.0 with an initiated learning 
rate of 0.0001 on 3 epochs with a batch size of 8 and a 
final train loss of 0.149 and 0.203 on the validation set. 
All other hyperparameters were set to the default fixed 
values.

In Fig. 2, we show the sentence-pair classification task, 
for entity disambiguation. The original abstract title 
was compared with the title replacing the original term 
with the candidate entity name (candidate title). Cosine 
similarity was then calculated for each candidate using a 
sentence embedding algorithm, Sentence-BERT, and the 
top candidate selected [33]. To get a sentence embed-
ding  to compare our candidate entities, we trained Sen-
tence-BERT on our PubMedBERT embedding that was 
pretrained on the ChEBI ontology using the Semantic 
Textural Similarity (STS) task (PubMedBERT+ChEBI) 
[33]. The STS task assigns a score based on the similar-
ity of two sentences, using the STS benchmark dataset, 
which is split into a  67/17/16 train/validation/test split, 
and sentence-transformers 2.1.0 [34, 34]. The model was 
trained for 4 epochs with a training batch size of 16. Like 
PubMedBERT, the max number of tokens was 512. Mean 
pooling was applied to get the sentence vectors. The STS 
validation set had a Pearson correlation of 0.8315 and a 
Spearman correlation of 0.832 for cosine similarity. On 
the STS testing set, the model had a Pearson correlation 
of 0.796 and a Spearman correlation of 0.79 for cosine 
similarity.

In comparison to the method PubMedBERT+ChEBI, 
the method ‘PubMedBERT’ refers to the PubMedBERT 
model trained using the Sentence-BERT methodology on 
the STS dataset.

Validation and analysis
To create a gold standard for comparison, we randomly 
selected 500 titles from our 286,484 PubMed abstract 
entries. A domain expert (CJZ) labeled if the chemical 
intervention entity mentions identified by TaggerOne 
were accurate from the abstract titles. Then, a PhD in 
Biomedical Informatics (SM) linked these extracted 
entity mentions with ChEBI entities. We report over-
all accuracy of attaining the correct ChEBI entity when 
compared to the gold standard (n=484). In addition, we 
report precision, recall, and the F1 score for our method 
when compared to the manually curated gold standard 
with the outcome of whether or not an entity was pre-
sent in the ChEBI ontology for the extracted mention 
with 3.2% of entities not having a ChEBI entity match. 
This allows us to decipher whether or not we can create 
a model, dependent on a threshold, that is able to find if 
there even exists a ChEBI entity for the specified chemi-
cal mention. To assess the sensitivity of choosing a cosine 
similarity threshold as a way to flag potentially incor-
rect matches where a true ChEBI entity either does not 
exist or was not in the generated candidate set, we ana-
lyze each accuracy measure at different cosine similarity 
thresholds. In addition, since PubTator Central is already 
normalized to MeSH terms, we analyzed the map-
ping and differences in coverage from the MeSH terms 
extracted by PubTator Central to our normalized ChEBI 
entities using BioPortal [16, 21].

Finally, to show the applicability and utility of the 
method outside of this use case, we analyzed our meth-
odology on the “Colorado Richly Annotated Full-Text” 
(CRAFT) corpus [35], a set of 67 full-text biomedical 
articles from PubMed Central Open Access subset, that 
contains 4,548 manual annotations of ChEBI entities. In 
this work, we used version 3.0 of this corpus and changed 
it slightly to fit the scope of our algorithm: we removed 
mentions that were 2 characters or less, annotated ChEBI 
entities that fell outside of status’ C and E and stars 2 
and 3, and terms that pertained to genes or proteins or 
were too generic (ie., amyloid, messenger, message, water, 
aqueous, feed, chow) for a total of 4,066 annotations. The 
processing of the corpus can be found on GitHub. For 
contextual disambiguation, we extracted the sentence 
that contains the mention.

Baseline normalization methods
For comparison, we have selected publicly available nor-
malization methods to ChEBI: Relation Extraction for 
Entity Linking (REEL) [24] and Gilda [36] for assessment 
on our gold standard and CRAFT. Other normalization 
methods exist, but code was not publicly accessible [37, 
38]. REEL is based on the personalized PageRank (PPR) 
algorithm and builds a disambiguation graph with nodes 
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as candidates for the entities and added edges according 
to the relations in the text. The PPR algorithm and the 
information content of ChEBI are then applied to choose 
the candidate for each entity that maximises the coher-
ence of the disambiguation graph. The code is publicly 
available at: https:// github. com/ lasig eBioTM/ REEL. Gilda 
first implements a grounding algorithm inspired by [39] 
that allows for efficient approximate matches to any of 
the terms appearing in the resource table, which includes 
ChEBI, and then uses logistic regression classification 
models and Adeft [40] for context aware disambiguation. 
For the Alzheimer and dementia gold standard, we used 
titles for disambiguation and for CRAFT we used the 
sentence that contains the mention. Gilda is available at: 
https:// github. com/ indra lab/ gilda.

Results
From 286,484 PubMed abstracts, we extracted 44,812 
unique abstracts identified by their PubMed identifiers 
(PMIDs) that contained chemical entity mentions. These 
44,812 abstracts titles had a mean of 1.279 chemical 
entity mentions per title (sd=0.591) and a total of 56,553 
chemical mentions.

Hierarchical dictionary method
The results of the hierarchical dictionary method can be 
found in (Table 1). Twenty-eight thousand eight hundred 
eighty-one mentions matched one ChEBI name exactly 
and 9,335 matched a ChEBI synonym exactly. Another 
3% matched after relaxing lemmatization and punctua-
tion. One hundred ninety-four entities were flagged as 
not matchable due to the extracted entities having two or 
less characters.

Candidate selection and disambiguation
Sixteen thousand nine hundred fifty-five entities needed 
disambiguation with a median of 4 (IQR=8) candidates 
per entity. This produced 99,378 total sentence-pairs of 
title and title replaced with candidate entity.

Using our method of disambiguation, pretraining Pub-
MedBERT on the ChEBI ontology and subsequently 
training a Sentence-BERT model on the Semantic 

Textual Similarity (STS) task (PubMedBERT+ChEBI), we 
retained the maximum cosine similarity score between 
the sentence-pairs. The final retained candidate enti-
ties had a cosine similarity median of 0.97 (IQR=0.051). 
For example, TaggerOne identified the mention ‘epicat-
echin’ in the paper titled ‘Dietary (-)-epicatechin as a 
potent inhibitor of βγ-secretase amyloid precursor pro-
tein processing’ [41]. First, finding no exact match to a 
ChEBI entity, our method created a candidate entity list: 
‘CHEBI:15600 (+)-catechin’,‘CHEBI:90 (-)-epicatechin’, 
‘CHEBI:76125 (+)-epicatechin’, and ‘CHEBI:23053 cat-
echin.’ Next sentence pairs were created for each of these 
entities such that the first sentence was the title and the 
paired sentence replaced the mention ‘epicatechin’ with 
each of the entity names. This resulted in Cosine simi-
larities: 0.918, 0.985, 0.984, and 0.927, respectively for 
PubMedBERT+ChEBI. The maximum cosine similarity 
normalizes the mention to ‘CHEBI:90 (-)-epicatechin’, 
which is the correct mention based on the context sur-
rounding the mention in the title. For PubMedBERT 
without pretraining on the ChEBI ontology, the result-
ing cosine similarities are 0.997, 0.998, 0.998, and 0.999, 
respectively, choosing the less specific parent term 
‘CHEBI:23053 catechin.’

Mentions that had a low cosine similarity tended to 
have a ChEBI exact name that was systematic, incorpo-
rating the structure in the name or were abbreviations. 
For instance, the extracted named entity ‘Suloctidil’ 
was normalized to the correct candidate ChEBI entity 
‘CHEBI:91639 2-(octylamino)-1-[4-(propan-2-ylthio)
phenyl]-1-propanol’ and had a cosine similarity of 0.531. 
Not surprisingly, a larger portion, 2.15% of entities were 
normalized to ‘CHEBI:53289 donepezil’ and 1.43% of 
mentions were normalized to ‘CHEBI:64312 memantine’, 
approved drugs for AD. Additionally, lipids and choles-
terol, including fatty acids, as well as herbal supplements 
like curcumin and melatonin were highly mentioned, 
which corresponds to the known AD literature [42].

Comparison to the gold standard and CRAFT
To compare the randomly sampled gold standard titles 
and annotated ChEBI entities, we looked at three dis-
ambiguation methods: fuzzy string matching, PubMed-
BERT, and PubMedBERT+ChEBI. Of the 484 randomly 
selected and annotated entities, 87 needed to be disam-
biguated after dictionary matching. For the dictionary-
based method, we disambiguated the terms that had 
more than one potential candidate using fuzzy match-
ing [43]. We kept the largest ratio of the Levenshtein 
Distance fuzzy match ratio. This is held constant across 
all cosine similarity thresholds. The final selected enti-
ties had a median of 75% (IQR=33). Whether or not 
an entity was present in the ChEBI ontology remained 

Table 1 Hierarchical dictionary method results: single ChEBI 
entity selected

n(%)

Exact:ChEBI Name 28,881(50.9)

Exact:ChEBI Synonym 9,335(16.5)

Relaxed:ChEBI Name and Synonym 1,736(3)

Exact:PubChem 1,980(3.5)

Relaxed:PubChem 226(0.4)

https://github.com/lasigeBioTM/REEL
https://github.com/indralab/gilda
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relatively the same across all disambiguation methods 
(Fig. 3). As expected, the dictionary-based method with 
fuzzy matching disambiguation had a lower recall (0.94) 
compared to the BERT language model methods (Pub-
MedBERT:0.998, PubMedBERT+ChEBI:0.998) when 
a corresponding entity exists in the ChEBI ontology. 
PubMedBERT+ChEBI and PubMedBERT were also pre-
cise (Precision:0.97), showing that these model are able 
to distinguish between whether or not a mention corre-
sponding to an entity exists in the ChEBI ontology with 
improved recall.

Our approach of using a Sentence-BERT model and 
pretraining PubMedBERT with ChEBI improves dis-
ambiguation accuracy of the correct ChEBI entity 
with a difference of 25.3 percentage points between 
PubMedBERT+ChEBI and fuzzy string matching with 
no threshold and an improvement of 2.3 percentage 
points between PubMedBERT+ChEBI and PubMed-
BERT (Fig.  3). In comparison to our baseline methods 
REEL and Gilda, our models were less precise (Fig. 3), but 
they had the highest sensitivity. For accuracy of finding 
and assigning normalized entities, PubMedBERT+ChEBI 
and PubMedBERT greatly outperformed both baseline 
models with an overall maximum accuracy of 0.942 for 
PubMedBERT+ChEBI and 0.936 for PubMedBERT com-
pared to 0.869 for Gilda and 0.789 for REEL.

Figure 3 depicts that not constraining the disambigua-
tion method with a cosine similarity threshold has the 
highest overall and disambiguation accuracy. This could 
be influenced by the minimum cosine similarity values 
within the gold standard set: the minimum cosine simi-
larity found after normalization was 0.659 for PubMed-
BERT and 0.564 for PubMedBERT+ChEBI.

For the CRAFT annotated corpus, PubMedBERT 
and PubMedBERT+ChEBI maintained improved accu-
racy (91% and 91.17%) for normalizing mentions to 
ChEBI entities compared to Gilda (78.4%) and REEL 
(76.29%) (Table  2). Our dictionary-based method alone 
performed well also (88.6%) in comparison to Gilda 
and REEL, indicating that compiling ChEBI with other 
large knowledge sources like PubChem for normali-
zation is highly beneficial. Out of 4,066 mentions in 
CRAFT, 551 mentions needed to be disambiguated. The 
final cosine similarity for these mentions was very high 
(PubMedBERT+ChEBI: median=0.992 (IQR:0.023), Pub-
MedBERT: median=0.989 (IQR:0.027)), potentially indi-
cating the discriminating power between candidates was 
good. The main entries (n=74) that our algorithm did 
not correctly normalize were mentions of ‘molecule’ and 
‘molecules’. CRAFT annotated these as ‘CHEBI:36357 
polyatomic entity’ and our algorithms identified this as 
‘CHEBI:25367 molecule.’ The second highest were men-
tions of ‘cocktail’ (n=20), which incorrectly normalized to 

Fig. 3 Gold Standard Comparison to Hierarchical Dictionary and Disambiguation Methods. Measures of Accuracy for whether or not an entity 
is present in the ChEBI ontology and a match can be made (left panel) show highest positive predictive value (PPV) and F1 for the lowest thresholds 
for both BERT‑based methods. The baseline models, REEL (PPV=1, F1=0.907), Gilda (PPV=0.989, F1=0.956), and dictionary‑based method alone 
(PPV=0.972, F1=0.956), were more precise than the BERT‑based models (PPV=0.967). Overall accuracy (n=484, 18% disambiguated entities, right 
panel) was maximum 0.942 for PubMedBERT+ChEBI, 0.938 for PubMedBERT, and 0.87 for the dictionary‑based method alone. Disambiguated 
accuracy was highest for PubMedBERT+ChEBI with a maximum of 0.724 with a difference of 25.3 percentage points between PubMedBERT+ChEBI 
and the dictionary‑based method alone. Additionally, PubMedBERT+ChEBI and PubMedBERT outperformed both baseline models with an accuracy 
of 0.869 for Gilda and 0.789 for REEL
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‘CHEBI:27958 cocaine.’ Since this algorithm is dependent 
on similarity, it is not surprising that the other meaning 
of cocktail, pertaining to an alcoholic beverage, had high 
similarity to the illicit drug cocaine.

Discussion
Candidate unlinked terms
After our hierarchical process was complete, 4.16% of 
named entity mentions recognized by PubTator Central 
remained unlinked. This included specific Amyloid-beta 
(Aβ ) animal models as opposed to drugs and incorrectly 
extracted mentions, such as ‘q & a’, ‘biomedicine’ and 
‘Pytorch’. In addition, this led to multiple terms that could 
potentially be added to ChEBI. These primarily were 
newly published drugs, with literature published in the 
last three years, or experimental drugs. These candidate 
mentions are included in Table 3. In addition, some of the 
experimental drugs had identifiers in the chemical sup-
plement to MeSH or were stubs or not fully annotated in 
PubChem or DrugBank. However, others, denoted by the 
stars in the table, were not contained in any previously 
mentioned chemical databases. Therefore, this method-
ology can simultaneously help curate candidate ChEBI 
terms and synonyms for addition to the ontology and 

knowledge base. If the goal is to link all possible men-
tions, methods for suggesting approximate or similar 
ChEBI entities, in terms of the hierarchy and relations 
contained in ChEBI or other external knowledge bases, 
could be adapted [44].

Comparison to BioPortal mapping
BioPortal contains 14,450 mappings between MeSH and 
ChEBI. BioPortal mappings can provide multiple ChEBI 
entities per MeSH term with 350 of the mentions con-
taining multiple mappings. For example, the paper titled 
‘Novel sulfamate derivatives of menthol: Synthesis, char-
acterization, and cholinesterases and carbonic anhydrase 
enzymes inhibition properties,’ PubTator normalized the 
entity mention ‘menthol’ to MeSH:D008610 which maps 
to ‘CHEBI:15409 (-)-menthol’, ‘CHEBI:76306 (+)-men-
thol’, and ‘CHEBI:76310 (±)-menthol’, depending on the 
contextual information surrounding the mention [45]. 
However, the title and the abstract do not refer to any of 
these specific entities, and therefore, our model instead 
maps to the less specific parent entity ‘CHEBI:25187 
p-mentan-3-ol’ (Cosine Similarity: 0.941). Interestingly, 
the model infers that menthol and p-menthan-3-ol are 
synonyms and that a more specific entity, such as those 
provided by BioPortal’s mapping, based on the context of 
the title cannot be justified.

After removing duplicate mappings (mappings that 
were one to many) by prioritizing matched entity 
mappings, 42.5% of entities found from the map-
ping and our normalization matched. PubTator Cen-
tral and our method did not find normalized entities 
for 3.88% of the mentions. Entities that did not match 
improved from our use of disambiguation and sen-
tence embeddings. These tended to match a more spe-
cific entity compared to BioPortal’s less specific entity. 
For instance, the mention ‘24S-hydroxycholesterol’, 
was mapped from MESH:C044563 to ‘CHEBI:50515 
24-hydroxycholesterol’ by BioPortal, as opposed 
to the more specific term found by our method 
‘CHEBI:34310 (24S)-24-hydroxycholesterol.’ BioPortal 
was able to map from the MeSH terms 0.67% additional 
mappings that we normalized incorrectly with these 
primarily being brand names such as Aricept and acro-
nyms that were missing from our synonym database 
(e.g. THA is an acronym for tacrine). Finally, we were 
able to find potential mappings between MeSH and 
ChEBI for 47.07% of the mentions not in the BioPortal 
mappings, including investigational drug ‘Ladostigil’ 
(MESH:C423264 to CHEBI:177484) which is linked to 
studies on mild cognitive impairment and 25-hydroxy 
Vitamin D (MESH:C104450 to CHEBI:17933). These 
mappings are available on GitHub: https:// github. com/ 
sarah mul/ CHEBI Norma lizer.

Table 2 Accuracy of normalization methods for the Alzheimer/
dementia gold standard and CRAFT

Method Gold Standard CRAFT

Baseline: Gilda 0.869 0.784

Baseline: REEL 0.789 0.763

Dictionary‑Based Method 0.87 0.886

PubMedBERT 0.942 0.91

PubMedBERT+CHEBI 0.936 0.912

Table 3 Candidate entities that can potentially be added 
to ChEBI concerning dementia and Alzheimer’s chemical 
interventions. adenotes mentions not contained in any previously 
mentioned chemical databases

triheptanoin organosiloxanesa

bapineuzumab semagacestat

solanezumab tiapride

4‑n‑phenyl  aminoquinolinea tianeptine

benzoquinolizidinea tramiprosate

remacemide suloctidil

davunetide remoxipride

rilapladib ramelteon

cerebrolysin praziquantel

chf5074 praxilene

idalopirdine naftidrofuryl

fluspirilene neramexane

https://github.com/sarahmul/CHEBINormalizer
https://github.com/sarahmul/CHEBINormalizer
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Finally, mapping directly from the normalized MeSH 
term to the ChEBI entity can produce incorrect entity 
normalization if there does not exist a more specific 
MeSH term. Here, ‘sulfamate’ maps to ‘MESH:C005741 
sulfamic acid.’ The term ‘sulfamate’ exists as an entry 
term, but not as its own entity. In addition, since this 
is a Supplementary Concept Records (SCR), this MeSH 
entity does not exist in the hierarchy, and therefore, it 
cannot be mapped to a parent entity. Therefore, using 
the BioPortal mapping, we get the incorrect normal-
ized entity, ‘CHEBI:9330 sulfamic acid.’ Our model, 
directly mapping from the mention, maps to the ChEBI 
term ‘CHEBI:131822 sulfamate.’

Use of entity normalization in synthesizing chemical 
mentions for AD and dementia
Being able to classify chemical mentions in litera-
ture into possible therapeutic interventions or other 
important roles pertaining to AD and dementia is key 
for future prospective research. When a ChEBI role 

relation was found, we mapped the normalized ChEBI 
entity to parent role terms (e.g. ‘CHEBI:52217 phar-
maceutical’, ‘CHEBI:33284 nutrient’). 40.87% of the 
mentions (out of N=55,765 matched mentions) can 
be classified as metabolites, 34.91% can be classified 
as pharmaceutical drugs, and 10.83% can be classified 
nutrients.

Figure  4 shows a treemap with overall ChEBI par-
ent role terms such as pharmaceutical and inhibitor 
overlayed on top of the childrens’ roles. The darker 
the shade, the higher the number of times these roles 
occurred in our database. 99.3% of our mentions had 
a biochemical role including metabolites and 79.44% 
were pharmaceuticals including diagnostic purposes 
or drugs. Other primary roles included inhibitors,food 
components, or supplements. Pharmacological roles 
that had high case counts are neurotransmitter agents 
with 3,329 chemical entities linked to this role, cholin-
ergic drugs, adrenergic agents, dopaminergic agents, 
and hormones. We were then able to filter out specific 

Fig. 4 Treemap of ChEBI roles for mapped entities. A treemap with overall ChEBI parent role terms such as pharmaceutical and inhibitor (shown 
in the legend) overlayed on top of the children roles are presented in this figure. The darker the shade, the higher the number of times these roles 
occurred in our database
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categories that were not chemical interventions using 
this strategy, including diagnostic chemicals such as 
‘Iofetamine’.

Limitations
This work focuses on normalization of entities once NER 
is done by TaggerOne, which reports a F1 score of 0.914 
and normalization F1 score 0.895 on the chemical cor-
pus, BioCreative 5 CDR [12] and entities captured were 
sometimes only partial entities (e.g. ‘Galantamine hydro-
bromide’ should have been extracted as the named entity, 
but only ‘Galantamine’ was extracted). Future work could 
account for joint NER and normalization or looking into 
other methods of NER before utilizing BERT models for 
disambiguation.

PubMedBERT was initially trained on PubMed 
abstracts and full-text articles from PubMed Central. 
While the model vocabulary contains most biomedi-
cal terms and subterms, especially those found in Pub-
Med texts, it may not contain some of the synonyms 
and vocabulary terms found in ChEBI and PubChem. 
This could impact pretraining PubMedBERT on ChEBI. 
Future work should look at how to incorporate knowl-
edge base vocabulary and synonyms, such as is con-
tained in ontologies like ChEBI, in language models.

In addition, further work should be done creating a 
training corpus using techniques to convert an ontol-
ogy into natural language generation [46]. This avenue of 
research requires additional rigorous training and valida-
tion. Creation of a ChEBI ontology natural language cor-
pus could be advantageous.

Finally, the improved accuracy afforded by 
PubMedBERT+ChEBI and PubMedBERT comes at a 
cost in terms of computational time. To parse the gold 
standard data set, maximizing 500 candidates per men-
tion, took 4.5 hours on 8 CPU cores with 16 GB of 
memory (mirroring a typical personal computer) and 13 
minutes enabling a GPU.

Conclusion
Use of language models, especially a model pretrained on 
the ChEBI ontology, combined with a dictionary-based 
method can provide a beneficial way to disambiguate 
entities. This method can be used with other ontologies 
or across domains that have a similar semantic structure 
to chemicals, such as genes and proteins.

While MeSH is a rich vocabulary, it does not contain 
extensive ontological assertions with linked chemical 
structure information and therefore, being able to nor-
malize to ChEBI can provide useful applications. We 
demonstrated the usefulness of ChEBI assertions and 
roles for filtering AD and dementia interventions and the 

ability to use this ontology for effective entity normaliza-
tion. Our entity normalization method found additional 
mappings between MeSH and ChEBI, based on contex-
tual information. Finally, through textual data mining, we 
have found additional candidate terms that can be added 
to ChEBI.
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