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ABSTRACT: 

While BIM (Building Information Modelling) appears as a solution to reduce the cost and environmental impact of buildings, its 

implementation on existing buildings is still a major challenge. In the last five years, an important number of publications on the 

topic have been published. This paper proposes an up-to-date overview about the automation of as-built BIM creation from point 

clouds, focused on indoor environment. It is structured in two main parts. The first one deals with the segmentation and classification 

of point clouds by storey, rooms, walls, and slabs. The second one focuses on the modelling, strictly speaking, of the main elements 

of an indoor scene. The approaches are grouped into principal ideas. Through the presentation of methods using new types of 

scanners and associated sensors, it highlights the promising use of other information in addition to 3D geometry.  

1. CONTEXT AND INTRODUCTION

It has been about ten years since “BIM” (Building Information 

Modelling) made in the AEC industry vocabulary. Its aim is to 

store and centralize building data through 3D digital 

representation of building components with semantic 

information. Facility managers work usually with paper 

documents and plans which are not systematically up to date. 

With the use of BIM, it is estimated that the time to search 

information could be reduced by 83% and 5% of operating costs 

per year could be saved (Zeiss, 2018). Being aware that 75% of 

total building lifecycle costs would concern the operating phase, 

the use of BIM represents an important cost saving for facility 

managers and owners. Coupled with the promise of reducing the 

environmental impact of buildings, its use is pushed worldwide 

by governments. This increasing interest is illustrated by the 

growing number of publications on the subject (Figure 1).  

Figure 1. Number of publications with the keywords ‘Building 

Information Model(l)ing’ each year, in Google Scholar 

When the BIM is set up from the beginning of a construction 

project, it is called “as-designed BIM”. It is the ideal situation 

because all elements are known, modelled, and semantically 

completed, even hidden objects. However, the model must be 

updated throughout all the building’s lifecycle. Unfortunately, it 

is rarely done. For existing buildings, the BIM must be 

established from collected data and is called “as-built BIM”.  

To capture data, traditional surveying techniques like 

tacheometers and handheld laser distance meter are largely 

replaced by laserscanning techniques. Terrestrial Static Laser 

Scanners (SLS) provide ever faster point clouds which are 

geometrically more exhaustive compared to traditional 

techniques. More recently, Mobile Laser Scanners (MLS) 

enable even more flexibility in the acquisition (fast and easy) at 

the expense of density and noise. While photogrammetry is 

largely widespread in outdoor environments for façade survey 

for instance, it is more unusual for surveying indoor 

environments. This is mainly due to the challenge to use such a 

technique.  Photogrammetric indoor acquisitions require a large 

number of overlapping images and tie points. Therefore, as-built 

BIM modelling is largely based on the processing of point 

clouds provided by direct 3D measuring sensors like SLS or 

MLS. Despite fast improvements in terms of acquisition, 

modelling is still a laborious task, mainly done manually. It is 

extremely time consuming and error prone. Even skilled 

modellers might produce significantly different models, as 

highlighted by Esfahani et al. (2021).  

In this context, this paper presents an overview of research 

projects carried out in the field of automatic scan-to-BIM over 

the past ten years. It focuses on indoor environments of 

buildings. A first section deals with the segmentation and 

classification of point clouds. Then, for each of the mainly 

studied building components, the approaches retained by a large 

community are summarized. Lastly, the outcomes of the 

reviewed methods are discussed. 

2. INDOOR POINT CLOUD SEGMENTATION AND

CLASSIFICATION 

This first part deals with the segmentation and classification of 

point clouds. Like typical interior spaces, it is organized in a 

hierarchical manner with the storeys, rooms and structural 

elements like walls, floors, and ceilings. Figure 2 presents the 

most common segmentation workflow followed by authors in 

automatic scan-to-BIM approaches. Every step will be 

described in the next paragraphs. 
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2.1 Processing multi-storey buildings 

Many approaches presented in the literature deal with the 

processing of data acquired in multi-storey buildings. Although 

some research teams process multi-storey simultaneously, most 

of them focus on dividing the input data into individual storeys. 

Two approaches are often suggested for this purpose: a) ones 

exploit the distribution of points along the vertical axis and b) 

others use the scanner trajectory during data capture. 

 

The most common solutions are based on density histograms 

along the vertical axis. When the point cloud distribution along 

the vertical axis is analysed, it is assumed that floors and 

ceilings are horizontal. The values for which the histogram 

frequencies are high correspond to the floor and ceiling heights 

in the cloud. They are used for example by Xiao et al. (2012) to 

divide the input point cloud into horizontal slices. Histograms 

used in this manner do not consider floors or ceilings with level 

differences. Macher et al. (2017) and Pexman et al. (2021) seek 

to overcome this issue. Indeed, Macher et al. (2017) apply this 

histogram analysis to each scan station to associate them a 

ground and ceiling height. The points of all stations are then 

gathered according to these values to form point clouds of each 

storey. Pexman et al. (2021) apply Z-histogram analysis to the 

entire building point cloud. Horizontal slices are extracted for 

each peak and transformed into binary images. Smallest pixel 

areas are considered as outliers because they most likely 

correspond to furniture. The overlap between areas in 

neighbouring peaks images is then measured to combine them 

like mosaics. The authors obtain images for each floor and 

ceiling describing their height distribution. The point clouds of 

each storey correspond to the points in the height intervals given 

by the floors and ceilings images. 

 

Nikoohemat et al. (2018) propose a very different method, 

relying on the trajectory acquired by dynamic scanners. The 

trajectory is divided into horizontal or inclined segments. 

Segments with similar angles and with less than two meters 

height difference are gathered. The points corresponding to the 

different storeys are selected thanks to timestamp.  

 

2.2 Segmentation in rooms 

Once the point cloud is segmented into storeys, a segmentation 

into rooms is generally carried out. Most of the methods assume 

that walls are vertical. Methods based only on point cloud 

mainly rely on the gaps formed by walls in the point clouds. 

Those using dynamic scanners data, exploit the acquisition 

trajectory in addition. 

 

Armeni et al. (2016) consider buildings following a Manhattan-

World scheme, i.e., following a cartesian system with walls, 

floors and ceilings perpendicular to each other. This enables 

them to search for gaps with density histograms along the two 

main horizontal axes of buildings, regarding for "peak-gap-

peak" patterns. Although this method is robust in cluttered 

environments, the Manhattan-World assumption is very 

restrictive. Many authors overcome this assumption by 

projecting storeys' point clouds in a horizontal plane, to form a 

binary image. The aim is then to detect pixels clusters which are 

separated by voids. While the continuity in the point clouds is 

preserved at doors, the challenge becomes to separate image 

areas. Macher et al. (2017) avoid this problem by projecting 

only a slice of the point cloud close to the ceiling and thus 

above the doors. Bormann et al. (2016) through the presentation 

of several methods, first propose the use of morphological 

operators to separate connected areas. The occupied areas, i.e., 

where points were projected into the pixels, are eroded 

iteratively. Surface area thresholds (number of pixels) are used 

to check if the zones are separated. In this case, they are set 

aside and labelled as rooms. The pixels in the original image, 

which have been eroded, are in turn labelled, from near to far, 

with a wavefront. In a very similar way, Bormann et al. (2016) 

propose to consider for each accessible pixel the distance to the 

nearest edge. Applying a threshold on the distance values allows 

to separate central areas (with maximum distances) and then, 

with a wavefront, to find all the rooms. The third method 

suggested by the same authors relies on a Voronoi diagram, 

giving the image's skeleton. The first two methods are more 

sensitive to room clutter and tend to gather corridors with 

adjacent rooms. The third method sometimes divides the 

corridors into multiple rooms. Based on these findings, Jung et 

al. (2017) propose a method that is less sensitive. The areas are 

separated by considering pixels located at a distance from the 

edge, slightly larger than the width of a door. On the empty 

pixels surrounding these areas (walls) a skeletonization 

algorithm is used to define the approximate axis pixels. The 

accessible pixels are labelled from these watertight skeletons 

surrounding the rooms. All these methods, based on a 2D 

segmentation, produce rooms point clouds by considering 

projected points forming each 2D room areas. In 3D, Frias et al. 

(2020) suggest a transposition of the methods using 

morphological operators on a grid of voxels. 

 

When considering the acquisition of the trajectory of mobile 

systems, Diaz-Vilarino et al. (2017) and Zheng et al. (2018) 

search for doors. The aim is to cut the trajectory at each door 

crossing. Then, the point cloud is divided into segments 

regarding the points' timestamp. The former rely on the fact that 

the height of the doors is lower than the ceiling height. In the 

profile of the ceiling, along the path, the doorway corresponds 

to the points with a low average height. Zheng et al. (2018) 

work in 3D with dynamic scanner scanlines and then in 2D, to 

define door opening segments. The scanlines are segmented into 

linear primitives and their geometry allows to detect holes in 

planes. These lines form candidate doors segments. Since the 

doors are vertical, the candidates close to each other in 2D 

correspond to the same opening. The approach of Diaz-Vilarino 

et al. (2017) is completed to merge subspaces belonging to the 

same room. This phenomenon appears when a room is crossed 

several times. The problem is solved with an energy function 

minimization. The function involves two terms computed, in 

subspaces, with a ray tracing from the trajectory. The data term 

evaluates whether the subspace represents a room in its entirety, 

while the smoothness term measures the ability of different 

subspaces to complement each other.  

 

2.3 Walls and slabs segmentation 

Buildings are mainly composed of planes. That is why the 

authors all agree on a segmentation step of the point clouds into 

planes. Generally, this step is followed by a classification. 

While these steps are mostly focused on the detection of main 

structural elements, some authors exploit knowledges about 

these ones and steer their search so that the classification is 

performed at the same time as the segmentation. 

 

To detect points on walls and slabs, some authors exploit their 

position and their normal to limit the search for planes. For 

example, Tran et al. (2020) simply limit their plane search for 

points on horizontal or vertical surfaces with respect to their 

normal. Such methods are restrictive because furniture are also 

made of horizontal and vertical planes. 
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Thus, for the segmentation of slabs, many authors exploit in 

addition the distribution of points along the vertical axis. While 

Valero et al. (2012), Diaz-Vilarino et al. (2017), Jung et al. 

(2018) or Cui et al. (2019) settle for it, Macher et al. (2017) add 

a robust estimator. In a different way, for ceilings, Ambrus et al. 

(2017), keep points with the highest elevation in a storey point 

cloud decomposed into vertical cells. Planes searches are 

performed on these points. They do the same for floors by 

searching for points with lowest height values. 

For walls, the hypothesis of verticality is systematically made. 

Under this assumption, some authors even look for lines rather 

than planes. Thus, to define room boundaries, Oesau et al. 

(2014), Li et al. (2018) and Jung et al. (2018), for example, rely 

on images of point cloud projected with no floor nor ceiling. 

Jung et al. (2018) consider pixels and their associated points as 

part of a vertical surface, when points are within a range near 

the ceiling. These points are grouped into straight lines with a 

Douglas-Peucker algorithm. Li et al. (2018) use an iterative 

region growing algorithm that groups points with a similar 

normal and close to each other. By projecting the ceiling, 

Valero et al. (2012) and Macher et al. (2017) can search for area 

contours rather than lines. Macher et al. (2017) extract room 

contours with a region growing algorithm during the 

segmentation of a storey into rooms. In all these cases, at this 

stage, the authors provide contour pixels of the rooms. In order 

to fit line segments, Macher et al. (2017), Li et al. (2018) and 

Jung et al. (2018) use least squares algorithms. Li et al. (2018) 

apply an Iteratively Reweighted Least Squares (IRLS) 

algorithm. It is an M-estimator weighting points based on their 

squared distances. Macher et al. (2017) choose Maximum 

Likelihood Estimation SAmple Consensus MLESAC. It 

corresponds to an improvement of the RANSAC estimator, by 

evaluating the quality of the consensus points set with the 

likelihood measure. Jung et al. (2018) add parallelism 

constraints. In a similar way, Oesau et al (2014) and Valero et al 

(2012) use a Hough transform to recognize lines in images. 

Finally, the method of Diaz-Vilarino et al. (2017), unlike the 

others, considers a point density image. The authors do not look 

for contours nor points forming lines, but for pixels grouping a 

large quantity of points and corresponding to vertical surfaces. 

This can be compared to the analysis of distribution histograms 

conducted simultaneously on the X and Y axes. While for most 

of these authors, wall detection is limited to these steps, Diaz-

Vilarino et al. (2017) and Macher et al. (2017) use their isolated 

points or their contours to steer the search for vertical planar 

segments. More simply, Valero et al. (2012) consider all the 

points set along these extruded sides at the height of the rooms. 

 

Without steering the segmentation by assumptions on the 

targeted elements, the segmentation is performed directly with 

robust estimators and region growing algorithms. 

The RANdom SAmple Consensus RANSAC algorithm is 

widely used. Points forming planes within a certain tolerance to 

the average plane are isolated as planar segments. This distance 

threshold depends on the data noise and on the thickness of the 

objects to detect. In a similar manner, Macher et al. (2017) 

choose MLESAC. Without additional concerns, planar 

segments isolated in this way may contain several groups of 

non-contiguous points. Thomson et al. (2015) introduce a 

criterion based on the Euclidean distance between groups. This 

is similar to the application of region growing algorithms as 

done by Previtali et al. (2018) and Shi et al. (2019). The latter, 

however, consider in addition, a similar normal criterion, 

allowing to eliminate also points in recesses. 

Nikoohemat et al. (2018) as well as Bassier et al. (2020) adopt 

methods based solely on region growing algorithms. Region 

growing algorithms applied on point clouds, can take different 

criteria to extend their regions. The most common methods 

consider only geometric ones: proximity, normal, and distance 

to a local plane. Bassier et al. (2020) include point colour as an 

additional criterion for clustering them. However, the light 

conditions can limit its use. 

All these methods undoubtedly lead to an over-segmentation. 

So, Previtali et al. (2018), Nikoohemat et al. (2018) or Cui et al. 

(2019) complete the process by merging planar segments 

according to coplanarity, orientation and distance criteria. 

Bassier et al. (2020) transpose the topology between planar 

segments into a graph and apply a Conditional Random Field 

algorithm to cluster them. 

 

When the planar segmentation is not steered to find specific 

elements, a classification is performed. Since authors are mainly 

looking for structural elements, they eliminate planar segments 

that are too small or do not support enough points. This step is 

based on local and global features of the planar segments. Local 

features can be evaluated for each occurrence, in particular their 

orientation, their centroid, or their extent. The global features 

concern the neighbouring of the planar segments and are 

measured in pairs. For example, the relative position of 

centroids, the angle formed between two of them, their overlap 

or their proximity are global features. According to the 

hypotheses, more or less constraints and features are used.  

For example, Thomson et al. (2015) extract vertical and 

horizontal planar segments and only interpret them based on 

their orientation. Without other constraints, planes belonging to 

furniture are not eliminated. Global features are introduced to 

distinguish them from others. Previtali et al. (2018) thus classify 

horizontal planes as floors or ceilings when they are also the 

lowest, respectively the highest, surfaces in the point cloud of a 

storey. For planar segments of walls, they are looking for those 

on the edges of the rooms. Mura et al. (2014) and Murali et al. 

(2017) add an extent criterion since they only keep those whose 

vertical extent is close to the room height. To avoid eliminating 

too many planar segments due to occlusion, Mura et al. (2014) 

control the presence of masks from the scan stations and 

artificially fill in the planar segments in hidden areas. 

Nikoohemat et al. (2018), Bassier et al. (2020), and Mura et al. 

(2016) differ by avoiding the strict assumptions of horizontality 

and verticality for classification. They introduce more 

contextual relations organized in a graph. Nikoohemat et al. 

(2018) and Mura et al. (2016) conduct their classification on 

heuristic considerations of architectural rules. Based on 

transition rules, Mura et al. (2016) search for paths in the graph 

between ceilings and floors, first, and then between walls. 

Bassier et al. (2020) use a random forest classifier.  

 

To finish with segmentation and classification, deep-learning 

(DL) approaches are currently being increasingly developed in 

that way. Even if they have been adopted for a long time in the 

field of image processing, DL approaches are only emerging in 

the field of point cloud processing. For instance, Karama et al. 

(2021) implement Mask R-CNN into a cubic image. One of the 

first solutions directly applied on point cloud was suggested by 

Qi et al. (2017), developing PointNet++. 

 

In summary, point cloud segmentation is an essential step 

before proceeding to modeling. First, the indoor point cloud is 

segmented into storeys, generally followed by a segmentation 

into rooms. The two main approaches, overcoming the 

Manhattan-world scheme, seek doors crossing with MLS data 

or use occupancy images, in a more general way. Planar 

segments are detected in a final step. They constitute the 

starting elements for modelling which is detailed in the next 

section. 
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Figure 2. Main segmentation workflow followed by authors in automatic scan-to-BIM approaches 

 

3. AUTOMATIC AS-BUILT BIM MODELLING 

Once the point clouds are classified, the modelling is conducted. 

The approaches developed for the modelling of the rooms, 

openings and stairs are developed in this section. 

 

3.1 Rooms modelling  

To model the rooms, two approaches are opposed. The first one 

aims at modelling the rooms free space while the second one 

focuses on solid surfaces, like walls (Figure 3).  

 

3.1.1 Free space based modelling: Most of approaches 

considering the free space modelling are based on cells 

partitioning. To achieve this decomposition, Budroni et al. 

(2010) make the strict architectural assumption of a scene 

following a Manhattan-World scheme. They rely on histograms 

looking for peaks to detect important planes in the three main 

directions. Without making this very strict hypothesis, all the 

authors assume vertical walls. Cells are, in general, created by 

the intersection of 2D lines corresponding to the projection of 

the wall faces on a horizontal plane. For those starting from 

planar segments and not from 2D lines, robust estimators or 

algorithms based on least squares are used to fit them. Yang et 

al. (2019) differ in their line construction by considering curves 

in addition to straight lines. The lines, which are then redundant, 

are clustered. The authors group only the near-collinear straight 

lines, around the longest of them, averaging their orientation. 

Wang et al. (2017), and Mura et al. (2014) do the same with a 

1D mean-shift. Oesau et al. (2014) assuming that the load-

bearing wall pattern is shared across storeys, use lines sets 

defined on all of them to partition their space. Finally, Mura et 

al. (2016) and Tran et al. (2020) divide the spaces into 3D cells 

by directly intersecting the planes of the structural elements. 

Turner et al. (2014) propose for their part a triangular cells 

decomposition. Their vertices are pixel centres of those with the 

higher density value in the image of the projected point cloud. 

 

Except Murali et al. (2017) who classify the interfaces, the cells 

are further classified into free spaces (or rooms) and solids 

(walls and, sometimes, slabs). The aim is to deduce free spaces 

cuboids. To perform cells classifications, Budroni et al. (2010) 

and Li et al. (2018) focus on the presence of points within cells 

when the occupancy image of the storey point cloud is 

superimposed. Turner et al. (2014) classify first their triangular 

cells with rays from scan stations. The internal cells are then 

grouped by room by minimizing the length of the interfaces 

between groups (rooms), i.e., by minimizing the width of the 

doors. Other authors mainly rely on the presence of points on 

the interfaces. It reflects for them the presence of a wall.  Xiao 

et al. (2012) and Tran et al. (2020) exploit this single criterion 

for their classification testing for several models by 

classifying/declassifying the cells to choose the one that best fits 

the point cloud. Tran et al. (2020) use the reversible jump 

Markov Chain Monte Carlo (rjMCMC) algorithm which 

simulates random walks in a set of models. With a completely 

different manner, Mura et al. (2014) implement a diffusion map 

coupled with a k-medoids algorithm to group the cells into 

rooms (Figure 3). On such a map, the smaller the "diffusion 

distance" between two cells is, the more likely the cells belong 

in the same room. It is built from the number of points on the 

interfaces. Finally, a last but very common approach involves 

the minimization of an energy function. This is conducted in 

graphs, with cells as nodes and interfaces as links. Functions are 

based on two terms. The data term relies to the nodes, reflecting 

their probability of belonging to a given class. The smoothness 

term is attached to the relationships between nodes. The authors 

using this technique differ from each other in the way they 

calculate their terms and the chosen resolution algorithm.  The 

consideration of points on faces is a constant for this second 

term evaluation. Regarding the data term calculation, Oesau et 

al. (2014) involve a ray tracing from cells to measure the 

number of intersections with structural elements. Wang et al. 

(2017), from successive scanner positions, measure the 

proportion of rays passing through the cells. A high proportion 

reflects a high probability to belong to free space. The others 

authors classify the cells into rooms. Yang et al. (2019) evaluate 

the data term with the projection in the cells of a point cloud 

classified into rooms. Mura et al. (2016), compare for each cell, 

their visibility areas on structural elements against those of each 

scan station whose room label is known at this stage. Ambrus et 

al. (2017) define their data term to group cells visible from the 

same viewpoint by comparing the points in cells to those visible 

from each viewpoint. To end, the authors use various algorithms 

to conduct the minimization of these energy functions. Graph-

cuts of Boykov and α-β algorithms are mainly used. Wang et al. 

(2017) complement this classification into internal or external 

cells, grouping them by rooms, similarly to Mura et al. (2014), 

since "diffusion times" between cells and diffusion trees are 

involved. 
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Once the room’s free space is identified, a parametric model of 

the space distribution can be deduced. It is generally made up of 

a set of watertight planes. The room hull is the merge of 

identically classified cells. When the classified cells are in 2D, 

the height of the rooms is defined by the one of the floors and 

ceilings planar segments (§ 2.3). Xiao et al. (2012) are 

additionally interested in walls and slabs volume. The authors, 

who applied their classification on 2D cells in a set of horizontal 

slices, deduce a rooms’ 3D model by extruding and combining 

them over the heights of each slice and across all horizontal 

slices. To deduce the volume of walls and slabs, they use 

mathematical morphology operators. So, they inflate the model 

of the rooms and subtract the original model. 

 

Some authors do not consider these steps of partitioning and 

classification. They directly define the hull of each room by 

intersecting parametric planes fitted to the wall planar segments. 

This is the approach followed by Velero et al.  (2012), Diaz-

Vilarino et al. (2017) and Shi et al. (2019). Mura et al. (2014) is 

at the interface between the two approaches. In one hand, they 

conduct a space partitioning and classify the resulting cells. 

Nevertheless, in another hand, the purpose of this classification 

is to find walls planar segments to form the rooms hulls. 

 

3.1.2 Walls and slabs based modelling: Approaches 

looking for the modelling of walls and slabs face those 

addressed so far. Once the planar segments of walls and slabs 

have been isolated, the aim for the authors following this 

approach is to parametrically reconstruct these elements. 

The authors first agree on clustering planar segments of each 

wall. This clustering is generally based on simple contextual 

features. Thus, Thomson et al. (2015), Macher et al. (2017) or 

Nikoohemat et al. (2020) proceed in this way by using 

parallelism and distance criteria (Figure 3). Jung et al. (2018) 

apply the same principle in 2D to associate lines. Bassier et al. 

(2020) process with a Conditional Random Field (CFR) 

algorithm. It is applied after a coarser grouping, aiming to 

eliminate impossible combinations. The combinations are 

evaluated in a graph in which the planar segments are nodes. 

Links are broken based on several distance thresholds and other 

empirical criteria. For example, links should not intersect with 

other planar segments of walls or room contours. 

 

These groups are the basis for parametric reconstruction of 

walls and slabs objects. Almost all the authors make the vertical 

walls and constant thickness assumption. They are therefore 

looking for their axis, their height and their thickness. Bassier et 

al. (2020) give a detailed method proceeding for each group of 

planar segments (Figure 3).  The thickness of objects is 

calculated as the average orthogonal distance between the faces. 

Authors exploiting only indoor data as input usually assign an 

arbitrary thickness to the outer walls. Macher et al. (2017) 

prefer to isolate such objects and parameterize them by planes. 

For the wall axis Bassier et al. (2020) define a centreline with 

RANSAC. The vertical extent is defined by grouping the planar 

segments of floors and ceilings into average levels.  Thomson et 

al. (2015) indicate calculating the contour of slabs with the 

convex hull of planar segments. 

 

At this stage, these objects are not necessarily connected to each 

other. They correspond to their visible parts in point clouds. 

While Thomson et al. (2015) and Macher et al. (2017) do not 

address the issue, the others offer several approaches in this 

way. For Jung et al. (2018), this is referred to as a grammar-

based approach. Junctions are constrained from the step of walls 

parameterization by the search for orthogonal lines. This 

method lacks flexibility. Similar to what is done for searching 

rooms rather than walls, Previtali et al. (2018) pass through a 

cells decomposition. Cells are defined by the intersection of 

wall segments projected in the horizontal plane with temporary 

lines drawn orthogonal to their limits of occlusion. Their 

classification as internal or external cells allows the authors to 

complete their walls. These methods contrast with those of 

Nikoohemat et al. (2020) and Bassier et al. (2020), proposing 

the intersection of the closest objects, without any orthogonality 

constraint a priori. It is referred to as connection-based methods. 

More flexible compared to a grammar-based approach, it also 

strongly reduces the number of candidates compared to a cells 

decomposition. Bassier et al (2020) go beyond a simple 

extension and propose several types of connections: by 

extending walls, orthogonal or mixed. 

 

Finally, Ochmann et al. (2019) present a hybrid method of the 

two approaches presented above. The authors consider the point 

cloud of the building as a whole. They proceed to a clustering of 

planar segments for each structural element. When dealing with 

topology, the authors process to 3D cells decomposition of the 

space by the intersection of all planar segments. The problem is 

then to assign a label to each cell: a room, a wall or a slab. 

 

 
Figure 3. Main rooms modelling workflows: (left) rooms based 

and (right) walls based. 

 

 

3.2 Openings detection 

After the reconstruction of rooms, the detection and modelling 

of openings (windows and doors) is also a largely studied topic. 

All authors at this stage, know the geometry of the supporting 

walls, i.e., either parametric planes or point clouds of the walls. 

They also converge on the assumption of rectangular openings. 

Methods are grouped here regarding the information considered 

by the authors (Figure 4). 

 

From the geometry solely, a common method consists in 

searching holes in walls. Many authors base their search on 

occupancy images of walls' points. The aim is to detect 

unoccupied pixels forming rectangular zones (Ambrus et al., 

2017, Jung et al., 2018 and Yang et al., 2019). Other methods 
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are based on the detection of points located in the bounding 

boxes defined by the parallel planes of the walls. Pexman et al. 

(2021) use histograms, along vertical and walls axis, to detect 

openings and to deduce their dimensions. Finally, as Budroni et 

al. (2010) or Cui et al. (2019), other authors work on horizontal 

sections in which gaps in points coordinates along wall axis 

give the position and width of openings. The main issues with 

the sole geometry of the point cloud come from clutters which 

mask walls and openings parts. Moreover, the geometric 

features of openings are often slightly similar to the wall they 

belong to, especially when a door is closed. This makes it 

difficult to rely on simple geometric assumptions. 

 

 
Figure 4. Main methods used for openings detection 

 

Following these observations, authors brought in the successive 

scanner position data in their reasoning. Michailidis et al. 

(2017) and Nikoohemat et al. (2018) use them to detect hidden 

areas on walls (Figure 4). Rays are defined from each point of 

view to the measured points. If a ray passes through the 

considered wall, i.e., points have been measured behind it, then 

an opening is considered at the intersection. If a ray is stopped 

before the wall, i.e., it encounters points, then the area in 

shadow is a hidden area from this viewpoint. In addition, 

Nikoohemat et al. (2018) also consider the intersection of the 

trajectory with the walls as crossed doors. This consideration 

allows detecting doors which were closed in the point cloud but 

crossed during the acquisition (Figure 4). However, it only 

gives an approximate position of the doors in the walls, and 

only those crossed are detected. The context of determination of 

evacuation strategies allows such approximation. 

In 2D, Wang et al. (2017) use a criterion similar to that of the 

trajectory/wall intersection. Their way to project point cloud has 

the particularity to consider points voxel by voxel from bottom 

to top to preserve the door openings. The basic assumption is 

that gaps corresponding to open doors are wider than those 

created by a lack of data and narrower than the width of a 

corridor. In a Delaunay triangulation based on the image 

contour points, triangles with sides whose length can 

correspond to a door size are filtered with the acquisition path. 

 

Another common approach to detect openings relies on image 

processing. Adan et al. (2020) exploit colour and depth 

orthoimages of walls (Figure 4). They are looking for straight 

lines, corresponding to discontinuities. Rectangle candidates 

defined by pairs of horizontal and vertical lines are analysed to 

retain those corresponding to real openings based on their size.  

Finally, considering that laser scanners also acquire Red Green 

Blue data (RGB), some authors study the contribution of 

radiometric information. As the RGB and intensity data are 

strongly correlated, they are studied separately by Macher et al. 

(2017). The authors attempt to separate the points with distinct 

intensity returns. They use an intensity frequency histogram 

cluster the points around peak values. With RGB data, they 

conduct a supervised classification approach based on 

maximum likelihood. The following problems are raised: a) the 

same object can have different colours b) the intensity values 

have the drawback of not being absolute, from one scanner to 

another and depend on the range and the incidence angle. 

Finally, more recently, the interest of thermal data for the 

detection of openings is raising (Macher et al., 2019) (Figure 4).  

 

3.3 Stairs  

The modelling of stairs is currently little discussed. It is raised a 

bit, mostly by research teams interested in the field of robotic 

and indoor navigation. Sanchez et al. (2012) and Nikoohemat et 

al. (2020) address this in the case where the point cloud of the 

stairwell is isolated. Floor and ceiling are known with described 

methods for modelling the rooms.  

The authors start by detecting the points of the staircase ramps, 

by searching for inclined planes, in the point cloud. Sanchez et 

al. (2012) use RANSAC with some constraints regarding the 

inclination and extent. Nikoohemat et al. (2020) apply a region 

growing algorithm to group close near to near points.  In both 

cases, the authors use a distance threshold to the searched plane 

necessarily wider than for the wall search above (e.g. 20 cm) to 

conserve all the points corresponding to the steps.  

Then, from the points on each ramp, they model the staircase 

that best fit them. Sanchez et al. (2012) infer the ramp 

orientation, step width, and an insertion point from its smallest 

rectangular bounding box. A vertical section, oriented along the 

axis of the ramp, on which horizontal and vertical lines are 

adjusted, allows them to detect the start and end points of each 

rise and tread of a step. The number of steps as well as their 

average height and depth are deduced. To detect steps, 

Nikoohemat et al. (2020), on the other hand, apply again a 

region growing algorithm, but with a finer threshold than 

before. Plane point clouds are obtained for each rise and tread of 

steps. The parametric modelling is then based on a graph in 

which the nodes are the point clouds of rises and treads. If two 

of them are adjacent and create a perpendicular angle, they are 

connected to each other. The longest path in the graph 

corresponds to the steps of the staircase. The number of nodes 

divided by two gives the number of steps and the average size 

of the steps is deduced from the smallest enclosing rectangles of 

each node. 

 

In summary, rooms modelling methods can be grouped into 

those focused on walls and those focused on free spaces. The 

following openings detection relies on the analysis of holes in 

walls planar segments. Finally, the topic of stairs modeling is 

very little addressed and generally limited to straight stairs.  

 

4. RESULTS AGAINST BIM SPECIFICATIONS  

 

Even though scan-to-BIM algorithms are constantly being 

developed and improved, there is still a gap between most of the 

results obtained with the reviewed automatic methods and the 

BIM specifications. BIM is much more than just a simple 3D 
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model. It is organised as a structured file format in which 

building components are separated in hierarchical objects (site, 

building, level, walls, windows, doors, furniture, etc.). With the 

need to collaborate on BIM, the IFC (Industry Foundation 

Classes) format was born. It is an open exchange standard 

format for defining building elements. Only a few approaches 

stand from the others by proposing as a result a model in IFC 

format or in a BIM proprietary format. Among the studies 

referenced here, only Thomson et al. (2015), Macher et al. 

(2017), Tran et al. (2018) and Bassier et al. (2020) deals with 

this issue. It can be noticed that the authors who consider the 

walls often best meet the BIM specifications. The others 

provide as output some CAD files with 2D lines, or a set of 

planar patches or volumes. 

 

5. CONCLUSION 

 

This paper gives an overview of the automatic scan-to-BIM 

approaches proposed in the literature and focused on indoor 

environments. The segmentation of the point cloud is the first 

step. The methods used are clearly conditioned to the choice of 

input data, the type of objects of interest and architectural 

assumptions. Segmentation constitutes the basis for the 

modelling. Rooms, openings and stairs are the main elements 

composing an indoor building and therefore their segmentation 

and modelling are largely discussed in the literature. Their 

proper modelling is essential before the search for other objects 

because these elements form the basis of every indoor 

environment. 

The paper highlights the links and the differences between the 

approaches. The authors differ greatly in their assumptions and 

in the input data. More or less strict assumptions are made about 

the architecture of buildings, particularly about walls and slabs 

orientation. Moreover, while some research teams choose to 

focus exclusively on point cloud geometry, others go against 

and exploit additional information. The former explains their 

choice by the fact that additional information are not always 

available depending on the used scanning system and thus their 

method would be more universal. On the contrary, the latter 

take advantage of scan positions or trajectory, for instance. This 

is often a way of transposing methods based on SLS data to 

MLS. Furthermore, these data or radiometric ones (intensity, 

color, or even infrared thermal data) are increasingly available 

since sensors are often an integral part of the device. The aim is 

also to exploit every possibility of such acquisition technique. 

These differences are also due to the fact that teams working on 

the subject have various backgrounds. Some of them are rather 

geomaticians and try to reproduce as accurately as possible the 

scene. Others belong to the field of robotics and their purpose is 

the localization in a building. To finish, the authors use different 

data sets with various characteristics to evaluate their results. 

The considered environment is more or less cluttered and 

complex, and different sensors are used. All these choices make 

difficult the comparison of approaches. It has led Khoshelham 

et al. (2018) to propose a benchmark. 

Our future work will focus on exploiting additional data like 

trajectory or thermal data for completing the automation of 

scan-to-BIM processes. Simultaneously, a methodology 

allowing to assign a quality criterion to the modelled elements 

will be investigated. 
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