
Probabilistic ‘If-Then’ Rules: On Bayesian Conditionals and Probabilistic
Implications

Matthias Scheutz,1 Kamal Premaratne,2 Lawrence S. Moss,3 Avery Caulfield1

1Departments of Cognitive Science and Computer Science, Tufts University, Medford, MA USA
2Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL USA

3Department of Mathematics, Indiana University, Bloomington, IN USA
matthias.scheutz@tufts.edu, kamal@miami.edu, lmoss@indiana.edu, avery.caulfield@tufts.edu

Abstract

Probabilistic rules “if A then B” rules are typically formalized
as Bayesian conditionals P (B|A), as many (e.g., Pearl) have
argued that Bayesian conditionals are the correct way to think
about such rules. However, there are challenges with standard
inferences such as modus ponens, modus tollens, and rule
chaining that might make probabilistic material implication
a better candidate at times for rule-based systems employing
forward-chaining; and arguably material implication is still
suitable when information about prior or conditional proba-
bilities is not available. We compare a probabilistic version
of the material conditional from classical logic with Bayesian
conditionals in the setting of interval-valued probability the-
ory. We give quantitative treatments of familiar rules from
logic to arrive at the best possible bounds on inferences in
rule-based systems constituting directed acyclic graphs.

Introduction. The discussion of how to best render for-
mally the intuitions behind “if-then” conditionals is still un-
resolved, in part because such conditionals can be used to
capture analytical truths (“if x is an even number, x is divisi-
able by two”), conceptual relationships (“if x is a human,
then x is mortal”), inductive inferences (“if the sprinkler is
on, the grass will become wet”), abductive inferences (“if
the light switch is on but the light is off, the light bulb is bro-
ken”), normative constraints (“if the traffic light is red, you
are not allowed to drive”), hypotheticals (“if I were to run
fast, I would be out of breath”), and counterfactuals (“if the
driver had been able to break in time, they would not have
killed the deer”). From a logical point of view, the classical
conditional A → B is false only when A is true and B is
false, thus A and A → B cannot both be false at the same
time, a fact that can be used to determine the consistency of
a set of rules. Yet, treating conditionals as truth-functional
has long been seen to be problematic (e.g., Adams 1965)
and the widely accepted solution is to view such rules as
probabilistic and best modeled by the Bayesian conditional
P (B|A) (e.g., Pearl 1988). At the same time, some have ar-
gued that under certain conditions the intuitive conditionals
amounts to material implication (see Khoo and Mandelk-
ern 2018, for a discussion) and that the Bayesian condi-
tional is not appropriate for handling (indicative) condition-
als. Moreover, some logically valid inferences such as the
“hypothetical syllogism” A → B,B → C |= A → C (e.g.,
Hailperin 1984) are often probabilistically “uninformative”

(e.g., Pfeifer and Kleiter 2006), as we will also show below.
The question then is how probabilistic versions of fre-

quently used conditional inference schemes such as modus
ponens, modus tollens, and hypothetical syllogism (used for
chaining conditionals) compare to a probabilistic version of
the material conditional. The goal of this paper is to shed
light on the tradeoffs between the two interpretations of
conditionals with respect to the various inference schemes.
For this purpose, we use the standard embedding of propo-
sitional logic in probability theory, probability logic (e.g.,
Hailperin 1984), to compare probabilistic bounds on infer-
ences with material conditionals vs. Bayesian condition-
als and show that probabilistic material conditionals allow
for better and faster inferences with a probabilistic condi-
tional knowledge base. Moreover, we prove the best possi-
ble bounds on inferences in directed acyclic graphs induced
by a system of probabilistic material conditionals.
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