コンテンツにスキップ

「ペプチド結合」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
m Botによる: {{Normdaten}}を追加
タグ: サイズの大幅な増減 ビジュアルエディター
1行目: 1行目:
{{出典の明記|date=2011年12月}}
{{出典の明記|date=2011年12月}}
[[ファイル:Peptidformationball.svg|thumb|300px|2つのアミノ酸の脱水縮合によって形成するペプチド結合]]
[[File:Peptide bond.png|thumb|right|ペプチド結合(円内)]]
'''ペプチド結合'''(ペプチドけつごう、{{Lang-en-short|peptide bond}})とは、[[アミド結合]]のうち[[アミノ酸|α-アミノ酸]]同士が[[脱水縮合]]して形成される[[化学結合|結合]]である。分類上は2級アミドに分類される。また、タンパク質中でもα-アミノ酸が連続していない場合はペプチド結合と呼ばれず、単にアミド結合と呼ばれる。
'''ペプチド結合'''(ペプチドけつごう、{{Lang-en-short|peptide bond}})とは、[[アミド結合]]のうち[[アミノ酸|α-アミノ酸]]同士が[[脱水縮合]]して形成される[[共有結合]]である<ref name=":0">{{Cite journal|date=1984|title=Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983|journal=European Journal of Biochemistry|volume=138|issue=1|pages=9–37|doi=10.1111/j.1432-1033.1984.tb07877.x|issn=0014-2956|pmid=6692818|doi-access=free}}</ref>。分類上は2級アミドに分類される。また、タンパク質中でもα-アミノ酸が連続していない場合はペプチド結合と呼ばれず、単にアミド結合と呼ばれる。


このようにして生成する物質は[[ペプチド]]と呼ばれ、その縮合しているアミノ酸の数が2つ、3つ、4つ、5つ……となるごとにジペプチド、トリペプチド、テトラペプチド、ペンタペプチド……という。多数のアミノ酸が縮合した[[高分子]]物質は[[タンパク質]]であり、このため、タンパク質を'''ポリペプチド'''とも呼ぶ。
このようにして生成する物質は[[ペプチド]]と呼ばれ、その縮合しているアミノ酸の数が2つ、3つ、4つ、5つ……となるごとにジペプチド、トリペプチド、テトラペプチド、ペンタペプチド……という。多数のアミノ酸が縮合した[[高分子]]物質は[[タンパク質]]であり、このため、タンパク質を'''ポリペプチド'''とも呼ぶ。


アミド結合は強固な結合であり、[[加水分解]]は強[[酸性]]や強[[アルカリ性]]の条件でしか起こらない。しかし生体内にはペプチド結合のみを選択的に加水分解する[[酵素]]ペプチダーゼ、[[プロテアーゼ]]が存在し、これらの中には[[中性 (酸塩基)|中性]]に近い生物の体温程度の温度でかなり迅速にペプチド結合を加水分解することができるものもある。
アミド結合は強固な結合であり、[[加水分解]]は強[[酸性]]や強[[アルカリ性]]の条件でしか起こらない。しかし生体内にはペプチド結合のみを選択的に加水分解する[[酵素]]ペプチダーゼ、[[プロテアーゼ]]が存在し、これらの中には[[中性 (酸塩基)|中性]]に近い生物の体温程度の温度でかなり迅速にペプチド結合を加水分解することができるものもある。
== 合成 ==
[[File:Peptidformationball.svg|thumb|right|[[脱水反応]]によるペプチド結合の形成]]2つのアミノ酸がペプチド結合を介して'''[[ジペプチド]]'''を形成する場合<ref name=":0" />、これは[[縮合反応]]の一種である<ref>{{Cite journal|last=Muller|first=P|date=1994-01-01|title=Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)|journal=Pure and Applied Chemistry|volume=66|issue=5|pages=1077–1184|doi=10.1351/pac199466051077|issn=1365-3075}}</ref>。この種の縮合では、2つのアミノ酸が互いに接近して、一方の非[[側鎖]](C1)[[カルボン酸]][[部分 (化学)|部分]]が、他方の非側鎖(N2)[[アミン#アミノ基|アミノ]]部分に接近する。一方はカルボキシル基(COOH)から水素と酸素を失い、もう一方はアミノ基(NH<sub>2</sub>)から水素を失う。この反応により、1分子の水(H<sub>2</sub>O)とペプチド結合(-CO-NH-)で結合した2つのアミノ酸が生成する。2つのアミノ酸が結合したものをジペプチドと呼ぶ。


アミド結合のプロセスは[[脱水反応|脱水合成反応]]であり、一方のアミノ酸分子の[[カルボキシル基]]と他方のアミノ酸分子の[[アミノ基]]が反応し、1分子の[[水]](H<sub>2</sub>O)が放出されて合成が行われる。
<!-- == 脚注 ==
{{脚注ヘルプ}}
{{Reflist}} -->
== 参考文献 == <!-- {{Cite book}} --> <!-- {{Cite journal}} -->
{{節スタブ}}


[[File:AminoacidCondensation.svg|thumb|center|2つの[[アミノ酸]]が脱水縮合してペプチド結合(赤)を形成し、水(青)が排出される|590x590px]]
== 関連項目 ==
ペプチド結合の形成にはエネルギーが必要であるが、生物の場合は[[アデノシン三リン酸|ATP]]が使われる<ref>{{cite book |last1=Watson |first1=James |last2=Hopkins |first2=Nancy |last3=Roberts |first3=Jeffrey |last4=Agetsinger Steitz |first4=Joan |last5=Weiner |first5=Alan |name-list-style=vanc |year=1987 |orig-year=1965 |title=Molecualar Biology of the Gene |type=hardcover |edition=Fourth |location=Menlo Park, CA |publisher=The Benjamin/Cummings Publishing Company, Inc. |page=[https://archive.org/details/molecularbiology0004unse/page/168 168] |isbn=978-0805396140 |url=https://archive.org/details/molecularbiology0004unse/page/168 }}</ref>。ペプチドや[[タンパク質]]は、[[アミノ酸]]がペプチド結合(いくつかのイソペプチド結合の場合もある)で結合した鎖である。生物は酵素を使って[[非リボソームペプチド]]を作り<ref>{{cite journal | vauthors = Miller BR, Gulick AM | title = Structural Biology of Nonribosomal Peptide Synthetases | journal = Methods in Molecular Biology | volume = 1401 | pages = 3–29 | date = 2016 | pmid = 26831698 | pmc = 4760355 | doi = 10.1007/978-1-4939-3375-4_1 | isbn = 978-1-4939-3373-0 }}</ref>、[[リボソーム]]は脱水合成とは細部が異なる反応を使ってタンパク質を作る<ref>{{cite book | vauthors = Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM |date=2000|title=Protein synthesis|url=https://www.ncbi.nlm.nih.gov/books/NBK22022/|journal=An Introduction to Genetic Analysis|edition=7th | location = New York | publisher = W. H. Freeman |isbn=978-0716735205 }}</ref>。

[[α-アマニチン]]のように、リボソームで作られるためリボソームペプチドと呼ばれるものもあるが<ref>{{cite journal | vauthors = Walton JD, Hallen-Adams HE, Luo H | title = Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms | journal = Biopolymers | volume = 94 | issue = 5 | pages = 659–64 | date = 2010 | pmid = 20564017 | pmc = 4001729 | doi = 10.1002/bip.21416 }}</ref>、多くはリボソームではなく特殊な酵素で合成されるため、[[非リボソームペプチド]]と呼ばれる。たとえば、トリペプチドの[[グルタチオン]]は、遊離のアミノ酸から2つの酵素、{{仮リンク|グルタミン酸-システインリガーゼ|en|Glutamate–cysteine ligase}}(ペプチド結合ではないイソペプチド結合を形成)と[[グルタチオン合成酵素]](ペプチド結合を形成)によって2段階で合成される<ref>{{cite journal | vauthors = Wu G, Fang YZ, Yang S, Lupton JR, Turner ND | title = Glutathione metabolism and its implications for health | journal = The Journal of Nutrition | volume = 134 | issue = 3 | pages = 489–92 | date = March 2004 | pmid = 14988435 | doi = 10.1093/jn/134.3.489 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Meister A | title = Glutathione metabolism and its selective modification | journal = The Journal of Biological Chemistry | volume = 263 | issue = 33 | pages = 17205–8 | date = November 1988 | pmid = 3053703 | url = http://www.jbc.org/cgi/pmidlookup?view=long&pmid=3053703 }}</ref>。
== 分解 ==
ペプチド結合は、[[加水分解]](水の添加)によって切断される可能性がある。水の存在下で分解され、8~16 [[ジュール|kJ]]/[[モル|mol]](2~4 [[カロリー|kcal]]/mol)の[[ギブスエネルギー]]を放出する<ref>{{cite journal | vauthors = Martin RB | date = December 1998 | title = Free energies and equilibria of peptide bond hydrolysis and formation | journal = Biopolymers | volume = 45 | issue = 5 | pages = 351–353 | doi = 10.1002/(SICI)1097-0282(19980415)45:5<351::AID-BIP3>3.0.CO;2-K }}</ref>。このプロセスは非常に遅く、25℃での[[半減期]]は1結合あたり350~600年になる<ref>{{cite journal |last=Radzicka |first=Anna |last2=Wolfenden |first2=Richard | name-list-style = vanc |date=1996-01-01|title=Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases |journal=Journal of the American Chemical Society|volume=118|issue=26|pages=6105–6109|doi=10.1021/ja954077c|issn=0002-7863}}</ref>。

生体内では、通常、ペプチダーゼまたは[[プロテアーゼ]]としても知られる[[酵素]]がこのプロセスを[[触媒]]するが、ペプチドやタンパク質が天然構造に[[フォールディング|フォールド]](折りたたむ)する際の立体配座的な歪みによってペプチド結合が加水分解されるという報告もある<ref name="pmid18308334">{{cite journal | vauthors = Sandberg A, Johansson DG, Macao B, Härd T | title = SEA domain autoproteolysis accelerated by conformational strain: energetic aspects | journal = Journal of Molecular Biology | volume = 377 | issue = 4 | pages = 1117–29 | date = April 2008 | pmid = 18308334 | doi = 10.1016/j.jmb.2008.01.051 }}</ref>。したがって、この非酵素的なプロセスは、遷移状態の安定化によってではなく、むしろ基底状態の不安定化によって促進される。
== スペクトル ==
ペプチド結合の吸収Aの[[波長]]は190〜230 nmである<ref name="pmid14907727">{{cite journal | vauthors = Goldfarb AR, Saidel LJ, Mosovich E | title = The ultraviolet absorption spectra of proteins | journal = The Journal of Biological Chemistry | volume = 193 | issue = 1 | pages = 397–404 | date = November 1951 | pmid = 14907727 | url = http://www.jbc.org/content/193/1/397.long }}</ref>(このため、特に[[紫外線]]の影響を受けやすい)。

== ペプチド基のシス/トランス異性体 ==

窒素原子上の[[孤立電子対]]が大きく非局在化することで、ペプチド基は{{仮リンク|部分二重結合|en|Amide#Bonding}}特性を持つ。この部分二重結合によって、アミド基は[[平面]]的になり、[[シス型]]または[[トランス型|トランス型の異性体]]が存在する。タンパク質のアンフォールド(展開)状態では、ペプチド基は自由に異性化して両方の異性体を採用することができるが、しかし、フォールド状態では、各位置で単一の異性体しか採用されない(まれな例外を除く)。ほとんどのペプチド結合では、トランス型が圧倒的に好まれる(トランス型とシス型の比は約1000:1)。ただし、X-Proペプチド群の比率は、約30:1の割合で存在する傾向がある。これは、おそらく[[プロリン]](Pro)の<math>\mathrm{C^{\alpha}}</math>原子と<math>\mathrm{C^{\delta}}</math>原子の間の対称性により、シス型とトランス型異性体のエネルギーがほぼ等しくなるためと考えられる(下図参照)。

[[Image:Cis trans isomerization kinetics X Pro peptide bonds.png|thumb|center|alt=Diagram of the isomerization of an X-Pro peptide bond. The diagram shows the cis isomer on the left, the transition states in the center, and the trans isomer on the right, with bidirectional arrows between each pair of states.|X-Proペプチド結合の異性化。シスとトランスの異性体はそれぞれ左端と右端にあり、遷移状態で区切られている。|500x500px]]ペプチド基(<math>C^{\alpha}-C^{\prime}-N-C^{\alpha}</math>の4つの原子で定義される)に関連する二面角を<math>\omega</math>とし、シス型異性体([[立体配座#単結合についての立体配座|シンペリプラナー]]配座)では<math>\omega=0^{\circ}</math>、トランス型異性体([[立体配座#単結合についての立体配座|アンチペリプラナー]]配座)では<math>\omega=180^{\circ}</math>となる。アミド基は、シス型とトランス型の間でC'-N結合を中心に、ゆっくりではあるが異性化することができる(室温で<math>\tau \sim</math>20秒)。[[遷移状態]]<math>\omega= \pm 90^{\circ}</math>では、部分二重結合を切断する必要があるため、その活性化エネルギーは約80 kJ/mol(20kcal/mol)となる。ただし、ペプチド基を疎水性環境に配置したり、X-Proペプチド基の窒素原子に水素結合を供与するなど、単結合型に有利な変化を与えることで、[[活性化エネルギー]]を下げる(異性化を[[触媒]]する)ことができる。活性化エネルギーを低下させるこれらの2つのメカニズムはどちらも、X-Proペプチド結合のシス-トランス異性化を触媒する天然の酵素である[[ペプチジルプロリルイソメラーゼ]](PPIases)にも見られる。

立体配座の[[フォールディング|タンパク質フォールド]]は、通常、シス-トランスの異性化(10-100秒)よりもはるかに速い(通常10-100ミリ秒)。いくつかのペプチド基の非天然異性体は、立体配座フォールディングを大きく混乱させ、天然異性体に到達するまでフォールディングを遅らせたり妨げたりする。しかし、すべてのペプチド基が同じようにフォールディングに影響を与えるわけではなく、他のペプチド基の非天然異性体はフォールディングに全く影響を与えないこともある。

== 化学反応 ==
ペプチド結合は、その共鳴安定化のため、生理学的条件下では比較的反応性が低く、[[エステル]]などの類似化合物よりもさらに少ない。それにもかかわらず、ペプチド結合は化学反応を起こすことがあり、[[カルボニル基|カルボニル]][[炭素]]を[[電気陰性度|電気陰性]]原子が攻撃してカルボニル二重結合を切断し、四面体中間体を形成する可能性がある。これは[[タンパク質分解]]、より一般的には、[[インテイン]]のようなN-Oアシル交換反応でたどる経路である。ペプチド結合を攻撃する官能基が[[チオール]]、[[ヒドロキシ基|ヒドロキシル]]または[[アミン]]である場合、得られる分子は{{仮リンク|シクロール|en|Cyclol}}と呼ばれ、より具体的には、それぞれチアシクロール、オキサシクロールまたはアザシクロールと呼ばれることがある。

== 参照項目 ==
{{Commonscat|Peptide bond}}
{{Commonscat|Peptide bond}}
* [[ペプチド固相合成法]]
* [[ペプチド固相合成法]]
* {{仮リンク|タンパク質分解マップ|en|The Proteolysis Map}} (PMAP)


== 脚注 ==
== 外部リンク == <!-- {{Cite web}} -->
{{節スタブ}}
{{脚注ヘルプ}}
{{Reflist}}


{{化学結合}}
{{化学結合}}

2021年3月25日 (木) 12:09時点における版

ペプチド結合(円内)

ペプチド結合(ペプチドけつごう、: peptide bond)とは、アミド結合のうちα-アミノ酸同士が脱水縮合して形成される共有結合である[1]。分類上は2級アミドに分類される。また、タンパク質中でもα-アミノ酸が連続していない場合はペプチド結合と呼ばれず、単にアミド結合と呼ばれる。

このようにして生成する物質はペプチドと呼ばれ、その縮合しているアミノ酸の数が2つ、3つ、4つ、5つ……となるごとにジペプチド、トリペプチド、テトラペプチド、ペンタペプチド……という。多数のアミノ酸が縮合した高分子物質はタンパク質であり、このため、タンパク質をポリペプチドとも呼ぶ。

アミド結合は強固な結合であり、加水分解は強酸性や強アルカリ性の条件でしか起こらない。しかし生体内にはペプチド結合のみを選択的に加水分解する酵素ペプチダーゼ、プロテアーゼが存在し、これらの中には中性に近い生物の体温程度の温度でかなり迅速にペプチド結合を加水分解することができるものもある。

合成

脱水反応によるペプチド結合の形成

2つのアミノ酸がペプチド結合を介してジペプチドを形成する場合[1]、これは縮合反応の一種である[2]。この種の縮合では、2つのアミノ酸が互いに接近して、一方の非側鎖(C1)カルボン酸部分が、他方の非側鎖(N2)アミノ部分に接近する。一方はカルボキシル基(COOH)から水素と酸素を失い、もう一方はアミノ基(NH2)から水素を失う。この反応により、1分子の水(H2O)とペプチド結合(-CO-NH-)で結合した2つのアミノ酸が生成する。2つのアミノ酸が結合したものをジペプチドと呼ぶ。

アミド結合のプロセスは脱水合成反応であり、一方のアミノ酸分子のカルボキシル基と他方のアミノ酸分子のアミノ基が反応し、1分子の(H2O)が放出されて合成が行われる。

2つのアミノ酸が脱水縮合してペプチド結合(赤)を形成し、水(青)が排出される

ペプチド結合の形成にはエネルギーが必要であるが、生物の場合はATPが使われる[3]。ペプチドやタンパク質は、アミノ酸がペプチド結合(いくつかのイソペプチド結合の場合もある)で結合した鎖である。生物は酵素を使って非リボソームペプチドを作り[4]リボソームは脱水合成とは細部が異なる反応を使ってタンパク質を作る[5]

α-アマニチンのように、リボソームで作られるためリボソームペプチドと呼ばれるものもあるが[6]、多くはリボソームではなく特殊な酵素で合成されるため、非リボソームペプチドと呼ばれる。たとえば、トリペプチドのグルタチオンは、遊離のアミノ酸から2つの酵素、グルタミン酸-システインリガーゼ英語版(ペプチド結合ではないイソペプチド結合を形成)とグルタチオン合成酵素(ペプチド結合を形成)によって2段階で合成される[7][8]

分解

ペプチド結合は、加水分解(水の添加)によって切断される可能性がある。水の存在下で分解され、8~16 kJ/mol(2~4 kcal/mol)のギブスエネルギーを放出する[9]。このプロセスは非常に遅く、25℃での半減期は1結合あたり350~600年になる[10]

生体内では、通常、ペプチダーゼまたはプロテアーゼとしても知られる酵素がこのプロセスを触媒するが、ペプチドやタンパク質が天然構造にフォールド(折りたたむ)する際の立体配座的な歪みによってペプチド結合が加水分解されるという報告もある[11]。したがって、この非酵素的なプロセスは、遷移状態の安定化によってではなく、むしろ基底状態の不安定化によって促進される。

スペクトル

ペプチド結合の吸収Aの波長は190〜230 nmである[12](このため、特に紫外線の影響を受けやすい)。

ペプチド基のシス/トランス異性体

窒素原子上の孤立電子対が大きく非局在化することで、ペプチド基は部分二重結合英語版特性を持つ。この部分二重結合によって、アミド基は平面的になり、シス型またはトランス型の異性体が存在する。タンパク質のアンフォールド(展開)状態では、ペプチド基は自由に異性化して両方の異性体を採用することができるが、しかし、フォールド状態では、各位置で単一の異性体しか採用されない(まれな例外を除く)。ほとんどのペプチド結合では、トランス型が圧倒的に好まれる(トランス型とシス型の比は約1000:1)。ただし、X-Proペプチド群の比率は、約30:1の割合で存在する傾向がある。これは、おそらくプロリン(Pro)の原子と原子の間の対称性により、シス型とトランス型異性体のエネルギーがほぼ等しくなるためと考えられる(下図参照)。

Diagram of the isomerization of an X-Pro peptide bond. The diagram shows the cis isomer on the left, the transition states in the center, and the trans isomer on the right, with bidirectional arrows between each pair of states.
X-Proペプチド結合の異性化。シスとトランスの異性体はそれぞれ左端と右端にあり、遷移状態で区切られている。

ペプチド基(の4つの原子で定義される)に関連する二面角をとし、シス型異性体(シンペリプラナー配座)では、トランス型異性体(アンチペリプラナー配座)ではとなる。アミド基は、シス型とトランス型の間でC'-N結合を中心に、ゆっくりではあるが異性化することができる(室温で20秒)。遷移状態では、部分二重結合を切断する必要があるため、その活性化エネルギーは約80 kJ/mol(20kcal/mol)となる。ただし、ペプチド基を疎水性環境に配置したり、X-Proペプチド基の窒素原子に水素結合を供与するなど、単結合型に有利な変化を与えることで、活性化エネルギーを下げる(異性化を触媒する)ことができる。活性化エネルギーを低下させるこれらの2つのメカニズムはどちらも、X-Proペプチド結合のシス-トランス異性化を触媒する天然の酵素であるペプチジルプロリルイソメラーゼ(PPIases)にも見られる。

立体配座のタンパク質フォールドは、通常、シス-トランスの異性化(10-100秒)よりもはるかに速い(通常10-100ミリ秒)。いくつかのペプチド基の非天然異性体は、立体配座フォールディングを大きく混乱させ、天然異性体に到達するまでフォールディングを遅らせたり妨げたりする。しかし、すべてのペプチド基が同じようにフォールディングに影響を与えるわけではなく、他のペプチド基の非天然異性体はフォールディングに全く影響を与えないこともある。

化学反応

ペプチド結合は、その共鳴安定化のため、生理学的条件下では比較的反応性が低く、エステルなどの類似化合物よりもさらに少ない。それにもかかわらず、ペプチド結合は化学反応を起こすことがあり、カルボニル炭素電気陰性原子が攻撃してカルボニル二重結合を切断し、四面体中間体を形成する可能性がある。これはタンパク質分解、より一般的には、インテインのようなN-Oアシル交換反応でたどる経路である。ペプチド結合を攻撃する官能基がチオールヒドロキシルまたはアミンである場合、得られる分子はシクロールと呼ばれ、より具体的には、それぞれチアシクロール、オキサシクロールまたはアザシクロールと呼ばれることがある。

参照項目

脚注

  1. ^ a b “Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983”. European Journal of Biochemistry 138 (1): 9–37. (1984). doi:10.1111/j.1432-1033.1984.tb07877.x. ISSN 0014-2956. PMID 6692818. 
  2. ^ Muller, P (1994-01-01). “Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)”. Pure and Applied Chemistry 66 (5): 1077–1184. doi:10.1351/pac199466051077. ISSN 1365-3075. 
  3. ^ Watson, James; Hopkins, Nancy; Roberts, Jeffrey; Agetsinger Steitz, Joan; Weiner, Alan (1987). Molecualar Biology of the Gene (hardcover) (Fourth ed.). Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc.. p. 168. ISBN 978-0805396140. https://archive.org/details/molecularbiology0004unse/page/168 
  4. ^ “Structural Biology of Nonribosomal Peptide Synthetases”. Methods in Molecular Biology 1401: 3–29. (2016). doi:10.1007/978-1-4939-3375-4_1. ISBN 978-1-4939-3373-0. PMC 4760355. PMID 26831698. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760355/. 
  5. ^ Protein synthesis (7th ed.). New York: W. H. Freeman. (2000). ISBN 978-0716735205. https://www.ncbi.nlm.nih.gov/books/NBK22022/ 
  6. ^ “Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms”. Biopolymers 94 (5): 659–64. (2010). doi:10.1002/bip.21416. PMC 4001729. PMID 20564017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001729/. 
  7. ^ “Glutathione metabolism and its implications for health”. The Journal of Nutrition 134 (3): 489–92. (March 2004). doi:10.1093/jn/134.3.489. PMID 14988435. 
  8. ^ “Glutathione metabolism and its selective modification”. The Journal of Biological Chemistry 263 (33): 17205–8. (November 1988). PMID 3053703. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=3053703. 
  9. ^ “Free energies and equilibria of peptide bond hydrolysis and formation”. Biopolymers 45 (5): 351–353. (December 1998). doi:10.1002/(SICI)1097-0282(19980415)45:5<351::AID-BIP3>3.0.CO;2-K. 
  10. ^ Radzicka, Anna; Wolfenden, Richard (1996-01-01). “Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases”. Journal of the American Chemical Society 118 (26): 6105–6109. doi:10.1021/ja954077c. ISSN 0002-7863. 
  11. ^ “SEA domain autoproteolysis accelerated by conformational strain: energetic aspects”. Journal of Molecular Biology 377 (4): 1117–29. (April 2008). doi:10.1016/j.jmb.2008.01.051. PMID 18308334. 
  12. ^ “The ultraviolet absorption spectra of proteins”. The Journal of Biological Chemistry 193 (1): 397–404. (November 1951). PMID 14907727. http://www.jbc.org/content/193/1/397.long.