TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình kh... more TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình khai phá dữ liệu và khám phá tri thức. Trong mấy năm gần đây, các nhà nghiên cứu đề xuất các phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ (Fuzzy Rough Set FRS) nhằm nâng cao độ chính xác mô hình phân lớp. Tuy nhiên, số lượng thuộc tính thu được theo tiếp cận FRS chưa tối ưu do ràng buộc giữa các đối tượng trong bảng quyết định chưa được xem xét đầy đủ. Trong bài báo này, chúng tôi đề xuất phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ trực cảm (Intuitionistic Fuzzy Rough Set IFRS) dựa trên các đề xuất mới về hàm thành viên và không thành viên. Kết quả thử nghiệm trên các bộ dữ liệu mẫu cho thấy, số lượng thuộc tính của tập rút gọn theo phương pháp đề xuất giảm đáng kể so với các phương pháp FRS và một số phương pháp IFRS khác.
In rough set theory, the number of all reducts for a given decision table can be exponential with... more In rough set theory, the number of all reducts for a given decision table can be exponential with respect to the number of attributes. This paper investigates the problem of determining the set of all reductive attributes which are present in at least one reduct of an incomplete decision table. We theoretically prove that this problem can be solved in polynomial time. This result shows that the problem of determining the union of all reducts can be solved in polynomial time, and the problem of determining the set of all redundant attributes which are not present in any reducts can also be solved in polynomial time.
Journal of Research and Development on Information and Communication Technology, 2016
Feature selection is a crucial problem need to be effectively solved in knowledge discovery ... more Feature selection is a crucial problem need to be effectively solved in knowledge discovery in databases because of two basic reasons: to minimize cost and to accurately classify data. Feature selection using rough set theory also called attribute reduction have attracted much attention from researchers and many results are gained. However, attribute reduction in dynamic databases is still in the first stage. This paper focus on develop incremental methods and algorithms to derive reducts hiring a distance measure when adding, deleting or updating objects. Since not re-implement the algorithms on the varied universal set, our algorithms significantly reduce the complexity of implementation time.
Tolerance rough set model is an effective tool for attribute reduction in incomplete decision tab... more Tolerance rough set model is an effective tool for attribute reduction in incomplete decision tables. In recent years, some incremental algorithms have been proposed to find reduct of dynamic incomplete decision tables in order to reduce computation time. However, they are classical filter algorithms, in which the classification accuracy of decision tables is computed after obtaining reduct. Therefore, the obtained reducts of these algorithms are not optimal on cardinality of reduct and classification accuracy. In this paper, we propose the incremental filter-wrapper algorithm IDS_IFW_AO to find one reduct of an incomplete desision table in case of adding multiple objects. The experimental results on some sample datasets show that the proposed filter-wrapper algorithm IDS_IFW_AO is more effective than the filter algorithm IARM-I [17] on classification accuracy and cardinality of reduct
In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information gr... more In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information granules and fuzzy information granularity is used to measure the granulation degree of a fuzzy granular structure. In general, the fuzzy information granularity characterizes discernibility ability among fuzzy information granules in a fuzzy granular structure. In recent years, researchers have proposed some concepts of fuzzy information granularity based on partial order relations. However, the existing forms of fuzzy information granularity have some limitations when evaluating the fineness/coarseness between two fuzzy granular structures. In this paper, we propose an extension of fuzzy information granularity based on a fuzzy distance measure. We prove theoretically and experimentally that the proposed fuzzy information granularity is the best one to distinguish fuzzy granular structures.
In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information gr... more In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information granules and fuzzy information granularity is used to measure the granulation degree of a fuzzy granular structure. In general, the fuzzy information granularity characterizes discernibility ability among fuzzy information granules in a fuzzy granular structure. In recent years, researchers have proposed some concepts of fuzzy information granularity based on partial order relations. However, the existing forms of fuzzy information granularity have some limitations when evaluating the fineness/coarseness between two fuzzy granular structures. In this paper, we propose an extension of fuzzy information granularity based on a fuzzy distance measure. We prove theoretically and experimentally that the proposed fuzzy information granularity is the best one to distinguish fuzzy granular structures. ACM Computing Classification System (1998): I.5.2, I.2.6.
TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình kh... more TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình khai phá dữ liệu và khám phá tri thức. Trong mấy năm gần đây, các nhà nghiên cứu đề xuất các phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ (Fuzzy Rough Set FRS) nhằm nâng cao độ chính xác mô hình phân lớp. Tuy nhiên, số lượng thuộc tính thu được theo tiếp cận FRS chưa tối ưu do ràng buộc giữa các đối tượng trong bảng quyết định chưa được xem xét đầy đủ. Trong bài báo này, chúng tôi đề xuất phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ trực cảm (Intuitionistic Fuzzy Rough Set IFRS) dựa trên các đề xuất mới về hàm thành viên và không thành viên. Kết quả thử nghiệm trên các bộ dữ liệu mẫu cho thấy, số lượng thuộc tính của tập rút gọn theo phương pháp đề xuất giảm đáng kể so với các phương pháp FRS và một số phương pháp IFRS khác.
In rough set theory, the number of all reducts for a given decision table can be exponential with... more In rough set theory, the number of all reducts for a given decision table can be exponential with respect to the number of attributes. This paper investigates the problem of determining the set of all reductive attributes which are present in at least one reduct of an incomplete decision table. We theoretically prove that this problem can be solved in polynomial time. This result shows that the problem of determining the union of all reducts can be solved in polynomial time, and the problem of determining the set of all redundant attributes which are not present in any reducts can also be solved in polynomial time.
Journal of Research and Development on Information and Communication Technology, 2016
Feature selection is a crucial problem need to be effectively solved in knowledge discovery ... more Feature selection is a crucial problem need to be effectively solved in knowledge discovery in databases because of two basic reasons: to minimize cost and to accurately classify data. Feature selection using rough set theory also called attribute reduction have attracted much attention from researchers and many results are gained. However, attribute reduction in dynamic databases is still in the first stage. This paper focus on develop incremental methods and algorithms to derive reducts hiring a distance measure when adding, deleting or updating objects. Since not re-implement the algorithms on the varied universal set, our algorithms significantly reduce the complexity of implementation time.
Tolerance rough set model is an effective tool for attribute reduction in incomplete decision tab... more Tolerance rough set model is an effective tool for attribute reduction in incomplete decision tables. In recent years, some incremental algorithms have been proposed to find reduct of dynamic incomplete decision tables in order to reduce computation time. However, they are classical filter algorithms, in which the classification accuracy of decision tables is computed after obtaining reduct. Therefore, the obtained reducts of these algorithms are not optimal on cardinality of reduct and classification accuracy. In this paper, we propose the incremental filter-wrapper algorithm IDS_IFW_AO to find one reduct of an incomplete desision table in case of adding multiple objects. The experimental results on some sample datasets show that the proposed filter-wrapper algorithm IDS_IFW_AO is more effective than the filter algorithm IARM-I [17] on classification accuracy and cardinality of reduct
In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information gr... more In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information granules and fuzzy information granularity is used to measure the granulation degree of a fuzzy granular structure. In general, the fuzzy information granularity characterizes discernibility ability among fuzzy information granules in a fuzzy granular structure. In recent years, researchers have proposed some concepts of fuzzy information granularity based on partial order relations. However, the existing forms of fuzzy information granularity have some limitations when evaluating the fineness/coarseness between two fuzzy granular structures. In this paper, we propose an extension of fuzzy information granularity based on a fuzzy distance measure. We prove theoretically and experimentally that the proposed fuzzy information granularity is the best one to distinguish fuzzy granular structures.
In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information gr... more In fuzzy granular computing, a fuzzy granular structure is the collection of fuzzy information granules and fuzzy information granularity is used to measure the granulation degree of a fuzzy granular structure. In general, the fuzzy information granularity characterizes discernibility ability among fuzzy information granules in a fuzzy granular structure. In recent years, researchers have proposed some concepts of fuzzy information granularity based on partial order relations. However, the existing forms of fuzzy information granularity have some limitations when evaluating the fineness/coarseness between two fuzzy granular structures. In this paper, we propose an extension of fuzzy information granularity based on a fuzzy distance measure. We prove theoretically and experimentally that the proposed fuzzy information granularity is the best one to distinguish fuzzy granular structures. ACM Computing Classification System (1998): I.5.2, I.2.6.
Uploads
Papers by Nguyen Giang