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Abstract. Hyperproperties are quickly becoming very popular in the
context of systems security, due to their expressive power. They differ
from classic trace properties since they are represented by sets of sets
of executions instead of sets of executions. This allows us, for instance,
to capture information flow security specifications, which cannot be ex-
pressed as trace properties, namely as predicates over single executions.
In this work, we reason about how it is possible to move standard ab-
stract interpretation-based static analysis methods, designed for trace
properties, towards the verification of hyperproperties. In particular, we
focus on the verification of bounded subset-closed hyperproperties which
are easier to verify than generic hyperproperties. It turns out that a lot
of interesting specifications (e.g., Non-Interference) lie in this category.

1 Introduction

When reasoning about systems executions, a key point is the degree of approx-
imation given by the choice of the semantics used to represent computations.
Since its origin in 1977, abstract interpretation [12] has been widely used to de-
scribe and formalize approximate systems computations in many different areas
of computer science and, in particular, in program verification. In this direction,
comparative semantics consists in comparing semantics at different levels of ab-
straction, always by abstract interpretation [11, 17]. The choice of the semantics
is a key point, not only for finding the desirable trade-off between precision and
decidability of program analysis in terms, for instance, of verification expressive-
ness, but also because not all the semantics are suitable for proving any possible
specification of interest. In other words, the semantics must describe at least the
program features involved by the specification of interest. For instance, in the
security context, there are specifications that can be expressed as trace proper-
ties, like Access Control, and others which cannot, like Non-Interference1. In this
latter case, it is necessary to specify it as an hyperproperty. Intuitively, a trace
property is defined exclusively in terms of individual executions and, in general,
do not specify any relation between different executions of a system. Instead,

1 Access Control is defined over systems (reachable) states. Non-Interference, instead,
is defined over systems input/output (I/O) traces.



an hyperproperty specifies the set of sets of system executions allowed by the
specification, therefore expressing relations between executions. In [9] it is stated
that hyperproperties are able to define every possible specification concerning
systems modeled as sets of traces (of states).

Unfortunately, hyperproperties are not, in general, precisely verifiable with
standard methods, e.g., with standard abstract interpretation-based static anal-
yses. In [25] we face the problem of formally verifying hyperproperties from a
very general point of view, by providing several ingredients necessary for tackling
the problem of verifying hyperproperties. We introduce a classification of hyper-
properties distinguishing between those that can be “precisely” analyzed with
standard program analysis (trace hyperproperties), those that technically could
be analyzed with standard methods (with potentially unsatisfactory results) but
for which an analysis at hyperlevel could gain precision (subset-closed hyper-
properties) and those for which standard static analyses cannot work properly
(all other hyperproperties). Then we formally describe the hyperlevel of seman-
tics by integrating the hyperlevel in the hierarchy of semantics [11], providing a
formal framework for reasoning about hyperproperties of systems.

Contribution. In the present work, program verification of hyperproperties,
which was the main motivation of [25], becomes the central focus. First of all, we
deepen the verification problem of a restriction of subset-closed hyperproperties,
i.e., bounded subset-closed hyperproperties. These hyperproperties are expressive
enough to capture lots of interesting specifications (such as information flow)
but their verification is made easier. In particular, verification of these hyper-
properties is bounded to a fixed input cardinality, restricting the search space
for confutation. Nevertheless, also for this kind of hyperproperties, the analysis
has to move to the hyperlevel for reducing the loss of precision, which, at the
standard level, could make the analysis useless (even if it is still possible).
At this point, we wonder how we can lift, not the whole concrete semantics (as
in [25]), but the interpreter computing the collecting semantics. We propose a
general technique for lifting collecting semantics and we observe that the seman-
tics proposed in [9] is a particular instance of our general approach. The added
value of tackling the problem from a general and formal point of view is that it
allows us to discuss and prove soundness and completeness properties.
Finally, as it happens in standard analysis where the collecting semantics is
approximated in a domain of observations, we aim at defining hyper abstract
domains, in order to approximate the collecting hypersemantics. With this aim in
mind, we propose a methodology for lifting abstract domains to the hyperlevel.

Structure of the paper. In Sect. 2, we briefly recall the concept of hyperproperty
and the issue of its verification. Then we introduce the new notion of bounded
subset-closed hyperproperty. In Sect. 3, we deal with the problem of lifting the
collecting semantics of a given static analysis at the level of sets of sets. In
Sect. 4, we describe general patterns for building (hyper) domains, suitable for
the verification of hyperproperties. In Sect. 5, we show how to instantiate the
methodologies introduced, in order to obtain sound and complete static analyses



for bounded subset-closed hyperproperties. Finally, in the last two sections, we
have related works, future research directions and conclusions.

2 Concerning Hyperproperties Verification

Let DEN be the set of all possible denotations for systems executions (e.g., reach-
able states, pairs of input and output states, finite sequences of states, etc.). We
recall that while a trace property P, i.e., a property whose satisfaction depends
on single executions, is modeled as the set of all executions satisfying it (hence
P ∈ ℘(DEN)), an hyperproperty Hp, verifiable on sets of executions, is modeled
as the set of all sets of executions satisfying it (hence Hp ∈ ℘(℘(DEN))).

2.1 Bounded Subset-Closed Hyperproperties

In [25], we define the following hyperproperties classification:

TRCH , {Hp ∈ ℘(℘(DEN)) | ℘(
⋃

Hp) = Hp}
SSCH , {Hp ∈ ℘(℘(DEN)) | X ∈ Hp⇒ (∀Y ⊆ X .Y ∈ Hp)}

The first are called trace hyperproperties and the second subset-closed hyperprop-
erties. Trace hyperproperties are isomorphic to trace properties, namely they
corresponds to all and only the hyperproperties verifiable on single executions,
i.e., they do not need the comparison of different executions. Subset-closed hy-
perproperties are those hyperproperties that can be refuted just by showing
an arbitrary subset of the semantics that does not satisfies the hyperproperty
(witness of refutation).

In this paper, we introduce a stronger notion of subset-closed hyperproperty,
allowing us to further restrict the search space for possible refuting witnesses.

Definition 1 (k-Bounded Subset-Closed Hyperproperty).

SSCHk , {Hp ∈ ℘(℘(DEN)) | X /∈ Hp⇔ (∃Tk ⊆ X . (|Tk| ≤ k ∧ Tk /∈ Hp))}

The set Tk is the witness of refutation, namely a set of traces of cardinality
at most k ∈ N violating the property. In other words, in a k-bounded subset-
closed hyperproperty, every set of traces not satisfying the hyperproperty has
a refuting witness with at most k traces. This means that, in order to refute
the hyperproperty, we need to exhibit a counterexample consisting in at most
k traces. Formally, suppose Hp ∈ SSCHk, if we find {d1, d2, . . . dk} ⊆ X such that
{d1, d2, . . . dk} /∈ Hp, then we can imply that X /∈ Hp. Hence X |= Hp, meaning
X satisfies Hp, iff {{d1, d2, . . . dk} | d1, d2, . . . dk ∈ X} ⊆ Hp. Clearly, it turns out
that a trace hyperproperty is 1-bounded, namely TRCH = SSCH1.

It is also clear that the union of all the k-bounded subset-closed hyperprop-
erties and the unbounded subset-closed hyperproperties (i.e., those with k = ω)
is precisely the set of all the subset-closed hyperproperties.

Proposition 1. It holds that SSCH =
⋃
k≤ω SSC

H
k.



For every Hp ∈ SSCH we can define a refuting set RHp, namely a set of sets
of traces representing the witnesses for refuting the hyperproperty. These sets
are inspired by the prefixes representing the “bad thing” in safety properties.
It is possible to define different refuting sets for a given hyperproperty, since
when a set X /∈ Hp then we have that X ∪ Y /∈ Hp, by subset-closure. A SSCH

hyperproperty Hp is violated iff the given set of traces is a superset of an element
in RHp. So Hp can be characterized as:

∀X ∈ ℘(DEN) . (∃Tr ∈ RHp . Tr ⊆ X)⇔ X /∈ Hp (1)

If Hp ∈ SSCHk (i.e., it is bounded) then we can define the minimal refuting set
Rmin

Hp (i.e., the one containing the sets with minimal cardinality) characterizing
the hyperproperty. This means that for every set violating the hyperproperty,
Rmin

Hp contains only its minimal representative (w.r.t. ⊆). In particular, every

element in Rmin
Hp has cardinality k.

Example 1. Let St = Var −→ Z and DEN = St × St. Non-Interference [10, 21],
parametric on a security variables typing Γ ∈ Var −→ {L,H}, is:

NI , {X ∈ ℘(DEN) | ∀d, d′ ∈ X . (d` =L d′` ⇒ da =L d′a)}

where d` and da are the projections on the first and last element of the pair d,
respectively. The equivalence =L holds for memories agreeing on the values of
public (L) variables. NI is in SSCH2, namely X |= NI iff {{d, d′} | d, d′ ∈ X} ⊆ NI.
Hence, if we find a pair of interfering executions, i.e., {d, d′} 6∈ NI, then we prove
that X 6|= NI. Indeed, the minimal refuting set for Non-Interference is:

Rmin
NI ,

{
{d, d′} ∈ ℘(DEN)

∣∣ d` =L d′` ∧ da 6=L d′a
}

End example.

Note that substituting ⊆ with the prefix-set relation 62 in (1) we obtain the
minimal refuting set for an hypersafety.

2.2 The Safety/Liveness Dichotomy

In the context of trace properties, a particular kind of properties are the safety
ones [2], expressing the fact that “nothing bad happens”. These properties are
interesting because they depend only on the history of single executions, meaning
that safety properties are dynamically monitorable [2]. Similarly, safety hyper-
properties (or hypersafety) are the lift to sets of safety properties. This means
that, for each set of executions that is not in a safety hyperproperty, there exists
a finite prefix-set of finite executions (the “bad thing”) which cannot be ex-
tended for satisfying the property. Dually, liveness (trace) properties express the
fact that “something good eventually happens”, namely the systems satisfying a

2 Here X 6 Y iff for every d ∈ X exists d′ ∈ Y such that d is a prefix of d′[9].



liveness property are those that, eventually, exhibit a good behavior. Again, live-
ness hyperproperties (or hyperliveness) are the lift to sets of liveness properties.
This means that a set of finite traces can be extended to a set of infinite traces
satisfying the property. An interesting aspect of the safety/liveness dichotomy
is that every trace property can be expressed as the intersection of a safety and
a liveness one. This also holds for hyperproperties, i.e., every hyperproperty can
be expressed as the intersection of a hypersafety and a hyperliveness one [9, 28].

Another particular class of hyperproperties are the k-safety hyperproperties
(or k-hypersafety). They are safety hyperproperties in which the “bad thing”
never involves more than k executions [9]. This means that it is possible to check
the violation of a k-hypersafety just observing a set of k executions (note that
1-hypersafeties are exactly safety properties). This is important for verification,
in fact, it is possible to reduce the verification of a k-hypersafety on a system S
to the verification of a safety on the self-composed system Sk [9].

It turns out that all hypersafety are subset-closed [9]. But also some hy-
perliveness are subset-closed, in fact every trace hyperproperty is subset-closed
and hence every liveness property, which is an hyperliveness, is in SSCH. Every
k-hypersafety is k-bounded and every liveness is a 1-bounded subset-closed hy-
perproperty. But there are also other hyperliveness which are bounded, as we
can see in the following example.

Example 2. Suppose now that executions denotations are infinite sequences of
states, namely DEN = Stω. Suppose also that the systems of interest can receive
requests and can provide responses to these requests. We denote with the pred-
icate Req(d, i) the fact that a system, in the execution d, has received a request
at time i, namely in the state di. Analogously, we denote with the predicate
Resp(d, i, j) the fact that the system has provided a response at time j to the
request received at time i. Then we can define a policy saying that if the execu-
tions of a system receive a request at time i then they have to provide a response
at time j, meaning that if they receive a request at the same time then they have
to respond at the same time. Formally:

SyncR ,

{
X ⊆ Stω

∣∣∣∣ ∀d, d′ ∈ X ∀i ∈ N . (Req(d, i) ∧ Req(d′, i))⇒
∃j ∈ N . (Resp(d, i, j) ∧ Resp(d′, i, j))

}
It is easy to note that SyncR is subset-closed but it is not an hypersafety. Indeed
it is an hyperliveness, but it is also a bounded subset-closed hyperproperty. In
particular, it is in SSCH2: In order to refute it, it is sufficient to look for sets of
(infinite) sequences with cardinality 2. End example.

Example 2 proves that there are hyperproperties which are not k-hypersafety
but are k-bounded subset-closed (other than the trivial liveness properties). In
Fig. 1 we have a graphical representation of how we can classify hyperproperties,
w.r.t. the safety/liveness dichotomy and subset-closure.

2.3 Exploring the Hyperproperties Verification Issue

Let us now consider as systems the programs P written in a given imperative
deterministic programming language, with assignments, conditionals and while
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Trace hyperproperties

Bounded SSC hyperproperties

SSC hyperproperties

HS: hypersafety

k-HS: k-hypersafety

S: safety (1-hypersafety)

HL: hyperliveness

L: liveness

Fig. 1. Classification of Hyperproperties.

loops. Let DEN be the domain of denotations for program behaviors, then S[P] ∈
℘(DEN) denotes the semantics of P, intended as the strongest trace property of
P. In this case properties of P are those in ℘(DEN), while hyperproperties of
P are those in ℘(℘(DEN)). For instance, if DEN = St , Var −→ Z, i.e., states
are represented as mappings from variables to values, we cannot express Non-
Interference (comparing traces of executions sharing the same low inputs) but we
can express Access Control (checking whether in a program point an access has
been granted or not). For defining Non-Interference we need, at least, denotations
representing the programs input/output (I/O) relation, e.g., DEN = St× St.

In the context of program verification of (trace) properties, the satisfaction is
given by set inclusion, i.e., a program P satisfies a property P ∈ ℘(DEN), written
P |= P, iff S[P] ⊆ P. For hyperproperties, P |= Hp iff S[P] ∈ Hp iff {S[P]} ⊆ Hp.
In particular, {S[P]} ∈ ℘(℘(DEN)) is the strongest hyperproperty of P [25].

In general, the semantics of a program is not computable, hence practical
verification methods rely on approximations. In standard trace properties ver-
ification, we compute an over-approximation, e.g., by abstract interpretation,
O ⊇ S[P] which is such that, if O ⊆ P, then we can soundly imply P |= P. Un-
fortunately, over-approximations on ℘(DEN) do not always work properly with
hyperproperties. In particular, it formally does work for Hp ∈ SSCH, in fact if we
prove that O ⊇ S[P] and O ∈ Hp, then by subset-closure of Hp we also have that
S[P] ∈ Hp. Hence, we can conclude that standard approaches for semantic ap-
proximation may work also for hyperproperties, clearly taking into account the
imprecision due to the semantics approximation. For instance, suppose DEN = St,
and suppose to be interested in verifying the hyperproperty

PP , {X ∈ ℘(Z) | ∀d1, d2 ∈ X . Par(d1) = Par(d2)⇒ Pos(d1) = Pos(d2)}

where Par is the parity while Pos is the sign of numerical values, respectively.
Then, suppose S[P1] = {1, 3, 4}3, in this case it is clear that P1 |= PP, but

also the abstract computation of P1 computing the sign of the set (in this case

3 For the sake of simplicity, we suppose the programs Pi have only one variable and
the state is denoted by the set of its possible values.



positive) would allow to verify the hyperproperty for P1 (if all computed values
have the same sign, PP is trivially verified). It is anyway clear that, as usual
in abstraction, we lose precision since, for example, the program P2 such that
S[P2] = {−1,−3, 4} satisfies PP, but the sign abstraction of the semantics would
return >, not allowing to verify PP.

Moreover, real problems of precision arise, also for SSCH, when, due to the
approximation, we move verification on domains less expressive than DEN. For
instance, when DEN is defined on traces of states (e.g., I/O traces St2 or partial
traces St∗) and the verification method deals with states only. Indeed, if the
abstract computation could approximate sets of traces as sets of traces, then
still we could reason as before, but sets of traces are usually approximated as
a trace of sets, computing the trace of reachable states. This approximation
completely loses the trace information necessary for verifying a hyperproperty
defined on a trace domain of denotations. In Fig. 2 it is graphically provided
the intuition that, by approximating the collecting semantics at the hyperlevel,
we obtain a more precise approximation, since we can keep distinctions among
reachable states allowing us to verify hyperproperties, with sufficient precision,
even in presence of approximation.

Example 3. Consider, for instance, Non-Interference of Example 1, where states
in St are denoted as tuples of values, namely a state [h/h, l/l] is denoted as
〈h, l〉. Let P , h := 0 ; l := 2l and Γ (h) , H, Γ (l) , L. Now consider I ,
{〈h, l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}, then the resulting semantics of the program,
starting from I, is {〈h, l〉〈0, 2l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}. Any over-approximation
of this set in ℘(DEN) allows us to soundly verify NI, e.g., if we abstractly compute,
in output, the set {〈h, l〉〈0, 2l〉 | h, l ∈ Z} then we can still soundly verify NI.
But, any approximation on traces of sets (i.e., on ℘(St)2), e.g., the trace of sets
{〈h, l〉 | l ∈ {1, 2, 3, 4}, h ∈ Z}{〈0, l〉 | l ∈ {2, 4, 6, 8}}, losing the I/O relation of
traces, becomes useless for NI verification. In this case, we need to move towards
the hyperlevel of semantics, in order to not lose too much information, necessary
to verify the hyperproperty. In the example, the possibility to compute the trace
of (hyper)sets {{〈h, l〉 | h ∈ Z} | l ∈ {1, 2, 3, 4}}{{〈0, l〉} | l ∈ {2, 4, 6, 8}} would
allow us to verify NI observing that, independently from a fixed low input and
from any high input, the low output is always a constant, being the output of
the resulting trace a set of sets of states sharing the same low value. Graphically:

〈1, 1〉
〈2, 1〉
〈3, 1〉

...

〈1, 2〉
〈2, 2〉
〈3, 2〉

...

〈1, 3〉
〈2, 3〉
〈3, 3〉

...

〈1, 4〉
〈2, 4〉
〈3, 4〉

...

〈0, 1〉
〈0, 2〉
〈0, 3〉
〈0, 4〉

JPK

NIX

〈1, 1〉
〈2, 1〉
〈3, 1〉

...

〈1, 2〉
〈2, 2〉
〈3, 2〉

...

〈1, 3〉
〈2, 3〉
〈3, 3〉

...

〈1, 4〉
〈2, 4〉
〈3, 4〉

...

〈0, 1〉
〈0, 2〉
〈0, 3〉
〈0, 4〉

JPKh

NIX

End example.



S[P] ⊆ ℘(DEN) = ℘(St∗)

Computing approximated
semantics on ℘(St)

Computing approximated
semantics on ℘(℘(St))

More precision

Fig. 2. The intuition: Why computing approximation on ℘(℘(St)) is more precise.

3 Lifting the Collecting Semantics

In this section, we describe how we can move the computation of a semantics
into the hyperlevel, in order to be able to approximate the verification of hy-
perproperties, still keeping as much precision as possible, together with analysis
feasibility. We provide the lifting framework parametric on the domain of denota-
tions of the collecting semantics to lift, namely we consider a collecting semantics
defined in ℘(DEN) and we show how to lift it on ℘(℘(DEN)). Independently from
the domain of the hyperproperty to verify, it is the verification and approxima-
tion process that fixes the relation between denotations domains, as shown in
Fig. 2. In the figure, the semantics and the hyperproperty to verify are defined
on ℘(St∗), while we lift into the hyperlevel a collecting semantics computed on
℘(St), moving the computation at the hyperlevel, i.e., on ℘(℘(St)).

As we have observed, in order to verify hyperproperties, we may need to move
program semantics into the hyperlevel. In [25], we describe the links between
standard and hypersemantics of a transition system. In this section, we show
how to lift a given collecting semantics4, defined on sets, in order to obtain
a corresponding collecting hypersemantics, defined on sets of sets, suitable for
hyperproperties verification. In this work, we consider big-step semantics, but
the whole framework can be generalized to other types of semantics.

Let L be a deterministic imperative language whose set of statements is StmL

(single statements without composition). Given the domain of denotations DEN,
the semantic computation is defined by a semantic operator inductively defined
on the syntax of L, i.e., fL ∈ StmL×DEN −→ DEN. Let P ∈ L be a program written
in L, its concrete (big-step) semantics is a function 〈|P |〉 ∈ DEN −→ DEN defined
compositionally on the statements of P, i.e., it is computed by composing the
application of fL to the program statements. For instance, let P = h := 0 ; l :=
2l, the concrete semantics is 〈|P |〉d = fL(l := 2l, fL(h := 0, d)). In particular,
〈|P |〉 is defined also in terms of the semantics of arithmetic expressions, denoted
〈|a |〉 ∈ DEN −→ Z, and of boolean expressions, denoted 〈|b |〉 ∈ DEN −→ B.

4 Namely a semantics function, defined on a program P syntax, computing S[P].



3.1 Lifting the (collecting) interpreter

The collecting semantics JPK ∈ ℘(DEN) −→ ℘(DEN) is the additive lift (i.e., the
set of the direct images of the elements in input) to sets of denotations, namely
JPKX = {〈|P |〉d | d ∈ X}. As far as expression semantics is concerned, for
boolean expressions JbK ∈ ℘(DEN) −→ ℘(DEN) is a filtering function, namely
JbKX , {d ∈ X | 〈|b |〉d = tt}, while for arithmetic expressions it is the ad-
ditive lift of the concrete semantics. The collecting semantics is computed by
composing a new operator FL ∈ StmL × ℘(DEN) −→ ℘(DEN), which is the ad-
ditive lift of fL. For example, the semantics for assignments is Jx := aKX =
FL(x := a, X) , {fL(x := a, d) | d ∈ X}. The while statement operator is de-

fined as FL(while b {P }, X) , J¬bK(lfp⊆∅W), where W , λT .X ∪ JPKJbKT .
It can be shown that W is a monotone function over the complete lattice
〈℘(DEN),⊆,∪,∩,DEN,∅〉 hence its least fixpoint exists and it can be computed as⋃
n≥0Wn(∅), withW0 , λX .∅ andWn+1 , λX .W◦Wn(X). In this case, this

least fixpoint is precisely the additive lift of fL, namely FL(while b {P }, X) =
{fL(while b {P }, d) | d ∈ X}. Note that, if I ⊆ DEN is the set of all possible in-
puts of the program, the collecting semantics JPK from I computes the strongest
program property S[P] ∈ ℘(DEN), i.e., S[P] = JPKI.

At this point, we have to move semantics towards the hyperlevel, namely on
℘(℘(DEN)), since, when we are interested in hyperproperties, we may need to
define a collecting hypersemantics JPKh ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)). In this case,

we need to lift the semantic operator FL, and we can show several ways for doing
it. Suppose to have the filtering function JbKh ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)) for

boolean expressions, defined as JbKhX , {JbKX | X ∈ X}. The definition of the

collecting hypersemantics is just the additive lift (to sets of sets) of FL for every
statement, except for the while case. Indeed, we can observe that, at hyperlevel,
the semantic operator FL

h for the while statements does not coincide with the

additive lift of FL, which would be FL

h (while b {P },X ) , J¬bKh(lfp⊆∅Wh) with

Wh , λT .X ∪ JPKhJbKhT . Unfortunately, this semantics is not sound being
such that JPKX /∈ JPKh{X}. This is a problem, since when JPKI 6∈ JPKh{I}, from
JPKh{I} ⊆ Hp we cannot infer anything about the property validation.

Example 4. Let DEN = Var −→ Z and P = while (x < 4) { x := x + 1 }. Since P
has only one variable, we simplify the notation by denoting [x/v] just by v and
the set of functions {[x/v1 ], . . . [x/vn ]} by {v1, . . . vn}. The collecting semantics,

from I = {2, 5}, is JPK{2, 5} = {4, 5}, computed as {2, 5} W−→ {4, 5} where

W0 = ∅; W1 = {2, 5}; W2 = {2, 3, 5}; W3 = {2, 3, 4, 5}

The trivial additive lift of the while collecting semantics would be JPKh{{2, 5}}=

{∅, {4}, {5}}, computed as {{2, 5}} Wh−−→ {∅, {4}, {5}} where

Wh
0 = ∅; Wh

1 = {{2, 5}}; Wh
2 = {{3}, {2, 5}}; Wh

3 = {{3}, {4}, {2, 5}};

Wh
4 = {∅, {3}, {4}, {2, 5}}



From the iterates of Wi and Wh
i we can observe the monotonicity (and the ex-

tensivity) ofW andWh, but the hypersemantics is not sound, because JPK{2, 5} =
{4, 5} 6∈ {∅, {4}, {5}} = JPKh{{2, 5}}. End example.

In order to lift the while semantics, we propose the following three possibil-
ities. We define the collecting hypersemantics operator for while statements as
FL

h (while b {P },X ) , J¬bKh(lfp⊆∅Wh) where:

1. (Bcc lift) Wh , λT . ℘(
⋃
X ∪ JPKJbK

⋃
T )

2. (Inner lift) Wh , λT . {∅} ∪ (X d JPKhJbKhT )

3. (Mixed lift) Wh , λT .X ∪ {JPKJbKT ∪ J¬bKT | T ∈ T }

The Bcc lift defines the collecting hypersemantics as the best complete con-
cretization [25] of the while semantics. The Inner lift combines by union, at
each step of computation, all the possible results. In particular, the binary oper-
ator d ∈ ℘(℘(DEN))×℘(℘(DEN)) −→ ℘(℘(DEN)), defined as X dY , {X∪Y | X ∈
X ∧Y ∈ Y}, is a slight modification of ∪? , introduced in [25] and it is an instance
of the construction presented in [14] (Page 4, example 1). Moreover, the result-
ing semantics corresponds to the one proposed in [20] for analyzing analyses.
Finally, the Mixed lift is the instantiation of the hypercollecting semantics of [4]
to a generic trace denotations domain DEN. Each while operator Wh is a mono-
tone function over the complete lattice 〈℘(℘(DEN)),⊆,∪,∩, ℘(DEN),∅〉, hence its
least fixpoint exists and it can be computed as shown before.

Unfortunately, none of the previous definitions computes the additive lift of
FL, namely {FL(while b {P }, X) | X ∈ X} 6= FL

h (while b {P },X ), as we can
observe in the next example.

Example 5. Consider P of Example 4. The Bcc lift collecting hypersemantics is

JPKh{{2, 5}} = ℘({4, 5}), computed as {{2, 5}} Wh−−→ ℘({4, 5})} where

Wh
0 = ∅; Wh

1 = ℘({2, 5}); Wh
2 = ℘({2, 3, 5}); Wh

3 = ℘({2, 3, 4, 5})

The Inner lift collecting hypersemantics is JPKh{{2, 5}} = {∅, {5}, {4, 5}}, com-

puted as {{2, 5}} Wh−−→ {∅, {5}, {4, 5}} where

Wh
0 = ∅; Wh

1 = {∅, {2, 5}}; Wh
2 = {∅, {2, 5}, {2, 3, 5}};

Wh
3 = {∅, {2, 5}, {2, 3, 5}, {2, 3, 4, 5}}

The Mixed lift collecting hypersemantics is JPKh{{2, 5}} = {{5}, {4, 5}}, com-

puted as {{2, 5}} Wh−−→ {{5}, {4, 5}} where

Wh
0 = ∅; Wh

1 = {{2, 5}}; Wh
2 = {{2, 5}, {3, 5}}; Wh

3 = {{2, 5}, {3, 5}, {4, 5}}

From the iterates Wh
i we observe the monotonicity (extensivity) of Wh. All the

semantics are sound, because JPK{2, 5} ∈ JPKh{{2, 5}}. End example.



3.2 Soundness and completeness issues

Let JPKbh, JPKih and JPKmh be the collecting hypersemantics defined in terms of the

Bcc, Inner and Mixed lifts, respectively, for the while case of FL

h , and defined as
the additive lift to ℘(℘(DEN)) of FL for all the other statements. Then, all these
collecting hypersemantics are sound.

Theorem 1 (Soundness). For every X ∈ ℘(DEN) we have

JPKX ∈ JPKbh{X} and JPKX ∈ JPKih{X} and JPKX ∈ JPKmh {X}

This results tells us that these hypersemantics can be soundly used for the verifi-
cation of hyperproperties of P, unfortunately adding some further spurious infor-
mation not directly due to approximation, i.e., spurious elements of ℘(℘(DEN)).
This is somewhat new: Usually the source of incompleteness is the abstraction
process (of an abstract semantics), not the collecting semantics itself. Luckily, for
subset-closed hyperproperties this is not a real concern. In fact when Hp ∈ SSCH,
we have that P |= Hp iff ℘(JPKI) ⊆ Hp. Furthermore, the three collecting hyper-
semantics introduced above, are related as follows.

Proposition 2. ∀X ∈ ℘(℘(DEN)): JPKmh X ⊆ JPKbhX and JPKihX ⊆ JPKbhX .

Hence we can state that all the proposed collecting hypersemantics are complete
verification methods for bounded subset-closed hyperproperties.

Theorem 2 (Completeness). Let Hp ∈ SSCHk (for some k ∈ N), then:

P |= Hp ⇔ JPKbh{I} ⊆ Hp ⇔ JPKih{I} ⊆ Hp ⇔ JPKmh {I} ⊆ Hp

The theorem follows from the fact that all three semantics, computed from I, are
contained in ℘(JPKI). So, even if the collecting hypersemantics inserts spurious
information, this information does not lower the precision of the analysis, when
we deal with bounded subset-closed hyperproperties. Note that the Thm. 2 also
holds with k = ω, i.e., it also holds for unbounded subset-closed hyperproperties.

4 Lifting Abstract Domains

Once we have lifted the semantics, in order to perform verification we need to
compute the semantics on an abstract domain5, namely we have to compute an
abstract semantics. In the classic framework of abstract interpretation [12, 13]
we compute an over-approximation O ⊇ JPKI of a program semantics, allowing
us to soundly verify trace properties. This is obtained by means of an abstraction
of the concrete domain, where the abstract semantics plays the role of the over-
approximation. Let P be a program, A an abstract domain of ℘(DEN), forming
the Galois connection (〈℘(DEN),⊆〉, α, γ, 〈A,4〉), P a trace property in ℘(DEN)
and JPKA

an abstract interpretation of JPK on A, i.e., JPKX ⊆ γ ◦ JPKA ◦ α(X).

5 A is an abstract domain of C if there exists a Galois connection (〈C,4〉, α, γ, 〈A,�〉),
where α, γ are monotone maps such that: ∀c ∈ C, a ∈ A . α(c) � a⇔ c 4 γ(a).



Then γ ◦ JPKA ◦α(I) ⊆ P implies P |= P. Similarly, an over-approximation O ⊇
JPKh{I} leads to a sound verification mechanism for hyperproperties. Let Ah be
an abstract domain of ℘(℘(DEN)), forming the Galois connection (〈℘(℘(DEN)),⊆
〉, αh, γh, 〈Ah,4h〉), Hp ∈ ℘(℘(DEN)) an hyperproperty, JPKh a sound collecting

hypersemantics, i.e., JPKI ∈ JPKh{I}, and JPKAh

h an abstract interpretation of

JPKh on Ah, i.e., JPKhX ⊆ γh ◦ JPKAh

h ◦ αh(X ). Then:

γh ◦ JPKAh

h ◦ αh({I}) ⊆ Hp implies P |= Hp

Hence, at this point we wonder how we can define/lift abstract domains at the
hyperlevel, i.e., on sets of sets, in order to approximate hypersemantics, i.e.,
semantics lifted to the hyperlevel.

4.1 The Compositional Nature of Hyper Abstract Domains.

An hyper abstract domain, or hyperdomain, can be decomposed basically into
two parts: an inner abstraction and an outer abstraction. Note that we are not
talking about a generic abstract domain on sets of sets: Our focus is on the
verification of hyperproperties, hence we need domains, on sets of sets, which
represent information concerning programs, whose concrete semantics is on sets.
Let us consider Non-Interference (NI) as running example, for providing the
intuition beyond these concepts. NI requires that, for each set of computations
agreeing on the the same low input, the low output is constant.

The inner abstraction approximates sets of denotations in DEN, namely it
says which information about program executions should be observed. In NI,
for each set of computations we are interested in the constant analysis on low
variables, i.e., each set of computations (starting from states agreeing on the low
variables) should be contained in a set of the form Cl , {〈h, l〉 | h ∈ Z}, l ∈ Z.

The outer abstraction approximates sets of sets of denotations, namely it
says which information about programs semantics is interesting, in other words,
which is the desired invariant among all the sets of computations collected. In
the example, we require that all the possible resulting sets are constants in the
low variable, hence they are a set in ℘({Cl | l ∈ Z}).

It should be clear that, the outer abstraction is defined at the hyperlevel
and therefore in order to compose it with the inner one, defined at the standard
level ℘(DEN), we need to lift the inner abstraction to ℘(℘(DEN)). In this case, the
lifting function just leverages the domain at the level of sets of sets. In the case
of hyperdomains lifting a domain does not introduce computability problems,
hence we can always use the additive lift. Formally, suppose the inner abstraction
A is given by the Galois connection

〈℘(DEN),⊆〉 −−−→←−−−
αi

γi 〈A,4〉

The lifting transformer L ∈ (℘(DEN) −→ A) −→ (℘(℘(DEN)) −→ ℘(A)) is the
transformer addively lifting functions, namely L , λf . λX . {f(X) | X ∈ X}
[11]. Let us consider the transformer G ∈ (℘(DEN) −→ A) −→ (℘(A) −→ ℘(℘(DEN)))



[11] defined as G , λf . λY . {X | f(X) ∈ Y }. Due to elementwise set abstraction,
we have that L(αi) and G(αi) form a Galois connection [11], in particular we
have

〈℘(℘(DEN)),⊆〉 −−−−−→←−−−−−
L(αi)

G(αi) 〈℘(A),⊆〉

We obtained so far, starting form the inner abstraction defined on the standard
level and applying the additive lift, the hyper domain on which we can define the
outer abstraction. In other words, the outer abstraction is a further abstraction
of ℘(A) given by the Galois connection

〈℘(A),⊆〉 −−−→←−−−
αo

γo 〈Ah,4h〉

This outer abstraction captures the information that must be invariant among
all the collected sets of executions (abstracted in A), looking, by construction,
for invariants among elements of A. Finally, by composition, we have that

〈℘(℘(DEN)),⊆〉 −−−−−−−−→←−−−−−−−−
αo◦L(αi)

G(αi)◦γo 〈Ah,4h〉

Note that, it is not mandatory, for the inner abstraction A, to form a Galois
connection. Indeed, in order to apply the lifting transformer, the abstraction
function αi may also fail additivity [11]. Note that, the abstract domains de-
fined in [4] are instances of the pattern proposed here. For instance, cardinality
abstraction crdval ∈ ℘(Z) −→ [0,∞] (which is not additive) corresponds to our
inner abstraction, while αmax ∈ ℘([0,∞]) −→ [0,∞] computing the least upper
bound, i.e., αmax(X) , max(X), is the outer abstraction. The resulting abstrac-
tion is obtained by lifting the inner one and composing it with outer one, i.e.,
αcrdval ∈ ℘(℘(Z)) −→ [0,∞] coincides with αmax ◦ L(crdval), which is the pro-
cess we have generalized above. In the following, we give some examples of hyper
abstract domains obtained starting from initial known abstractions on sets.

4.2 Dealing with Constants Propagation.

Suppose to define an hyperanalysis on the concrete domain ℘(℘(Z)), and to be
interested in constants propagation at the hyperlevel, namely we aim at verifying
whether all the sets of computations provide constant results. This corresponds
intuitively to an inner abstraction which is the hyperlevel constant propagation
(lifted as shown before), and an outer abstraction retrieving information about
the constant analysis at standard level. The standard domain of constants C ,
Z ∪ {⊥,>} is defined by the Galois insertion6 (〈℘(Z),⊆〉, αc, γc, 〈C,�〉) where
c1 � c2 , (c1 = ⊥ ∨ c1 = c2 ∨ c2 = >) and

αc , λX .


⊥ if X = ∅
n if X = {n}
> otherwise

γc , λc .


∅ if c = ⊥
{n} if c = n

Z otherwise

6 It is a Galois connection with surjective abstraction function.



In order to get an abstract domain on sets of sets we rely on the lifting trans-
former, obtaining the following Galois insertion

〈℘(℘(Z)),⊆〉 −−−−−→−→←−−−−−−
L(αc)

G(αc)
〈℘(C),⊆〉

At this point, to look for constant invariants at the hyperlevel, namely in the
outer abstraction, means to check whether all the collected sets of values are
constants. Hence, we need to retrieve information about what there is inside the
analysis at standard level. This is obtained by using the Galois insertion

〈℘(C),⊆〉 −−−−→−→←−−−−−
αcc

γcc 〈℘(Z) ∪ {C},⊆〉 where αcc(X) ,

{
X if X ⊆ Z
C otherwise

γcc , id

Obtaining, by composition, the insertion

〈℘(℘(Z)),⊆〉 −−−−−−−−→−→←−−−−−−−−−
αcc◦L(αc)

G(αc)◦γcc
〈℘(Z) ∪ {C},⊆〉) (2)

In this example, we have an outer abstraction that simply checks whether all
the collected sets of computations satisfy the constant property for numerical
variables, namely all the sets of computations produce constant values. We can
generalize the same idea to any inner abstraction, namely we can build an outer
abstraction checking whether all the collected sets of computations constantly
satisfy an abstract property, fixed by the inner abstraction. We call this hyper
abstract domain hyperlevel (abstract) constants of an inner abstraction.

Hyperlevel (Abstract) Constants. Consider a lattice 〈A,4,g,f,>A,⊥A〉,
forming the Galois connection (〈℘(C),⊆〉, α, γ, 〈A,4〉). The set of atoms AtmA

of A is the set of its elements covering the bottom, i.e., AtmA , {a ∈ A | ∀a′ ∈
A . a′ 4 a ⇒ (a′ = ⊥A ∨ a′ = a)}. Suppose A is partitioning7 [22, 29], which in
particular implies that AtmA induces, by means of α, a partition of C, namely
for each element c ∈ C we have that α(c) ∈ AtmA. For instance, consider the
abstract domain Pos , {∅,Z<0, {0},Z>0,Z≥0,Z≤0,Z6=0,Z}8⊆ ℘(Z). The set of
its atoms is AtmPos = {Z<0, {0},Z>0}. In order to perform hyperlevel constants
on A we consider the set of its atoms, which precisely identify the properties
of concrete values observed in A (in Pos the sign of any value). The idea is
to check whether these abstract values remain constant during computations.
For instance, we aim at checking whether all the computations starting from
inputs with the same sign, keep constant the value sign during execution. At
this point, we can define the hyperlevel (abstract) constants domain for A as
Ahc , ℘(AtmA) ∪ {A}, forming the following insertion:

〈℘(A),⊆〉 −−−−→−→←−−−−−
αhc

γhc

〈Ahc,⊆〉 where αhc(X) ,

{
X if X ⊆ AtmA

A otherwise
γhc , id

7 We recall that any abstract domain can be made partitioning [22].
8 Where Z<0 , {n ∈ Z | n < 0} and the others are similarly defined.



Then, applying the lifting transformer and composing, we have

〈℘(℘(C)),⊆〉 −−−−−→←−−−−−
L(α)

G(α)
〈℘(A),⊆〉 〈℘(℘(C)),⊆〉 −−−−−−−−→←−−−−−−−−

αhc◦L(α)

G(α)◦γhc

〈Ahc,⊆〉 (3)

For instance, if C = Z and A = Pos then Poshc , ℘({∅,Z<0, {0},Z>0}) ∪
{Pos} is the hyperdomain, abstraction of ℘(℘(Z)), for hyperlevel (abstract) Pos-
constants.

4.3 Dealing with Intervals.

Suppose now to be interested in a hyper intervals analysis. The classic abstract
domain of intervals is defined over numerical values, but the interval construction
can be easily generalized [13]. Given a complete lattice 〈C,6,∨,∧,>,⊥〉, we can
define its interval domain as:

I = {[a, b] | a ∈ C r {>}, b ∈ C r {⊥}, a 6 b} ∪ {⊥ı}

We have that 〈I,v,t,u, [⊥,>],⊥ı〉 is a complete lattice where: ∀I ∈ I .⊥ı v
I v [⊥,>] and [a, b] v [c, d] iff c 6 a and b 6 d; [a, b] t [c, d] , [a ∧ c, b ∨ d];
[a, b] u [c, d] , [a ∨ c, b ∧ d] if a ∨ c 6 b ∧ d and [a, b] u [c, d] , ⊥ı if a ∨ c 66 b ∧ d.
An instance of this pattern is the classic domain of intervals over integers, where
the initial domain is the lattice 〈Z ∪ {−∞,+∞},≤,max,min,+∞,−∞〉 [13].

The corresponding Galois connection between (the powerset of) the concrete
domain C and its intervals domain is

〈℘(C),⊆〉 −−−→←−−−
αı

γı 〈I,v〉 where αı(X) , [
∧
X,

∨
X] γı([a, b]) , {c ∈ C | a 6 c 6 b}

We can use this construction for an inner abstraction when we aim at charac-
terizing invariants of intervals of computations. In this case we use the lift L and
then we compose it with an outer abstraction determining the desired invariants.
But, we can use this construction also for an outer abstraction by defining it on
a domain A already obtained by an inner abstraction. In this case we charac-
terize interval invariants of an inner abstract domain, abstraction of ℘(A). For
instance, if the inner is Pos, then we would characterize the sign properties of
interval bounds.

5 Verifying Bounded Subset-Closed Hyperproperties

As we have seen in Sect. 2, for bounded subset-closed hyperproperties the veri-
fication process is simplified. Instead of checking the hyperproperty for the set
of all inputs I, or for all its subsets, it is sufficient to check the hyperproperty
for a set of finite subsets of I. Namely, if Hp ∈ SSCHk, we need to check the sets
in I|k , {X ⊆ I | |X| = k}. Then with a sound collecting hypersemantics JPKh
(Sect. 3), we can verify the hyperproperty just approximating JPKhI

|k.

Theorem 3. Given Hp ∈ SSCHk, we have that JPKhI
|k ⊆ Hp iff P |= Hp.



Proof. By soundness and completeness (for SSCH) of the collecting hyperseman-
tics, stated in Sec. 3, we have that {JP KX | X ∈ I|k} ⊆ JPKhI

|k. Then, recalling
that we are in a deterministic setting, we have that {JP KX | X ∈ I|k} = {X ⊆
JPKI | |X| = k}. Then, the theorem follows from the results of Sect 2. ut

Th. 3 allows us to simplify the design of hyperanalyses for bounded subset-
closed hyperproperties. It justifies also the methodology used in [4] in order
to verify information flow. In fact, despite their analysis starts from {I}, the
(abstract) semantics indeed decomposes I in all its subsets, in order to apply
approximations at the level of sets of sets. Th. 3 confirms the correctness of the
approach used in [4] and states that the “decomposition” can be made explicit,
splitting the input set from which we start the hyperanalysis.

5.1 Non-Interference

Information flows control is one of the primary motivations that has led re-
searchers to develop a theory about hyperproperties. A well-known informa-
tion flow property is Non-Interference [10, 21], introduced in Example 1. As we
have seen in the example, NI is defined over I/O traces, i.e., DEN , St × St =
(Var −→ Z) × (Var −→ Z), and a program P satisfies NI iff JPKI ∈ NI. It is
trivial to show that NI ∈ SSCH2, hence P |= NI iff ∀X ∈ I|2 . JPKX ∈ NI. In
particular, we only need to check the sets {d, d′} such that d` =L d′`. Let
I|2
L = {{d, d′} ∈ I|2 | d` =L d′`}. Suppose to have a sound collecting hyperseman-

tics JPKh ∈ ℘(℘(DEN)) −→ ℘(℘(DEN)). Then we have that P |= NI iff JPKhI
|2
L ⊆ NI.

Now we look for a hyper abstract domain allowing us to verify NI. First of all,
we abstract sets of sets of traces in sets of traces of sets, namely sets of traces of
“abstract memories” St\ , Var −→ ℘(Z)9. Hence, consider the following Galois
connection (〈℘(℘(DEN)),⊆〉, αtr, γtr, 〈℘(St\),⊆〉) with

αtr(X ) = {λx ∈ VarL . {da(x) | d ∈ X} | X ∈ X} γtr(Y) =
⋃
{X | αtr(X ) ⊆ Y}

and where VarL , {x ∈ Var | Γ (x) = L}. This abstraction keeps only the abstract
memories collecting values of the low variables, moving from sets of sets of traces
to sets of abstract memories. This means that, for all computations starting from
sets (of cardinality 2) which agree on low input variables, NI requires that the
resulting sets of values for low variables are constant. Hence, in order to verify NI

we compose this connection with the one defined in Eq. 2. Let αNI , αcc◦L(αc)◦
αtr where we abuse notation by defining ∀X ∈ ℘(St\), αcc ◦ L(αc)(X) , λx ∈
VarL . αcc ◦ L(αc)({d\(x) | d\ ∈ X}), and γNI is the corresponding concretization.
Then we have (〈℘(℘(DEN)),⊆〉, αNI, γNI, 〈Var −→ ℘(Z) ∪ {C}, ⊆̇〉)10.

Proposition 3. P |= NI iff ∀x ∈ VarL . αNI(JPKhI
|2
L )(x) 6= C.

So, we can soundly approximate NI verification by computing the approximated
hypersemantics on the hyper abstract domain ℘(Z) ∪ {C}, for all low variables.

9 Here we implicitly apply a non-relational variables abstraction.
10 Here ⊆̇ denotes the pointwise set inclusion.



5.2 Abstract Non-Interference

Abstract Non-Interference [18, 19] is a weakening of Non-Interference by abstract
interpretation. The idea is to model flows of properties of data, modeled as ab-
stractions of data. In particular, let us consider a simplified form of the notion
given in [19]. Let (〈℘(Z),⊆〉, αφ, γφ, 〈Φ,4φ〉) be an abstraction on input values,
fixing what is observable/not-observable of the input. For instance, in the stan-
dard case of Non-Interference it is the abstraction observing > (nothing) of H
variables, and the identity of L variables. But it possible to weaken the policy
by observing other properties of input variables, where the input property fixed
for H variables represents the information we allow to flow, while the property
of L ones represents a weakening of what an observer may observe of low inputs.
Consider also an output abstraction (〈℘(Z),⊆〉, αϑ, γϑ, 〈Θ,4ϑ〉), which repre-
sents what can be observed in output, in the standard case the identity on L
variables and >, i.e., nothing, on H variables. Also in this case, the framework
allows us to weaken the policy by fixing a more abstract observable property of
L variables. Formally, Abstract Non-Interference is:

ANI = {X ∈ ℘(DEN) | ∀d, d′ ∈ X . (αφ(d`) = αφ(d′`)⇒ αϑ(da) = αϑ(d′a))}

As it happens for Non-Interference, we only need to check ANI for the sets {d, d′}
such that αφ(d`) = αφ(d′`). Let I|2

φ , {{d, d′} ∈ I|2 | αφ(d`) = αφ(d′`)},
then we have that P |= ANI iff JPKhI

|2
φ ⊆ ANI. Consider the Galois insertion

of Eq. 3 instantiated on A = Θ and C = Z, and consider the abstraction
αtr defined before for NI. Let us define then αANI = αhc ◦ L(αϑ) ◦ αtr. As be-
fore, we abuse notation by defining ∀X ∈ ℘(St\), αhc ◦ L(αϑ)(X) , λx ∈
VarL . αhc ◦ L(αϑ)({d\(x) | d\ ∈ X}), and γANI the corresponding concretization.
By composition, we have (〈℘(℘(DEN)) ⊆〉, αANI, γANI, 〈Θhc, ⊆̇〉).

Proposition 4. P |= ANI iff ∀x ∈ VarL . αANI(JPKhI
|2
φ )(x) 6= Θ.

Hence, we can soundly approximate the verification of ANI by computing the ap-
proximated hyper semantics on the hyper domainΘhc of abstract stores, checking
whether all the computations have constant values in Θ for all the low variables.

6 Related Works

The topic of hyperproperties verification is relatively new. In [9], the authors
state that it is possible to reduce the verification of a k-hypersafety on a system
S to the verification of a safety property on the self-composed system Sk. The
self-composition can be sequential, parallel or in an interleaving manner and a
lot of works applied this methodology [6, 31, 27, 30]. All these approaches only
deal with hypersafety, but we believe that self-composition methods could be
extended to the more general bounded subset-closed hyperproperties, in order
to verify also non-safety hyperproperties. A very recent work ([3]) proposes a
new methodology for proving the absence of timing channels. This work is based
on the idea of “decomposition instead of self-composition” [3]. The authors claim



that self-composition is computationally to expensive to be used in practice, so
they propose a different approach. The idea is to partition the program semantics
and to analyze each partition with standard methods. All previous approaches
are proven to be sound and complete for k-hypersafety, but our methodology is
sound and complete for the more general subset-closed hyperproperties.

Besides the reduction to safety, in [1] the authors introduce a runtime refu-
tation methods for k-safety, based on a three-valued logic. Similarly, [8, 15] de-
fine hyperlogics (HyperLTL and HyperCTL/CTL∗), i.e., extensions of temporal
logic able to quantify over multiple traces. Some algorithms for model-checking in
these extended temporal logics exist, but only for particular decidable fragments,
since the model-checking problem for these logics is, in general, undecidable.

The use of abstract interpretation in hyperproperties verification is limited to
[4, 25, 32]. In [4], the authors deal with information flow specifications and they
focus on the definition of the abstract domains over sets of sets needed for the
analysis. They proposed an hyper collecting semantics computed denotationally
on the code of the program to analyze. We already highlighted (Sect. 4.1 and
Sect. 5) the links between the present work and [4]. Our approach is a gener-
alization of the methodologies of [4], since their hypercollecting semantics is an
instance of our semantics lift and the abstract domains they use follow our in-
ner/outer abstractions pattern. In [25] we extend the hierarchy of semantics of
a transition system [11], in order to cope with hyperproperties verification. Fur-
thermore, we introduce the notion of subset-closed hyperproperties. Our present
work follows this latter, but it is focused on how it is possible to construct a
collecting hypersemantic, for computer programs, lifting a given collecting se-
mantics (Sect. 3). Furthermore, our work aims at the verification of particular
subset-closed hyperproperties. Finally, in [32] the authors use abstract interpre-
tation in order to define an ad-hoc semantics at the level of sets of sets suitable
for the verification of a particular hyperproperty called “data input usage”. This
latter is not subset-closed, hence it is beyond the scope of the present work.
Furthermore, their goal is not to give a general methodology for defining new
verification methods for hyperproperties, as we do for subset-closed hyperprop-
erties. Indeed, despite the interesting approach, their work can be applied only
to the particular hyperproperty they introduced.

7 Conclusion and Future Works

In this work, we made another little step into the understanding of hyperproper-
ties. In particular, we reasoned about particular subset-closed hyperproperties,
which are more suitable for verification. Subset-closed hyperproperties are those
allowing to disprove program hyperproperties by finding a subset of its semantics
which do not satisfy the hyperproperty. If we can limit the cardinality of these
refuting witnesses we obtain the bounded subset-closed hyperproperties. These
latter generalize k-hypersafety and some hyperliveness, so they capture a lot of
interesting systems specifications. In this work, we described how it is possible to
leverage the standard abstract interpretation based static analysis framework in



order to verify bounded subset-closed hyperproperties. In particular, we showed
how to lift a collecting semantics to sets of sets and how to build hyper abstract
domains. Putting all the ingredients together, we specified the general recipe for
defining an hyperanalysis (i.e., a static analysis at the level of sets of sets) for
bounded subset-closed hyperproperties. It is clear that, such an analysis would
be useful, not only for checking (abstract) non-interference in its different forms
(e.g., declassified) [19, 5, 23], but also in other contexts related to information
flow such as abstract slicing [24, 26] or injection vulnerability analysis [7].

As future works, we want to investigate whether it is possible to compute a
collecting hypersemantics reducing as much as possible the spurious information
added by lifting semantics at the hyperlevel. We already observed that this is
not a problem for SSCH hyperproperties, we wonder whether we can improve
the proposed framework by enriching the information represented by states, in
order to reduce the noise added by collecting at the hyperlevel. Moreover, we
want to deepen the link between hyperproperties and the problem of analyzing
analyzers, aiming at systematically analyzing static analyses [16]. In particular,
we believe that the hyperdomains, introduced in Sect. 4, can be used not only
for hyperproperties verification but also for this latter purpose.
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