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Multiscale Centerline Detection

Amos Sironi, Engin Turetken, Vincent Lepetit, and Pascal Fua, IEEE Fellow

Abstract—Finding the centerline and estimating the radius of linear structures is a critical first step in many applications, ranging from
road delineation in 2D aerial images to modeling blood vessels, lung bronchi, and dendritic arbors in 3D biomedical image stacks.
Existing techniques rely either on filters designed to respond to ideal cylindrical structures or on classification techniques. The former
tend to become unreliable when the linear structures are very irregular while the latter often has difficulties distinguishing centerline
locations from neighboring ones, thus losing accuracy. We solve this problem by reformulating centerline detection in terms of a
regression problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to
the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which
can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets. Moreover,
our approach is very generic and also performs well on contour detection. We show an improvement above recent contour detection

algorithms on the BSDS500 dataset.

1 INTRODUCTION

Linear structures appear in many contexts and at many scales.
They can be axons and dendrites in the brain, blood vessels,
roads, rivers or cracks in buildings, among others. As a result,
their study is required in many fields such as neuroscience,
biology, and cartography. Many tracing and reconstruction
algorithms start by finding the centerline and estimating the
radius of the linear structures. Since this first step is critical, it
had been addressed many times in the literature. Most existing
techniques rely on filters designed to respond to locally cylin-
drical structures [15], [24], [27], [35], [44], [58], optimized for
specific profiles [22], or learnt [5], [17], [43]. They compute
a scale-dependent measure that, ideally, should be maximal
at the centerline of linear structures when computed for the
correct scale.

Among these approaches, the learning-based ones tend to
outperform the hand-designed ones when the linear structures
become very irregular and deviate from the idealized models
on which their design is based. Some works only aim at
segmenting the linear structures from the background [5],
and it is not clear how to reliably extract the centerlines
from the segmentation. Others focus on the centerlines, but
they typically rely on classification and this results in poor
localization accuracy. As shown in Fig. 1, this is because it is
hard for the classifier to distinguish points on the centerline
itself from those immediately next to it.

In this paper, we show that this problem can be solved
by reformulating centerline detection and radius estimation
in terms of a regression problem. More precisely, we train
several regressors to return distances to the closest centerline
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Fig. 1: Detecting dendrites in a 3D brightfield image stack. Top row:
Minimal intensity projection with two enlarged details. Middle row:
Comparison of the responses of our method against a recent model
based approach [53] and a classification based one [5]. Bottom row:
Centerlines detected after performing Non-Maximum Suppression on
the response images. Model-based methods have trouble modeling
highly irregular structures. Classification-based approaches respond
on the whole body of the tubular structure and do not guarantee
maximal response at the centerline. Our method combines robustness
against image artifacts and accurate centerline localization.

in scale-space, each regressor being trained for a specific scale.
In this way, performing non-maximum suppression on their
output yields both centerline locations and corresponding radii.
We will show that, on very irregular structures, it outperforms
the powerful OOF approach with and without anti-symmetry
term [26], [27], which is widely acknowledged as one of
the best among those relying on hand-designed filters; a very
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recent extension of it [53] designed to improve its performance
on irregular structures; and a similarly recent classification-
based method [5]. We will also evaluate the ability of our
method to trace the linear structures. In particular, we will
demonstrate that feeding our output as input to a complete
tracing algorithm [54] instead of that of [53] increases final
performance.

Finally, the idea of using regression instead of classification
is generic and can be applied to other problems. For example,
in contour detection, due to low resolution, blurring, and other
image artifacts, the exact boundary location is often hard to
find. Training a classifier to separate boundary points from
others typically produce multiple responses on the boundaries
and poor localization accuracy. We will show that applying our
approach to detect boundaries in natural images avoid these
problems. A direct application of our method on the Berkeley
BSDS500 benchmarked dataset [2] actually outperforms albeit
by a small margin state-of-the-art algorithms.

We first introduced the idea of using regression to extract
centerlines in [48]. Here we improve upon our previous work
by introducing an additional refinement inspired by the Auto-
Context algorithm [52], which was originally proposed for
image segmentation. More precisely, we use the output of
the original regressors as features to a layer of new ones.
By iterating this process, we can progressively correct earlier
mistakes by exploiting information across a widening portion
of the image. In particular, this helps eliminate false detections
on the background and fill gaps in the linear structures.

In the remainder of the paper, we first review related work in
Section 2. Then, in Section 3 we describe our method. Finally,
in Section 4 we present the results obtained on five challenging
datasets and prove the superiority of our approach over the
state-of-the-art.

2 RELATED WORK

Centerline detection methods can be classified into two main
categories, those that use hand-designed filters and those that
learn them from training data. We briefly review both kinds
below.

2.1 Hand-Designed Filters

Such filters also fall into two main categories. The first is made
of Hessian-based approaches [14], [15], [35], [36], [43], [44]
that combine the eigenvalues of the Hessian to estimate the
probability that a pixel or voxel lies on a centerline. The main
drawback of these approaches is that the required amount of
Gaussian blur to compute the Hessian may result in confusion
between adjacent structures, especially when they are thick.
This has led to the development of a second class of
methods based on Optimally Oriented Flux (OOF) [26]. They
rely on the second order derivatives of an /N-dimensional ball
and are less sensitive to the presence of adjacent structures.
Moreover, the radius of the ball provides a reliable estimate
of the tubular structure scale. Remaining difficulties, however,
are that OOF can also respond strongly to edges as opposed to
centerlines and that its performance degrades when the struc-
tures become very irregular. A number of schemes have been

proposed to solve the first problem [1], [27], [39], [50], [58].
For example, in [27], an Oriented Flux Antisymmetric (OFA)
term was added and has proved effective. There has been
less work on improving OOF’s performance on truly irregular
structures, except for the very recent approach of [53] that
attempts to maximize the image gradient flux along multiple
radii in different directions instead of only one as in [26].

The method proposed in [61] can be seen as a mixture of
these two classes. Hessian computation implicitly assumes an
ellipsoidal model whereas in [61] the ellipsoid is explicitly
fitted to the data. Because this is harder to do than fitting
OOF balls, it is achieved by a learning a regression model
from image data to ellipse parameters. However, this has only
been demonstrated in a tracking context.

2.2 Learned Filters

Even if care is taken to add computational machinery to
handle irregular structures [43], [53], the performance of hand-
designed filters tends to suffer in severe cases such as the one
depicted by Fig. 1. This is mostly because it is very difficult
to explicitly model the great diversity of artifacts that may be
present.

Some works therefore aim at segmenting linear structures
in biomedical images [5], [17], [42], [59] or aerial ones [37],
[57] by applying classification to label the pixels or voxels
as belonging to the structure of interest or to the background.
However, this is a problem simpler than the one we consider.
It is not accurate to find the actual centerlines from the seg-
mentation even with post-processing operations. In particular,
there is no guarantee that the classifier responses will be
maximal at the centers of the structures. By contrast, we
recover the centerlines and the corresponding thickness of the
linear structures to which they belong, and it is straightforward
to generate a segmentation from this data.

Other techniques, such as [7], [20], [56], [60], aim at
extracting the centerlines as we do, but still rely on binary
classification to distinguish the image locations on centerlines
from the rest. [7], [60] use Haar wavelets in conjunction with
boosted trees to detect the centerlines of tubular structures at
different scales. [20] uses spectral-structural features instead
and SVMs to find road centerlines. In [56] co-occurrence
features and the AdaBoost algorithm are used to detect the
spinal column centerline.

These methods exhibit limited localization accuracy because
points near the centerlines can easily be also classified as
centerline points due to their similar appearance. As our
experiments show, our approach based on regression rather
than classification is more adapted to the problem at hand.

2.3 Contour Detection

Edge detection has been one of the most widely studied
problem in Computer Vision. Early attempts at solving it
were based on filters designed to respond to specific image
intensity profiles [33] and the resulting algorithms [8], [40]
are still in wide usage. However, attention has recently shifted
to classification based methods [2], [11], [12], [29], [31], [41],
[47].
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For example, in [2] gradients on different image channels
are fed to a logistic regression classifier to predict contours in
natural images. In [41], SVMs are trained to predict contours
from features computed using sparse coding. In [11], a boost-
ing algorithm is used to predict the probability of a boundary
while Structured Random Forests are used in [12], which
result in an extremely efficient contour detector. Recently, [3]
achieved state-of-the-art performance in contour detection by
proposing a fast way to group multiscale segmentations of an
image into object candidates. Finally, the approach of [47]
relies on a cascade of classifiers at different resolutions to
predict a boundary map. It is related to ours in the sense that
we also use cascades but we will show that we outperform it
because regression is more appropriate than classification in
this context.

2.4 Deep Learning Architectures

As mentioned in the introduction, we use an iterative process
for regression. This is related to many different works in
Computer Vision. Typically, in such frameworks, non-linear
transformations are applied sequentially to the input signal to
obtain a high order representation of the input, capture more
contextual information and improve classification rate at each
iteration.

Among these methods, Deep Convolutional Networks [28]
have recently become very popular thanks to their impressive
results on many benchmark datasets [9], [10], [25]. Typically, a
large Convolutional Network is trained using back-propagation
to minimize the classification error. However, because of the
huge number of parameters to be optimized, Deep Networks
require extremely large amounts of labeled training data and
computational power to reach state-of-the-art performance.
When the input image is too large or only limited amounts
of training data are available, which is the typical situation
in the biomedical domain, their applicability and performance
are reduced. By optimizing the features in an unsupervised
way and by optimizing the successive regressors one after the
other, our method is easier to train. Moreover it can efficiently
process large input volumes.

As in our approach, cascades of classifiers [13], [19], [23],
[46], [47], [51], [52] have been used by several authors
to improve classification performance. In these architectures,
each layer is composed by one or more classifiers that are
trained with a set of features extracted from the output of the
previous layer, the first layer being the raw image. The training
is easier than CNNs since each classifier is treated separately.

In [52] for example, the auto-context algorithm is introduced
to improve segmentation results by integrating image and
contextual features. In [46] instead multiscale information is
exploited to train a sequence of classifiers to detect membranes
in Electron Microscopy images. Their model is improved
in [47], where, thanks to a hierarchical architecture, Deep
Convolutional Networks are outperformed on the ISBI 2012
Challenge [21].

In contrast with all these methods, which consider a clas-
sification problem, we consider a regression formulation and
show that this is the right formalism to solve centerline and
boundary detection problems.

(@) (b) © (d © ()
Image Centerline  Distance  Function  Function NMS
Dc d © Image

Fig. 2: Learning a regressor for centerline detection. (a) Raw
image; (b) Ground truth centerline; (c) The distance transform to the
centerline is used to discriminate points close to it; (d) The function
we want to learn is maximal at the centerlines and it is thresholded
to a constant value when the local window used to compute features
does not contain any centerline points; (¢) The function learned with
our method; (f) Centerline detected after Non-Maxima Suppression
(NMS) on function ¢. In images from (b) to (f), white indicates lower
values.

3 METHOD

Let I(x), with x € R”, be an N-dimensional image con-
taining curvilinear structures of various radii. A classification-
based approach to finding their centerlines involves learning a
function y(-), such that

1 if x is on a centerline,

y(f(x 1)) = { 0 otherwise, @

where f(x, ) is a feature vector computed from a neighbor-
hood surrounding x in image I. As discussed above, this is
hard to do because points on the centerline itself for which
y(+) should return 1 and their immediate neighbors for which
it should return O look very similar. One way to solve this is to
train y(-) to return 1 for all points within a given distance from
the centerline. However, in practice, even if y(-) is allowed
to return floating point values between zero and one, using
for instance an SVM-style classifier, there is no guarantee
that its value will be maximal at the centerline itself. This
makes finding its accurate location, for example by using non-
maximum suppression, problematic.

Our solution is to learn instead y(-) as a regressor whose
values decrease monotonically as the distance of point x
to the centerline increases. Then, as shown in Fig. 2, we
can rely on simple non-maximum suppression to localize the
centerlines. We will show in the next section that this solution
is significantly more robust than both classification-based and
filter-based methods.

Moreover, many automated and semi-automated tracing al-
gorithms [6], [38], [55] rely on the extraction of local maxima
from a tubularity measure as an initial step. Our method is
designed to return a score with a well defined maximum along
the centerlines and therefore can be used as input to improve
the accuracy of these methods, as shown in Section 4.4.

In the remainder of this section, we first describe this
process for structures whose scale is assumed to be known
a priori. We then relax this constraint to handle structures of
arbitrary scale and discuss the feature vectors we use as input
to our regressors. Moreover, we will use the terms radius and
scale interchangeably. The main notations used in the paper
are summarized in Table 1.
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TABLE 1: Main mathematical notations used in the paper.

Notation Meaning

I(x) Input image (resp. volume) at pixel (resp. voxel) x

f(x,I) Feature vector computed on image I, at pixel x

C Set of centerline points for a given image

y(f(x,1)) Ideal classifier output: y(f(x,1)) =1iffx € C

De(x) Euclidean distance transform of the set C' at pixel x

d(x) Ideal regressor response. Exponential scaling of D¢

o™ (f(x,1)) Actual regressor response for iterative regression, at iteration m

g(x, go(m)) Feature vector for iterative regression, computed on score image Lp<m) at pixel x
y(-;7), Do (5r),d(55r), <p$m) As above, but for centerlines corresponding to tubular structures of radius r
D(x) Multiscale regressor, used as final approximation

= D
o dar ‘\(39()

Fig. 3: The function d in the case of x € R. If a centerline point
is located in C, the function we want to learn is obtained from the
distance transform Dc, after thresholding and scaling. The vertical
axis has been scaled for visualization purposes.

3.1 Learning a Regressor for Fixed Radius Struc-
tures

Let us momentarily assume that the linear structures have a
known radius r. Let C be the set of centerline points and
D¢ the corresponding Euclidean distance transform, that is,
Dc(x) is the metric distance from location x to the closest
location in C.

Our goal is to learn a function y(-) such that y(f(x,I)) is
maximal for x on the centerline and whose value decreases
monotonically as x moves away of it. The function d(x) =
—D¢(x) has this property, see Fig. 3. In theory, given training
data, we could learn y(-) as a regressor that takes f(x,I) as
input and returns —D¢(x) as output. However, in practice, we
learn a different function for the two following reasons.

First, because our feature vectors f(x,]) are computed
using local neighborhoods of size s, a regressor could only
learn it for points that are close enough to the centerlines for
their neighborhood to be affected by it. For this reason, it
makes sense to threshold d when D¢ is greater than a given
value dps, which is a function of the neighborhood size s.
This yields the modified function

d 1— Dg(x)
(x) = { 0 M

which takes values between 0 and 1, see Fig. 3. In our
implementation, we set dy; = s/2, which means that d is
uniformly O for points whose corresponding neighborhood
does not overlap the centerline.

Second, a regressor trained to associate to a feature vector

if De(x) < dum
otherwise,

(@)

f(x,I) the value of d(x) can only do so approximately. As a
result, there is therefore no guarantee that its maximum is
exactly on the centerline. To increase robustness to noise,
we have therefore found it effective to train our regressor
to reproduce a distance function whose extremum is better
defined. In our actual implementation, we take it to be

Do (x)

d(x) = T ) g if De(x) < dum 3)
0 otherwise,

where a > 0 is a constant that control the exponential
decrease rate of d close to the centerline, see Fig. 3. In all
our experiments, we set a = 6.

The regression method we use to learn function d is the Gra-
dientBoost algorithm [18]. It can be viewed as a generalization
of the AdaBoost algorithm and it can efficiently approximate
very complex functions.

Given training samples {(f;,vy;)}i, where f; = f(x;,1;) €
R7 is the feature vector corresponding to a point x; in image
I; and y; = d(x;), GradientBoost approximates y(-) by a
function of the form

K
p(f(x, 1)) = > awhi(f(x, 1)), )
k=1

where h;, : R — R are weak learners and a;, € R are
weights. Function ¢ is built iteratively, selecting one weak
learner and its weight at each iteration, to minimize a loss
function £ of the form £ = ), L(d;, ¢(f;)), where L(.) is
the squared loss function L(d;, o(fi)) = (di — o(f:))?. We
also experimented with the L1 and Huber loss functions and
the results proved to be very similar.

As is usually done with GradientBoost, we use regres-
sion trees as weak learners since they achieve state-of-the-
art performance in many applications [18]. Unless otherwise
stated, in all our experiments we used K = 250 trees of
depth 2. Fig. 2 shows the output of the learned function for
a sample image. For simplicity, unless there are ambiguities,
we will write p(x) instead of ¢(f(x,I)) and hy(x) instead
of hi(f(x,I)).

3.2 Iterative Regression

Using ¢(-) to predict function y(-), as explained above and
as was done in our earlier work [48], may result in incorrect
large values on the background or missed parts of the linear
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Fig. 4: Multiscale centerline detection. (a) Input image containing linear structures at different scales. We want to learn a function with local
maxima at centerline points along the spatial and radial axes. (b, top): Values of d for the smaller radius r1, (b, bottom): values for the
larger radius r2. (c) The learned multiscale approximation ¢ for ry and 72. (d) The centerlines and the radii are detected with non-maxima
suppression in the scale-space. (e) Ground truth centerlines. Best viewed in color.

structures, since only local information is used for prediction
purposes.

These mistakes can be avoided by including more contextual
information in the algorithm, as is done in the so-called Auto-
Context algorithms [47], [52] for classification purposes. To
this end, we use the score map ¢(x) to extract a new set of
features able to discriminate isolated responses on the back-
ground and to fill gaps in the detected structures. These new
features are added to the original ones to train a new regressor.
By iterating this process we obtain a sequence of regressors
able to include more and more contextual information in the
learning algorithm and to correct the mistakes done at the
previous iterations.

More precisely, let g(x, <p(0)) be the feature vector extracted
from the score map ¢(®)(x) = (x) and let {(fl,gz,yz)}l
be the new training set, with g; = g(xz,gogo)) € R’ and
o\ = O (f(x;,1;)). We apply again the Gradient Boost
algorithm to learn a better approximation of the function y(-):

9(xi,0{").

Z a(l)h(l) )
&)

We iterate this process M times learning a series of regres-
sors {p™ (f(x,1),9(x, ™))} n0... 2. The final out-
put ™) (.) will be used as approximation of y(-). Again,
for the sake of brevity, we will write (") (x) instead of
P (f(x, 1), g(x, 0™ D)).

To prevent overfitting, which is a known weakness of Auto-
context frameworks, we adopt several strategies. First, at the
beginning of each auto-context iteration new pixel locations
are sampled from the train images to build a new training
set. Second, at each boosting iteration k£ we learn the weak
learner hj, using only a random subset of the whole training
set, as in Stochastic GradientBoost [16]. Finally, as discussed
in Section 3.4, the features used to learn a weak learner are
also subsampled at each boosting iteration. Fig. 6(c) shows
the advantage of using iterating regression.

In practice, the method converges fast: The performance
does not improve beyond the second iteration and we therefore
set M = 2 in all our experiments.

eV (f(x, 1), 9(x, )

3.3 Handling Structures of Arbitrary Radius

In the previous section, we focused on structures of known
radius. In general, however, structures of many different radii
are present. To generalize our approach to this multi-scale
situation, we redefine the function d of Eq. (3) once again
as

a-(1— Do (x5 7‘)> .
dix;r) = { € v 7 =1 if De(x;r) < du, (6)
0 otherwise,

where C' is now the set of centerline points and the correspond-
ing radii. In other words, C now is a set of (x;7) (N + 1)-
dimensional vectors and D¢ (x; 1) is the scale-space distance
transform of C"

D%(X;T) min _||x — x’ ||2+k(r—r)2 , @)

(x/,r)eC
where k is used to weight the scale component differently
from the space component. In practice k& depends on the image
resolution and the range of scales. In Section 4 we discuss the
choice of k.

If we consider the maximum projection of d(x;r) along
the radial component, we obtain a function of x, whose local
maxima are the centerline points for all the values of r.
Therefore, if we train a regressor to output the values of d,
the problem of multiscale centerline detection is reduced to the
problem of finding local maxima in the projected image, see
Fig. 4. Moreover, function d(x;r) is defined so that points in
C are local maxima of d not only along the spatial dimensions,
but also along the radial component, as shown in Fig. 4(b).
Therefore, we can easily find the scale corresponding to a
centerline point as the one that gives the maximal value for
that point, Fig. 4(d).

We now want to learn a regressor y(-;r) that returns the
values of this new d function. The simplest way would be
to discretize the range of possible scales r into a finite set
of scales and to use the fixed-radius method of Section 3.1 to
learn one regressor ¢, for each scale in this set. This approach,
however, decreases the number of training samples available to
train each regressor, which in our experience severely impairs
performance.
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Fig. 5: For each value of radius r, the input image is convolved with a bank of filters to extract a set of image features. The features are
used as input to regressors <p$°). The outputs of the regressors are then convolved with other filter banks to extract new features. These
features are fed together with the image features to a second layer of regressors @9). This process is iterated M times. In the final step, the
output of the regressors is fed to ®, a multiscale regressor, that computes the final score map.

%

i 3

\

(a) Input Image / (b) Score map ¢

(c) Score map o™ (d) Final approximation ®

Fig. 6: Improvement obtained by iterating regression. (a) Input image I(x); (b) Score map 4,0(0)(~) obtained for M = 0, which corresponds
to our earlier work [48]; (c) Score map @M )() with M = 2 obtained using our new approach as described in Section 3.2; (d) Score map
®(-) obtained by adding the multiscale learning step described in Section 3.3. Both the iterations and the last multiscale regressor help to
remove false detections on the background and to obtain a better localization accuracy of the centerlines. For (b), (c), and (d) we show the
maximum projection along the radial dimension for visualization purposes.

An alternative approach is to rely on scale-space theory [30]
to train a single regressor ,o for radius r". By properly
scaling and normalizing the convolutional filters used to
compute the feature vectors f™(x,I), we can use @,o to
find the centerlines for all the other radii. The advantage of
this approach is that we can exploit all training samples to
train ¢,0 by rescaling them to have a radius equal to r°.
However, this assumes that the aspect of tubular structures is
scale invariant. When this is not the case, the results are less
accurate, especially for large differences between the actual
radius of the structure and r°.

We therefore adopt a hybrid approach. We learn a set of
regressors {¢,, 112 for a small set of regularly sampled radii.
We then apply the scale-space approach for intermediate radii
and use the closest r; to the scale we want to predict. In
Section 4 we discuss how these radii are selected. As in the
single-scale case, and as summarized in Fig. 5, we use the
Auto-Context strategy to improve the accuracy of our method
and create a sequence {cp&m (-)}i,m of scale-space regressors.
Potentially all the outputs at every scale, obtained at iteration
m — 1 could be used to train the regressors for the next

iteration. However, this would increase the learning and test
times considerably. We therefore adopt a different strategy and
divide the learning process into simpler subproblems. At the
first M iterations the regressors at different scales are learned
independently: cp,%) = apg?;)(fTio (x,1), g(x, @&Zfﬁl))). Then,
as a final step, we take the score maps obtained at all
scales {gogf.w)(x) R | and use them to train a last multivariate
regressor ®(-), where now ®(x) € RE.

We build the function ®(-) again with GradientBoost:
K
o(x) = > arhi({eM ®)L), ®)
k=1

where now the weak learners hk({go%w)(x) RE) € RE
return a vector of values, each component corresponding to
a different scale. We use ®(-) as the final approximation of
the scale-space function d(-, -).

This last step imposes consistency and smoothness on the
values returned by the previous regressors, which were trained
independently. Fig. 6(d) shows the advantage of this last step

on a sample road image.
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3.4 Computing the Feature Vectors

We first discuss the image features we feed as input to the
initial regressors of Section 3.1 then those we use to implement
the Iterative regression of Section 3.2.

3.4.1

There are many possible ways to compute the feature vectors
f(x,I) of Eq. (1), such as Haar wavelets, steerable filters, or
Gabor filters. Recent work [42] has shown that learning a set of
convolutional filters via sparse coding techniques can produce
expressive features that perform well on linear structures. For
this reason, in our earlier work [48] we used

fx, D) =[fixD)(x),...,E;«D(x)]", 9)

where the f;’s are convolutional filters learned in a unsuper-
vised way by enforcing sparsity as in [42] from a set of training
images, and applied to image 1.

Here we exploit additional image information by also con-
sidering locations within a certain distance of location x. This
produces a much larger pool of possible features

fe D) ={(fi = D(x+p)}ip

with p € R and ||p|| < L for some fixed L > 0. For example,
for a 121-filter bank, setting L = 13 results in approximately
64,200 possible features. We handle this potentially large
number by considering at each boosting iteration only a
random subset of all possible locations and convolutional
features. This also has the added benefit to reduce overfitting.
In the case of 2D images, we used J = 121 filters. In the
case of 3D volumes, the number of possible orientations of
the tubular structures is significantly larger and therefore more
filters should be used. We found it most effective to learn first
a filter bank of J = 121 filters and then extend it by rotating
the learned filters at different orientations, 14 in practice. To
speed up the convolutions required to compute the descriptor
in Eq. (9), we rely on the technique introduced in [49], which
approximates the filters {f;} with a set of separable ones.

Image Features

(10)

3.4.2 Auto-Context Features

After iteration m, we extract a new set of features from the
score map (™ (-) that will be used in the next iteration. As
for the image information, we use the method of [42] to learn
a filter bank specifically trained to extract features from the
score map.

Ideally we should learn a set of filters on the score maps
at each auto-context iteration. In practice however, this would
be prohibitively expensive. In biomedical imagery, the back-
ground is relatively uniform and the score maps produced by
the regressors exhibit characteristics similar to those of the
original images. We therefore use the same filters as for the
image to extract features from the score maps. In other kinds
of images, such as aerial or natural images, which contain
objects other than the linear structures, we learn instead a bank
of filters from the ground truth training images d(x). This
produces filters able to detect linear structures and junctions
similar to those we would have learned on the score maps.

Again neighbor locations are considered to capture more
context. Formally, the feature vector on the score image at the
auto-context iteration m is given by {f; * o™ (x + p)}; .
To keep the computational complexity under control, we
again subsample the set of possible features at each boosting
iteration.

In the case of multiscale detection, at the last iteration, the
function ® is learned from all the previously computed maps
{gng) }; and we do not use features extracted from the original
image anymore. This compensates for the increased number
of score map features. Moreover image features are not really
needed here because the purpose of this last step is to enforce
score consistency over the different scales.

3.5 Non-Maximum Suppression

Applying our method to an /N-dimensional image, yields an
(N + 1)-dimensional one, with N spatial dimensions and
one scale dimension. Our method is designed to respond
maximally at the centerlines in scale-space. To find these
local maxima, we first compute a N-dimensional image by
keeping for each location the maximum along the radii, and
saving the radius corresponding to the maximum. We then
perform a Canny-like non-maximum suppression by keeping
only the locations that correspond to a local maximum along
a line perpendicular to the local orientation, and within a
neighborhood of width defined by the radius. We estimate
the orientation using the eigenvectors of the oriented flux
matrix [26], which we found to be more robust than using the
Hessian matrix. Results from this non-maximum suppression
step are shown in Fig. 7.

4 RESULTS

In this section, we first introduce the datasets and the pa-
rameters used to test our centerline detection method. Then,
we describe our evaluation methodology and we discuss our
results. We then evaluate the improvement brought by our
method when used in conjunction with automated tracing
algorithms. Finally we apply our algorithm to the problem
of boundary detection in natural images.

41

Our method depends on few parameters, namely: the radial
weight k in Eq (7); the size s of the filters used to extract
the features; the range of sampled scales and the number of
trained regressors.

The range of scales sampled for the different datasets is
automatically determined from the ground truth data and was
always sampled uniformly. We optimized the other parameters
by a cross validation procedure on small volumes. We tested
our method on the 2D road images and 3D biological image
stacks depicted by Fig. 7. More specifically we used the
following datasets:

Datasets and Parameters

o Aerial: Aerial images of road networks. We used an
extended version of the training set we used in [48]. It
is composed of 13 images for training and 17 additional
images for testing. We sampled 10 scales ranging from
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(@) (b) (© (d)

Fig. 7: Centerline Detection Results. (a) Aerial image. (b) Brightfield image stack. (c) VC6 image stack (d) In vivo two-photon image stack.
In each case, we show from top to bottom the original image, the maximum projection along the radial component of our regressor’s output,
centerlines detected by thresholding after non-maximum suppression, and ground truth centerlines.

5 to 14. We trained 2 regressors at scales 6 and 9 and
learned filters of size s = 21. We set k to 1.
Brightfield: A dataset of 3D image stacks acquired by
brightfield microscopy from biocityne-dyed rat brains.
We used 3 images for training and 2 for testing. We
sample 12 scales corresponding to radii from 1 to 12
microns. We trained 2 regressors at scales 2 and 8. We
learned filters of size s = 21 and used k = 1.

VC6: Three dimensional brightfield micrographs of
biocytin-labeled cat primary visual cortex layer 6 taken
from the DIADEM challenge data [4]. We used 3 images
for training and 2 for testing. We sampled 6 scales from
1 to 6, trained 3 regressors at scales 1, 3, and 5. We used
k=7and s = 11.

e Vivo2P: Three dimensional in vivo two-photon images

of a rat brain, capturing the evolution of neurons in the
neocortex. We used 2 images for training and 3 sequences
of 3 images for testing. We sampled 3 scales, 0.6, 0.7,
and 0.8 microns. We trained one regressor at scale 0.7,
using £ =1 and s = 21.

For training, at each auto-context iteration we randomly
sampled 100000 image locations within the distance dj; to
the centerline and other 100 000 from points further than dj,
to the centerline. During the boosting iterations half of the
samples were randomly used to learn the weak learner. More
samples are needed to train the the final regressor ®, and we
therefore used 10 samples for this purpose.

The size of the images ranges from ~ 10° pixels for the
Aerial dataset to ~ 108 voxels for Brightfield. The running
time in our Matlab implementation is of several hours for
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Fig. 8: Precision Recall curves. Our method outperforms the others on all the datasets we considered, both for centerline detection and joint
centerline and radius estimation. Using iterative regression allows us to further improve the results.

training and from few minutes to few hours for testing.

4.2 Pixel-Wise Evaluation

We compare our approach against three of the most powerful
model-based methods for centerline detection. Optimally Ori-
ented Flux (OOF) [26], Oriented Flux with Oriented Flux An-
tisymmetry [27] (OOF+OFA), and Multidirectional Oriented
Flux [53] (MDOF). Moreover, to prove the importance of our
regression approach compared to classification, we also train
a GradientBoost classifier to segment the centerlines from the
rest of the images, thus emulating the approach of [5].

As usually done to evaluate methods extracting one-pixel-
wide curves [34], [37], [53], we introduce a tolerance factor
p to perform plot precision-recall (PR) curves analysis. A
predicted centerline point is considered a true positive if it
is at most p distant from a ground truth centerline point. We
generate PR curves for all the methods for different value
of p. The results for p = 2 are shown in Fig. 8(a) and
show that our approach clearly outperforms all other datasets.
Moreover, performing iterative regression further improve the
performance of our method in all the studied cases, confirming
the importance of using more contextual information to solve
the problem.

We also evaluate the accuracy of the radii we estimate.
Again we follow the same evaluation methodology of [53].
We start by thresholding the image after non-maximum sup-
pression at different values. Then, for each point in the thresh-
olded image, we construct a sphere using the corresponding
estimated radius. In this way we obtain for every threshold

value a full segmentation of the tubular structures, which we
can compare to the ground truth.

Since the ground truth data itself can be inaccurate, we
introduce also in this case a tolerance factor 9, and eliminate
from comparison points that are closer than dr from the
surface of a ground truth tube of radius r.

Fig. 8(b) shows the precision-recall results for 6 = 0.4. In
this case also, our method with iterative regression outperforms
all the others for all the relevant ranges of precision and recall.

We observe the biggest improvement for the Aerial dataset.
There, model-based methods do worst because they respond
strongly to bright polygonal objects such as houses. Learning-
based methods can be taught to discount them, and in this case,
classification does better than hand-crafted methods, but still
not as well as our approach. Classification is also competitive
on the Vivo2P dataset. The reason is that there are mainly thin
branches in this dataset. However, our method gives the higher
accuracy.

On the Brightfield and VC6 datasets, our approach still does
best but classification does worst, especially in Brightfield
case, due to the presence of very wide branches. As shown
in Fig. 1, in such cases, the maximum response is not neces-
sarily on the centerline and non-maxima suppression behaves
badly. Our regression-based approach avoids this problem.
As observed in [53], the antisymmetric term introduced by
OFA degrades the results with respect to OOF for very
irregular structures. However, with and without it, OOF is
more sensitive than our algorithm to strong artifacts and image
noise, which are hard to ignore for hand-crafted methods.
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4.3 Tracing Evaluation

The evaluation measures used to compare the results in the
previous section are only local measures. For the problem of
linear structure reconstruction it is also interesting to have a
global measure able to evaluate how well a tubularity score
can be used to trace linear structures.

To this end, we use in this section the tubularity scores
obtained with our method and the baselines with the Fast
Marching to generate paths between two points on a connected
linear structure. We then evaluate how well these paths match
the ground truth path using the approach proposed in [45],
which we adapted to take into account also the estimation of
the radius. In particular we use the overlapping measure OV
and the accuracy measure AD. OV represents the ability to
track the complete ground truth path, and is defined as

TPM +TPR
TPM +TPR+ FN+ FP’

where TPR and T PM are the numbers of true positives in
the reference path and the reconstructed path respectively, and
FN and FP are the numbers of false negatives and false
positives. In addition of the condition defined in [45] for true
positives, we also take into account the radial estimation and
impose that min(reg, 7gt)/ max(rest, 7gr) > th, where rey is
the radial estimation at one point, 7 the ground truth radius
and th € [0,1] is a threshold value. Setting th = 0 means
not taking into account the estimation of the radius and thus
having the same definition as [45]. For th = 1 instead perfect
match of the radius is required. In our experiments we set
th = 0.75.

AD is the average distance between ground truth path and
the path extracted automatically. It was computed in the scale-
space to again take into account the radial estimation.

For each dataset, we randomly sampled 1000 paths of fixed
length L from the ground truth, generated the paths joining
the starting and ending points of these patches using the
different tubularity measures and the Fast Marching algorithm
and finally computed the corresponding OV and AD values.

Fig. 10 shows the OV and AD values as a function of the
path length L. Note that as the length of the path increases our
method remains more robust. Unlike the others, it also retains
its accuracy. As shown in Fig. 9, the resulting paths follow
the true linear structures over longer distances, without being
disturbed by adjacent structures or background objects.

For smaller values of L, all methods perform well. The
OOF-based measures even appear slightly better than the
learning-based ones. This is an artifact due to the fact that
the ground-truth paths have been generated using a semi-
automated tracing tool that itself relies on OOF [6]. This is
particularly true for the Vivo2P dataset, that only features short
dentritic trees with simple topology.

oV =

an

4.4 Automated Reconstruction

We evaluated our approach in combination with a state-of-
the-art tracing algorithm [54]. A tubularity measure is used
in the first step of the algorithm to build a graph. This
graph is then processed to extract the subgraph describing the
linear structures. In the original implementation of [54] the

Fig. 11: Road tracing. We used our method as a preprocessing step for
a state-of-the-art tracing algorithm to reconstruct road networks. The
green color corresponds to true positives, red to false negatives, and
blue to false positives. Most of the mistakes are made at the ends
of the roads. (a) An image where the roads were almost perfectly
reconstructed. (b)-(d) Another image for which our method correctly
recovers the centerlines and the radii (d) while the ground truth was
incorrect (c) for the vertical road on the bottom-left part of the image.
Best viewed in color.

(a) (b)

Fig. 12: Automated neuron delineations obtained by feeding the
output of our approach to the algorithm of [54]. Different colors
indicate different dentritic trees. (¢) Reconstruction of neurons in a
Brightfield image stack; (f) Reconstruction in a Vivo2P image stack.
Best viewed in color.

tubularity measure was OOF [27]. Here we used instead the
more accurate MDOF measure [53]. We used the DIADEM
score [4] as an evaluation metric. The results are reported in
Table 2. Using our method yields a substantial improvement on
the challenging Aerial and Brighfield datasets. On the Vivo2P
dataset the difference is smaller but our method still performs
slightly better. This is due to the comparative simplicity of that
dataset, which contains only structures with a simple topology.

The reconstruction obtained with our method are shown in
Fig. 11 for two Aerial images and in Fig. 12 for a Brightfield
and a Vivo2P image stacks. In particular from Fig. 11(d) we
see that we are able to correct errors present in the ground
truth.

TABLE 2: Automated reconstruction results. DIADEM scores com-
puted on the reconstruction returned by [54] using either our method
or MDOF [53] as initial tubularity measure. For the aerial dataset,
we considered only the images containing road networks having a
tree topology, since the DIADEM score is not defined for graphs.

Method Aerial Brightfield Vivo2P
Our Method + [54] 0.84 0.60 0.71
MDOF + [54] 0.75 0.56 0.70
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Fig. 9: Example of random paths used in the Tracing Evaluation of Section 4.3. The ground truth paths are represented in blue. The paths
obtained from the MDOF tubularity score are represented in yellow, while those obtained using the tubularity score returned by our method
are in red. The paths obtained with our method are most of the time much closer to the ground truth paths. In particular our method is able
to follow the linear structure on a longer distance even in case of complex tree topology, such as the Brightfield stack (b) or in images with
many background objects, such as the Aerial image (a). In such cases, the paths returned using MDOF are partially on the background or
on adjacent structures. In simpler situations, such as for the Vivo2P dataset (c), the two methods are both able to provide the correct path.
Best viewed in color.
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Fig. 10: Tracing Evaluation. Our method is more robust when used to trace linear structures. The accuracy of our method remains constant
for large values of the path length L, while the performance of the other methods decrease. OV is the fraction of points on the ground
truth path marked as true positives, the larger the better. AD is the average distance between ground truth path and centerlines extracted
automatically, the smaller the better. On the simpler Vivo2P dataset all methods perform well; OOF-based measures appear slightly better
than the learning-based ones because the ground-truth paths have been generated using a semi-automated tracing tool that relies on OOF [6].

4.5 Boundary Detection

To demonstrate how generic our approach is, we consider
here the problem of boundary instead of centerline detection.
As centerlines, natural image boundaries are one dimensional
structures whose exact location can be uncertain, as shown in
Fig. 13(a). In this example and as often the case, the local
appearance of boundary pixels and of their neighbors are
extremely similar. In fact, as shown in Fig. 13(b), different
people may mark different pixels as boundary points.

Our regression-based approach gives us a robust way to deal

with this uncertainty as shown in Fig. 13(d) and we can ensure
a single maximal response for each boundary.

In the remainder of this section, we describe how we adapt
our method for boundary detection purposes and the dataset
used to test the performance. To test our algorithm we used
the Berkeley BSDS500 dataset [2]:

« BDSDS500 is a standard dataset used to test boundary

detection algorithms. It is composed of 500 color images.
200 are used for training, 100 for validation and the
remaining 200 for testing. Ground truth is made of
boundaries as drawn by several human annotators.
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Fig. 13: Learning to predict boundaries in natural images. (a) Detail
of the original image on the top. (b) The ground truth annotated
by several human subjects. All the annotations are typically used in
classification based approaches. This can produce multiple responses
on a boundary. (c¢) Aligned ground truth obtained using [3]. (d) The
function d we would like to learn with our method ensures a single
detection and can model uncertainty.

Since the appearance of a boundary is often more complex
than linear structures, we used 10% training samples and trees
of depth 5 as weak learners. Moreover, in natural images color
and texture are important sources of information to detect
boundaries [34]. To compute color features we converted the
input RGB images to Luv color space and learned a different
filter bank on each channel. To detect texture boundaries
instead, we added to our feature vector a corresponding pooled
version. We tried different pooling strategies and the one that
worked better for us was to take the absolute value of the
average over a 5 X 5 region. As for centerline detection, we
use M = 2 regression iterations.

In the BSDS500 dataset the ground truth is made of 5
different annotations. In order to compute the function d of
Eq. (3), we first align the different annotations using the
approach described in [3], as shown in Fig. 13(c). In this way
we obtain a single response for each boundary and we compute
the function d from this binary map.

Finally, as done in [12], [41], [47], we also run our boundary
detector on the test images at 3 different resolutions: half,
original and double size, and then average the results. !

The Precision-Recall curves obtained using the standard
Berkeley benchmark [2] are shown in Fig. 14. Our method
is more accurate than state-of-the-art techniques and, unlike
gPb [2], SCG [41] and MCG [3], does not include any
globalization step.

The advantage of our method is mainly given by the
regression approach: The Classification results also shown in
Fig. 14 are significantly worse. These results were obtained

1. The code and the parameters used in our experiments are publicly
available at:
http://cvlab.epfl.ch/software/centerline-detection.

05H---[F = .71] Classification N\
—[F =.73] gPb — Arbelaez 11
[F = .73] CHM - Seyedhosseini *13
—[F=.74] SCG - Ren ’12
02—[F = .74] SE — Dollar ’13
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0.4r

F =.75] MCG - Arbelaez "14
F = .76] Our method
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6 07 08 09 1

e
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Fig. 14: Precision-Recall curves BSDS500 dataset for different
boundary detection methods. In bracked is shown the F measure
computed with a fixed threshold for every image (ODS). Our method
achieve state-of-the-art performance also on this task. The advantage
of out method is mainly given by the regression formulation. Retrain-
ing our model using the binary ground truth to classify the boundaries

deteriorate the performance by 5% (red dashed line in the graph).

with the same implementation as for our regression method,
using the same image features and the same number of auto-
context iterations—the only difference was the objective func-
tion minimized during training: The classifier was trained to
classify the pixels lying on boundaries versus the other pixels
by minimizing the exponential loss, rather than regressing the
distance transform.

The boundaries detected by the different methods on some
test images are shown in Fig. 16. When we compare the
qualitative results obtained with our method against two state-
of-the-art classification based detectors, namely SCG [41]
and CHM [47], we see that our approach can avoid double
responses and multiple detections (Fig. 15). The gPb-ucm [2]
and SE [12] methods do not have this problem since they
obtain boundaries after segmenting an image or an image patch
in different regions. However, our method is still more accurate
and also gives a general framework that is not limited to the
contour detection problem. Moreover, as a possible extension
of our method, we can naturally incorporate information about
the strength of a boundary [3], [32] by modifying the shape
of the distance function we want to learn.

5 CONCLUSION

We have introduced an efficient regression-based approach to
centerline detection, which we showed to outperform both
methods based on hand-designed filters and classification-
based approaches.

The output of our method can be used in combination with
tracing algorithms requiring a scale-space tubularity measure
as input, increasing accuracy also on this task.
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Image SCG SE Our Method Ground Truth

Fig. 16: Boundary detection results. Our method is able to capture finer details compared to MCG, and is also more robust to false edges
than CHM. See for example the lezard in the second top image or the front paw of the leopard on the bottom.

example, we obtained an improvement over the state-of-the-
art when training it to detect boundaries on a set of natural
images.
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