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Abstract. A number of non-parametrically represented High Angular
Resolution Diffusion Imaging (HARDI) spherical diffusion functions have
been proposed to infer more and more accurately the heterogeneous and
complex tissue microarchitecture of the cerebral white-matter. These
spherical functions overcome the limitation of Diffusion Tensor Imag-
ing (DTI) at discerning crossing, merging and fanning axonal fiber bun-
dle configurations inside a voxel. Tractography graphically reconstructs
the axonal connectivity of the cerebral white-matter in vivo and non-

invasively, by integrating along the direction indicated by the local ge-
ometry of the spherical diffusion functions. Tractography is acutely sen-
sitive to the local geometry and its correct estimation. In this paper
we first propose a polynomial approach for analytically bracketing and
numerically refining with high precision all the maxima, or fiber direc-
tions, of any spherical diffusion function represented non-parametrically.
This permits an accurate inference of the fiber layout from the spherical
diffusion function. Then we propose an extension of the deterministic
Streamline tractography to HARDI diffusion functions that clearly dis-
cern fiber crossings. We also extend the Tensorline algorithm to these
HARDI functions, to improve on the extended Streamline tractography.
We illustrate our proposed methods using the Solid Angle diffusion Ori-
entation Distribution Function (ODF-SA). We present results on multi-
tensor synthetic data, and real in vivo data of the cerebral white-matter
that show markedly improved tractography results.

1 Introduction

Diffusion MRI (dMRI) is a state-of-the-art method for studying the complex
micro-architecture of the cerebral white matter in vivo and non-invasively. dMRI
is sensitive to and measures the diffusion of water molecules. The complex ge-
ometry of the underlying tissue can be inferred by fundamentally assuming that
the diffusion of water molecules is relatively less hindered parallel to coherent
microstructures, such as axonal fiber bundles, than perpendicular to these struc-
tures. Hence the geometry or shape of the reconstructed diffusion function is an
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indicator of the microarchitecture of the tissue. The orientation information,
which indicates axon fiber bundle directions, is of greater importance than the
radial part, therefore, naturally the diffusion function is represented as a spher-
ical function. However, it is well known that the current spatial resolution of
dMRI at typically 2 mm3 [9] is coarse compared to the true scale of an axon,
which is of the order of 1 µm. Therefore, the spherical diffusion function (SDF)
represents at best the average or dominant fiber direction of the underlying tissue
locally, and is affected by partial voluming effects.

Diffusion Tensor Imaging (DTI) [4] is the most popular and well-utilized
dMRI reconstruction protocol. DTI is known to work well in regions with a single
fiber configuration, but to become ambiguous in regions where fiber bundles
cross, merge, fan or kiss. Since about a third of dMRI voxels contain such complex
fiber configurations [6], SDFs with richer geometries and multiple peaks capable
of discerning crossings, have been of central importance in recent dMRI research.
Diffusion acquisition protocols have also evolved to overcome this limitation of
DTI with High Angular Resolution Diffusion Imaging (HARDI). A number of
non-parametrically represented HARDI SDFs have been recently proposed that
can indicate fiber crossings. e.g. the Orientation Distribution Function (ODF)
[18], the Fiber Orientation Density (FOD) [17], the Persistent Angular Structure
(PAS) [2], and the Diffusion Orientation Transform (DOT) [16].

Tractography graphically reconstructs the connectivity of the cerebral white-
matter by integrating along the SDF’s geometry locally. It is a modern tool that
is unique in the sense that it permits an indirect dissection visualization of
the brain in vivo and non-invasively [8]. The underpinnings of tractography are
also based on the fundamental assumption of dMRI, i.e. that the diffusion of
water molecules is hindered to a greater extent perpendicular to coherent fiber
bundle structures than parallel to these. Therefore, following the geometry of the
local diffusion function and integrating along reveals the continuous dominant
structure of the fiber bundle. However, tractography is acutely sensitive to the
local geometry, and its correct estimation is crucial.

Deterministic tractography has seen considerable success in researching neu-
rological disorders [9]. Classically it was defined on DTI [5, 21]. However, since
DTI is ambiguous in regions with fiber crossings, the trend in recent years has
been to extend tractography to complex SDFs that describe fiber directions more
accurately [20, 12]. Probabilistic tractography was proposed to address the re-
liability of deterministic tractography which remains sensitive to a number of
parameters. Probabilistic tractography measures the likelihood of two regions
being connected. Given the capabilities of dMRI schemes of date, due to par-
tial voluming, noise, etc., probabilistic tractography provides a more complete
statement. However, there exist state-of-the-art probabilistic schemes that rely
on deterministic tracking to compute likelihood measures [14]. Therefore, deter-
ministic tractography is an important problem.

In this paper we propose a deterministic tractography scheme based on a
polynomial approach for accurately extracting the maxima of any non-parametrically
represented SDF. Our paper has two main contributions. First, the polynomial



maxima extraction we use can analytically bracket all the maxima of any spher-
ical (diffusion) function (SDF). This is neither a heuristic approach, like a finite
difference mesh search, nor a local search approach, like optimization. It guaran-
tees that all the maxima are located analytically, and then refined numerically
to any degree of precision based on known numerical schemes. This ensures that
given a SDF we can accurately quantify its local geometry for tracking, and that
no maxima are overlooked. Computationally, we find in our experiments that
the tracking time using our approach is comparable to the discrete mesh search
proposed in [12]. Our maxima extraction can be considered the limiting case of
the mesh search in [12] with a complete mathematical framework like in an op-
timization approach. Essentially it operates on the continuous SDF and locates
all its extrema, i.e. ∇(SDF) = 0, while not being dependent on initialization.

The second contribution of our paper is in our extension of the classical
DTI Streamline tractography [5]. We adapt the Streamline tractography to the
multiple maxima that can be discerned by complex SDFs in regions with fiber
crossings, allowing us to trace through such regions with greater accuracy. We
also extend the well known Tensorline tractography [21] to complex SDFs, to
smooth out local kinks that can make the fiber tracks unnaturally “wriggly”
in plain Streamline tractography due to acquisition noise and partial voluming
which make the estimated SDF field spatially irregular. This is important, since
kinks can violate the curvature threshold and stop the tracking algorithm.

We illustrate our method using Solid Angle diffusion ODFs (ODF-SA) [1].
The ODF-SA is a non-parametric SDF represented in the Spherical Harmonic
(SH) basis and is a good generic SDF for applying our maxima extraction
method. We first experiment on synthetic data generated from a multi-tensor
model, then on in vivo human cerebral data [3] where we show marked improve-
ments in detecting lateral radiations of the Corpus Callosum using our modified
Tensorline tractography.

2 Materials and Methods

We first describe in detail our polynomial maxima extraction method. Then
we describe the extensions of the Streamline and the Tensorline algorithms to
complex SDFs.
Maxima Extraction: A Polynomial Approach The SDF of DTI is the
diffusion ellipsoid parametrized by the 3×3 symmetric tensor. Its geometry can
be easily quantified from the eigen-decomposition of the tensor, e.g. the major
eigenvector indicates the locally dominant fiber direction. However, quantify-
ing the geometry of more complex SDFs with multiple peaks isn’t evident. We
propose here a polynomial framework for extracting the maxima of such SDFs.

Our approach can be broken down into three steps. First, we rewrite a non-
parametric SDF described in the SH basis, which is the most popular basis used
in the dMRI, in an equivalent homogeneous polynomial basis constrained to the
sphere. Second, we formulate a constrained polynomial optimization problem
for identifying all the stationary points or extrema of the SDF. We then solve it



using a novel polynomial system solver instead of a local optimization approach.
We can do so since the optimization problem can be shown to be a root finding
problem for a system of homogeneous polynomials. This approach allows us to
analytically bracket all the real roots of the polynomial system without depend-
ing on an initial solution. We refine the roots numerically to a high precision
to accurately quantify all the extrema of the SDF. Finally in the third step, we
categorize the extrema into maxima, minima and saddle-points of the SDF and
thus extract all the maxima of the SDF.

The SH basis is an ideal formulation for describing spherical functions, e.g.
SDFs with rich geometries, non parametrically, since they form a complex com-
plete orthonormal basis for square integrable functions on the unit sphere. A
modified, real, and symmetric SH basis is popularly used in dMRI to describe
SDFs [11], since the diffusion function is real and assumed to be symmetric:

Yj(θ, φ) =







√

(2)·Re(Y
|m|
l (θ, φ)) if m < 0

Y m
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(2)· Im(Y m
l (θ, φ)) if m > 0

, (1)

where j = (l2 + l + 2)/2 + m, θ ∈ [0, π], φ ∈ [0, 2π), and Y m
l (θ, φ) are the SHs.

The space of truncated SHs of rank-d is linearly bijective to the space of
homogeneous polynomials (HP) of degree-d constrained to the sphere [10]. If a
spherical function is described by a HP: P(x = [x1, x2, x3]

T ) =
∑

i1+i2+i3=d

Ai1i2i3x
i1
1 xi2

2 xi3
3 , where (||x||2 = 1) or xi = xi(θ, φ), i = 1..3, then the SH coef-

ficients of this spherical function can be computed from the spherical harmonic
transform (SHT):

cj =
∑

i1+i2+i3=d

Ai1i2i3

∫

Ω

xi1
1 (θ, φ)xi2

2 (θ, φ)xi3
3 (θ, φ)·Yj(θ, φ)dΩ. (2)

Since the coefficients Ai1i2i3 of the HP are outside the integration in the SHT
Eq.2 can be rewritten as a linear transformation C = MA by reordering the
indices i1, i2, i3 suitably, where C are the coefficients in the SH basis, A the
coefficients in the HP basis, and M is the transformation matrix. When C and
A have the same dimension, M becomes an invertible square matrix, and A can
be computed from C. In other words a SDF described in a truncated SH basis
of rank-d can be equivalently rewritten in a constrained HP basis of degree-d.

Finding the maxima of the SDF can be formulated as a constrained op-
timization (maximization) problem: maxx P(x) subject to ‖x‖2

2 − 1 = 0. Us-
ing Lagrange Multipliers, it can be rewritten as an unconstrained functional:
F(x, λ) = P(x) − λ (‖x‖2

2 − 1). From optimization theory, the maxima x∗ (and
its corresponding λ∗) of the SDF would have to satisfy ∇F(x∗, λ∗) = 0:

∂F(x∗, λ∗)

∂x1
=

∂F(x∗, λ∗)

∂x2
=

∂F(x∗, λ∗)

∂x3
= ‖x∗‖2

2 − 1 = 0. (3)

Eq.3 is a system of HPs, {Qk(X)}, and implies that X∗ = (x∗, λ∗) would be a
root of this system. Since the SDF is a real function, only the real roots of this



system are of interest. However, ∇F(x̃, λ̃) = 0 identifies all the stationary points
or extrema of the SDF. Therefore, once the real roots of the SDF are identified,
they would have to be categorized into the maxima, minima, and saddle-points.

To find the real roots of Eq.3 we use the subdivision solver for polynomial
systems proposed in [15]. The solver works as follows. The polynomials are con-
verted from the monomial basis to the Bernstein basis, since the latter has
intuitive geometric interpretations:

Q(X) =

d1
∑

i1=0

d2
∑

i2=0

d3
∑

i3=0

d4
∑

i4=0

Bi1,i2,i3,i4 Bi1
d1

(x1; a1, b1)B
i2
d2
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d3
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i4
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where Bi
d(x; a, b) =

(

d
i

)

1
(b−a)d (x−a)i(b−x)d−i form the Bernstein basis on [a, b]

along any dimension, and the domain of Q(X) is [a1, b1] × [a2, b2] × [a3, b3] ×
[a4, b4]. Since the SDF is defined on the unit sphere, the initial domain of all
the Q(X)’s can be [−1, 1] × [−1, 1] × [−1, 1] × [−K, K], for very large K. The
coefficients are converted to the Bernstein basis using exact arithmetic to avoid
loss of precision. This operation is required once.

Along every dimension, De Casteljau’s algorithm efficiently subdivides the
Bernstein representation of any Q(X) into two sub-representations in two sub-
domains of the initial domain. This allows to subdivide the entire domain into
sub-domains efficiently by subdividing along all four dimensions to locate the
roots. Moreover, along every dimension Descartes’ theorem states that the num-

ber of real roots of q(x) =
∑

biB
i
d(x; a, b) in ]a, b[ is bounded by the number

of sign changes of {bi} and is equal modulo 2, where q(x) is the projection of
Q(x) along that dimension. This implies an exclusion test that is negative when
there are no real roots in the interval and is positive when there are one or more
real roots in the interval. Therefore, making it possible to analytically identify
and subdivide intervals along every dimension to bracket the real roots. Once
a root has been bracketed or isolated any standard numerical one dimensional
root-finder of choice can be used to refine the real root with high precision.

From the Bernstein coefficients in Eq.4 it is easy to sandwich the projection

q(x) of Q(X) along any dimension j by mj(q;xj) =
∑dj

ij
min(0≤ik≤dk,k 6=j)Bi1,i2,i3,i4

B
ij

dj
(xj ; aj , bj) and by Mj(q;xj) =

∑dj

ij
max(0≤ik≤dk,k 6=j)Bi1,i2,i3,i4B

ij

dj
(xj ; aj , bj),

such that the roots of q(xj) (along dimension j) are sandwiched by the roots of
mj and Mj [15]. Thus if mj and Mj don’t have any roots in an interval [aj , bj ],
as indicated by Descartes’ theorem applied to mj and Mj , then q(xj) has no
root in that interval, as implied by the exclusion test. Furthermore, if any of
the projections qk(xj) of the system of polynomials Qk(X) has no roots in the
interval [aj , bj ], then the system Qk(X) has no real roots in the sub-domain
overlapping this interval, and the sub-domain can be discarded.

The powerful exclusion test allows to analytically subdivide and reject sub-
domains of the initial domain in such a fashion that the rejected sub-domains are
guaranteed to not contain any real roots of Eq.3. Once the intervals that were not



rejected along every dimension are small enough, they are numerically refined to
locate the roots along those dimensions in those intervals. However, theoretically,
these roots (along given dimensions) are only roots of the projections qk(xj)

and may not be a root X̃ of Qk(X). An additionally test would be required to
reject solutions to the above subdivision process that may not be real roots of
the polynomial system. In practice, however, we have never come across such
solutions, but simply testing for ∇F(X̃) = 0 would provide such a test.

Once all the extrema of the SDF have been quantified precisely, these would
have to be categorized into maxima, minima and saddle-points to identify the
maxima of the SDF. We use the Bordered Hessian test [13] to do this. In uncon-
strained multi-dimensional optimization the extremum, x̃, can be categorized
by evaluating the Hessian, HxF(x̃). If HxF(x̃) is positive definite, then x̃ is a
local minimum, if HxF(x̃) is negative definite, then x̃ is a local maximum, and
if HxF(x̃) has eigenvalues with mixed signs, then x̃ is a saddle-point.

In constrained optimization, which is our case, the Hessian test is extended
to the Bordered Hessian test to account for the constraints – the Hessian has to
be positive/negative definite at x̃, while the gradient of the constraints has to
be zero (at x̃), for x̃ to be a minimum/maximum [13]. Given an n dimensional
functional P(x) to be maximized, subject to a set of m constraints g(x), the
Bordered Hessian of the corresponding Lagrangian functional F(x,λ) = P(x) +
λ

T g(x), is defined as:

HF(x,λ) =

[

0m×m ∇g(x)m×n

∇g(x)T
n×m HxF(x,λ)n×n

]

(m+n)×(m+n)

, (5)

where the Hessian of the Lagrangian functional is bordered by the Jacobian of the
constraints ∇g(x), and padded by a corner-block of zeros. In our case n = 3 and
m = 1, therefore, the Bordered Hessian is a 4× 4 matrix. The Bordered Hessian
is rank deficient and cannot satisfy the definiteness conditions of the Hessian
test. However, an extremum, X̃ = (x̃, λ̃), of the constrained optimization can be
categorized using the following alternating sign tests:

(−1)m|HrF(X̃)| > 0 strict minimum,

(−1)r|HrF(X̃)| > 0 strict maximum, (6)

r = m + 1, ..., n,

where : HrF =

[

0m×m ∇gm×r

∇gT
r×m HxFr×r

]

(m+r)×(m+r)

, (7)

where ∇gm×r denotes the first r columns of the Jacobian ∇g(x) and HxFr×r

denotes the principal r × r sub-matrix of the Hessian HxFn×n. There are other
ways of categorizing the extremum X̃ into a maximum, or a minimum, e.g. using
differential geometry as proposed in [7].
Tractography The continuous version of Streamline tractography [5] defined
for DTI, considers a fiber tract as a 3D space curve parametrized by its arc-
length, r(s), and describes it by its Frenet equation:

dr(s)

ds
= t(s) = ǫ1(r(s)), r(0) = r0 (8)



where t(s) the tangent vector to r(s) at s is equal to the unit major eigenvector
ǫ1(r(s)) of the diffusion tensor at r(s). This implies that fiber tracts are locally
tangent to the major eigenvector of the diffusion tensor.

Integrating Eq.8 requires two things – first, a spatially continuous tensor
(or SDF) field, and second, a numerical integration scheme. [5] proposed two
approaches for estimating a spatially continuous tensor field from a discrete DTI
tensor field, namely approximation and interpolation. They also proposed the
Euler’s method, the 2nd order Runge-Kutta method, and the adaptive 4th order
Runge Kutta method as numerical integration schemes. Finally, for stopping
they proposed four criteria – the tracts are within the image volume, the tracts
are in regions with FA value higher than a threshold, the curvature of a tract
is smaller than a threshold, and that a tract is better aligned with the major
eigenvector in the next spatial location than any of the two other eigenvectors.

We adapt this tractography algorithm to SDFs with multiple maxima by
modifying Eq.8 to:

dr(s)

ds
= ηθmin

(r(s)), r(0) = ηmax(0) (9)

where ηi(r(s)) are all the unit maxima vectors of the SDF extracted by our
method at r(s), ηmax is the unit maximum vector whose function value is the
largest amongst all the ηi, and ηθmin

is the unit maximum vector in the current
step that is most collinear to the unit maximum vector followed by the integra-
tion in the previous step. Eq.9 and the initial condition state that at the starting
point we begin integrating along the dominant maximum direction, and at each
consecutive step we first extract all the maxima of the SDFs and choose the
maximum direction most collinear to the maximum direction from the previous
integration step, to move forward in the integration.

Since we require a continuous field of SDFs for integrating Eq.9, we consider
the Euclidean interpolation of the SDFs, which is equivalent to the L2-norm
interpolation of the SDFs, since the SHs form an orthonormal basis [12]. For the
numerical integration scheme we employ the 2nd order Runge-Kutta method
due to its robustness and simplicity with an integration step of length 0.5mm.

For stopping we only use two criteria – the tracts are within the image volume,
and tracts aren’t allowed to have high curvatures, or the radius of curvature of
tracts should be smaller than 0.87mm. Currently we don’t employ any stopping
criteria based on anisotropy indices because indices such as GFA for complex
SDFs show similar contrasts to FA, and therefore have low values in regions with
fiber crossings.

Since Streamline tractography traces fibers that are always tangent to the
maxima of the local SDF, these fibers can be unnaturally “wriggly”. Due to
acquisition noise the estimated discrete SDF field is generally spatially irregular.
Thus closely following the local maximum can cause the fiber to wriggle. This
effect can be important enough to violate the curvature criterion and cause the
tracking algorithm to abort. Furthermore, partial voluming effects can also cause
certain SDFs to lack maxima along the fiber direction, especially in voxels with
fiber crossings, even when neighbouring SDFs may have maxima well aligned



with the fiber direction. This can cause the tracking algorithm to suddenly de-
viate to another fiber track, violating again the curvature criterion.

DTI Tensorline tractography was proposed to specifically address these issues
[21]. ǫ1 in Eq.8 was replaced by:

vout = fǫ1 + (1 − f)((1 − g)vin + gD·vin), (10)

where f, g are user defined weights, vin,vout are the incoming and outgoing tan-
gents respectively, D is the local diffusion tensor with ǫ1 its unit major eigen-
vector, and D·vin is the tensor deflection (TEND) term. This smooths away
unnatural kinks, and also helps to plough through regions with uncertainty,
where D is oblate or spherical.

With general SDFs, D doesn’t exist, but the SDFs have more complex ge-
ometries that are meant to better resolve the angular uncertainties in regions
with crossings, implying that the TEND term can be ignored. Therefore, we
adapt the Tensorline tractography to general SDFs with multiple maxima by
replacing ηθmin

in Eq.9 by:

vout = fηθmin
+ (1 − f)vin, (11)

with f a user defined weight, and with vin,vout as defined above. vin acts like
an inertial factor to maintain the fiber’s general trend, and Eq.11 smooths away
kinks and helps to navigate regions with SDFs affected by partial voluming.

Thus we have proposed a polynomial based maxima extraction method to
correctly extract all the maxima of any SDF described non-parametrically in the
SH basis. And we have extended the deterministic Streamline and Tensorline
tractography methods to deal with the multiple maxima discerned by complex
SDFs in regions with fiber crossings, to be able to track fibers more accurately
through such regions.

3 Experiments

We illustrate our approach on ODF-SAs which are the orientation marginal dis-
tribution of the diffusion probability density function Ψ(θ, φ) =

∫ ∞

0
P (r, θ, φ)r2dr

[1]. They are SDFs with multiple peaks aligned along directions with high prob-
ability of diffusion of water molecules, i.e. fiber directions, and can discern cross-
ing fiber configurations. ODF-SAs are a good example of non-parametrically
represented SDFs described in the real and symmetric SH basis. From the Diffu-
sion Weighted Images (DWIs), we estimated rank-4 ODF-SAs and then tracked
fibers from specific seed regions using our proposed maxima extraction method
and extensions of deterministic Streamline and Tensorline tractographies. We
experimented on a synthetic dataset, and on an in vivo human cerebral dataset.

Synthetic Dataset: To conduct controlled experiments with known ground
truths, we used a multi-tensor approach parametrized by a diagonal tensor D =
[1700, 300, 300] × 10−6mm2/s to generate synthetic DWIs [12]. The DWIs were
generated along 81 directions for a b-value of 3000s/mm2. The synthetic data



was used to first validate our maxima extraction method with voxels with 2, and
3 fibers crossing. It was then used to generate a synthetic image of overlapping
fiber bundles to validate fiber tracking using DTI tracking and ODF-SA tracking.

In vivo Human Cerebral Dataset: The in vivo human cerebral data was ac-
quired with 60 encoding gradient directions, a b-value of 1000s/mm2, twice-
refocused spin-echo EPI sequence, with TE = 100 ms, and TR = 12ms. It has
isotropic voxels of 1.7mm x 1.7mm x 1.7mm, with three repetitions, and was
corrected for subject motion. It was acquired on a whole-body 3T Siemens Trio
scanner [3]. This dataset was used to compare DTI tractography and ODF-
SA tractography. We tracked specifically from seeds with the Corpus Callosum
(CC). It is well known that due to the important crossings between the lat-
eral radiations of the CC and Pyramidal Tract (PT) it is difficult to track the
lateral radiations of the CC. We used the ODF-SA and our modified tracking
algorithms to specifically recover these lateral radiations of the CC [19]. We also
tracked the PT and the Superior Longitudinal Fasciculus (SLF) which crosses
the lateral radiations of the CC and the PT to validate our tracking method in
regions where all 3 fiber bundles cross.

4 Results

Figure-1 shows the results on the synthetic multitensor data test. In Fig-1a and
Fig-1b we present the results of our maxima extraction. These voxels represent
2 and 3 fiber-crossings. All the extrema were extracted and categorized: maxima
in thick yellow, minima in green, and saddle-points in thin blue. In the case of
the 2 fiber configuration, even the unimportant maxima along the z-axis was
correctly detected.

Figure-1c,d,e, present a synthetic dataset image with 2 fiber bundles crossing.
Fig-1c shows the estimated ODF-SAs with the seed region highlighted in grey
in the background. Fig-1d is the result of DTI Tensorline tracking with f = 0.3
and g = 0 (Eq.10). These weights imply that the TEND term was ignored and
only the inertia term vin played a role. These weights were chosen to make
the DTI Tensorline tracking comparable to the ODF-SA Tensorline tracking.
The ODF-SA Tensorline tracking with f = 0.3 (Eq.11) is visible in Fig-1e. A
closer inspection at the junction areas clearly indicate that DTI tracking has no
crossings, and the fibers bend to accommodate for partial voluming, whereas in
ODF-SA tracking the fibers cross each other as expected.

We also compared the computation time of our maxima extraction method
to that of the discrete mesh search method proposed in [12], where a 16th order
icosahedral tessellation of the sphere with 1281 samples of the SDF on a hemi-
sphere was used. Comparing neighbouring directions in this tessellation revealed
an angular resolution limit of ∼ 4o. Our maxima extraction can be considered
as the limiting case of the discrete mesh search approach. Choosing the ODF-
SA Tensorline algorithm and only changing the maxima extraction method, we
found the computation times to be highly comparable. Our method clocked
17mins 34secs while the discrete mesh search registered 15mins 45secs.



Results of the in vivo human cerebral dataset are presented in Figure-2. Nei-
ther the estimated DTI field nor the ODF-SA field were regularized prior to
tracking. Tracking was seeded in regions of the CC. It is well known that fibers
radiating laterally from the CC cross the PT [19], and are hard to track. This
is clearly seen in Fig-2a which presents the DTI Streamline tractography result.
This is improved by using DTI Tensorline tractography (parameters as above),
as seen in Fig-2b. However, only a select few lateral radiations are found. A
much richer distribution of fibers from the CC are tracked using the ODF-SA
Tensorline tractography (parameters as above), as seen in Fig-2c. Fig-2d high-
lights ODF-SA Tensorline tractography by presenting fibers from three bundles
that are known to cross. In red is the CC (left-right), in blue is the PT (superio-
inferior), and in green is the SLF (anterio-posterior). The close up in Fig-2e
clearly shows fibers traced through a region where all three bundles cross.

5 Conclusion

In this paper, we first proposed a polynomial based approach for correctly ex-
tracting the maxima of any non-parametrically represented SDF in the SH basis.
Recently a number of such HARDI SDFs have been proposed to infer accu-
rately the micro-architecture of the underlying cerebral tissue. We illustrated
our method on the ODF-SA. Our approach guarantees to analytically bracket
all the maxima, and to numerically refine them to any precision, to accurately
quantify the SDF’s geometry. It can be seen as the limiting case of a discrete
mesh search, with the complete mathematical framework of optimization. How-
ever, it differs from optimization since it’s not a local search and isn’t dependent
on an initial solution. Further, all the maxima are found together.

Maxima extraction is sensitive to both the estimation of the SDFs, which
can be affected by signal noise, and the localization of the SDFs’ maxima after
estimation, which can be affected by the maxima extraction process. Our method
is independent of the SDFs’ estimation process – it computes on the SDFs’ SH
coefficients after these have been estimated from the signal and provides an error
free localization of the correct maxima. However, when the SDFs estimation isn’t
robust, the maxima can be affected by signal noise.

As an application of our maxima extraction method, we also proposed an ex-
tension of the DTI Streamline and Tensorline algorithms. We tested on synthetic
and in vivo human cerebral datasets. Using the ODF-SA Tensorline algorithms,
we showed that we were able to dramatically improve deterministic tractography
results. We were able to recover a rich distribution of the lateral radiations of the
CC [19], which are hard to track since they cross the PT. Further, by tracking
from seeds in the CC, PT, and SLF, we were able to correctly trace through
regions where all three fiber bundles cross.
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