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Abassract

A generalization of the classical mechanics is presen=
ted. The dynamical variables kfunctions—on—ths phmse space)
are assumed to be :lements of an algebra with anticommuting
generators (the Grassmann algebra). The action functional
and the Poisson brackets are defined. The equations of motion
are deduced from the variational principle. The dymamics is
described also by means of the Liouville equation for the
phase-space distribution. The canonical quantization leads

Vo the Ferui (anticommutator) commutation relations. The
phase.space path integral approach to the guantum theory is
also formulated. The theory is applied to describe the par-
ticle spin..:‘_\I; the nonz;ulativiseic case, the elesments of the
phage-space anticommuting three-vectors 5 » transtor-
med to the Pauld matrices after the guantization: i ‘
= (% 72)V/2 6" WClassical description of the spin preces-
sion and of the spin-orbital forces is given.-To introduce
the relativistic spin in an lavariant ma.nngr/Ze needs a fi-
ve~-dimensional phase space (a fog—mtoi'/plua a scalar).
vThe Lagrangian is singular and ﬁhere is a constraint, resul-
ting from a "supersymmetry". The quantized phase-space ele-
ments are proportional to the Dirac matrices ﬁ and ); '
: while the comstraint is transformed to the Dirac equation.
e The phase-space distribution and the interaction iith an ex-

ternal field are also comnsidered.
© v, 1976
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I. IFTRODUCTION

1.1 FPhysical Background

During the past few years a not so familiar concept has
emerged in high-energy physics, that of "anticommuting c-pum-
bers". The formalism of the Grassmamm algebra is well known
to mathematicians and used for a long time. The amnalysis on
the Grassmann algebra was developped and exploited in a sys-
tematic way in applying the generating functional method to
the theory of secomnd quantization [1] o This method was also
used for the theory of fermion fields in a textbook by Rze-
wuski [ 2] . Seemingly, the first physical work dealing with
she anticommuting numbers in connec*ion with fer ions was
shat by Matthews and Salam [ 3] . The anticommuting c-numbers
and the "Lie algebra with anticommutators” (i.e. the Z,-gra-
ded Lie algebra) were the tools applied by Gervais and Saki-
ta [ 4] to the dual theory. These authors invented the two-di-
mentional field-theoretical approach to the fermionic dual
models (those proposed by Ramond and Nevest-Schwartz) and used
the symmetry under the transformation with anticommuting para-
meters ("supergauge"™ transformations) to prove the no-ghost

r.corem. Naturally, a.nticommt_ing classical fields are necessa-
>~ to construct the string picture of the fermionic dual mo-
dels; a highly shiliful approach to this problem is presented
by Iwaseki and Kikkawa[B] - Interest to the concept in view
was greatly increased by exciting new results obtained in
1974, elaborating the four-dimensional supersymmetry, disco-
vered previously by Golfand apnd Lichtman [6_] » and the forma-
lism of superspace (see e.g. the review report by Zumino [ ?],



where references to basic works on the subject may be found).
We present here an application of the analysis on Grass~
mann algebra to such a respectable problem as the Hamiltom
dynamics of a classical spinning particle. Borh nonrelativis-
tic and relativistic situations are comsiqered. The first at-
tempt to treat the classical -elativistic top dates as early
as 1926 and is du to Frenkel [8,?] « & review of subsequent
workx along this line is given by Barut [1Q] . However, the
problem seems to be far from its exhaustive solution in terms
of the conventional approach. An evidence to that is the pa-
per by Hanson and Regge [11] s where one may find a number of
furtper references., Our approach is essentially different as
it uses the Grassmann algebra to describe the spin degrees of
freedom. Apart from the concrete paysical ayplication to spin
dynamics the present theory may be of some interest as an exam-
ple of a generalized Hahiltonvdynamics with the appropriate

quantization schene.

1.2. Mathematical Background

To define the classical mechanics in an abstract way
one needs three basic objects. 1) A differentiable manyfold
M, called the phase space. Local coordinates Jfk may be
introduced in the manyfold M. Ir principle, no global coordi-
nates mey exist, and even theydo, there may be no reasonsble
definition of the canonical coordinate-momentum pairs.

2) The algebra %A(M) of complex-valued differentiable fun-
ctions on M defined in terms of the usual sum and product ope-

rations ,

\



3) A 1de algedbra of the Poisson brackets in H(M), gi-
ven by means of a skew-symmetric tensor field wu (x)
(sum over repeated indeces is .implied):

{‘f’g}p‘s_ = “)ke(")%i %,%e

(1.1)

for any £(x) and %(x) belonging to #(M). The field qd_(x)

satisfies the condition

W —_— 45&
A < A?é b.)l .-ﬂ (1.2)

which is equivalent to the Jacobi identity. Fhysical obser-
vables are real elements of (M), D namics is a ontinuous
one-parameter isomorphism group on¥(K), determined by a Ha-

nilton function i-I(x) by means of the equation

jj { f}pa (1.3

for any element f£(x), where the "time" t 1is the parameter
of the group.

A way o generalize the concept of the classical mecha—
r“¢s is o abandon the manifold M, the "material basis" of
“..¢ mechanics, retaining only the algebraic construction:
ring and Lie algebra. The Grassmann variant is a simple exam-
ple of such an "idesl mechanics", for which the multiplica-
tion in the algebra is not commutative. The generalization is
rather straight-forward, because though the elements of the
Grassmenn algebra are not just functions, there are for them
meaningful analogues of such concepts of the conventional ana-

lysis as the differentiation, the integration, and the Lie

groups, as introduced in the work [ '12] (see also the review

7.



article [13] ).

To qpantizé an ideal mechanics is to construct an as-
sociative algebra of operators in the Hilbert space, éela-
ted to the classical algebra and having some general proper-
ties, discussed in paper [2?J y which may be formulated in
a purely algebraic way independently on the existence of a
material phase sp~ce. One may see that in the Grassmann ca-
se with the "flat"™ Poisson brackets ( aokl is a constant
matrix) the operator algebra has a finite-dimensional repre-

sentation.

1«3. Results and Discussion

The basic idea of the present approach is to consider
elenenss of a Grassmann algebra as classical dynamical varia-
bles, i.e. functions of the phase space. The action functio=-
nal, the Hamiltonian aﬁd the Poisson brackets, as well as so-
me other concepts oi the classical mechanics. are defined.
The receipt of guantization is to substitute the Poisson
bracket for the canonical variables by the anticommutator of
the corresponding operators (as usual, devided by -;1&).80
afver the quantization the Grassmann algebra generates the
Clifford algebra.

The Grassmann algebra with three generators, transfor-
wed as components of a three-~vector under space rotations,
gives rise to the ponrelativistic spin dynamics. Quantized
caponical variables are represented by the Pauli matrices.
The Grassmann algebra with five generators, an axial vector
and a pseudoscalar, is necessary for description of the re-
lativistic spin. Quantized variables are expressed in terms

of cthe Dirac matrices. In the relativistic case the systenm,



deacribing a particle, is constrained in the spin phase spa-
ce, as well as in the orbital phase space. The spin const-
raint is Jjust the Dirac equation. Thus after quantization
the present scheme reproduces the well known Panli-Dirac
theory of the spinning electron. 4 brief account of our re-
sults was published previously [14] N

The quantal action for anticommuting canonical variab-
les was written first by Scawinger [15] » Who named them va-
riables of the second kind. However, the classical mechanics
and the theory of a relativistic spinning particle was not
considered by Schwinger; this author had in mind the quanti-
zed electron fields necessary for his formulation of the
quantum electrodynamics. No clear s+atement that She classi-
cal variables not only anticommute, but have also zero squ-
are, may be found in the work by Schwinger. He dso argued
that the number of the second-kind variables must be even
(note, that in our comstruction the phase space is odd-dimen-
sional), so that complex-conjugated coordinate-momentum pairs
may be defined. No particular mechanical system was discussed
by Schwinger. Perhaps our theory is useful as a simple exam-
ple to Schwinger's variational formulation of the quantum
field theory *) « The idea to consider the generalization of
;. classical mechanics on a ring with arbitrary generators
was suggested by Martin [16J , who also presented a nonrela-
tivistic tor as example of mechanics on a ring with anticom-
muting generators. Unfortunately, we were not aware of this
interesting work in time of our first publication [ 14] and
did not mentioned it. The progress of the theory of supersyam-

metry provoked an interest to the classical mechanics in the

*) A Lasrangian formalism for spin variables, extending
Schwinger's variational principle, was coamstructed by

Volkov and Peletminsky [52] .

——



superspace, in other words, to the theory of diffeomorphism
groupa on tae Grassmann algebras; an evidence to that is a
note by Dewits[ 17] .

In Section II, the nonrelativistic spinning particle is
considered. The classical action princip'e is formulated.
The phase~space dynamics based on the Liouville equation is
developed. The canonical quantization is discussed in general
and reconstruction of the conventional formalisw is shown.
The pathintegral in the Grassmann phase space is defined;
the quantal Green's function for precession of spin in a
constant field is cualculated by this method. The theory of
a relativistic spinning particle is presented in Section III.
It is snown thnat in the invariant description of a free par-
ticle there are two syumetries, "gauge" and "supergauge". The
quantization is done and the Dirac equation is deduced. The
case or external field is also considered and the Bargmann-
-wichel~Teleygdi equation is obtained in the classical mecha-
nics. Some necessary results, publisned previously, are pre-
sented in the rost appropriate form in Appendices. Results
or the Grassmann algebra are compiled in Appendix A. Phase-
space represenvation of quantal operators and the phase-spa-
ce path integral for Green's function in case of the conven-

tional cheory are considered in Appendices B and C.
II. NONRELATIVISTIC SPIN DYRAMICS

2+1. GClassical Action Principle and zquations of

Motion

Suppose that the dynamical variables, describing the

nonrelativistic spin dyramics, are elements of the Grassmann

algebra 93 with three real generators f » X = 1,2,3
k

10



(for definitions see Appendix A). Define the phase-space
trajectory %‘ {t) as an 0dd element of 93 , depending
on a time parameter 1t . Introduce the classical action as
a functional of § (t) and suppose it is an e_ven real ele-
ment of 93 . Write it in a form analoguous to the Hamilto-
nian action ( c¢f. Eq. (G.‘l)).

¥ f} fa‘f{ ~k§=ké-/‘//f)]7(z.1)

where H( i is an even real function of i , the Hamilto=-
nian, § = df /8%, and u) is a symmetric imaginary mat-

ix ( Lo is anti-Hermitian, as in the ;:onvent:.onal mechanics).
By means of a linear transformation @ may be .z2duced to
the simplest form

~ké .
) ':‘dl;!' (2.2)

Note that the first term in Eq. (2.1) is not a complete deri-

vative, because and ; anticommute. As any element of
?3 ’ H(i ) is a polynomizal of a degree, no more than 3.
Only even terms may be present; so, omitting an inessential

constant, the most general form of the Hamiltonian is
=L
H5) =% Ctm 4§y Fm > (2.3)

waere By  are real number.s',
The equations of motion are obtained under the conditi-

on that the variation of & be zero:

-
fk=£y>h=ék(m4{m) (2.4)

11



[ ‘-
. where '7~ = 2/ ?fk . is the right derivative. The o=
lution of this equation is evident

)= R § (2.5)

where R is an orthogonal matrix describing the rotation
with the angular velocity i « This solution may be inter-
preted as the spi. precession in an external wagnetic field
E s Where 3:&3 and a8 1is the magnetic moment. An ex-
plicit time dependence ofl:_ is also possible. The Hamilto~
nian (2.3), a bilinear function on the phase space, is an
analogue of cthe oscillater. A formal equivalence between the
spin precession and the Fermi oscillator was also noted in
anocher context ['\8] .

In accordance with 5q. (2.4) define the Poisson brackets

for any pair of dynamical variables

{£6), 3L, = {(£9,)(33),
f. = {H’§}P.B. (2.7)

dvidently, the Poisson brackets are antisymmetric if £ and
g are even elements of tvhe Grassmann algebra and i1f £ is
an even element while g is an odd element. In case £ and
£ are odd elements the Polsson brackets are symmetric. The
graded version of Jacobi's identity is also valid. So the al-
gebra ¢efined by 2q. (2.6) is a 22 -graded Lie algebra (see
€.gs vhne definitiorn in [‘12} or [13] )« For the canonical va-

riables the Poisson brackets are

iﬁn ,§!}P.B. = Z.JZJ . (2.8)

12



The rotaticn group in the Grassmenn phase space is genera-
ted by the spin angular momsatum

Su==E uand b e ) oo

Sotel, = tutur o

The classical mechanics of a nonrelativistic particle
with spin is comstructed in the phase "superspace" consisting
of the six-diwensional obrital subspace (gk, gk) and the
three-dimensional spin Grassmann subspace. The most general

action describing a particle in a local external field is

¢ . . e
Al b,)= [ dt[ py + £ 5§ - pVtn
Zi (2.11)

~V.G)-L5 V(3)-583),

waere Ly = &, 0 7(,0" _-_.:_(-?)(B)k is the orbital angu-
lar momentum,V_(q) and V,(q) are potential functions, B(q)
ol 1N b P A4

is a vector field. The term with V, in Eq. (2.11) is the spin-
orbital interaction. The equation of motion derived 'from the

g=p/m+(5%3) Ve,
5=V -(LS)VY, +EXp)V, -V(5¥;

f= (LxP)V +(BxE)

13



It is remarkable that in presence of the spin-orbital inte-
raction the orbital subspace is not invariant, so q and
p are not just real numbers. The dynamics algebra‘;; a
ring with 6 commuting and 3 anticommuting generators. The
equations are simplified in the case of sg..erical symmetry;

it is copnsidered in some deta’l in Section 2.5.

2.2. The Phase-Space Distribution and Observables

Relation between an abstract mechanics and observable
quantities is established by means of a distribution func—
tion in the phase space, As in the convensional mechanics,
she dynamical principle for the Grassmann variant may be
formulated as a Cauchy problem for the distribution f?(f ’

t). The Loiuville equation is

2% -+ iH,Jo}P.B.=0) (2.13)

the equations of motion (2.4) are just its characteristics
equations., For any dynamical variable f(f). its averaged

value is observed, which is a number
<f>=f§({)ﬁ(§,f) A€
d .
aL{: = ‘dfs"(fzd&'

The integral is defined in Appendix A. It is appropriate to

(214)

assume that the distribution is an odd real element of gg

J){j}—_—(fff) * 5, (2.15)
(ffi)s £k£m. §nf¢ f»\- .

1



The distribution is normalized and K3 is the average spin

momen tum !

<1y=7, <5r=C , (gr=0.

(2.16)

In case of motior (2.5) the vector L depends on the time
Lt , and the dependence is giver by the same rotation matriz
R «. So the average spin vector is subject to the precession.

' To be an honest distribution the function J)(‘i ) must
be non-negative in some sense. The usual way to generalize
the concept of positivity is to demand that the integral of
.P ff* be non-negative for any function £. One may see that
this is true only in the trivial case ¢ = 0. Tais is the re-
ason, why the Grassmann variant of the classical mechanics

can not be applied to the real world. It acquires a physical

meaning only after the guantization.

2+¢3« The Canonical Quantization

In accordance with the general rule of guantization [13],
we replace the Polsson brackets for the canonical variables
in the Grassmann case by the anticommutator of the correspon-

ding operators, divided by -l'lt :

[gk ) ?e L_ =7 ";{ (2.17)

Renormalizing the operators suitably, we get the Clifford al-
gebra with 3 generators:

A 7/2 A A A
£ =(*/%)"¢, | [ck,o}]+=25k ¢ o)

The only irreducible representation of this algebra is two-di-

15.
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mensionel, it is equivalent to thet realized by the Pauli

matrices. Gonaequently,
A »

sk.=-— kfmfkff t&k’ [S"’S;]'- (2.19) -

ek(m. S'W
Note, that in the conventionaz! theory of the angular momentum
the starting poir* is the commutator, while the simple form
of the anticommutator arises only in vhe spinor representa-
tion describing the spin 1/2. The present approach is inver-
se: the anticommutacor (2.17) is postulated and therefore on~
ly the spipor representation is produced.
The operator corresponding to the phase-space distribu-

tion (2.15) is proportional to the usual density matrix
/%
7
2(7{/2} /; +£9’/ﬂ), (2.20)

while the integral over the phase space is replaced by Efaw
cing of the representing matrix. Fote that the matrix JO iy.
positive semidefinite if lll"fg A /2. S0, the purely quan=-
tal nature of the spin manifests itself once more.

The Heiserberg equations of motion are obtained from
2gs. (2.4) by means of the direct substitutions To get the
Sciiroedinger picture one has co invroduce the spinor ¢ func~
vion, “factvorizing" the density matrix ﬁ( t)-’-’ \’)('l:)qu*(ﬂ
Its time evolution is mastered by the Pauli equafion° So the
usual tﬁeory of the nonrelativistic spin 1/2 is reconatructe&.

Now, itis appropriate to consider the case of the Grass-—
aann algebra with any number of generators, g n* Bvidently,
the constructicn of the classical mechanics, described for

323 , Day ve directly expanded to E;LL + The quantization

is defined by Eq. (2.17), and g “(‘ﬁ/ﬁ)’/z s k=

16



~
= 1y eeey B, Where G'k are generators of the Clifford

algebra cn » It is known that ~, has only one irreducible
Hermitian matrix representation. Its dimensionality is d =
= 2% for o = 2m or n=2m+ 1, mis iﬁteger._ (Note that the
matrix representation of n is 2 - dimensional) .. The
case of an even n is in closer analogy with the conventio-
nal theory, as one may introduce pairs of conjugated cano-
nical (complex) variables (qr, P,. )3 T = 1yeee,yd, defining
4y =(E,+CE /03 o= (CE, + 5 VYR = iay
2, = ( §3 +¢ gy Wy y etce The anticommutators are

(90, Be, =% b s (gl <lProR] =0, o

Just this case was considered by Schwinger [15] « It is the

case of an odd n that is of interest for our purpose. A
remarkable feature of Cn for odd n is that in the mat~
rix representation the generators are not independent,

6’ 01 A = # 7 . Indeed, the product commutes with
any 5‘ and its square is =1, while its sign is rerfered
to the choice between two classes of equivalent representati-
ons (right or left coordinate frames). Tuerefore, o make un=
s ibiguous the classical counserpart of a quantal operator,

-2 has to declare whether it is an even element, or an odd

element of gn' °
Represent the quantal operators by their symbols, in

analogy with the usual quantum mechanics (see Appendix B),
For any operator § a polynomial representation may be

written

Ma

- A A
22 g g, e

{k}

17



whers 33 “ are "c-pumber" totally antisymmetric tensors.
Por odd pn, this form is unique if only terms of a fixed pa-
rity are present. Thus any ,E has two equivalent decompesi- )
tions, even and odd. Define an analogue of the Weyl symbol
for the operator

A _ Z‘ kg oo ku
f";[{)— ?y f ---fk, . (2.23)
v, {k} kq _
Bach operator has two symbols, even and odd. It may be seen
that they are interrelated by a Fourier transformation. as
in the conventional theory, the Pourier transformation may
be used also to formulate the Weyl quantization. Relation
between an operator and its symbol is given by the integral

é*f(§/=/¢x/oﬂ(§f)]fgo)aljo, -
§= [Qipgpp, Dp=epier]

(2.25)

Here £ f (JO’) ...,f"’) are generators of the (irassms.nn
algebra gw ’ a.nticommg\nng with K and § K ° Pro-

perties of the operator ..O. (P) are similar to those of
~
the operator _Q( T ) » considered in Appendix B:

| ‘fz(ffj—é gfz }scxf[it(fq-ﬁ.)]ﬁ (Pf.’?ff!@
Tr Q@) =d[A+i(5ig" Y, p]. car

1



n-1)/2

(We discuss now the case of an odd n, d = 2( is the

dimensionality). Using these formulase, one easily gets

To[6p3] = A[i (MM G+ g (5 Rp)].

(2.28)

This result enables one to find the symbol of the operator
~

g , if its parity is chosen (note, that g(%’ ) and E(P)
have opposite parities). The multiplication law for the sym~

bols is obtainable from E2q. (2.26)

édém__’g(stj = W(E(L’%’s)ga(sf)?a.(st)dmfa 43,

W05 (5 orpl2 [ £)+(60) (55}

Here 5 ’)ix )i are regarded as three independent sets
of generators of the Grassmann algebra g.i "

¥e conclude this Section with cthe following resume’. In
the Grassmann mechanics the quantal operators nave two rep-
resentations: by finite dimensional matrices and by elements
of <“he Grassmann algebra. This is quite similar to the usual
quantum mechanics, where the operators may be represented
eicher by functional kermnels (say, in the coordinate space)

or Ty their symbols, i.e. functions on the phase space.

2.4+ Path Integral for Green's Function

The subject of this Section is to obtain an expression

for the operator

é(-&) = exp (—i— t ﬁ) (2.30)

19



in the Grassmenn case, The method is %o calculate its symbol
Q( E ) in form of the phase- space path integral. This is
a direct generalization of the approach applied to the quan-
tum mechanics in a work by one of the authors [20] (see also
the Appendix C), It is quite natural to us~ this approach,
because in the Grassmann phase space one can not use the co-
ordinate - momentum language, and it is impossible to defi-
ne an analogue tne Feynman path intergal in the coordinate
(or momentum) space. .
Represent the operator & ('t) as an infinite pro-

duct of infinitesimal tinme t:ranslat:ionsN
IS
2 = {bm [ - NJ .
&(t)= b LO(EN) .

Rewriting cais form in terms of symbols and using the mulc:.-

P.Llcd;lun law (2.29) one gets Q(g) ) Lwn. G. (5 't);
N
é&“<ﬂ“§"¢%*%<m>

e"P{ Z [9'(% 'lv)* l(’b §v+1)+i(§’*i§’)
-t Hly ) t/v] |

with che boundary condition §N+1 = { « Note that one

should regard as indepen~—
G PR PIRUR I R TR Y :
dent sets of (anticommuting) generators of the Grassmann al-

gebra, This formula is to be compared with Eq. (Ce4). One
may integrate over F"- s ;N » &€t an analogue of

Bg. (Ce8) and wrice the formal expression

CG,t) =f 2[n)] “"‘P{,':E A Hm]*'(e.;;)
+ £ LG+ (904 (9] ] 5



where v} —1(0) th Vl(t)
Alh )= j[ (1)- H(Q)]al" (2e34)

%[Q(UI (Mm Cﬁ/g) n A - (2.35)

However, only Eq. (2.3?.) reveals the true meaning of the
functional integral, and it is usefrl for further aralysis.
" Apply the patvh integral approach to a simple example:
the spin precession in a constant magnetic field. The Hamil-
tonian is given by Zq. (2.3) ‘and may be rewritten also as
H(‘E ) = bS, where S is the fpin momentum (2.9). Using the
resemblance o the harmonic :scllla*er we procee along the

same lines as in obtaining Egq. (C.16). In the present case

q(5.t)= ws(é{‘/&)eyp[- 2L (Sw g (i)

(2.36)

= co(4t/8) - 3 (Sn)sin(4t/2),

where b= | D l , D = b/b; we have used the fact that

L Ay -y
(Sn)2 = 0. To get this result, we calculated the Gaussian
integrals over the Grassmann phase space by means of Eq.(A4.9).
1)te that the cosine is now in the nominaSor, comtrary to
4q.(C.16). Using the symbol and Eq. (2.19) it is quite easy

to write the operator

a.(’t)= coS(¢f/2)—i(§ﬁ)sm(6Hz) (2.37)

and to reproduce the result that ome obtains calculating

21



ez:p(--é j_af ) in a usual manner,

A number of authors used the concept of the path integ-
ral in space of anticommuting functions: EKhalatnikov [21] ’
Mutthews and Salan [ 3] » Candlin [ 22] , Martin [ 23] and
others. A consister mathematical formulation and the defini-
tion of the integral onm the (.assmann algebra were given in
paper [24] « On t.e other hand, some guthors described the
spin dynamics by means of phase spaces with commuting ele-—
ments: Schulman [ 25] , Bezak [26] (both considered the path
incegrals), Berezin [ 27] » Tarski [28] , Hanson and Regge
[11] . The present approach seems to be the most adequate,
ard spin of Lhe electron finds "a simple and ready represen-
tation” in the method of path integrals, absent before, as

was stated in the book by Feymman and Hibbs [29] (pPe355).

2¢5. lotion in a central potential with Spin=Orbital

Forces

For a simnle cvample, consider the motion of a spinning
particle influenced by forces presented by the Hamiltonian
(2.11), assuming that B = O and that the potential functions
depend on R = Lc-l-l only. The intergals of motion are the to-
tal angular momentum 4 =L+38, Iand A = IS (note
that 525 0 and /\zs 0O). From the equations (2.12) we get

for the radial motion,

R=P/m, P = - \4’(3) + 12503 - A\C'(R}
(2.38)
The problem is now reduced to that of motvion with the effec-
tive potential U(R)= K*Lz/zhlk:*'/u{containins a
nilpotent perturbation in the last term. Evidently, the so-

lution is to be represeated in form
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R(2) = rt)+halt), Plt)=p(t)+ Adg)

where ) , p, 8, and b are number functions., Substituting
into (2.38) one’ can see that r(t) and p(t) are just the so-
lution of the problem with no account of the spin-orbital
potential, while 2 and b satisfy the linear equations

A=1b/m b= -g(t)a-£(t) (2.40)

[}

where .

8(t)

w”
1{ (r) + 38%nr*, 2(t) = vf (0

If the orbit is stable against small perturbation in the
classical sense, g(t) > O and (2.40) is the equation for an
oscillator with the frequency [g(t)] 2 and the driving
force £(t), which are constants in case of a circular orbit.
Thus the solution is identical to the usual perturbation
theory in /\ s however it is exact, because higher powecrs
of%anish identically. To get the "observable" trajectory
one has t0 average over the spin variables, i.e. %o integra-
te R(t) with the distribution (2.15). The result is that in
the final expression onme should dubstitute A by a cons—
tant <A = (cL), determined by the initial conditions.

As for the angular coordinate and spin, their motion
is mastered by the equations

=T@x§ )= T JxE)
s oxXs) = V,(9Xx 9 (2441)
= V(sXL) = v.,(yx L)

e gy,

where V, a V, [ r(t)J is a function of £ . It is possibe~
le to substitute R by r in the argument of V, in Eq.(2.41),
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because A S= O, (sx§ )= 0, and A (L xg )= O. The
vectors {' y S, and L precess around the same fixed axis
;7 with the same ancular velocity, which is constant in ca-

se of a circular orbit.

III. RELATIVISTIC SPIN AND TEE DIRAC ELUATION

Z%e1e Classical Action and the Symmetrics

Construct the action for a relativistic spirning partic-
le, invariant under the rfull Poincare grcup and havirg the
nonrelativistic lizis, considered in Section 2.1. Assume
that the spin variables are components of a four-vecvor g;s.
However, an introductiorn of a new phase-space coordinate f;
is not so inof:encive in view of two reasons. First, in the
nonrelativissic iizmiv a "second srin® f.f; would arize
and she representation of the rotation group would be redu-
cible. Seccnd, and more serious, is that one is not able to
quantize such a system because of the Minkowski indefinite
zetrics. To get a consistent scheme (and %o recoustruct tae
Dirac theory) we assume that the action has an additional
syzzetry, so that §° be in fact excluded from the equa—
tiors of mosion, evern though She eguations are Lorentz-inva-
riante.

tart from tike action

12

= {_ m 2 +;‘: (gf.) + (u{)(‘“f:)} dz, (3.1)

free

()]

¢ /2

z=[-3)"], A= u/E



Here T 1is a monotonic parameter labelling the points on the
particle world 1ine,. q» (T ) are coordinates of the point,
é,._ = dq, /4T , §F_ =d g, /4T, the light velocity ¢ =
= 1. Note that gf_ are the phase-space elegents. and (3.1)
may be considered as Routh's form of the action. Our metric
convention is (=, +, +, +), S0 14‘ = =1, The aection is in-
vam.ant under the reparanetrization of the traaectory: T-’
'Z"—- PT) , where ocT) is a monotonous
function, The fundamental bilinear form for the f variab-
les is degenerate , and there is no eguation of motion for
the longitudinal component of the vector g;‘ +« To formula=-
te the dynarics, an additional constraint is necessary, and
v0 cake this constraint explicitly invariant int jduce a new

Grassmann variable f g -« The constraint is

w§) + §s =4. ' (3.2)

To get a manifestly covariant canonical formalism for the
sysvem having a singular Lagrangian one may apply Dirac's
method (the general approach is given in a book by Dirac [30],
modern applications to the relativistic parvicle dynamics may
be found in papers by Hanson and Regge [11] and by Gasalbuo=
ai et [31] ). Add the constraint (3.2) with the Lagrane
ge =ultiplier ﬂ (anticommuting) to the original Lagrangi-

an}&m =frf{-"l P%I{gf)-rgsg', - (u§ +f,/3]} AT

(3e3)

The cagnonical momentum is

P21/, = mu (; +{uf)u’7ﬂ/2,

(Gott)



end the phase-space conatraints are
PPea=0, (@F)+mf =0. (3.5)
§ 5

With account of the constraints the Hamilton action is

Byee = [ J8)- 0" mY+
free ' (3.6)
+4[(35) + $s8s ~(pF+mg A/ m] 45

where 1 1is another Lagrange multiplier (commuting). The

o

equations of mocion derived from the action principle are

= 2(/0/‘_'*&5‘}/‘8"" > Pe=Y
. _ * - 2.
ff‘- _/0#2/2»1, ’ f.‘a' /1/
The first equation is consistent with (3.4) if
K
L= (2-4 g A/ m)/ tm, (3.8)
and the eqation takes another form

G =it 7 (5t e PRI/ P27 )

An appearance of the second term in Eq. (3.9) might be anti-

7

/u.
(37

cipated; it is the classical analogue of Schroedinger's Zit-
terbewegung (a discussion of this concept was presented by
Dirac { 19] . § 69, the algebraic aspects are considered by
Jordan and Mukunda [ 52] ). Note that the time evolution mi-
xXes coordinate and spin degrees of freedom, just as in the
nonrelativistic case with a spin-orbital potential (&£, Egs.
(2412) ); the whole phase space of the relativistic spinning

particle is a "superspace".,



The constraints (3.5)result from the invariance of the
action under two kinds of transfommations. The first one
was mentioned; it is the "gauge" group, T»F = ?[17
An infinitesomal transfermation of the second kind is

S:’g-"ﬁ*"/‘?; ff—’g::fs*Z’
b D = P T L 0/

where 'l (T) is an anticommuting "parameter" depending

(3.10)

on T ambiguously. In analogy with the transformations in-
troduced in a dual model by Gervals and Sakita [ 41 we call
(3.10) the “supergauge" gro‘up. The variation of the action
(3.3), induced by (3.10) is

%
SA=¢ /Jr 4[,5. n)/er ; (3411)
T‘.

it vanishes i 9 ()= 9(5)=0 . It is renavavle
that both transformations, gauge and supergauge, change the
scale factor gz , contrary to the Poinca.re' group.

To fix a solution of the equations of motion (3.7),
{3.9) one has to choose the indefinite factors A ana z
(or 1) in some way, i.e. to fix the supergauge and the gau-
g3a. As for z, two variants are used in case of no spin:

) z=1, € is the self-time, and 1i) z = WP , T = q,
is the "laboratory" time. An appropriate choice of A is
not so evident. There are only 2 Poincare’-invaria.nt anticom~
muting elements in the phase spaée: fs and ( Pf ff =
= 8“"’% f/‘ fr-;a- . If'one takes A e fs. , the
equations of motion have no appsarent T invariance. More app-

ropriate is the choice



A= ik zflo)f)ff/, (3.12)

where k is a real constant of dimension (action)'z. Note
that if z = conssg, 2 is also conserved. This choice is
rather converient, because the second term in (3.9) vani-
shes identically and the motion of a free particle is quite
simple: .
,.(t) =Z‘M/* TR 2™, 5.00=5 10) +Tp A/ Em,
(3.13)

A defect of the cacice (3.12) is that it breaks the symmet-
ry under spuce reflzetions. Just as in the nonrelativistic

case, before the quantization one cannot decide whether jL_
is an axial vecvor {(and fs is a pseudoscalar), or a vec-
tor (and ;5 is a scalar). However, parity of A given

by (3.12) is opposite to the parity of f} in both the va-
riants. To identify T with the laboratory tice q, one may
pus

1= czpo)‘1 , A= o §, (3e1%)

where £ is a scalar function of dimension (ea.ct::i.on)"1 .

5e2¢ gJuantization and the Dirac Egquation

T™he actior (3.6) results in the canonical Poisson brac-
kets

'{Pﬂ*%}p.afgn 3! Smo Sy ™ ".},.y ’ {fs,fr},. 8 ¢,

(3.15)

where 3)*3 = diag(-1, +1, +1, +1), other brackets vanish.

The commutation relations for the quantal operators are

3



[Er:%y}_ == it?;«v > [éu :éﬂ]f tg»v > I.-é\s »?Jf t’ (;.15)

while the constraints (3.5) are converted into conditions
on the physical states

R+aDY wo, (3.17a)

( f:;' N "\gs)‘l’ 2 0. (3.175)

The. operators §)~ ’ {s are generators of the Clifford
algebra 05, its representation is four-dimensional and is

given by the Dirac-Pauli matrices:

A

§pm= Ck/z)”zfs Y > és =(t',")ﬂ Is >

(3.18)

where, as usual,

[I :X9}+='23,~9 3 ¥s = 0T 0005 ) f:= 1

> (319

D" o and fs ere Hermitean, J 4,2,3 &are anti-Hermitean.
Multiplying (3.170) by (h /2)"V2y we get the Dirac
equation (Pb"'l- h'\.) \b = » Conditions (3.17a) and
{2 17b) are consistent, as may be (and should be) checked
G rectlye. Note that without the condition (3.17b) the quan-
ti:ition would be inconsistent, because in view of (3.16)

§° =-% and anindefinite wmetrics arises.

Generators of the Lorents group ]}d are construc-
ted along the coanventional lines

Lo =l S

(3.20)



In the classical theory

iy = %/’a"‘?v/”? y Sw=-i5.5,

{L).v s ‘L,\}R: 39) Cl/}f 2%y

8. (3.22)

{.Sr’: §a }P& = 39,\ ?r-— p R §v )

To get the quantal operators am (anti) symmetrisation

(3.21)

’:;\v - !i.(:l/,. f;v "'fgﬂ é/»_év F)‘-- P zl'v) (3.23)
S,.v = "‘;:('5:,. %v - %9 é») 5%* (Tr-x\’ 'M'r) (3.24)

To construct a relativistic phase-space distribution,
like (2.15), note that; the components ( ps ) apnd §s are
not observable and were introduced in order to make the for-
malism invarisnt. So wve assume that P(§) = S[(P;-')/M]
S(gs) ﬁ (%) , where j; depends on the ¥ransverssl
components of §» only and is an 0dd element. 48 it is
evident from definition of the integral on the Grassmann al-
getra (Bq.(2.6)), §(¥ )=3 i, ° With all this in view,
write the phase-space distribution in a form ready for the
quantisation

9B =4 [0 8] BE) P -5
S(8)= wy)-td(pE3Y), (3.25)



where 15‘ is a real four-vector, (17)0 ) = 0, and
b = 1/6m, as given by the norna>ization

gf(g drs§ =1, d5§ ='£d§s‘1§34§10"§1d§0' (3.26)

The function ﬁ@) 1s written in a form invariant under
the supergeuge transformations (3.10). The wector v;,. is
& classical analogue of the Pauli-Lubanski vector; it de-

termines the averaged walue of the spin momentum, defined

vy (3.21)

5 A
< Srv7 = (Sﬂfmd 37 Ere ¥ o (3.27)

For a free particle J)‘ is constant, as follows from the
Liouville equation for ( f) .

To get the quantal density matrix substitute the npe-
ratora (3.18) into (3.25)

pea(ot) G [tereen] B

(3.28)

where a—/‘_ = 2'}:./ y o This is just the form introdu-
ced by Michel and Wightman [ 33] .

b4l



3,3, Particle in an External Field

To describe the interaction of a charged particle with
an electromagnetic field A’L(q) write the action as a sum

A=A+ A‘.i.nt’ where 4,... is given by 3q. (3.1), and

J’d j[A; —c}.’z/- )‘f]o(r (3.29)

Here g is the cha.rge, # is the (total) magnetic moment

= 24 /9%“_ —3/4/‘/ 32} . The interaction of
spin with the field was written as ( F S g) by Fren-
kel[S] This form was also analysed by Barut [10] and Han-
son arnd Regze [1 1] « (Among many other papers on motion of
spin in a Iield menticn the works by Suttorp and de Groot
(34] and 211is [35] ). Pealing with the Grassmamn variab-
les, one escapes some difficulties present in the previous

approaches.

The canopical zomentum is

RN Y e R

B =[meiz (i)l 5~ 5] /2,

(3.30)

and the equations of movion are

PF=eFMy, w2z (3F 739,.) 5.y >
é)“= 222FM§ +u.,~)/2., €5=A/2: (3.31)

Besides the Zicterbewegung s bPresent also in case of no

field, cthere are two effects on the space-time trajectory

due to the spin variables: a renormalization of the mass

32
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and forces proportional to the derivatives of the field,
To obtain the Bargmann-Michel-Telegdi equation [ 36] ’
describing the spin precession in a homogeneous field, wri-

te the phase-space distribution (3,25) as follows
p3)=[@E)-¢ 808y,

where 'u.)‘_ is a solution of the equation ’M-l.{«"=CF ?9

and apply to it the L:I.ounlle equition in §s vari-.:.blea
-pe{tp] =iau5e ) B8 V(52 BE),
(3.33)
H= iu(':%)*i[("*%)*ﬁsp

Under the condition ("Lg) + {S .= 0,this equation 1is
equivalent to the following one

. y
v’z 1eF v, + 9.(:-e/zm)u”(FV“), (3.34)

and we get the familiar result [56] .

The interaction Lagrangian (3.29) is Lorentz-invariant
and gauge-invariant, but it breaks the supergauge symmetry.
The varistion of the first term under (3.10) is

(A“]/) 4 (A%q)/dT - (F?SQ’) = 5 /<3 35)

Note that the breaking is in a sense "minimal™, i.e. propor-
tional to higher powers of § s 1f there is no anomslous
magnetic moment and X = ¢/2m. It 1s possible also to re-
duce the supergauge brnking.- writing the first term in
(3.29) in a "superspace” form: u)"(q)& s Where Q)& =

'q)"-i§l‘*§5/!'m' Sq}‘.,,u \?, , =
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the variation (5;35) vanilho-;

Iv. CONCLUDING REMARKS

We have presented the Grasasmann variant of the Hamil-
ton mechanics and applied the general theory to the simp-
lest systea, a relativistic spinning particle, Mention so-
me other physical objects that may be considered along the
similar lines.

Bigher spins. The guantization in our scheme ieads to
the spin 1/2 only. To get a higher spin s one may consi-
der the Grassmann algebra generated by 2s vectors. After
the quantization, a multispincr wave function arizes, in
the relativistic case the formalism by Bargmannand Wigner
[37] is reconstructed (its relation to other formalisas is
considered, for instance, in [58] Yo

Internal symmetry. If gemerators of the Grassmann al=-
gebra are components of a vector in an intermal "isospace”,
the quantization results in a multiplet of particles. The

internal symmetry groups SO(n) are directly obtained by
this method; the simplest example is the isotopic group
S0(3)e> SU(2). Another possibility is to consider the Grass-
mann variables with a pair of indeces, ope spatial and ano-
ther related to the internal symmetry.

Field theory. In fact, the classical field theory dea-
ling with the anticommuting fields was formulated by Schwin-
ger [ 39,15] in developing the quantum dynamical principle
for electrodynamics. However, it is not necessary to inves~
tigate the classical theory in this case, because the quan-
tization is Quite simple. A more sophisticated example is



the theory of relativissic spinning string [5,40] - Yon-
linear field Lagrangisns and the clgssical solupions are
now intensively investigated (ses, e.g. the review by Raja-
ramsn [&1]). In this conneo¥ion, an extension of the ascope
of classical fields may be of interesst.

With all this in view, we suppose that the Grassmann
algebra and "anticommuting C-pumbers” are not “an unneces-
sary addition to mathematical ph.nicé", as it was stated
by Klanger [42] .
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Appendix 4. The Grassmann Algebra: Basic Definitions and

Resulte
Generators. lLet f 1) ;_" be p gensra-
tors of a Grassmann algebra 7» » 1.¢. for any /',k'
. n
€ =0
J ok Tk fl > (4a1)

}
in particular, §k = O, Any element 7 & Q day be
represented as a finite sum of honogeneoua monomials

f{f/ y=0 {k} ?" y{,"...;’kv, .2)

it .v
where j:‘ are numbers (real or complex) and it is as-

- r———— s

sumed that they are antisymmetric in indeces {k} » The
set of elements, for which only terms with even V axre
present in the sum (the even elements) is a subalgebra g:*)
The set of odd elements, defined in an analoguous way, : }.
is not a subalgebra. Even elements commute with all elements
ot 3 odd elements commute with even elements and anti-
comnmt: with odd elements.
Involution (an analogue of the complex conjugated).

Define a one-to-one mapping of the algebra onto itself,

£ (—-)-s*, satisfying the following conditions

(3.). = g, (Ae3a)
. %

(€127 = 62 9y » (4.3b)

(«3)* - 06*3 *, (ho3c)



'horo & 1s a complex mmmber, in slement g 1s real if
5 = £ o+ The algebra is real if all ita elements are real,
in particular, fk 5 X °

Derivatives, The following linear operators are int-
roduced in yn’ s

(‘3’/353)&,---5:&;' ’3;,, sz"‘fk,---- (Aete)

L WETR A AR L % A A
T (3/35,) CYARE IWEIC
_+(~) gk,e §k "‘fkv

Theiraction on any 6 {% is determined bz_ means
of Eq. (A.2). The opera.tors ("3/3%) and (aﬁch
are called the left derivative and the right derivative.
—
In simple words, to f£ind the left derivative (‘b/b §¢) of
a monomial one has to permute § J o the first place
and then to drop itj to find the right dexrivative one bas
to permute § 2 to the last place and then to drop it.

Ir § 2 is absent, the derivative of the monomial vani-

shes. It_i_.’a eaai)l: seen that g
3 (% )5 G s

% :. (3‘35 (3%-) )%k (450
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Iptegral (en analogue of the definite integral over
the whole region of & variable). It is sufficient to defi-
nite the single integrals

fil§k=0, {ﬁ"'fk=i' (4.6)

The multiple integral is defined by means of ispteration
of the single integrals. Evidently,

S‘fk‘... fk,, Jgﬂ'“‘lfi: €y, ok |
K%G)if»---“{ﬁ Ey k. gli-kn

where & Lk} is the Levi-Civita temsor. The integration

(A.7)

by parts is possible

g ?('?:?Q)AFP B g (é) y Rt PR S

7"5'2

The "Gauss intergal"™ is important for applications. It may
be shown that

i/
(exf (Zo'.)"‘gj gk) ds,..df, = (&efula'«j"") > @9

ij’ - a.ké .

Note that the square root of the determinant of a skew-sym- -

metric matrix (Pfaffisn) is a polynomial of its elements.
The Fourier transformation. Let g'\- and h h\'/et:he

Gruamapn algebras with generators §' ke and k v k= 1_,

ey D, respectively, Consider a linear mapping g = g'(k,) .
€ “ ? l\, (o hv\.' defined in terms of the decom~

position (A.2):



o (4.10)
hi k’__e__)’z €k1 &9J1 Jr. L()‘) ) - i
) ~ W iy Jqu_ ’

where /4,1-):.—"_,69-13.1: J evenand €jeioat

9 odd. The inverse transformation is
Ry

J1 J,... r\.}"’, ‘% E Jr,.k k, %(9) . (4.11)

J
This mapping is remarieble because 33/ Dgg =?(£9 U
It may be also presented by means of the integral

3(§)= gex(a (i%‘;’kfk) k(f) al.fm J—fi,
k(f) = ¢! g’-*r("%fnfk)?(f)dfn---“?1 , (412

and does gez;era.lisa the concept of the Fourier transformation.
Details, proofa and further information may be found in
the book [1] .

~ Appendix B, Operators and their Symbols

Operators of the quantum mechanics are elementa or the
Heisenmberg algebra with the generators q‘ PJ (;] - 1, ssey
£; £ is the number of degrees of freedom), obeying the cano-

nical commutation relations

[';; 4= i Sk (21

39



It is well known that the operators may be represented by
means of functions oft the phase space, with an asppropriate
multiplication law, Namely, let Z be a vector in the
phase space, X = (11,-“)‘:» ), b= 2f; and let the

representation is g, — 51(::), &2 —_ 52(1). Then

A A A
9,9, =3 —>3(x) =f\\/(x1,x&,x) 31(::,) 3‘(;:,) .2)
dnx1 A"'x& .
The kernel W(th 1, X) determines the repreaentation.

The operator algebra is assoclative, so

g\J (} 30 X) WX, X, %y) d'x = (\,J(x,, X, Xy) V(xzsx&:gé;"-

It is natural to adopt the correspondence principle: in the
classical limit g (X) coincides with the classical dy-
namical variable, corresponding to 3 Lim %(X)z 3 ().
. et ct
Then in the classical limit the multiplication law is tri-

vial 3:1 () = gid(") Aece (x) |, end
(n) (»)
Lo Wit )= 87 (x-%) 8 Go=0.  (aus
+->0

Ope may also require that 1 - 1, so
" n é'-)
g \«/(x,, Xy, x) d X, =f\o\/(x,_’x,’x)af_ Xy = (,:.,9&8.5)

Of oourse, the representation is not unique. Contentrats now
on the Weyl representation, For the sake of symmetry, we shall
not divides the components of X between coordinates and mo-

menta, and rewrite the canonical commutation relation (B.1):



[ A .
[z“zl}_._, ika,, (3.6)

where “)h ¢ 18 a constent sntisynmetric matrix (inver-
se to that of the tu:ndanental symplectic fora). Define the
symmetric product (3k1 %k‘)) by means of the denerating
fnnct:ion

(‘zx) o ke 'e,'"'(xu1 xh)

Ty (.7)
ukere * i oa vecfor from a "dual’ space,
the monomials (xh Xk’ ) form a complete basis

of the operator algebra. Any operator § may be represen-
ted a8 a formal series

A 2 Ry A A
q -,;Z,; é} 3@) (xg'...xg,), (B.8)
Lk}

where % ™) are the "g - number" totally symmetric ten-
sors. The Weyl representation is defined by means of this
decomposition:

"Z(‘) Za Z %(*) .IM ...xk" . (B.é)

¥=0 {k}

Evidently, the correspondgnce is one-to-one. The Weyl rep—
ragsentation may be described in an equivalent form, making
a direct use of the definition (B.7), and it was just the
original prescription [43] . Consider the Pourier tramsfora

$0x) = f explier S(r) L. (5210

The corresponding operator y is conatructed by means of

#1
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A

" the exponential operator Q- 3
g ={(am3mdr,

a . A © .ﬂ A 9
Q(n)=ep[iZ0]=2 5 (rf)

{B.11)

Fow we are in position to find the kerpel of the multi-
Plication law Egq. (B.2). Note that in view of the commuta-
~
tor Bq. (B.5), the operators L (r) form a projective group

AR )= ontit T o) Loy,

The following equalities are also useful:

Q(") -Q-(")-"k't“) ]

(B.13a)

"3_(2/32 = L(Xk +£t""kzz)ﬂ-(") |
(B.13Db)
TrQ(r) = @rt)- * (2")” B(h)(r)' (B.13¢)

Substituting the representation (B.11) and using the Fourier

trausfosrm, inverse to (B.10), one gets

W, X, x,) = k) 4P { %[ Ghxg+ (B.14)

were @ =det || Wy “, + (x&.°x3) *é‘a'xf)}})

@y) == =5 5. ,



o~

:I.;e. «w  is the matrix, inverse to w) . It ia remapkab-
le that in case of one degree ¢ freedon (n = 2) the bili-
near form in the exponential of Eq. (B.14) bas a simple
geometrical meaning: it is proportional to the area of the
triangle with vertices (x1,xa,xs) on the phase plane.

A somewhat more familiaf way to represent the operatars
is to use their kernels, say, in the coordinate basiss

29,4~ 4"19190= (49,1929 14,1954

The multiplication law is much simpler, than Eq. (B.2), how-
ever,the correspondence to the classical mschanics is not

80 transparent. To get a relation bLetween the syabol and
the kg\rnel one ngeds to calculate the kermel for the opera-
tor Q. (r). Return to usual coordinates and momenta and
note that in view of Bq. (B.12)

. A R " .
- . A, A 3'-11.% \TF %:
- =p%
-Q(“>V) zex P (w1,+¢.trp ) ¢ " (B.17)
It follows from (B.9) and (B.11) that
4 ’ 'f( 71 4
1 = (9. afia'sia’ n)
\av' !%!qv /)" (‘,‘“‘!:‘) y A\ AFAAYY (B.18)

expl-£ () dp.

In conclusion, mention two n:l.ce properties of the Weyl
syubols, that are generalized also to the Grassmann case.
First, the Hermitean conjugation of the cperators induces
the complex conjugation of symbols g‘ - 30@, g +—p g*[)d

Second,

T"é = (2"1.")-“/9' 4 () dx. (B.19)
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Representation of quantal opsrators by means of func-
tions in the phase space was developed by Weyl [4}] and
Wignor [+ ], and further investigated by Moyal [#5] . Ge-
neraliszation to infinite number of degrees of freedom and
to the Fermi case, as well as some proofs .nd details may
be found in the works by one ~f the authors [%.201 o A mO-
re recent paper o-. this subject is that by Schmmts [47] .

Appendix C. Representation of Green's Punction by Means
of the Phase-Space Path Integral

Consider a classical mechanical system with a Hamilto-
nian H( X ), where X is a vector from the phase space.

Write the classical action in the symmetric form
t
A, [x@]= [ [4(xd)-He)]dT, @
0

where (‘¥ X ) = DP9 - gp, the notation is used in Appendix

B (Bq. (B.15) ). This action appears in the phase space path

integral representation of the propagator (Green's operator)
Let ﬁ be the Hamiltonian operator of the quantised

system; H( X ) is the Weyl symbol of ﬁ , and a(t) -

a exp (-11:;1 % ) is the proparator. Calculate the Weyl sym-

bol of é(s_). i.e. a function G{X ; £) on the phase space.

To this end start from an infinitesimal time interval §t .

Evidently

Q(x;&{-) = o (-i8t H(x)/k) + @(H!'). (0.2



For a finite % the operator a(t) may be caloulated by
means of the limiting process, representing the step-by-

-step evolution of the systex
a A N
()=tm [N . e
N-> o0

To get the symbol G( x; t) we apply the mmltiplication law
(B.2) with the kernel (B.14) to the symbols G(x, t/N) gi-
ven by Eqe (C.2)s The result is

G(x;t) = %i:‘:(ﬂ) (x;6) 8
Q[N)("‘ﬁ) =[ w(ﬂ)”]w( 0 dvy 4"y
o2 [ S Gse, Ja, 0)- H A

where Y s 1- X . One may imagine that the system ia
propagating in the phase space, being :Lnﬂnencelby itz Ha-
miltonian at points _79 and being observed at points X;.

Formally, Bq. (C.4) is a representation of the propaga-
tor by weans of a "double”™ continual integral

Gl:t)= (B0 Ay6)] exp i g[z (¥
- 2 (x2) - H(y)] “h} ’ ©.5)

‘N/ZN "

Bl =bnotfT N4, | g2 o),

where the boundary conditiom X (t) = X 1is implied. How-
ever, to evaluate this expression one should consider the

original form (C.4). The integral in X, is Gaussian and
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»ay be calculated exactly. Substitute .!, = uy*z,, whe-
re £ y BT the new integration variadbles and the bilinear
form in the exponent has an extremum at X, = U, « The
e«uations to determine W, are

WUypy ™ Uyog = $v-qv-1 Ve, N-d,

(C.6)
SRR TR LT At
Assume that N is an .even number; then one gets /2,
Xn 42, e[ Z (2 2,)]= [w(ﬂ"fr @7
Gst) = [T (1 45,
u'){—[ i’( Wo 2 ('1!.: 'a“—-‘» (€.8)

2 (e (o3 - -5 M) |
In the continual limit Eqs.(o.s) for ie are written as
us 123, u0) = 30, (6.9)

so that u( T ) = 1/72(3(T ) + y(0) ), and

Qst)= g%[‘d(‘)] up{é A, [3(1:)] +
i [ 1)+ (1) + )]
whore A

el is the classical action defined by BEq. (C.1).
Thia form of the phase-space path integral is quite symmet-
ric, ons does not need toc distinguish between the coording-

{C.10)

te and the momentum, rof to prescribe that the trajectories



are plecewise linear in g and piecewlse constant in p ,
as in the conventional approach (see the work by Garrod
[50] ). However, the exact meaning of the functional

( (aa.ﬁ)d_t is clear only before the limit N—~>o0 and
is given by Eq. (C.8).

In some applications the representation (C.4) is more
useful than (C.8) or (C.10). Por instance, to get the Feyn-
man original path integral in the coordinate space one may
introduce the variables (p,q) = ¥, (p', q’) - X, Write
H(y) = p2/2m + V(q) and integrate (C.4) first over p, then
over q' and p' + Consider now the isotrope harmonic os-

cillator
L
B(y) = k] (Ce11)

Integrating (C.#) over )y obtain

qm)(.!;f)= (¢n% f) M [,’j aln'x,

T O

where Z,, =Xv —yy_'i s ::kt/N.m After the in-
togration over 4‘1,‘”"” sy 1< M £ F the in-
-»gral tekes the form
- N " I [
o g [ dx e"'f’{?.' (. 2) +2.728]
=N . 2
L
- X
, % A mi} >
while for the constants ‘I and c. the followl recursive

relations hold

(C.12)

(C.13)
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8‘4*AM- s A=o,

AM= M-L {- SAH-L ° |
intd |2 (0.14)
. =(____ ) Co, -
i- 8A, M-4

In the continual limit, 5-»0 by = A(ME/E), C =
xR § W2 pouemy, ana tho functions A( T ) apd
#( T ) are obtained from the aifferential equations .

]
J,:f:k(h.A) , %__;&:'_E-; LnkA, (©.15)

A(0) = 0; »0) = 1.

Thus Green's function for the oacillator is
=n/ _—
C.(”;{) =(cos H:) ep ("!'{ X fg H:)- (0.16)

Applying Eq. (3;18). relating the symbol of am operator to
its matrix element, one can see that this result is in ac-
cordance with that given by Feynman [29] .

The phase-space path integrals were introduced by_leyn-
 map [ 48] and discussed in a number of works [49-51] o The
present exposition follows the work [ 20] .
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