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ABSTRACT

In recommender systems, human preferences are identified by a number of individual components with
complicated interactions and properties. Recently, the dynamicity of preferences has been the focus of
several studies. The changes in user preferences can originate from substantial reasons, like personal-
ity shift, or transient and circumstantial ones, like seasonal changes in item popularities. Disregarding
these temporal drifts in modelling user preferences can result in unhelpful recommendations. Moreover,
different temporal patterns can be associated with various preference domains, and preference compo-
nents and their combinations. These components comprise preferences over features, preferences over
feature values, conditional dependencies between features, socially-influenced preferences, and bias. For
example, in the movies domain, the user can change his rating behaviour (bias shift), her preference for
genre over language (feature preference shift), or start favouring drama over comedy (feature value pref-
erence shift). In this paper, we first propose a novel latent factor model to capture the domain-dependent
component-specific temporal patterns in preferences. The component-based approach followed in mod-
elling the aspects of preferences and their temporal effects enables us to arbitrarily switch components on
and off. We evaluate the proposed method on three popular recommendation datasets and show that it
significantly outperforms the most accurate state-of-the-art static models. The experiments also demon-
strate the greater robustness and stability of the proposed dynamic model in comparison with the most
successful models to date. We also analyse the temporal behaviour of different preference components
and their combinations and show that the dynamic behaviour of preference components is highly de-
pendent on the preference dataset and domain. Therefore, the results also highlight the importance of
modelling temporal effects but also underline the advantages of a component-based architecture that is
better suited to capture domain-specific balances in the contributions of the aspects.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

ences of a user are predicted by collecting rating information from
other similar users or items (Ma, Yang, Lyu, & King, 2008). Many

Recommender systems suggest items (movies, books, music,
news, services, etc.) that appear most likely to interest a particular
user. Matching users with the most desirable items helps enhance
user satisfaction and loyalty. Therefore, many e-commerce leaders
such as Amazon and Netflix have made recommender systems a
salient part of their services (Koren, Bell, & Volinsky, 2009). Cur-
rently, most recommendation techniques leverage user-provided
feedback data to infer user preferences (Chen, Chen, & Wang,
2015). Typically, recommender systems are based on collaborative
filtering (CF) (Aldrich, 2011; Koren & Bell, 2011), where the prefer-
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recent studies have contributed extensions to the basic Probabilis-
tic Matrix Factorisation (PMF) by incorporating additional infor-
mation. Despite their popularity and good accuracy, recommender
systems based on latent factor models encounter some important
problems in practical applications (Zafari & Moser, 2016). In these
models, it is assumed that all values for item features are equally
preferred by all users.

Another major problem with latent factor models based on ma-
trix factorisation is that they do not usually take conditional pref-
erences into consideration (Liu, Wu, Feng, & Liu, 2015). Further-
more, in general, latent factor models do not consider the effect
of social relationships on user preferences, which encompasses
peer selection (homophily) and social influence (Lewis, Gonzalez, &
Kaufman, 2012; Zafarani, Abbasi, & Liu, 2014). In previous work, we
addressed the problem of modelling the socially-influenced con-
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ditional feature value preferences, and proposed CondTrustFVSVD
(Zafari & Moser, 2017).

Since data usually changes over time, the models should con-
tinuously update to reflect the present state of data (Koren, 2010).
A major problem with the most of the recent recommender sys-
tems is that they mostly ignore the drifting nature of preferences
(Zafari & Moser, 2017). Modelling the time drifting data is a central
problem in data mining. Drifting preferences can be considered a
particular type of concept drift, which has received much attention
from researchers in recent years (Widmer & Kubat, 1996). However,
very few recommendation models have considered the drifting na-
ture of preferences (Chatzis, 2014). Changes in user preferences can
originate from substantial reasons, or transient and circumstantial
ones. For example, the items can undergo seasonal changes or some
items may experience periodic changes, for instance, become popu-
lar in the specific holidays.

Apart from the short-term changes, user preferences are also
subject to long term drifts. For example, a user may be a fan of
romantic or action movies at a younger age, while his/her pref-
erence may shift more towards drama movies as gets older. Also,
users may change their rating scale over time. For example, a user
may be very strict and give 3 out of 5 for the best movie. How-
ever, he/she might become less strict with age and be more willing
to elect the full rate when fully satisfied. A similar situation may
apply for movies. A movie may receive a generally high/low rate
at some time period, and lower/higher rates at some other period
(Koren, 2010). Therefore, a preference model should be able to dis-
tinguish between different types of preference drifting, and model
them individually in order to achieve the highest accuracy.

In recommender systems research, six major aspects to the
preferences have been identified. These aspects include feature
preferences (Salakhutdinov & Mnih, 2011; Zafari, Nassiri-Mofakham,
& Hamadani, 2015), feature value preferences (Zafari & Nassiri-
Mofakham, 2016; 2017; Zhang et al., 2014), socially-influenced pref-
erences (Jamali & Ester, 2010; Ma et al., 2008; Ma, Zhou, Liu, Lyu, &
King, 2011; Zafari & Moser, 2017; Zhao, Wang, Chen, & Cao, 2015),
temporal dynamics (Koren, 2010), conditional preferences (Liu et al.,
2015), and user and item biases (Koren & Bell, 2011). Feature value
preferences refer to the relative favourability of each one of the
item feature values, social influence describes the influence of so-
cial relationships on the preferences of a user, temporal dynamics
means the drift of the preferences over time, conditional prefer-
ences refer to the dependencies between item features and their
values, and user and item biases pertain to the systematic tenden-
cies for some users to give higher ratings than others, and for some
items to receive higher ratings than others (Koren & Bell, 2011).
Modelling the temporal properties of these preference aspects is
the central theme of this paper.

In this paper, we extend our previous work (Zafari &
Moser, 2017), by considering the drifting nature of preferences and
their constituting aspects. We assume that the socially-influenced
preferences over features and conditional preferences over feature
values, as well as user and item rating scales can be subject to
temporal drift. Therefore, the two major research questions ad-
dressed in this paper are:

« How can we efficiently model the drifting behaviour prefer-
ences, and how much improvement would incorporating such
information make?

» Which aspects are more subject temporal changes, and how is
this related to the domain on which the model is trained?

The current work proposes a novel latent factor model based
on matrix factorisation to address these two questions. This pa-
per has two major contributions for the field. In this paper, we
make further improvements on the accuracy of, CondTrustFVSVD, a
model that we proposed earlier. CondTrustFVSVD proved to be the

most accurate model among a large set of state of the art mod-
els. The additional improvements were achieved by incorporating
the temporal dynamics of preference aspects. We also draw conclu-
sions about the dynamicity of preference aspects, by analysing the
temporal aspects of the these aspects using a component-based
approach, and show which aspects are more subject to drift over
time. This research provides useful insights into the accurate mod-
elling of preferences and their temporal properties, and helps pave
the way for boosting the performance of recommender systems.
The findings suggest that the temporal aspects of user preferences
can vary from one domain to another. Therefore, modelling domain-
dependent temporal effects of preference aspects are critical in im-
proving the quality of recommendations.

The rest of the paper is organised as follows: The related work
is introduced in Section 2. In Section 3.1, we first briefly intro-
duce probabilistic matrix factorisation, and CondTrustFVSVD. Then
in Section 3.2 we introduce Aspect-MF to overcome the challenge
of learning drifting conditional socially-influenced preferences over
feature values. In Section 4, we first explain the experimental
setup, and then report on the results of Aspect-MF using two pop-
ular recommendation datasets. Finally we conclude the paper in
Section 5, by summarising the main findings and giving the future
directions of this work.

2. Related work

Collaborative Filtering models are broadly classified into
memory-based and model-based approaches. Memory- or
instance-based learning methods predict the user preferences
based on the preferences of other users or the similarity of the
items. Item-based approaches in memory-based CF (D’Addio &
Manzato, 2015) calculate the similarity between the items, and
recommend the items similar to the items that the user has liked
in the past. User-based approaches recommend items that have
been liked by similar users (Ma et al., 2008). The time-dependent
collaborative filtering models are also classified into the memory-
based time-aware recommenders and model-based time-aware
recommenders (Xiang & Yang, 2009).

2.1. Model-based time-aware recommenders

The models in this category usually fall into four classes: (1)
models based on Probabilistic Matrix Factorisation, (2) models
based on Bayesian Probabilistic Matrix Factorisation, and (3) mod-
els based on Probabilistic Tensor Factorisation, and (4) models
based on Bayesian Probabilistic Tensor Factorisation.

2.1.1. Models based on probabilistic matrix factorisation

Modelling the drifting preferences using a model-based ap-
proach based on PMF has first been considered by Koren (2010) in
TimeSVD++. TimeSVD++ builds on the previous model called SVD++
(Koren et al., 2009), in which the user preferences are modelled
through a latent factor model that incorporates the user bias,
item bias, and also the implicit feedback given by the users. For
each one of these preference aspects, Koren (2010) used a time-
dependent factor to capture both transient and long-term shifts.
They showed TrustSVD++ achieves significant improvements over
SVD++ on a daily granularity (Xiang & Yang, 2009).

In TrustFVSVD (Zafari & Moser, 2017), we extended TrustSVD by
adding the preferences over feature values and the conditional de-
pendencies between the features. We did this by adding additional
matrices that captured the feature value discrepancies, where the
values of these matrices were related to the values of the social
influence matrix. In TrustFVSVD, the explicit influence of the social
relationships on each one of the aspects of preferences were cap-
tured. Through comprehensive experiments on three benchmark
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datasets, we showed that TrustFVSVD significantly outperformed
TrustSVD and a large set of state of the art models. However, sim-
ilar to most of the state of the art models, in TrustFVSVD, we as-
sumed that the preferences are static.

Another model-based time-aware recommendation model was
proposed by Koenigstein, Dror, and Koren (2011). In this model,
the authors use session factors to model specific user behaviour
in music learning sessions. Unlike TimeSVD++ which is domain-
independent, was developed especially for the music domain. First,
it enhances the bias values in SVD++, by letting the item biases
share components for items linked by the taxonomy. For example,
the tracks in a good album may all be rated higher than the aver-
age, or a popular artist may receive higher ratings than the aver-
age for items. Therefore, shared bias parameters are added to dif-
ferent items with a common ancestor in the taxonomy hierarchy
of the items. Similarly, the users may also tend to rate artists or
genres higher than songs. Therefore, the user bias is also enhanced
by adding the type of the items. It is also assumed that unlike in
the movies domain, in music it is common for the users to listen
to many songs, and rate them consecutively. Such ratings might
be rated similarly due to many psychological phenomena. The ad-
vantage of the models proposed by Koenigstein et al. (2011) and
Koren (2010) that extend SVD++ is that they enable the captur-
ing of dynamicity of the preference aspects with a high granular-
ity for aspects that are assumed to be more subject to temporal
drift. Furthermore, as shown by Koenigstein et al. (2011), domain-
dependent temporal aspects of the preferences and their individual
aspects can also be taken into consideration.

Jahrer, Toscher, and Legenstein (2010) split the rating matrix
into several matrices, called bins, based on their time stamps. For
each bin, a separate time-unaware model is trained by produc-
ing an estimated rating value that is obtained using the ratings of
given for that bin. Each one of the bins is assigned a weight value,
and the final rating is obtained by combining the ratings that are
obtained through the models trained on each bin. Therefore, using
this approach, they combine multiple time-unaware models into a
single time-aware model. The disadvantage of this model is that
the ratings matrix is usually sparse as it is, and it even becomes
sparser, when the ratings are split into bins.

A similar approach is followed in the model proposed by
Liu and Aberer (2013). They systematically integrated contextual
information and social network information into a matrix factor-
ization model to improve the recommendations. To overcome the
sparsity problem of training separate models based on their time-
stamps, they applied a random decision trees algorithm, and cre-
ate a hierarchy of the time-stamps. For example, the ratings can
be split based on year in the first level, month in the second level,
day in the third level, and so on. They argue that the ratings that
are given at similar time intervals are better correlated with each
other, and therefore such clustering is justified. They also added
the influence of the social friends to the model, using a context-
aware similarity function. In this function users who give similar
ratings to those of their friends in similar contexts get higher sim-
ilarity values. Consequently, in this model, the role of time on the
social influence is also indirectly taken into consideration.

Baltrunas, Ludwig, and Ricci (2011) argued that methods based
on tensor factorisation can improve the accuracy when the
datasets are large. Tensor factorisation requires the addition of a
large number of model parameters that must be learned. When the
datasets are small, simpler models with fewer parameters can per-
form equally well or better. In their method, a matrix is added to
capture the influence of contextual factors (e.g. time) on the user
preferences by modelling the interaction of contextual conditions
with the items. Although the model is quite simple and fast, it
does not include the effect of time on individual preference as-
pect. Unlike the models proposed by Koenigstein et al. (2011) and

Koren (2010), it can not capture fine-grained and domain-specific
dynamicities.

Another recent model in this category is proposed by
Rafailidis (2018). He proposes a multi-latent transition model,
in which the items’ meta-data are used to better capture the
transitions of user preferences over an ongoing period of time.
Guo, Zhang, and Yorke-Smith (2013) also propose a time-aware
model based on matrix factorisation called PCCF to capture peri-
odic and continual temporal effects. Then they show the effective-
ness of capturing both effects on three benchmark datasets, and
superiority of this model over some state of the art models.

2.1.2. Models based on Bayesian probabilistic matrix factorisation

BPMF extends the basic matrix factorisation (Salakhutdinov &
Mnih, 2008) by assuming Gaussian—-Wishart priors on the user and
item regularisation parameters and letting the hyper-parameters
be trained along with the model parameters. Dynamic BPMF
(dBPMF) is a non-parametric Bayesian dynamic relational data
modelling approach based on the Bayesian probabilistic matrix
(Luo & Cai, 2016). This model imposes a dynamic hierarchical
Dirichlet process (dHDP) prior over the space of probabilistic ma-
trix factorisation models to capture the time-evolving statistical
properties of modelled sequential relational datasets. The dHDP
was developed to model the time-evolving statistical properties of
sequential datasets, by linking the statistical properties of data col-
lected at consecutive time points via a random parameter that con-
trols their probabilistic similarity.

2.1.3. Models based on probabilistic tensor factorisation

In tensor factorisation methods, the context variables are mod-
elled in the same way as the users and items are modelled in
matrix factorisation techniques, by considering the interaction be-
tween users-items-context. In tensor factorisation methods, the
three dimensional user-item-context ratings are factorised into
three matrices, a user-specific matrix, an item-specific matrix, and
a context-specific matrix. A model in this category is proposed
by Karatzoglou, Amatriain, Baltrunas, and Oliver (2010), who used
Tensor Factorisation with CP-decomposition, and proposed multi-
verse recommendation, which combines the data pertaining to
different contexts into a unified model. Therefore, similar to the
model proposed by Baltrunas et al. (2011), other contextual infor-
mation besides time (e.g. user mode, companionship) can also be
taken into consideration. However, unlike Baltrunas et al. (2011),
they factorise the rating tensor into four matrices, a user-specific
matriX, an item-specific matrix, a context-specific matrix, and a
central tensor, which captures the interactions between each user,
item, and context value. Then the original ratings tensor, which in-
cludes the ratings given by users to items in different contexts (e.g.
different times) can be reconstructed by combining the four ma-
trices back into the ratings tensor. Other models in this category
are the models proposed by Li, Li, Jin, Xue, and Zhu (2011) and
Pan, Ma, Pang, and Yuan (2013).

2.1.4. Models based on Bayesian probabilistic tensor factorisation
There is a class of dynamic models that are based on Bayesian
Probabilistic Tensor Factorisation (BPTF) (Xiong, Chen, Huang,
Schneider, & Carbonell, 2010). BPTF generalises BPMF by adding
tensors to the matrix factorisation process. A tensor extends the
two dimensions of the matrix factorisation model to three or
more dimensions. Therefore, besides capturing the user-specific
and item-specific latent matrices, this model also trains a time-
specific latent matrix, which captures the latent feature values in
different time periods. The models based on tensor factorisation
are similar in introduction of the time-specific matrices into the
factorisation process. However, they are different in the way they
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Table 1
Summary of key notations and symbols used through the paper.

Symbol Definition

N number of users

M number of items

D number of latent factors

u, v indexes to denote users u and v

ij indexes to denote items i and j

£ f indexes to denote latent features f and f’

tyj the time at which user u rated item j

Py(t) dynamic preference of user u over latent feature f

Qi value of feature f for item j

Wi(t) dynamic gradient value to capture the preference of user u over
value of feature f

Zyf(t) dynamic intercept value to capture the preference of user u over
value of feature f

Yir implicit feedback of the users regarding latent feature f of item j

Yip feature-specific dependency matrix entry, to capture conditional
preferences

Tuv trust value between user u and user v

T, estimated influence of user u on user v's preferences over features

Sty Gy estimated influence of user u on user v’s preferences over feature
values

| Tyl number of users user u trusts

|T,F| number of users trusted by user v

Iy the vector of ratings given by user u

|l number of ratings given by user u

|Ui| number of ratings given to item i

w the social influence of user u on the other users according to the
latent factor model

nw the average ratings given by all users to all items

buy(t) user u's dynamic rating bias

bij(t) item j's dynamic rating bias

R, the real rating value given by user u on item j

R;].(t) the predicted rating value given by user u on item j at time t

factorise the ratings matrix into the user, item, and time matri-
ces, and also the way they train the factorised matrices. Similar to
BPMF, BPTF uses Markov Chain Monte Carlo with Gibbs sampling
to train the factorised matrices.

2.2. Memory-based time-aware recommenders

Some simple time-dependent collaborative filtering models
have been proposed by Lee, Park, and Park (2008). The models
use item-based and user-based collaborative filtering, and exploit
a pseudo-rating matrix, instead of the real rating matrix. In the
pseudo-rating matrix the entries are obtained using a rating func-
tion, which is defined as the rating value when an item with
launch time I; was purchased at time p;. This function was in-
spired by two observations, that more recent purchases better re-
flected a user’s current preferences, and also recently launched
items appealed more to the users. If the users are more sensitive
to the item’s launch time, the function gives more weight to new
items, and if the user’s purchase time is more important in esti-
mating their current preference, the function assigns more weight
to recent purchases. After obtaining the pseudo-rating matrix, the
neighbours are obtained as in the traditional item-based or user-
based approaches, and the items are recommended to the users.
These models are less related to the proposed model in this paper,
so we are not going to review them further.

3. Modelling time-aware preference aspects in CondTrustFVSVD

In this section, we explain how to integrate the time-awareness
on different aspects of preferences into CondTrustFVSVD (Zafari &
Moser, 2017). The main notations used throughout this paper are
summarized in Table 1.

3.1. Brief introduction of PMF and CondTrustFVSVD

In rating-based recommender systems, the observed ratings are
represented by the user-item ratings matrix R, in which the ele-
ment R,; is the rating given by the user u to the item j. Usually, Ry,
is a 5-point integer, 1 point means very bad, and 5 points means
excellent. Let P ¢ RN*D and Q € RM*D be latent user and item fea-
ture matrices, with vectors P, and Q; representing user-specific and
item-specific latent feature vectors respectively (N is the number
of users, M is the number of items, and D is the number of item
features). In PMF, R,; is estimated by the inner product of the la-
tent user feature vector P, and latent item feature vector Q;, that
is Ryj = Q]

PMF maximises the log-posterior over the user and item latent
feature matrices with rating matrix and fixed parameters given by
Eq. (1).

Inp(P,Q|R, 0, 0p,00) = Inp(R|P,Q,0) +Inp(P|op)

+ Inp(Qlog) +C (1)
where C is a constant that is not dependent on P and Q. op, 0y,
and o are standard deviations of matrix entries in P, Q, and R re-

spectively. Maximising the log-posterior probability in Eq. (1) is
equivalent to minimising the error function in Eq. (2).

. 1N M . ,
argmingy |E= izzluj(Ruj_Ruj) +72||Pu||mb
u=1 j=1 u=1
W M
+ 5 211l (2)
=1

. 2
where ||.||rop denotes the Frobenius norm, and Ap = %5 and Ag =
%

Z—; (regularisation parameters). Stochastic Gradient Descent and Al-
Q

ternating Least Squares are usually employed to solve the optimisa-
tion problem in Eq. (2). Using these methods, the accuracy of the
method measured on the training set is improved iteratively.

As mentioned in the introduction section, the disadvantage of
traditional matrix factorisation methods is that the discrepancies
between users in preferring item feature values and conditional
dependencies between features are disregarded. CondTrustFVSVD
(Zafari & Moser, 2017) addresses these problems by adding matri-
ces W and Z to learn the preferences over item feature values. Sup-
pose that a social network is represented by a graph G = (V,E),
where V includes a set of users (nodes) and E represents the trust
relationships among the users (edges). We denote the adjacency
matrix by T € RV*N| where Ty, shows the degree to which user u
trusts user v. Accordingly, |T,| denotes the number of users user u
trusts, and |T,| is the number of users trusted by user v. Through-
out this paper, we use the indices u and v for the users and in-
dices i and j for items, and indices f and f for item features. In
CondTrustFVSVD, all aspects of preferences are assumed to be sub-
ject to change by social interactions, and therefore the explicit in-
fluence of social relationships on each of the aspects of the prefer-
ences are modelled. In this method, we assume that the user pref-
erences over an item feature can be formulated with a linear func-
tion. In this function, matrix W is used to capture the "gradient”
values and matrix Z is used to learn the "intercept” values. These
matrices have the same dimensions as the user matrix P. According
to this figure, the probabilities of the matrices P, Q, W, Z, w, y and
vectors bu and bi are dependent on the hyper-parameters op, o,
Ow, 0z Ow, Oy, Opy and o, respectively. Likewise, the probability
of obtaining the ratings in matrix R is conditional upon the matri-
ces P, Q W, Z w, y and vectors bu and bi. CondTrustFVSVD finds
the solution for the optimisation problem formulated by Eq. (3).
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argminp g w z.w.y,bu,bi

Z Z Ly | Ty — Zpufa)vf
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P D 2 N M A
+ %Z T — Y Zus@ys ZZ —Ryj)?
u=1VveT, f=1 u=1 j=1

A A
2|1u|-%+2T|ru|-%)||z>u||mb+ 205 10yl

j=1

L (g
+ 2 2|1u|—+|Tu|—>||zu||m,J

r o

Uil lyillF g + = 5 YT 2 ol g

)"bl Y b2 2
RN

f:1 =1

+ =2 Z|Iu|"bu + 2 Z|U|"bl + =

whereAW_ =% =% Ay_ a?

25)‘b1— >
b bl

Ay = (T;‘ uw denotes the global average of the observed ratings, and

2* )‘bu—

bu; and bi; denote biases for user i and item j respectively. I is
the set of items rated by user u and U; is the set of users who

have rated item j. The values of I?uj in Eq. (3) are obtained using
Eq. (4).

D
iéuj- +buu+le+Z(Puf+|Iu Zylf
f=1 Viel,
+ |Tu Z a)‘l}f)(WLlfij +Zuf) (4)

YveTy

According to the Eq. (4), the user u’s preference value over
an item j is defined using different aspects. These aspects are
user bias, item bias, the socially-influenced preferences over fea-
tures, and the socially-influenced preferences over feature val-
ues. Therefore, preferences are defined using different aspects that
interact with each other by influencing the values of one another.

3.2. Time-aware CondTrustFVSVD (Aspect-MF)

In the following sections, we first provide a high-level view of
Aspect-MF by explaining the interactions between aspects that are
captured by the model, and then elaborating how the aspects are
trained from the users’ ratings and social relationships.

3.2.1. Aspect interactions and high-level view of the model

To address the problem of capturing drifting socially-influenced
conditional preferences over feature values, we extend the method
CondTrustFVSVD, by adding the dynamicity of each one of the
preference aspects that are assumed to be subject to concept drift.
The method proposed here is abbreviated to Aspect-MF. A high-
level overview of the preference aspects in Aspect-MF are pre-
sented in Fig. 1. This figure shows how the preference aspects’ ef-
fects on each other are captured in Aspect-MF. For example, the so-
cial aspect influences feature preferences and feature value prefer-
ences, while conditional dependencies exist between feature value

Social
"l Influence
A l
Feature | Feature Value | | Conditional
Preferences Preferences Dependencies
K K
———tmim = = v
. I .
User Biases |« i » Time

|

|
Item Biases <|—

|

|

Fig. 1. The preference aspects and their interplay in Aspect-MF.

preferences. Time aspect also causes changes in feature value pref-
erences and user and item biases. There is also interplay between
feature preference and feature value preference aspects.

In Fig. 2b, FP represents preferences over features, which is cap-
tured by matrix P in the basic matrix factorisation. F represents
item features captured by matrix Q in the basic matrix factorisa-
tion. CP represents conditional dependencies, FVP represents pref-
erences over feature values, SI stands for social influence, and fi-
nally T is an abbreviation for time. Aspect-MF incorporates addi-
tional matrices and vectors into matrix factorisation to capture as
many aspects present in the data as possible. As Fig. 2 shows, the
model starts by loading the time-stamped user ratings as well as
the social network data into the memory. The main loop accounts
for the learning iterations over the model. The first loop within the
main loop iterates over the time-stamped user-item ratings ma-
trix, while the second loop iterates over the social network adja-
cency matrix, to train the socially influenced parts of the model. In
each loop, one entry of the input matrix is read and used to up-
date the matrices/vectors related to that input data. As can be seen,
the user and item bias values are only updated in loop 1, since
they are only related to the user-item ratings. Both user-item rat-
ings and users’ social relationships include information about the
users’ preferences over features. Therefore, the new values for FP
are calculated in both loops and updated in the main loop, when
all new values have been calculated. Similarly, the values for SI
and FVP depend on both user-item ratings and social relationships.
Consequently, their new values are calculated inside both loops 1
and 2, and are updated in the main loop. In contrast, the values
of F as well as CP only need the user-item ratings to be updated.
Therefore, they are immediately updated inside loop 1. The time
aspect includes parameters that account for the dynamics of user
and item biases, feature value preferences, and preferences over
features. Since bias values do not depend on the user-item ratings
matrix, they are updated immediately in loop 1. However, the new
values for the dynamics of feature value preferences, and prefer-
ences over features are updated in the main loop. In Aspect-MF,
every one of the preference aspects can be arbitrarily switched off
and on by setting their respective learning rates and regularisation
parameters (hyper-parameters) to zero or a non-zero value respec-
tively.

Although social relationships are likely to be time-dependent,
most datasets do not contain this information. Conditional prefer-
ences are related to the feature value preferences, since they model
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Fig. 2. (a) The high-level representation of Aspect-MF and (b) its flow chart.

the dependencies between the features and their values, and there-
fore, are applied to the matrices that account for the users’ pref-
erences over feature values. Social influence is applied to the as-
pects of preferences over features and preferences over feature val-
ues. However, applying social influence to the user and item bi-
ases showed no observable benefits and user or item biases do not
seem to be influenced by social interactions. Therefore, we con-
cluded that user and item biases are not much influenced by the
social interactions (Zafari & Moser, 2017). Therefore, in the most
abstract view of the model as depicted in the high-level repre-
sentation in Fig. 2a, the model is comprised of four main mod-
ules. Initialising the model parameters (Model Initialiser), learning
the intrinsic constituting aspects of preferences (i.e. preferences
over features, preferences over feature values, conditional depen-
dencies, and user and item bias values) and the drifting proper-
ties of preferences (Intrinsic Trainer), learning the social influence
of the friends over the drifting intrinsic preference aspects (So-
cial Trainer), and finally updating the model to reflect the new in-
formation extracted from the data about user ratings, time, and
social connections (Model Updater). These modules will be dis-
cussed in more details later, when we introduce the algorithm in
Section 3.2.4.

3.2.2. Aspect-MF model formulation

In this section, we provide the mathematical formulation of
the preferences captured in Aspect-MF. Basically, in Aspect-MF,
the user preferences are modelled as a Bayesian Network (Korb &
Nicholson, 2010). Fig. 3 shows the topology or the structure of
the Bayesian Network for user preferences that are modelled by
Aspect-MF.

As mentioned earlier, Aspect-MF extends CondTrustFVSVD, by
adding the time factor to the aspects of preferences as depicted
in Fig 1. In CondTrustFVSVD, the user preferences were captured
using the matrices P, Q, W, Z Y, w, y, with the hyper-parameters
Op,0Q Ow, Oz 0w, Oy, Oy, Opy and op;.

In Aspect-MF, the drifting social influence of friends in the
user’s social network are captured through Eq. (5) to (7).

TLEU = \Ilﬂ Zetujelﬁ 2?11 Puf(tuj)a)uf (5)

& _ 1 D D

Suu IR thﬂjEIltl Zf:] (1 - Wuf(tuj))a)yf (6)

Gt — LZD ZD Zor(tu))w -
uv ] &Vtyely, 2o f=1“uf\tuj)®Lvf

where Tf,, St . G, model the time-dependent influence of user
v on the preferences of user u for the preferences over features
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Fig. 3. Bayesian network of Aspect-MF.

(captured by P,qt)) and preferences over feature values (captured
by W,(t) and Z,ft)), and similar to CondTrustFVSVD, w,; captures
the implicit influence of user v on other users over factor f and is
obtained using the matrix factorisation process. As can be seen
in Fig. 1, the user preferences over features and feature values in
Aspect-MF are subject to social influence, and they also drift over
time. In Egs. (5) to (7), I, is the set of timestamps for all the ratings
given by user u. Therefore, using these equations, the influence of
the user v on the preferences of user u is calculated for all the
time points, and then it is averaged. Intuitively, these equations are
telling us that the trust of user u in user v can be estimated by cal-
culating the average of the weighted averages of user v’s influence
on user u’s preferences for different features, in different times. In-
tuitively, if user u strongly trusts user v, his preferences would be
more strongly influenced by user v. Furthermore, depending on the
trust strength of user u in user v and the influence he gets from
user v and its direction (positive or negative), the user’s preference
can be positively or negatively affected. Therefore in Aspect-MF,
the user preferences are subject to social influence, and the social
influence depends on the strength of their trust in the friends. Ac-
cording to these equations, if there is no relationship between user
u and user v, user u’s preferences will not be directly affected by
the social influence of user v.

In Aspect-MF, the drifting preference value of the user u over
an item j at time t is obtained according to Eq. (8).

Ruj(tuj)

D
= o+ buy (tyj) + bij(typ) + > (Pup (b)) + Ll "2 > yig

—1 Viel,
+ || 2 > @yp) Wi () Qi + Zug (tf))
VveT,
D /D
+ Z (Z(Wuf(tuj)ij+Zuf(tuj))Yff/>(Wuf(tuj)ij/ +Zy(te))  (8)

f=1 \f=1

According to Eq. (8), in Aspect-MF, different aspects of prefer-
ences as well as user and item biases are subject to temporal drift.
As can be seen in Eqgs. (5)—(8), the user bias, item bias, preferences
over features captured by the matrix P, and preferences over fea-
ture values captured by the matrices W and Z are subject to tem-
poral drift. In order to model the drifting properties of these as-
pects, we use Eqs. (9)-(13).

buy (ty;) = buy + aydevy (ty) + butys, (9)
bi;(tyj) = (bij + bijpinc,;)) (Cu + Ctur,;) (10)
Pys(tyj) =Puf+a,‘jdevu(tuj)+Ptuftui (11)
Zy5 (tuj) = Zyg + afidevy (tyj) + Ztyg, (12)
Wys (tyj) = Wyg + o devy (ty) + Weyg,, (13)

where Py, Wy, and Zs capture the static preferences of the user
u, while the variables Puf[uj’ W, faj? Z, ft,; capture the day-specific
variations in the user preferences (e.g. due to the mood of the
users in a particular day), and «f, o, and aZ model the users’
long term preference shifts, and devy(t,;) is obtained according to
Eq. (14) (Koren, 2010).

dev, (t,;) = Sign(tu,,j - tu)~|tuj - tulﬂ (14)

where t; is the mean of the dates for the ratings given by the user
u, and B is a constant value. In Eq. (10), all the dates are placed
in a fixed number of bins, and the function Bin(.) returns the bin
number for a particular date. For example, if the maximum period
of the ratings is 30 years and 30 bins are used, all the rates given
in a particular year are placed in a bin, and the function Bin(.) re-
turns the year number for that particular year. The reason why this
function is only used for items is that items are not expected to
change on a daily basis, and as opposed to users’ biases, longer
time periods are expected to pass, before we see any changes in
the items’ popularity. In simple words, devy(t,;) shows how much
the time of the rating given by user u to the item j deviates from
the average time of the ratings given by that user. Therefore, if a
rating is given at the same time as the average time of the ratings,
then the according to these equations, there will be no long-term
preference shift for that aspect. However, for instance, if the aver-
age time of the rates given by user u is 11/04/2006, the rating of
the same item by that user on 11/04/2016 would be different, and
this shift is captured by the coefficients of the function devy(t,;) in
Eq. (9) and Egs. (11)-(13). The drifting preferences captured using
Eq. (9) and Eqgs. (11)-(13) are depicted in Fig. 4. In these figures,
the mean of the dates on which the user has given the ratings are
assumed to be 50 (the fiftieth day in a year), and the variations
of the user preferences over a period of one year are captured for
different values of « in Eq. (9) and Egs. (11)-13. The red lines in
these figures represent the case in which the day-specific varia-
tions in the user preferences are not captured, while the blue lines
also include the day-specific variations. Therefore, as can be seen,
in these figures there are two types of preference shifts, long term
drifts (captured by the values of «, af, a%, and o), and short-
term or day-specific drifts (captured by the values of but, Pt, Wt,
and Zt). Therefore, the preference drifts are comprised of small
variations from one day to the other, mainly because of tempo-
rary factors such as the mood of the user, and the large variations
which happen in the long term, as the user changes preferences
because of the shift in the his/her tastes. The blue lines show the
preference shift patterns that can be learnt by Aspect-MF. Further-
more, the first three terms in Eq. (18) model the social influence
of the feature preferences and feature value preferences captured
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Fig. 4. An example of drifting preferences in Eq. (9) and Egs. (11)-(13) for (a) positive « values and (b) negative « values.

by P, of, Pt, W, %, Wt, Z of, Zt. Therefore, assuming that two
users have established the social relationship from the very begin-
ning (which is not essentially true, but usually social relationships
do not contain time-stamps), using the Eqs. (5)-(7), the social in-
fluence is applied to the preferences of the user over the entire
period for which the rating data is record. Therefore, the formula-
tion of the estimated ratings in Aspect-MF (8) allows it to learn the
drifting conditional feature value preferences, and the formulation

of the optimisation in Aspect-MF (Eq. (18)) enables it to learn the
influence of social friends on the drifting preferences of a user.
Egs. (9)-(13) show how Aspect-MF can capture long-term and
short-term drifts in each one of the preference aspects (user bias,
item bias, feature preferences, and feature value preferences). The
advantage of formulating the problem using Eq. (8) is that each
one these aspects can be arbitrarily switched on/off. This results in
a component-based approach, in which the model aspects interact



194 E Zafari et al./Expert Systems With Applications 116 (2019) 186-208

with each other, with the purpose of extracting as much preference
patterns from the raw data as possible.

3.2.3. Aspect-MF model training

According to the Bayesian network of Aspect-MF in Fig. 3, this
model minimises the log-posterior probability of matrices that de-
fine the user preferences, given the model hyper-parameters and
the training matrix. Formally,

argming pe o Qw.wt.aW 7.2t.02.Y,.y.bu.o.but.C.Ct bi.bit
{Inp(P,Q.W. Z, w. y, bu, bi, ay, buy, bigy). ¢. ¢, o, o, ¥ | P 2 W,

IR, Tt,S', G, on} (15)

on={0, 01, 0p, Opt, O4p, OQ, Ow, Owt, Oyw , 0z, Ozt, Oz, O, Oy,

Opus Oas Opyt> OC, Oct, Opi, Opie Oy} denotes the set of all the hyper-
parameters. T¢, S, G' respectively denote the real values for the
estimated matrices T, $¢, and G' in Egs. (5)-(7). According to
the Bayesian network in Fig. 3 and by decomposing the full joint
distribution using chain rule of probability theory (Korb & Nichol-
son, 2010) according to the conditional dependencies between
the variables defined in this figure, minimising the probability
above is equal to minimising the value given in Eq. (16) (Korb &
Nicholson, 2010).

ﬂrgmi"ﬂm.a".Q.w,Wt.aW.zzr.az.Y,w.y,bu.a,but.c,a.bi.bit.y
{Inp(RIP(t), Q, W (t), Z(¢), bu(¢), bi(t),Y, o) + Inp(Q|og)
+ Inp(P(t)|op) + Inp(W (t)|ow) + Inp(Z(t)|oz)
+ Inp(bu(t)|op,) + Inp(bi(t)|oy) + Inp(yl, oy) + Inp(Y], o)
+ Inp(T, |, P(t), or) + Inp(S,lw, W (t), o1) + Inp(G.y|w, Z(t), o1)
+ Inp(P(t)|or) + Inp(W (t)|o) + Inp(Z(t)|or) + Inp(w|, o7)}  (16)

Provided that all the probabilities above follow a normal distri-
bution, it can be shown that minimising the function in Eq. (16) is
equivalent to minimising the error value using Eqs. (17) to (19).
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where I; is the set of timestamps, for all the ratings given to item
J, and np, nw, and ny are constants added to control the weights of
the components related to the social aspect in this equation. The
details of the model training can be found in Appendix A.

3.2.4. Aspect-MF algorithm

Algorithm 1 describes the details of the gradient descent
method Aspect-MF uses to train the model parameters (P, Pt, o,
Q W, Wt, a%, Z Zt, a4, Y, w, y, bu, «, but, C, Ct, bi, bit) as expressed
in Eq. (19).

The algorithm receives the set of model hyper-parameters
A and the set of learning rates y as input, and trains the
model parameters according to the Bayesian approach described in
Section 3.2.2. As we showed in the high-level representation of the
algorithm in Fig. 2a, the model is comprised of four basic compo-
nents. A model initialiser, which initialises the model parameters
after the input data is loaded into memory, an intrinsic trainer,
which trains the model parameters using the user-item ratings, a
social trainer which trains the model parameters using the social
relationship data, and finally, a model updater, which updates the
model based on the trained parameters for a particular iteration.

Algorithm 1 Model training.

1: void ModelTrainer(A, y, maxiter)®
20 h={Ar, Ap, Ape, Agry Ag, Aw Awe, Agw, Az, Aze, Mgz, Aoy Ay Apys Aars Apurs Ac,
Actr Mir Mpies Ay}
Y ={Vr, Ve, Vet Vars Yo Yws Yt Yaw s V2o Vats Yazs Yoo Yvs Yous Yas Yours Ve, Vet
Ybir Vbits Vv}
4: {
5: |/Creating matrices P, w, W, and Z and temporary matrices P°, w®, W5, and Z5:
6: Matrix P, P; Matrix w’; Matrix WS; Matrix Z°;
7. |[Creating vectorsa”, «%, and o™V, and temporary vectors 7, B, and BV:
8: Vector of, B; Vector oV, BV Vector a?, B;
9: //Creating tables Pt,Wt, and Zt, and temporary tables PtS, WtS, and Zt5:
10: Table Pt, PtS; Table Wt, WtS; Table Zt, Zt5;
11: Modellnitialiser();
12: 1< 1;
13: for | < maxliter do
14:  IntrinsicTrainer();
15:  SocialTrainer();
16:  ModelUpdater();
17:  error < error x 0.5;
18: < 1+1;
19: }

a A is the set of the model hyper-parameters as specified in Eqgs. (17) and (18) and
Fig. 1. N, M, and D respectively denote number of users, number of items, and num-
ber of features. y denotes the set of learning rates, maxIter denotes the maximum
number of learning iterations.
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Algorithm 2 Model initialising.

1: void Modellnitialiser(A, y)

{

: initMean < 0; initStd < 1;

: Pinit(initMean, initStd); a .initConst(0); Pt.initConst(0);

: PS.init(initMean, initStd); B".initConst(0); PtS.initConst(0); W
: W.initConst(0); oV .initConst(0); W't.initConst(0);

: WS.init(initMean, initStd); BY .initConst(0); WtS.initConst(0);
: ZinitConst(0); a?.initConst(0); Zt.initConst(0);

9: Z5.init(initMean, initStd); B .initConst(0); Zt®.initConst(0);
10: w.init(initMean, initStd); w®.init(initMean, initStd);

11: bu.init(initMean, initStd); c..init(0); but.init(0); C.init(0); Ct.init(0);
12: bi.init(initMean, initStd); B.initConst(0); bit.initConst(0);

13: Q.init(initMean, initStd); y.init(initMean, initStd);"

14: }

b initMean and initStd are the mean and standard deviation values that
are used to initialise the model parameters. init(initMean, initStd) is a
function that initialises a bias vector (e.g. bu and bi) and a matrix (e.g.
P, and Q) using Gaussian distribution with mean value of initMean and
standard deviation of initStd. initConst(initMean, initStd) initialises a ma-
trix (e.g. W and Z) with a constant value.

As can be seen in line 11 in Algorithm 1, the training starts with
initialising the model parameters. The matrices P, Q, y, and w and
user and item bias vectors (bu and bi) are randomly initialised us-
ing a Gaussian distribution with a mean of zero and the standard
deviation of one. The new matrices Pt, W, Wt, Z, Zt, Ct, but, bit, and
Y and the vectors «, af, a%, o, C are initialised with constant
values. By using constant values to initialise the matrices and vec-
tors, the algorithm starts the search process at the same starting
point as CTFVSVD, and explores the modified search space to find
more promising solutions, by considering the possible conditional
dependencies between the features and the differences between
users in preferring item feature values, as well as dynamic prop-
erties of the preferences, and the influence of social friends in the
preferences of a user.

The main algorithm consists of a main loop, which implements
the learning iterations of the model. Each iteration is comprised
of one model intrinsic training operation (Algorithm 3), one model
social training operation (Algorithm 4), and one model updating
operation (Algorithm 5). In the model intrinsic trainer, the model
parameters are updated using the gradient values in Eqs. (A.1)-
(A.41), using a rating value that is read from the user-item ratings
matrix. First in line 8, the estimated rating is calculated accord-
ing to Eq. (8). Then the basic parameters of the model, P, Q W,
Z, Y, bu, and bi, and the temporal parameters but, bit, o, C, Ct, o,
a%, o, Pt, Wt, and Zt are updated using the rating-related gradient
values (g%) in the Egs. (A.1)-(A.41). Since this trainer only learns
the intrinsic user preferences, only the error value in Eq. (17) will
be used to update the model parameters. After learning the intrin-
sic preferences, the function in Algorithm 4 is invoked to train the
social aspects of the preferences. Similar to IntrinsicTrainer, Social-
Trainer is also comprised of a main loop, which iterates over the
social relationship data in the social matrix. In each iteration, one
entry from the social matrix is read, and the socially-influenced
parameters of the model are updated though the gradient values
that are obtained using the error in Eq. (18). Finally, the ModelUp-
dater in Algorithm 5 is invoked, and the calculated model updates
are applied to the model parameters. This process is repeated for a
fixed number of iterations, or until a specific condition is met. At
the end of this process, the model parameters (P, Pt, of, Q W, Wt,
aV%, Z, 7t, o%, Y, w, y, bu, o, but, C, Ct, bi, bit) are trained using the
input data, and can be used to estimate the rating value given by
a user u to an item j according to Eq. (8).

Algorithm 3 Intrinsic training.

1: void IntrinsicTrainer(A, y)

2: |

3 U<« 1;

4: for u < N do

5: j<1;

6: for j < M do

7: if R,; # O then

8: Calculate R, ;j according to Eq. 8.

9: Get the time ¢ that the rating R,; has been given.

10: Update buy, buty, and oy according to Eqs. A.1-A.3

using Ve You» Youts

11: Update bi; and bit; according to Eqs. A.4-A.5 using
Vbi and Vi3

12: Update C; and Ct,; according to Eqgs. A.6-A.7 using y¢
and yc¢;

13: f<1;

14: for f < D do

15: Update P, Ptflft. and BP according to Egs. A.9,
A2, and A.15 using yp, ypr, and y,p;

16: Update Q;f according to Eq. A. 40 using yq;

17: Update Wusf, wts PRELL BY according to Egs. A.18,
A.21, and A.24 using Y, Ywr, and y,w;

18: Update Zflf, Ztgf[. and BZ according to Egs. A.27,
A.30, and A.33 using yz, vz, and y,z;

19: Vv e Ty: Update wif according to Eq. A.35 using

(OF)

20: ” Vi e Iy: Update y;; according to Eq. A.33 using yy;

21: f<f+1;

22: for f/ < D do

23: Update Yff/ and Yf/f according to Eq. A.39 us-
ing yy; L

24: f<f+1

25: f<f+1;

26: j<j+1;

27: u<~u+1;

28: }

Algorithm 4 Social training.

1: void SocialTrainer(A, y)

2: {

3 U<« 1;

4: for u < N do

5: V<1

6: for v < N do

7: if v € T, then

8: for f < D do

o: Update Pff, ij, and ng according to Egs. A.10,
A19, A.28 using yp, yw, and yz;

10: Vt e I, : Update Ptf;ft, thft, and Ztgft according to
Eqgs. A.13, A.16, A.19 using ¥ps, Ywe, and yz;

11: Update ,Bfff, ,Bx‘;, and ﬂff according to Egs. A.16,
A9, A22 using y,p, Vow, and ¥,z;

12: Vt e I, : Update a)zf according to Eq. A.26 using
Yo

13: f<f+1;

14: V<—v+1;

15: Uu<u+1l;

16: }
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Algorithm 5 Model updating.
: void ModelUpdater(A, y)
{

cVu, f Pyp < —yu x ng;
Vu:al « -y, x Bl

DV f Wy < —pw x Wlff;

—_

Vu:otl‘jvefyaw xﬂl‘fv;
: Vu,f:Zuf <——yz><ng;
s VuoZ <~y x BE:

: Vu,f:wufe—ywxwif;

}

_-
=4

3.2.5. Computational complexity analysis

The model training in Algorithm 1 is comprised of one main
loop that iterates for a fixed number of iterations (maxlIter). There-
fore, the computation time of the model trainer is expressed in
Eq. (20).

C(ModelTrainer) = C(IntrinsicTrainer) + C(SocialTrainer)
+ C(ModelU pdater) (20)

First, we examine the computational complexity of Intrinsic
Training in Algorithm 3. On the highest level, this algorithm is
comprised of two loops that iterate over the non-zero ratings in
the rating matrix R. In the following, |R| and |T| denote the num-
ber of non-zero entries in the rating matrix R and adjacency matrix
T respectively. In Intrinsic Trainer:

« The number of repetitions to calculate the estimated ratings
(R) in line 8 is (D% x [R]) + (D x N4 [Iu|?) + (D x N_ |L] x
[Tu]).

» The number of repetitions to update parameters related to user
and item biases in lines 10, 11, and 12 is 7 x |R|.

« The number of repetitions needed to update the parameters P,
Q W, and Z in lines 15, 16, 17, and 18 is 10 x D x |R|.

« The number of repetitions needed to update the parameters w
in line 19 is D x N, (IIy| x |Ty]).

» The number of repetitions needed to update the parameters y
in line 20 is D x 3N, |Iy|2.

« The number of repetitions needed to update the dependency
matrix Y in line 23 is D% x |R|.

Therefore, the overall number of repetitions for the Intrinsic
Trainer is obtained according to Eq. (21).

N
N(IntrinsicTrainer) = D* x |R| + D x Y || x |1
u=1

+ 7 x|R| +10 x D x |R|

N N
+ D x Z(|Iu| x |Tu]) +D x Z“ulz

u=1 u=1

+ D? x |R| (21)

Assuming that on average, each user rates c items, and trusts k
users, the computation time can be obtained as Eq. (22).

C(IntrinsicTrainer)=0(D? x [R|)+0(Dxcx [R|)+0(Dxkx|T|)
(22)
Assuming that ¢, k<N, we can ignore the values of ¢ and k.
Therefore, the computational time of the Intrinsic Trainer would
be obtained according to Eq. (23).
C(IntrinsicTrainer) = O(D? x |R]) +O(D x |R|) + O(D x |T|)
= 0(D? x |R|) + O(D x |T|) (23)

Consequently, the overall computation time is linear with re-
spect to the number of observed ratings as well as observed trust
statements. Social Trainer consists of two loops that iterate over
the non-zero trust relations in the adjacency matrix T. The num-
ber of repetitions needed to update the parameters P W, Z, and
BP, BY, and BZ is 6 x D x |T|. The number of repetitions to up-
date the values of Pt, Wt, Zt, and w is equal to 4 x (Zﬁl:] [Iy] x
|Tu| x D). Therefore, the computation time of Social Trainer is
equal to:

C(IntrinsicTrainer) = O(D x |R|) + O(D x |T|) (24)

In the Model Updater, the values of matrices P W, Z, and vec-
tors w, af, o, and o need to be updated. The computation time
needed to update these parameters is O(N x D). Assuming that each
user has rated at least one item, it is safe to say that |R| is greater
than the number of users N. Therefore, the computation time of
Model Updater does not exceed the maximum computation time of
Intrinsic Trainer and Social Trainer. Finally, the computation time
of the Model trainer is obtained as Eq. (25).

C(ModelTrainer) = O(D? x |R|) + O(D x |T|) (25)

The number of latent factors D is fixed, hence the computation
time is only a function of |R| and |T|. Since both ratings matrix and
social network matrix are sparse, the algorithm is scalable to the
problems with millions of users and items.

4. Experiments
4.1. Datasets

We tested Aspect-MF on three popular datasets, Ciao, Epinions,
and Flixster. Ciao is a dataset crawled from the ciao.co.uk web-
site. This dataset includes 35,835 ratings given by 2248 users over
16,861 movies. Ciao also includes the trust relationships between
users. The number of trust relationships in Ciao is 57,544. There-
fore the dataset density of ratings and trust relationships are 0.09%
and 1.14% respectively. The ratings are integer values between 1
and 6. The Epinions dataset consists of 664,824 ratings from 40,163
users on 139,738 items of different types (software, music, televi-
sion show, hardware, office appliances, ...). Ratings are integer val-
ues between 1 and 5, and data density is 0.011%. Epinions also en-
ables the users to issue explicit trust statements about other users.
This dataset includes 487,183 trust ratings. The density of the trust
network is 0.03%. Flixster is a social movie site which allows users
to rate movies and share the ratings with each other, and become
friends with others with similar movie taste. The Flixster dataset
which is collected from the Flixster website includes 8,196,077 rat-
ings issued by 147,612 users on 48,794 movies. The social net-
work also includes 7,058,819 friendship links. The density of the
ratings matrix and social network matrix are 0.11% and 0.001%
respectively. The item popularity shift depicted for the Epinions,
Ciao, and Flixster datasets in Fig. 5 shows that the ratings drift
over time. In particular, it can be observed that an abrupt shift
of items rating scale has happened at year 2005, and 2006 for
Epinions and Flixster datasets respectively. We can also see that
over time, generally items have grown in popularity in the Ciao
dataset.

In all the experiments in Sections 4.3-4.5, 80% of the datasets
are used for training and the remaining 20% are used for eval-
uation. In order to achieve statistical significance, each model
training is repeated for 30 times and the average values are
used. In Section 4.6, we analyse the behaviour of the models
in other cases, where 60% and 40% of the ratings are used for
training.
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Fig. 5. The drift of average item ratings in the (a) Ciao, (b) Epinions, and (c) Flixster
datasets.

4.2. Comparisons

In order to show the effectiveness of Aspect-MF, we compared
the results against the recommendation quality of some of the
most popular state of the art models that have reported the high-
est accuracies in the literature. The following models are compared
across the experiments in this section:

« TrustSVD (Guo, Zhang, & Yorke-Smith, 2015), which builds on
SVD++ (Koren & Bell, 2011). The missing ratings are calculated
based on explicit and implicit feedback from user ratings and
user’s trust relations.

CondTrustFVSVD (Zafari & Moser, 2017), this method extends
TrustSVD by adding the conditional preferences over feature
values to TrustSVD. Experimental results show that this method
is significantly superior to TrustSVD in terms of accuracy. This
model is denoted CTFVSVD in the experiments section.
Aspect-MF, which is the model proposed in this paper. The
component-based approach that we took in designing this
model enabled us to arbitrarily switch on/off the dynamicity
over different preference aspects. Therefore, in the experiments
we try all the combinations of dynamic preference aspects. This

results in 7 combinations denoted by b, bf, bffv, bfv, f, ffv, and
fVl

Guo, Zhang, and Yorke-Smith (2016) carried out comprehen-
sive experiments, and showed that their model, TrustSVD out-
performed all the state of the art models. Recently, Zafari and
Moser (2017) showed that their model CondTrustFVSVD signifi-
cantly outperforms TrustSVD. Therefore, in this section, we lim-
ited our comparisons to these two models from the state of the
art since they outperform a comprehensive set of state of the art
recommendation models (Guo et al., 2016; Zafari & Moser, 2017).

The optimal experimental settings for each method are deter-
mined either by our experiments or suggested by previous works
(Guo et al., 2015; 2016; Zafari, Moser, & Rahmani, 2017). Since the
model was designed using a component-based approach, we could
switch off an aspect easily by setting the hyper-parameters and
learning rates to zero. To find the appropriate values for each as-
pect, we performed grid search. We first set the values to zero and
recorded the accuracy. Then we increased the values and moni-
tored the accuracy. The accuracy kept improving before it dropped.
After finding a set of sub-optimal values by this trial and error ap-
proach, we used the same values through our experiments for TCT-
FVSVD.

Due to the over-fitting problem, the accuracy of iterative mod-
els improves for a number of iterations, after which it starts to de-
grade. Therefore, we recorded the best accuracy values achieved
by each model during the iterations, and compared the models
based on the recorded values. We believe that this approach re-
sults in a fairer comparison of the models than setting the num-
ber of iterations to a fixed value, because the models over-fit at
different iterations, and using a fixed number of iterations actu-
ally prevents us from fairly comparing the models based on their
real capacity in uncovering hidden patterns from data. Therefore,
the reported results for iterative models here are the best results
that they could achieve using the aforementioned parameters. MAE
and RMSE measures are used to evaluate and compare the accu-
racy of the models. MAE and RMSE are two standard and popular
measures that are used to measure and compare the performance
of preference modelling methods in recommender systems. In the
following sections, we consider the performances separately for All
Users and Cold-start Users. Cold-start Users are the users who have
rated less than 5 items, and All Users include all the users regard-
less of the number of items they have rated.

4.3. Discussion

All latent factor approaches have been evaluated with 5 factors,
because no clear ideal value could be established. In Section 4.3.1,
first we analyse the performance of the models from different per-
spectives. Since the results are subject to randomness, we also per-
formed a t test to guarantee that the out-performances achieved
do not happen by chance. The results are discussed in Section 4.4,
As we mentioned in Section 1, one of the research questions we
are interested in, in this paper is related to the interplay between
the dynamicity of preference aspects and the preference domain.
In Section 4.5, we consider the performance of combinations of
Aspect-MF, in order to pinpoint the aspects that are more subject
to temporal drift in each dataset. In Section 4.6, we also consider
the effect of the amount of training data that is fed to the model
as input, and analyse the robustness of the models to the shortage
of training data.

! fv denotes feature value preferences, f denotes feature preferences, and b de-
notes bias. Therefore, bffv denotes a model with all the three aspects.
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Fig. 6. Box plots of the Aspect-MF's combinations (b, bf, bffv, f, ffv, fv) and CTFVSVD versus TrustSVD in Ciao dataset in terms of MAE and RMSE measures for cold-start

users (CS) and all users (ALL).

4.3.1. Model performances

We can consider the performance of the models from different
perspectives. A preference model’s performance can be considered
with respect to the dataset on which it is trained, the accuracy
measure that is used to evaluate the model’s performance, and the
performance of the model on cold-start users vs the performance
on all users.

Datasets. The error values in Fig. 6 show that the Aspect-MF
results in substantial improvements over TrustSVD in all three
datasets for both measures and for all users and cold-start users.
As we can see in this figure, the box plots of Aspect-MF's combi-
nations do not have much overlap with the box plot of TrustSVD,
which means that the differences are definitely statistically signif-
icant. In this figure, we can also see that the box plot widths for
Aspect-MF's combinations are usually much smaller than that for
TrustSVD. This suggests that Aspect-MF's combinations are more
stable than TrustSVD, meaning that they find roughly the same
solutions across different model executions. This is a favourable
property of the model, since it makes the model performance less
subject to randomness. Clearly, a model that performs well some-
times and worse at other times is less reliable. The model’s su-

perior performance is likely due to its taking multiple preference
aspects into account, therefore, it has more clues as to where the
optimal solutions might reside in the solution space.

In particular, we can see that the model is more stable in the
case of the Ciao and Epinions datasets than the Flixster dataset.
On the Epinions dataset, each typical user and cold-start user rates
41.61 items and 4.08 items on average. These numbers respectively
are 15.94 and 2.94 for the Ciao dataset, and 11.12 and 1.94 for the
Flixster dataset. This could explain why the variations are larger on
Flixster dataset than Epinions and Ciao datasets. Since more ratings
per user are available in the Ciao and Epinions dataset, different
executions lead the model to more similar solutions than the solu-
tions that are found on the Flixster dataset across different model
executions. We can also see from Table 2, that on the Ciao and
Flixster datasets, the improvements are more significant for RMSE,
while more significant improvements are achieved for RMSE. We
can also clearly observe that the model variations are smaller for
all users in the Epinions dataset, and for cold-start users in the
Flixster dataset.

Accuracy measures. As the statistical analysis of the models in
Table 2 show, the differences are generally more significant when
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Table 2

The t values and p values for Aspect-MF's combinations vs TrustSVD in Ciao, Epinions, and Flixster datasets for MAE and RMSE measures

on all users (ALL) and cold-start users (CS).

Dynamic model Measure Ciao Epinions Flixster

t value p value Sig.  tvalue p value Sig.  tvalue p value Sig.
Aspect-MF(b) MAE-ALL ~ —19.9867  9.44E-20 yes —144389 3.57E-49 yes —183981  2.33E-21 yes
Aspect-MF(b) RMSE-ALL  —487869  2.09E-33 yes —138903 6.05E-49 yes —11.0414 814E-14  yes
Aspect-MF(b) MAE-CS 249813  960E-29 yes —60.0446 275E-40 yes —37.612 1.36E-34  yes
Aspect-MF(b) RMSE-CS —61.0847 194E-40 yes —35.8673 7.73E-32 yes —27.6887 9.62E-29  yes
Aspect-MF(bf) MAE-ALL ~ -20.2987 175E-20 yes —144517 280E-49 yes —17.6976  166E-21  yes
Aspect-MF(bf) RMSE-ALL  —483137 8.60E-35 yes —137679 3.67E-50 yes 113137 6.28E-14 yes
Aspect-MF(bf) MAE-CS 242062 578E-30 yes 572661 2.06E-44 yes —37.6646 267E-34 yes
Aspect-MF(bf) RMSE-CS ~ —58.0125 290E-44 yes —351151  769E-34 yes —284271 265E-28 yes
Aspect-MF(bffv) MAE-ALL  —20.1253  136E-19 yes —144792 123E-48 yes —18.9756 121E-21  yes
Aspect-MF(bffv) ~RMSE-ALL  —48.7184  2.40E-32 yes —138854 108E-48 yes —119005 172E-14 yes
Aspect-MF(bffv)  MAE-CS -26.7303 160E-26 yes —57.8678 157E-42 yes —37.5037  4.99E-35 yes
Aspect-MF(bffv) RMSE-CS  —62.6826 2.88E—-37 yes —356445 144E-31 yes —275707 145E-29 yes
Aspect-MF(bfv)  MAE-ALL  —20.0161 551E-20 yes —140.994 574E-52 yes —18.304 9.83E-23  yes
Aspect-MF(bfv) ~ RMSE-ALL  —48.7855 222E-32 yes —135.65 102E-51 yes —117557  150E-14  yes
Aspect-MF(bfv)  MAE-CS 250275 447E-30 yes -574134  913E-44 yes —39.183 114E-31  yes
Aspect-MF(bfv) ~ RMSE-CS  —61.8785  4.54E-39 yes —358765 9.44E-33 yes —289199 9.04E-27 yes
Aspect-MF(f) MAE-ALL  —16.021 128E-17 yes —126.805 194E-50 yes —152094 852E-20 yes
Aspect-MF(f) RMSE-ALL  —40.3613  293E-33 yes —120.674 203E-50 yes -914701  232E-11 yes
Aspect-MF(f) MAE-CS 313473  9.40E-33 yes —59.4225 552E-42 yes —346759 2.87E-36 yes
Aspect-MF(f) RMSE-CS ~ —62.008 1.76E-40 yes —36.5189  3.76E-31 yes —27.0282 279E-28 yes
Aspect-MF(ffv) MAE-ALL ~ —16.4344 137E-17 yes —131061  117E-46 yes —152416 130E-18  yes
Aspect-MF(ffv) RMSE-ALL ~ —41.942 131E-30 yes —124216 487E-47 yes —-928969 4.00E-11  yes
Aspect-MF(ffv) MAE-CS —-301691  9.47E-34 yes —60.2686 2.61E-40 yes —36.8921 3.11E-34 yes
Aspect-MF(ffv) RMSE-CS ~ —60.9112  212E-41 yes —345646 119E-32 yes —27.7828  194E-28  yes
Aspect-MF(fv) MAE-ALL ~ —16.8998  142E-17 yes —127613  155E-49 yes -16.0515 2.37E-19 yes
Aspect-MF(fv) RMSE-ALL ~ —42.4293  193E-31 yes —121779 210E-49 yes -922016 4.64E—11 yes
Aspect-MF(fv) MAE-CS 300768 2.88E-32 yes —571987  454E-43 yes —38.164 6.52E-33  yes
Aspect-MF(fv) RMSE-CS 615278  2.68E-40 yes  —33.735 711E-33  yes  —272901  2.64E-28 yes

the accuracies are measured in terms of the RMSE. This can be
explained by the formulation of these models as an optimisation
problem. These models focus on maximising accuracy using RMSE
and achieving better MAE values is a secondary goal that is only
pursued through minimising RMSE.

Cold-start vs all users. By taking a close look at the statistical anal-
ysis results in Table 2 and also the box plots of CTFVSVD vs Aspect-
MF’s combinations in Fig. 6, we can see that in all three datasets,
the improvements of the Aspect-MF are more significant over all
users than cold-start users. This can be explained by the amount of
dynamic information that the models receive for each one of these
groups of users. For all users, the model is trained using all ratings
and also all associated time stamps for those ratings. Therefore the
model can more successfully discern the temporal patterns in the
preferences, and the accuracy improvements are larger. However,
for the cold-start users, the model does not have access to much
temporal information about these users, since they do not have
many ratings. As a result, the model cannot identify the shift in
the preferences of these users, and the improvements are smaller.
From this, we conclude that temporal models are more successful
on all users, because for them, temporal information is available.

4.4. Statistical analysis

The statistical analysis of the performances provided in
Table 2 shows that all Aspect-MF's combinations achieve signifi-
cantly better results than TrustSVD, which does not include the
temporal information. The values in Table 3 also show that Aspect-
MF’s combinations also result in improvements over CTFVSVD that
are statistically significant, which means that in all three datasets,
Aspect-MF has been successful in extracting the temporal patterns
in the users’ preferences. We can also see that the all the p values
in Table 2 are 0.0000, which means that with almost 100% proba-
bility, the two model executions (Aspect-MF and TrustSVD) do not

come from distributions with equal mean performances. Therefore,
we are almost 100% sure that the observed differences in perfor-
mance are due to the superiority of Aspect-MF over TrustSVD, and
not the result of chance. Similarly, the p values in Table 3 are al-
most zero, which means that we are certain that Aspect-MF is bet-
ter than CTFVSVD, in cases where the ¢t test shows a statistically
significant improvement.

4.5. Dynamic aspects

The close comparison of the error values achieved by Aspect-
MF in Figs. 6 and 7 show that in terms of MAE for all users,
Aspect-MF achieves the best performance on the Ciao and Epin-
ions datasets, for the models including dynamic b and f aspects.
However, on the Flixster dataset, the model combination with dy-
namic b and fv aspects performs best. Interestingly, for cold-start
users, different models perform the best. In particular, on the Ciao
dataset, the model including dynamic f performs best, whereas on
the Epinions and Flixster datasets, the model including dynamic b,
f, and fv aspects, and the model with drifting f aspect achieve the
best results respectively.

As shown in Fig. 1, the social aspect does not directly help cap-
ture the temporal drifts, but interacts with the other aspects that
are subject to social influence, such as feature preferences and fea-
ture value preferences. Figs. 6 through 8 show that addition of
time aspect to CTFVSVD significantly improves the accuracy. This
is because the feature preferences and feature value preferences
are subject to change over time, and capturing the temporal prop-
erties of these aspects helps improve the recommendation qual-
ity. Modelling the social aspect is also critical, since it helps better
model feature value preferences and feature preferences. In fact,
the improvements achieved by CTFVSVD (Zafari & Moser, 2017)
over TrustSVD (Guo et al., 2016) are the result of modelling feature
value preferences and feature preferences, and their interplay with
social aspect, and the improvements achieved over CTFVSVD by
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Table 3

The t values and p values for Aspect-MF's combinations vs CTFVSVD in Ciao, Epinions, and Flixster datasets for MAE and RMSE

measures on all users (ALL) and cold-start users (CS).

Dynamic model Measure Ciao Epinions Flixster

t value p value  Sig.  tvalue p value  Sig.  tvalue p value Sig.
Aspect-MF(b) MAE-ALL ~ -79254 00000 yes -40.0588 00000 yes -3.51234 8.76E-04 yes
Aspect-MF(b) RMSE-ALL ~ —17.5792  0.0000 yes —34.3869 0.0000 yes 376619 3.90E-04 yes
Aspect-MF(b) MAE-CS 8.9344 0.0000 yes  0.8529 03973 no  -085677 039517 no
Aspect-MF(b) RMSE-CS  0.5979 05522 no 14063 01650 no  -170069  0.094359  no
Aspect-MF(bf) MAE-ALL ~ -8.6722 00000 yes -404729 00000 yes -2.88722 0.005453 yes
Aspect-MF(bf) RMSE-ALL  —169178  0.0000 yes -327924 00000 yes —413771  116E-04  yes
Aspect-MF(bf) MAE-CS 76174 0.0000 yes  0.0021 09983 no  -065626 0514293  no
Aspect-MF(bf) RMSE-CS  0.4274 06709 no 04595 06476 no  -223892  0.029057  yes
Aspect-MF(bffv) ~MAE-ALL ~ -82488 00000 yes -40.8591 00000 yes -431919  639E-05 yes
Aspect-MF(bffv) ~ RMSE-ALL  —172079  0.0000 yes -34.0360 00000 yes -511012  3.90E-06 yes
Aspect-MF(bffv) ~ MAE-CS 10.1601 0.0000 yes 12975 01996 no  -111763 026848  no
Aspect-MF(bffv)  RMSE-CS  2.0086 0.0495 yes 19330 00582 no 218501  0.032959  yes
Aspect-MF(bfv) ~ MAE-ALL ~ -8.0096  0.0000 yes -33.8218 00000 yes -419593  950E-05 yes
Aspect-MF(bfv) ~ RMSE-ALL  -173742 00000 yes -30.0663 00000 yes -4.92428 744E-06 yes
Aspect-MF(bfv) ~ MAE-CS 7.3472 0.0000 yes 05237 06025 no  -031262 0755723  no
Aspect-MF(bfv) ~ RMSE-CS  1.0133 03151 no 05666 05732 no  -176305 0083675 no
Aspect-MEF(f) MAE-ALL  0.6250 05345 no 06578 05139 no 0169793 0865773  no
Aspect-MF(f) RMSE-ALL  —11529 02539 no 17569 00846 no  -053474 0594882  no
Aspect-ME(f) MAE-CS 1.0076 03179 no  -00942 09253 no 0644178 0522319 no
Aspect-MEF(f) RMSE-CS ~ -0.8901 03771 no 12122 02306 no  -062142 0536762 no
Aspect-MF(ffv) ~ MAE-ALL  0.1020 09191 no  -00859 09318 no 1302566 0197918  no
Aspect-MF(ffv) ~ RMSE-ALL  -11275 02643 no 17583 00840 no  -032867 0743682 no
Aspect-MF(ffv) ~ MAE-CS 1.0049 03191  no 05245 06019 no 0350768 0727059  no
Aspect-MF(ffv) ~ RMSE-CS ~ -02707 07876 no 21764 00336 yes -157954 0119666  no
Aspect-MF(fv) MAE-ALL ~ -05989 05520 no  0.9751 03343 no 0086061 0931718  no
Aspect-MF(fv) RMSE-ALL ~ -2.9847 00042 yes 16778 00990 no  -022597 0822071 no
Aspect-MF(fv) MAE-CS 23939 0.0200 yes 15299 01315 no 003512 0972102 no
Aspect-MF(fv) RMSE-CS  0.0763 09394 no 28533 00060 yes -092614 0358215 no

TCTFVSVD are the result of modelling the temporal properties of
feature value preferences and feature preferences that were made
subject to social aspect in CTFVSVD.

As we reviewed in Section 2, Guo, Zhu, Qu, and Wang (2018) re-
cently proposed a temporal-based latent factor model, and com-
pared it with some of the state of the art temporal-based models.
They used both 80%-20% ratio train-test splitting and 5-fold cross
validation, and empirically found that both approaches produced
similar performances. The results reported by them show that TCT-
FVSVD beats BPTF and PCCF by a large margin. The MAE and RMSE
values achieved by BPTF on the Ciao dataset are 0.76 and 1.05,
while TCTFVSVD achieves 0.59 and 0.88 on the same dataset. This
result is even better than PCCF which achieved 0.69 and 0.92 re-
spectively. This is expected, since TCTFVSVD also includes social as-
pect which potentially includes a large fraction of preference pat-
terns in data. Therefore, TCTFVSVD easily beats other methods in-
cluding BPTF which do not include the social aspect. TCTFVSVD
shows how all the preference aspects can be captured in a model
and that is one main contribution of the current work. To the best
of our knowledge, TCTFVSVD is the first to model all these aspects
together.

From Figs. 6 through 8, we can make several conclusions.
The first conclusion is that the dynamic patterns are dataset-
dependent. Therefore, users and the items in different dataset can
have preferences with aspects with different levels of dynamicity.
This finding supports our component-based approach in modelling
the dynamic properties of the preference aspects.

The second conclusion is that the prediction of the ratings for
the cold-start users is less dependent on the drifting bias than that
of all users. As we see in this Figs. 9 and 10, for all users, the com-
binations that include dynamic b aspects are strictly better than
the other combinations, whilst this is less consistent for cold-start
users, where sometimes the models with only dynamic f aspects
perform best. This suggests that the preferences of cold-start users
are not much affected by the shifts in the popularity of the items,

while other users’ preferences are more influenced by such shifts.
Therefore, the accurate modelling of such temporal effects is of
greater importance in the case of all users than cold-start users.
As previous studies have shown (Koenigstein et al., 2011), bias is
a very important aspect in human preferences. Since the cold-start
users do not have enough ratings, there is also not enough tem-
poral data to train the preferences for these models. Therefore, the
trained temporal aspects of these users are probably not very ac-
curate, and therefore, the combinations that include bias perform
poorly on these users, due to imprecise predictions.

The third conclusion is that both measures reveal roughly the
same preference patterns. This seems justifiable, since the shift in
user preferences should naturally be independent of how the dif-
ferences in estimated preferences and real preferences are mea-
sured.

To summarise, it is very advantageous to have a component-
based model in which the temporal aspects of preferences can be
arbitrarily captured in different conditions. This enables us to cap-
ture the patterns only when they are actually helpful, and conse-
quently, build the most accurate preference models, tailored to dif-
ferent datasets and domains with disparate temporal patterns.

4.6. Effect of the size of the training dataset

The main purpose of this section is to evaluate the robustness
of the models against shortage of training data. In the experiments
in Sections 4.3 through 4.5, 80% of the ratings matrix was used for
training the models and the remaining data was used for evalua-
tion. The question that arises here is how the models would per-
form if less amount of data was fed to the models for training.

In order to analyse the behaviour of the models with respect
to the amount of training data, we can reduce the amount of the
training data, and consider how much the accuracy drops as the
training data is decreased. Therefore, we also evaluate the models
in two additional cases. The first case includes 60% of the data for
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users (CS) and all users (ALL).

training, and the remaining 40% for testing, and the second case
uses 40% of ratings data for training and the rest for evaluation.
The results for the Flixster and Ciao datasets are demonstrated in
Figs. 11 and 12 respectively. These figures show the percentage of
error increase as the amount of training data is decreased.

All users. As can be seen in Fig. 11, on the Flixster dataset, in the
case of all users, all combinations of Aspect-MF result in a smaller
increase in the error when the training data is decreased from 80%
to 60% (denoted by 80-60 in these diagrams), and from 60% to 40%
(denoted by 60-40 in these diagrams). Furthermore, we can ob-
serve that in terms of MAE, the combination that includes f and
fv resulted the smallest error increase when the training data de-
creased from 80% to 60%, and the model that included fv resulted
in the smallest error increase when the training data decreased
from 60% to 40%. This suggests that the dynamic model is more
robust to the shortage of training data, when the error is measured
in terms of MAE for all users. In terms of RMSE, the least accuracy
deterioration happened for the model combination with the f as-
pect, both when the training data amount drops to 60%, and when
it drops to 40%.

Cold-start users. For cold-start users however, a different pattern is
evident. Interestingly, we can see that for cold-start users, the er-
ror increases more when the training data is decreased from 80%
to 60%, compared to when it is decreased from 60% to 40%. This
means that the accuracy degrades more when the training data
drops to 60%. Judging by the higher error increase for cold-start
users in comparison with all users, cold-start users seem to be
more sensitive to the decrease in the amount of training data. This
seems understandable, since the cold-start users do not have many
ratings. Therefore, when evaluating the model accuracy for cold-
start users, less accurate predictions for each rating have a larger
effect on the overall accuracy.

TrustSVD seems to be more robust to the shortage of training
data for cold-start users, when the training data drops from 60%
to 40%. This can be attributed to the fact that the dynamic model
contains time information, and this information can be mislead-
ing if we substantially decrease the amount of training data, and
evaluate the accuracy for cold-start users who do not have much
ratings. A similar observation was made in Figs. 9 and 10, where
the dynamic model including the b aspect performed poorly on the
cold-start users.
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All users vs cold-start users. A similar trend to the one observed in
Flixster dataset can also be seen in the Ciao dataset in Fig. 12. As
this figure shows, the accuracy deterioration for cold-start users is
much larger compared with that for all users. Again, we attribute
this to the high sensitivity of cold-start users to inaccurate pre-
dictions. For the case where the training data amount drops from
80% to 60%, the model combination with all the dynamic aspects
(bffv) results in the lowest increase in MAE for all users. For cold-
start users, the model combination with b and f aspects achieve
the smallest deterioration of accuracy.

However, in terms of RMSE for all users, TrustSVD incurs the
lowest increase in the error, while for cold-start users, the model
with the dynamic fv aspect is the most robust. In the second case
where the training data amount is decreased from 60% to 40%,
at least one of the model combinations performs best (incurs the
lowest accuracy deterioration) for each measure, among the mod-
els tested. We can also see that when the training data amount is
decreased from 80% to 60%, the error increase is much lower than
when the training data amount drops from 60% to 40%. This means
that the models are still quite robust with 60% of the ratings data
as training data, but their accuracy considerably drops when the
training data decreases to 40%.

Flixster vs Ciao. One of the key differences between the behaviour
of the models on the Flixster and Ciao datasets, as can be seen
in Figs. 11 and 12, is the threshold at which the accuracy sharply
drops for cold-start users. For the Flixster dataset, the accuracy of
cold-start users sharply worsens when the training data amount is
decreased from 80% to 60%, while for the Ciao dataset, the sharp
decrease in accuracy happens when the training data amount de-
creases from 60% to 40%. This can be easily justified by look-
ing at the statistics of these two datasets for cold-start users. On
the Flixster dataset as we mentioned before, each cold-start user
rates 1.94 items on average, while this number is 2.94 in the Ciao
dataset. Therefore, the accuracy of cold-start users on the Flixster
dataset is more sensitive to inaccurate predictions than that on the
Ciao dataset.

Considering all four measures on the two datasets, in general,
we can observe that Aspect-MF's combinations are more robust to
the decrease in the amount of training information than TrustSVD
and CTFVSVD. The combinations in this paper are particularly more
helpful in cases where enough time related data is fed into the
model as input.
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Insights. From the observations for cold-start users, we can con-
clude that in order for the time information to be helpful, we
need to provide the model with enough time-related data as in-
put, so that the accuracy can be improved, and the importance of
such data is more pronounced for the cold-start users, whose pre-
dictions are more sensitive to the inaccuracies. Otherwise, if the
amount of training data is insufficient, the model can learn un-
realistic temporal patterns that directly result from a shortage of
training information.

We also saw that the degree of deterioration of the accuracy is
somewhat dependent on the dataset. On the Flixster, the accuracy
degrades somewhere between just under 1% to just under 5%. On
Ciao, however, the accuracy deteriorates much more (roughly be-
tween 6.5% and 19.5%). Therefore, it is up to the system users to
decide whether they would like to use smaller datasets and sac-
rifice the accuracy, or spend more time on training more accurate
models using more information. We did not observe any tangible
differences between the execution times of these cases (80%-60%-
40%), and the computational complexity analysis of the model in
Section 3.2.5 showed that the model time is of linear order. There-
fore, it is probably advisable for the system owners to use as much
data as available to achieve the highest accuracies, as long as their
computational limitations allow.

5. Conclusion and future work

In this paper, we addressed the problem of modelling the tem-
poral properties of human preferences in recommender systems.
In order to tackle this problem, we proposed a novel latent factor
model called Aspect-MF. Aspect-MF built on the basis of CTFVSVD,

a model that we proposed earlier, in order to capture socially-
influenced conditional preferences over feature values. In Aspect-
MF, three major preference aspects were assumed to be subject to
temporal drift. These aspects included user and item biases, prefer-
ences over features, and preferences over feature values. Moreover,
we also analysed the temporal behaviour of each of these prefer-
ence aspects and their combinations. We also considered the ro-
bustness of Aspect-MF’s combinations with respect to the shortage
of training data.

In order to evaluate the model, we carried out extensive ex-
periments on three popular datasets in the area of recommender
systems. We considered the model errors in terms of MAE and
RMSE measures on all users and cold-start users. We also per-
formed statistical analyses on the performances observed, to make
sure that the differences in accuracies are significant, and hence
do not happen by chance. The experiments revealed that in all
three datasets, all combinations of Aspect-MF for both measures on
all users and cold-start users significantly outperformed TrustSVD,
which had proven to be the most accurate static social recommen-
dation model before CTFVSVD. The experiments also proved that
most of the Aspect-MF's combinations were significantly more ac-
curate than CTFVSVD. In particular, we found that Aspect-MF with
all dynamic aspects outperformed CTFVSVD in all three datasets on
all users.

The analysis of the temporal behaviour of preference aspects
and their combinations on the three datasets showed that differ-
ent datasets included different temporal patterns, and therefore,
required models with different dynamic aspects. This supported
our component-based approach in modelling the basic preference
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aspects and their temporal properties. We also concluded that the
dynamic models are more helpful in cases there is enough train-
ing data to discern the temporal properties. In particular, we con-
cluded that the models proposed in this paper are more success-
ful in modelling all users, because more time-related data is avail-
able for all users than cold-start users, and therefore the tempo-
ral characteristics were extracted more accurately. The analysis of
the robustness of the models with respect to the shortage of train-
ing data also revealed that Aspect-MF was in general more robust
than CTFVSVD and TrustSVD. The models were also more robust
for all users than cold-start users, because cold-start users were
more sensitive to the inaccurate predictions.

A direction that we would like to pursue in the future is related
to explaining the resulting recommendations to the users. Explain-
ing the recommendations to the users is believed to improve trans-
parency and to instill trust in the users. So far we have pursued
our main goal in improving the accuracy of the recommendations,
and in this paper we showed how we could achieve significant im-
provements by taking the temporal aspects into consideration. As
the next step, in particular we are interested in how we can ex-
plain the temporal properties of the trained models to the users.
Furthermore, the component-based structure followed in designing
Aspect-MF is generally beneficial in extracting explanations.
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Appendix A. Aspect-MF training equations
In Aspect-MF, we use gradient descent to optimise Eq. (19).

The gradients for the model parameters are obtained using
Eqgs. (A.20) to A41.
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where:
euj = Ryj — Ryj (A41)

Therefore, the gradients in Eqs. (A.20)-(A.41) will be used to
update the values matrices used to capture socially-influenced
drifting conditional feature value preferences using an incremen-
tal gradient descent method.
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