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Abstract

There is a growing interest on using ambient and wearable sensors for human activity recognition, fostered by several application
domains and wider availability of sensing technologies. This has triggered increasing attention on the development of robust
machine learning techniques that exploits multimodal sensor setups. However, unlike other applications, there are no established
benchmarking problems for this field. As a matter of fact, methods are usually tested on custom datasets acquired in very specific
experimental setups. Furthermore, data is seldom shared between different groups. Our goal is to address this issue by introducing
a versatile human activity dataset recorded in a sensor-rich environment. This database was the basis of an open challenge on
activity recognition. We report here the outcome of this challenge, as well as baseline performance using different classification
techniques. We expect this benchmarking database will motivate other researchers to replicate and outperform the presented results,
thus contributing to further advances in the state-of-the-art of activity recognition methods.

1. Introduction

Multiple applications require human activity recognition sys-
tems ranging from health care and assistive technologies (Ten-
tori and Favela, 2008) to manufacturing (Stiefmeier et al., 2008)
or gaming. New sensing technology allows the use of multi-
modal setups involving on-body, object-placed or ambient sen-
sors. From a machine learning perspective activity recogni-
tion is a challenging problem as it typically deals with high-
dimensional, multimodal streams of data characterised by a
large variability (e.g. due to changes in the user’s behaviour
or as a result of noise). Moreover, real-life deployments are re-
quired to detect when no relevant action is performed (i.e. Null
class) (Stiefmeier et al., 2008). For these reason robust meth-
ods are required tackling issues ranging from the feature selec-
tion and classification (Preece et al., 2009), to decision fusion
and fault-tolerance (e.g., Chavarriaga et al. (2012); Sagha et al.
(2011b); Zappi et al. (2007)).
However, the comparison of different approaches is often

not possible due to the lack of common benchmarking tools
and datasets that allow for replicable and fair testing proce-
dures across several research groups. Currently, each research
group assess the performance of their algorithms using exper-
imental setups specially conceived for a narrow purpose. This
contrasts with other application fields where publicly available
datasets allow the independent assessment of different algo-
rithms in the very same conditions. This is common practice
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in the machine learning community covering applications like
computer vision, biometrics or speech recognition (e.g., the
UCI machine learning repository). Furthermore, methods are
often evaluated in the frame of open competitions or challenges
providing a fair comparison of them. Recent examples of these
competitions have focused on computer vision, bioinformatics,
or brain-computer interfaces (e.g., Everingham et al. (2010);
Guyon and Athitsos (2011); Blankertz et al. (2006)).

Considering this, we believe that there is a need for publicly
available databases on human activity recognition. This will
allow the replication of the testing procedures for different ap-
proaches. Ideally, these databases should reflect the variability
of real-world activities, and be flexible enough to emulate dif-
ferent experimental setups and recording modalities. In order
to address these issues we recorded a large recording of real-
istic daily life activities in a sensor-rich environment, i.e. The
Opportunity activity recognition dataset (Roggen et al., 2010).

We used a subset of this dataset to organise an open challenge
where different classification methods contributed by different
research groups were compared. The selected benchmarking
dataset is publicly available and contains recordings of on-body
sensors while subjects perform activities of daily living, ranging
from simple motion primitives to complex gestures. Thus, this
dataset offers a rich playground to assess methods for sensor
selection, feature extraction, classifier calibration and adapta-
tion, multimodal data fusion, automatic segmentation, among
others. It also captures the challenges common to many other
activity recognition scenarios. Thus, methods proved to be ro-
bust on this dataset can likely be successfully translated to other
activity recognition problems.
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This paper provides an overview of the Opportunity dataset
(Section 3) and the activity recognition challenge (Sec-
tions 4, 5). Furthermore, we also compare different recogni-
tion systems using four well-known classification techniques,
namely k–NN, NCC, LDA and QDA classifiers (Section 6).
The performance of these methods and the contributed tech-
niques are then reported (Section 7), followed by the conclu-
sions (Section 8).

2. Related work

Several datasets for activity recognition are currently avail-
able. However, they tend to be specific to an activity recogni-
tion purpose. Widely popular in the pervasive computing com-
munity is the PlaceLab dataset. It contains ambient and object
sensing of subjects recorded over several days (up to a week) in
an environment with multimodal sensors (Intille et al., 2006).
Its main strength is to provide long-term recordings although it
does not include a high number of activity instances. Another
dataset recorded by van Kasteren et al. (2008) features longer
recordings (month-long) but fewer sensors. It uses digital or bi-
nary sensors (e.g. reed switches) to record interactions with ob-
jects of interest, but does not include information about modes
of locomotion or body posture. The Darmstadt routine dataset
–used to study unsupervised activity pattern discovery (Huynh
et al., 2008)– is a long recording from body activity collected
by the Porcupine system (Van Laerhoven et al., 2006). The
TUM Kitchen dataset focuses on video-based activity recogni-
tion (Tenorth et al., 2009), and also contains RFID and reed
switch data, but it does not include on-body sensors. A more
recent database focuses on fine grained human activities in the
kitchen, but it is more suitable for computer vision techniques
(Rohrbach et al., 2012). As it can be seen, these databases
–although useful– are limited due to the reduced number of
recorded sensors and activity instances as well as the fact that
they were conceived for very specific purposes.
An exceptional effort to collect a large scale human activ-

ity corpus, termed HASC corpus, was led by Nagoya Univer-
sity (Kawaguchi et al., 2011). It is the result of a collaboration
among 20 teams that gathered data from 116 subjects. Data
from each subject contains a set of six activities (stay, walk,
jogging, skip, stair-up and stair-down) recorded with a single
commercially available accelerometer. There was no constraint
on the location of the sensor. The main strength of this corpus
lies in the large amount of subjects available. However, the fact
that there is only one sensor that may be located at any place,
effectively limits its use.
In addition, most of the previous activity recognition chal-

lenges have focused on isolated gestures using video (Guyon
and Athitsos, 2011). One exception to this is the open con-
test organised at the 2011 Body sensor network conference
(http://bsncontest.org) (Giuberti and Ferrari, 2011). In this con-
test, the organisers provided three datasets provided from dif-
ferent groups. Datasets differ in the number, arrangement and
type of sensors used, as well as the number of subjects. Par-
ticipants were asked to provide methods for the recognition of
several actions mainly focusing on modes of locomotion.

The lack of more general databases can be explained by
the difficulty to conceive and record a dataset that reflects the
complexity and variability of daily life situations. Moreover,
proper comparison of machine learning techniques requires
these datasets to provide a reasonable amount of instances for
the different recorded actions and to include several subjects in
order to allow the assessment of inter-subject variability. In ad-
dition, if the database is used to emulate changes in the sensor
network, then activities should be recorded by a large and di-
verse set of sensors. These aspects were taken into account for
the database described in the next section.

3. The Opportunity dataset

The challenge was based on a subset of the Opportunity ac-
tivity recognition dataset (Roggen et al., 2010), a dataset of
complex naturalistic activities with a particularly large number
of atomic activities (more than 27’000) collected in a sensor
rich environment (c.f. Figure 1). Overall, it comprises record-
ings of 12 subjects using 15 networked sensor systems, with
72 sensors of 10 modalities, integrated in the environment, in
objects, and on the body (Figure 1b). These characteristics
make it well suited to benchmark various activity recognition
approaches (Sagha et al., 2011a). An illustrative video of the
recording and database is provided as supplementary material.
We designed the activity recognition environment and sce-

nario to generate many activity primitives, yet in a realistic
manner. We purposely did not record human behaviour in daily
life to favour the use of a highly multimodal setup. Instead, we
aimed at maximising the number of activity instances collected,
while keeping their execution naturalistic. We achieved this by
relying on a high-level script and leaving free interpretation to
the users, and even encouraging them to perform as naturally
as possible with all the variations they were used to. Subjects
operated in a room simulating a studio flat with a deckchair, a
kitchen, doors giving access to the outside, a coffee machine, a
table and a chair.

3.1. Scenario script
For each subject we recorded 6 different runs. Five of them,

termed activity of daily living (ADL), followed a given scenario
as detailed below. The remaining run (termed drill run) was de-
signed to collect a large number of activity instances. The ADL
run consists of temporally loosely defined situations. Each situ-
ation (e.g. preparing sandwich) was annotated in terms of com-
posite activities (e.g. cutting bread) as well as atomic activities
(e.g. reach for bread, move to bread cutter, operate bread cut-
ter). Thus allowing to analyze the data at activity recognition at
various abstraction levels (Roggen et al., 2010).

3.1.1. ADL runs
These runs consist of daily morning activities. The subject

starts lying on the deckchair, then s/he gets up and move around
in the kitchen checking the objects in drawers and shelves, be-
fore walking outside the room. When s/he returns, the subject
prepares a coffee with milk and sugar. After drinking the cof-
fee, s/he prepares and eats a sandwich with salami and cheese.
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(a)

(b)

Figure 1: Opportunity dataset setup. (a) Top view of the record-
ing room. The dashed line shows a typical user trajectory in the
drill run. (b) On-body sensors used for the activity recognition
challenge (Red: IMU sensors; Yellow: 3-axis accelerometers).

Finally s/he should clean the room, putting the objects in their
original location or in the dishwasher before going back to the
deck chair. It should be noticed that there is no constrain on the
location or body posture in any of the scripted activities.

3.1.2. Drill run
This run is intended to record a large set of activity instances.

To achieve so, subjects performed 20 repetitions of the follow-
ing sequence :

1. Open and close the fridge
2. Open and close the dishwasher
3. Open and close 3 drawers (at different heights)
4. Open and close door 1
5. Open and close door 2
6. Turn on and off the lights
7. Clean table
8. Drink (standing)
9. Drink (sitting)

3.2. Sensor systems

The deployed sensors include 24 custom Bluetooth wireless
accelerometers and gyroscopes, 2 Sun SPOTs and 2 Inerti-
aCube3, the Ubisense localisation system and a custom-made
magnetic field sensor (Pirkl et al., 2008). Seven computers ac-
quired the data from specific sensor systems. On-body sensors
were managed by a dedicated laptop in a backpack (local stor-
age as there was no WLAN outside of the room). Ambient and
object sensors were acquired by multiple computers according
to the bandwidth required, cabling possibilities, and the need to
minimise the risk of data loss. This type of recording requires
special attention to the synchronisation of multiple streams, cu-
ration and annotation of a large amount of raw data, as well as
development of appropriate tools (Calatroni et al., 2011).

4. Challenge on Robust Activity Recognition

For the activity recognition challenge, we use a subset of the
Opportunity database corresponding to recordings of on-body
sensors for 4 subjects. These sensors include five XSense iner-
tial measurement units (accelerometer, gyro and magnetic sen-
sors) mounted on a custom-made motion jacket, 12 Bluetooth
3-axis acceleration sensors on the limbs and commercial Iner-
tiaCube3 inertial sensors located on each foot (Figure 1b). The
challenge ran from May to September 2011 and the outcome
was initially announced during a workshop at the IEEE confer-
ence on Systems, Man and Cybernetics in Anchorage, Alaska
(Sagha et al., 2011a).
We define four different tasks targetting the recognition of

modes of locomotion and arm gestures (Task A and B2, re-
spectively); activity spotting (Task B1) and robustness to noise
(Task C). The activities selected for the challenge are sum-
marised in Table 1. Since subjects had a lot of freedom when
performing the ADL scenario, there is a large variability in the
length and number of instances of the different classes, espe-
cially in the case of gestures.
The data was made publicly available and the annotated la-

bels of selected sessions were provided for training purposes.
Labelled sessions include the full recording of Subject 1, as
well as for three ADL sessions of subjects 2, 3 and 4. For
the evaluation of the contributed methods the labels of sessions
ADL4 and ADL5 of subjects 2,3 and 4 were withhold until the
end of the challenge. We use theWeighted F-measure (c.f. Sec-
tion 5.1) of all activity classes to rank the contributed methods.
In order to evaluate the robustness of the recognition meth-

ods, rotational noise was added to the testing sessions of sub-
ject 4 (See section 4.1.4). This type of noise can affect body
worn sensors, e.g. as a result of placement differences across
or within sessions. The rotational noise (up to 60◦) was added
at random times for each IMU, affecting all the sensors in the
IMU (accelerometer, gyro, and magnetic sensors).

4.1. Challenge tasks

The challenge is composed of four tasks addressing different
aspects of the activity recognition problem. These tasks are:
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Table 1: Class labels for both modes of locomotion (Task A) and gesture recognition (Tasks B1,B2, C). The numbers in parentheses
denote the number of instances recorded during the ADL runs (all subjects combined).

Modes of locomotion
Stand (1093)
Sit (1095)
Walk (90)
Lie (40)
Null

Gestures
open Dishwasher (50) open Drawer1 (50) open Drawer2 (44) open Drawer3 (56)
close Dishwasher (56) close Drawer1 (49) close Drawer2 (44) close Drawer3 (57)
open Fridge (129) open Door1 (45) open Door2 (43) move Cup (184)
close Fridge (133) close Door1 (39) close Door2 (41) clean Table (33)

Null

4.1.1. Task A: Multimodal activity recognition: Modes of loco-
motion

The goal of this task is to classify modes of locomotion from
the full set of body-worn sensors (c.f. Table 1). The testing
dataset for this task is composed of data from Subjects 2 and 3
(ADL4, ADL5). This is a 4-class continuous activity recogni-
tion problem.

4.1.2. Task B1: Automatic segmentation
Typically, activity recognition methods are evaluated using

recordings that have already been segmented into the different
target classes. However, realistic deployments are required to
detect when no relevant action is performed (i.e. Null class).
This involves the detection of the specific time when relevant
actions begin and end within a continuous recording.
This is a 2-class segmentation problem, (Null vs. activity

class). The activity class comprises all gestures (c.f. Table 1),
and binary labels denote whether any of them is being executed.
The full set of sensors is considered for this task (i.e. the

motion jacket, 12 bluetooth body-worn accelerometers and in-
ertial sensors on the feet). The testing dataset for this task is
composed of data from Subjects 2 and 3 (ADL4, ADL5).

4.1.3. Task B2: Multimodal activity recognition: Gestures
This task concerns recognition of the different right-arm ges-

tures, as described above. We provided unsegmented labelled
data sets for the gestures listed in Table 1.
This is a 17 class segmentation and classification problem.

As for the previous cases the full set of sensors are considered
for this task and the same testing . dataset is used. (ADL4,
ADL5 of Subjects 2 and 3).

4.1.4. Task C: Robustness to noise: Gestures
Realistic applications are prone to noise due to different fac-

tors. This task focuses on methods that are robust to sensor
noise. As explained above, for this task rotational noise has
been added to the testing dataset. The gestures to be recognised
are the same as for Task B2, but only the motion jacket sensors
are considered. The testing dataset for this task is composed of
data from Subject 4 (ADL4, ADL5)

5. Performance Measures

Choosing an appropriate measure to assess the performance
of complex activity recognition systems is not straightforward.

Some measures may reflect specific qualities of the system
while hiding or misrepresenting others (Ward et al., 2011). In
particular, dealing with continuous real-life data adds new di-
mensions to this problem. On the one hand, labels used as
ground truth might be loosely defined or ambiguous (i.e. the
time when a gesture starts or finishes is subjectively assessed
by the person doing the labelling). On the other hand, these
recordings contain periods of time when none of the predefined
class actions is performed. However, in these periods it cannot
be assumed that the person remained still; most of the time s/he
is performing another action or is in a transition from one ac-
tion to another. Moreover, continuous recordings often lead to
highly unbalanced datasets with some classes being overrepre-
sented with respect to the others. For instance, in the gesture
recognition case the Null class represents more than 75% of the
recorded data (76%, 82%, 76% and 78% for subjects 1 to 4, re-
spectively). Taking these points into consideration, we discuss
and present different types of performance measures computed
in the challenge dataset.

5.1. Weighted F - Measure

The F-measure (F1) takes into account the precision and re-
call for each class and can provide a better assessment of perfor-
mance than computing the accuracy (correct predicted/number
of samples). Precision is defined as TP

TP+FP , and recall corre-
sponds to TP

TP+FN ; where TP, FP are the number of true and
false positives, respectively, and FN corresponds to the number
of false negatives.
Furthermore, to counter the class imbalance, classes can be

weighted according to their sample proportion,

F1 =
∑

i
2 ∗ wi

precisioni.recalli
precisioni + recalli

(1)

where i is the class index and wi = ni/N is the proportion of
samples of class i, with ni being the number of samples of the
ith class and N being the total number of samples.

5.2. Area under the ROC curve

We also report the area under the curve (AUC) in the ROC
(Receiver Operating Characteristic) space. This measure takes
into account the sensitivity (recall) and specificity of the classi-
fication. The ROC curve is a plot between sensitivity( TP

TP+FN )
and specificity ( TN

FP+TN , TN: True negatives) drawn for different
threshold values for each class.
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As with the F-measure, the class imbalance can be taken into
account by weighting the AUC for each class by its prevalence
on the data (Fawcett, 2006).

AUCtotal =
∑

i
wiAUC(ci) (2)

where AUCtotal reflects the overall performance, wi is the
weight for the ith class, and AUC(ci) is the AUC for the ith class.

5.3. Misalignment Measures
Although the two methods presented above generally give a

good assessment of the classification performance, their results
may bemisleading when recognising actions from continuously
recorded data. Indeed, as the onset and offset times of an ac-
tion are not precisely defined, misalignment of the output labels
(e.g. early detection of an action onset) may be wrongly con-
sidered as classification errors. This becomes more critical as
annotations are performed by human operators, that may have
different criteria for defining the actual onset of an action. In
order to address this issue, Ward et al. (2011) explicitly defined
different types of errors as follows,
Overfill: When the start (or stop) time of a predicted label is

earlier (or later) than the actual time.
Underfill: When the start (or stop) time of a predicted label

is later (or earlier) than the actual time.
Insertion: Predicting an action when there is no activity of

interest (i.e. Null class).
Merge: When subsequent actions of the class are recognized

as a single one (i.e. ignoring the Null class between them).
Fragmentation: Predicting Null class in between an uninter-

rupted activity class.
Deletion: Assigning a Null label when there is an activity.
Substitution: When an activity is misclassified as a different

class (other than Null).
As noted above, label misalignment may result on overfill or

underfill errors. Clearly, the impact of this type of errors, as op-
posed to deletion or substitution, will be application dependent.

6. Baseline performance

As a baseline for evaluating different recognition methods,
including those submitted by challenge participants, we report
the performance of commonly used classification methods on
the tasks proposed in the challenge. Following the challenge
guidelines, only on-body sensors were taken into account; i.e.
Five IMUs on the motion jacket, 2 InertiaCube3 sensors in the
feet and 12 bluetooth 3-axis acceleration sensors (c.f. Section 4;
Figure 1b). Each sensor axis is treated separately yielding an
input space dimensionality of 113 for tasks A,B1, and B21 and
45 for task C, where only the motion jacket is considered.
We train user-specific classifiers, always using as training set

the data of ADL1, ADL2, ADL3 and Drill sessions. We re-
port classification performance for each subject on a testing set

1The feature vector comprises 9 dimensions per IMU on the jacket, 16 val-
ues per InertiaCube sensors, and 3 per bluetooth accelerometer.

composed of ADL4 and ADL5. We emphasise that the goal of
this analysis is to provide a reference performance instead of
obtaining a highly accurate recognition system. For this rea-
son we chose simple, well known processing and classification
methods, which may also be the most likely to be included at
first in upcoming commercial activity-aware products.
There is a considerable amount of missing data in the dataset

mainly due to disconnection of wireless sensors. Although
more complex methods have been proposed to tackle this is-
sue (c.f. Saar-Tsechansky and Provost (2007)), in this study we
simply repeat the previous value in place of the missing value.
Since the data was recorded continuously and it is not seg-

mented, we used a sliding window of length 500ms with a step
size of 250ms for extracting the features. We used as feature
the mean value of the sensor on each window.
We tested four well known classification techniques: k–

Nearest Neighbours (k–NN), Nearest Centroid Classifier
(NCC) and two Gaussian classifiers, Linear Discriminant Anal-
ysis (LDA) and Quadratic Discriminant Analysis (QDA), as de-
scribed below.

• k–Nearest Neighbours (k–NN) classifier: This is the sim-
plest classifier used where the Euclidean distances be-
tween a test sample and the samples of the training set are
computed and the most frequently occurring label of ‘k’-
closest samples is selected as output label. In our analysis
we used k–NN with two values of ‘k’, 1 and 3. For this
classifier all the training samples are stored and the Null
class is explicitly modelled.

• Nearest Centroid Classifier (NCC): In this method, the Eu-
clidean distance between the test sample and the centroid
for each class samples is used for the classification. We
first train the classifier only on those samples that cor-
respond to activities of interest excluding Null samples.
Then using the entire training set we estimate class specific
thresholds that maximise the F-measure for each class.

• Linear Discriminant Analysis (LDA): This is a Gaussian
Classifier which classifies on the assumption that the fea-
tures are normally distributed and all classes have the same
covariancematrix. For detection of the Null class, we used
the same rejection mechanism as for NCC.

• Quadratic Discriminant Analysis (QDA): Similar to the
LDA this technique also assumes a normal distribution for
the features but the class covariances may differ. The same
rejection mechanism as NCC and LDA is used.

In the following section we present the classification results
using different measures for these classifiers, as well as the con-
tributions submitted to the challenge.

7. Results

7.1. Challenge submissions
The challenge was publicly announced on the week of the

20th of may 2011 on several mailing lists (including ubicomp,
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Table 2: Summary of challenge submissions

Code Institution Sensors and Features Missing data Classifier Tasks
UP U. of Parma, Italy Mean, std, min, max, durationN/A - Comparison A,B1,B2,C
NStar A*Star, Singapore Normalized valuesr Spline 1-NNm A,B1,B2
SStar A*Star, Singapore Normalized valuesr Linear SVMm,s A,B1,B2
CStar A*Star, Singapore Normalized valuesr Spline SVM + 1-NNm,s A,B1,B2
NU Nagoya U., Japan Mean, var, energy† - C4.5w A
MI Masdar Inst, Abu Dhabi PCA on sensor valuesa - k-NNw A
MU Monash U., Australia Sensor valuesa - DT graftingw A
UT U. of Tokyo PCA on value, mean and var‡ Skip Adaboost A
NAGS IIT Bombay, India Discretized valuesN/A - HMM C

Sensors and Features. N/A: No information available. a: All sensors. r: Removed RH accelerometer due to high number of missing values. †:
Accelerometers RKN∧, BACK, L-SHOE. ‡: Subject-specific manually selected sensors.
Missing data. Spline: Spline interpolation. Linear: Linear interpolation. Skip: Skip sample and repeat last decision.
Classification. DT grafting: Decision tree grafting (Webb, 1999). w: Weka implementaion. m: Matlab implementation.

Pascal network, Panorama project, etc.) as well as personal
contacts made by the organisers. The announcement drawn
more than 2’000 visits to the Challenge webpage, and about
700 downloads of the dataset in the span of 4 months.
There were nine contributions from seven teams as summa-

rized in Table 2. Overall eight groups tackled the task A, while
Task C was the one with less submissions (two submissions).
Most contributions used the sensor values as features, some-
times normalized or discretized, while two contributions used
PCA to reduce the dimensionality space. Regarding missing
values, three methods use signal interpolation (linear or spline),
while another group just repeated the decision of the last avail-
able sample. Different standard classification algorithm where
used including Decision trees, k–NN, SVM and HMMs. Three
of the contributions use the WEKA machine learning tool (Hall
et al., 2009), two of them use LIBSVM library (Chang and Lin,
2011) and three contributions use Matlab implementations.

7.2. Classification performance

We report here the classification performance using methods
described in Sections 5 and 6, as well as the challenge contri-
butions. In the former case we report results on all 4 subjects.
In the case of the challenge submissions we report the perfor-
mances on subjects 2 and 3 (i.e. Tasks A and B2; modes of
locomotion and gesture recognition, respectively), as well as
subject 4 (i.e. Task C; noisy data).

7.2.1. F-measure and AUC
The weighted F-measure–either including or not the Null

class2–is reported in Tables 3 and 4. In general, k–NN classi-
fiers perform best for both locomotion and gestures recognition,
followed by the Gaussian classifiers. As expected the class im-
balance, in particular the inclusion of the Null class, may lead
to overstimation of the performance for gesture recognition.

2Note that this measure disregards the true negatives (correctly classified
Null-class samples), while taking into account false negatives.

The weighted AUC measure is consistent with the F-measures
where both LDA and QDA outperform NCC (c.f. Table 5).
The performance of the contributed methods is also pre-

sented in Tables 3 and 4. Regarding the measure used in the
challenge, F-measure of activity classes (without Null class),
the mode of locomotion is recognized reasonably well with five
of them performing above 0.85. Nevertheless, the best method
was not largely better than the k–NN classifiers. When the Null
class was considered, all contributions but one (MI, using k–NN
classifier) decreased considerably their performance.
In contrast, the contributed methods for gesture recognition

outperform the baseline classifiers when there is no rotational
noise (Task B2). None of the two submissions for Task C per-
form better than the k–NN or Gaussian classifiers. As observed
before, given the large number of Null class samples a large de-
crease in performance is observed when considering only the
activity classes.

7.2.2. Misalignment Measures

The measures proposed by Ward et al. (2011) are shown in
Figures 2 and 3 for the baseline classifiers. They follow the
same pattern as the F-measures, yielding higher performance
for the k–NN classifiers, even with noisy data. Regarding the
recognition of modes of locomotion, it is worth noticing that
these classifiers have a small rate of overfill and underfill er-
rors, suggesting that they accurately capture the on/offset of the
actions. However, this percentage increases for subject 4 when
the rotational noise is added and only sensors on the upper torso
are available.
In the case of gesture recognition, k–NN classifiers have a

reduced level of insertions errors. This suggests that the Null
class is not properly discriminated by the threshold-based re-
jection mechanism. Moreover the amount of underfill errors is
lower for k–NN, although the number of overfill errors is simi-
lar to other methods.
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Table 3: Recognition of modes of locomotion (F-measure). Methods contributed to the challenge are presented in the bottom rows
of the table. In all tables the column [S2 S3] corresponds to the concatenated data from subjects 2 and 3. The performance on these
data was used to rank the challenge submissions. Boldface denote the method(s) with highest performance.

Modes of Locomotion - Task A
F measure F measure (No Null class)

Method S1 S2 S3 [S2 S3] S4 S1 S2 S3 [S2 S3] S4
LDA 0.62 0.64 0.68 0.59 0.43 0.73 0.70 0.74 0.64 0.53
QDA 0.67 0.66 0.71 0.68 0.45 0.81 0.77 0.79 0.77 0.56
NCC 0.60 0.58 0.56 0.54 0.41 0.69 0.67 0.62 0.60 0.50
1 NN 0.84 0.85 0.83 0.84 0.76 0.85 0.85 0.85 0.85 0.76
3 NN 0.85 0.86 0.83 0.85 0.77 0.86 0.86 0.85 0.85 0.76
UP 0.58 0.62 0.60 0.88 0.80 0.84
NStar 0.58 0.66 0.61 0.88 0.85 0.86
SStar 0.61 0.68 0.64 0.87 0.83 0.86
CStar 0.60 0.65 0.63 0.90 0.83 0.87
NU 0.54 0.49 0.53 0.83 0.63 0.75
MI 0.85 0.81 0.83 0.87 0.86 0.86
MU 0.57 0.68 0.62 0.86 0.87 0.87
UT 0.48 0.55 0.52 0.74 0.72 0.73

Table 4: Gesture recognition (F-measure). Methods contributed to the challenge are presented in the bottom rows of the table.

Gesture recognition - Tasks B2 ([S2 S3]), C(S4)
F measure F measure (No Null class)

Method S1 S2 S3 [S2 S3] S4 S1 S2 S3 [S2 S3] S4
LDA 0.65 0.63 0.70 0.69 0.62 0.36 0.28 0.27 0.25 0.17
QDA 0.60 0.57 0.69 0.53 0.64 0.34 0.29 0.34 0.24 0.22
NCC 0.48 0.48 0.51 0.51 0.35 0.29 0.21 0.22 0.19 0.14
1 NN 0.85 0.89 0.86 0.87 0.84 0.56 0.53 0.58 0.55 0.46
3 NN 0.85 0.89 0.86 0.85 0.88 0.55 0.53 0.58 0.56 0.48
NStar 0.84 0.83 0.84 0.60 0.69 0.65
SStar 0.87 0.84 0.86 0.65 0.72 0.70
CStar 0.88 0.87 0.88 0.72 0.80 0.77
UP 0.64 0.64 0.64 0.64 0.23 0.19 0.22 0.16
NAGS 0.71 0.17

7.3. Effect of Null rejection threshold
As mentioned above we use a threshold-based mechanism to

detect samples of the Null class (c.f. Section 6). The results
reported in Section 7.2 use a class-specific threshold based on
the training data. Here we test how much the performance is
affected if a class-independent threshold is defined. In this case
we set the common threshold as the mean value of the class-
specific thresholds previously found. Unsurprisingly, a com-
mon threshold affects the performance, mainly decreasing the
rate of true negatives (compare Figures 3 and 4a). In general,
there is a decrease in the amount of true negatives in the classi-
fication of gestures, and an increase in the number of deletions,
mostly for the Gaussian classifiers.

7.4. Effect of sensor choice and rotational noise
In the previous results the data from subject 4 include a

smaller set of sensors and test data was noisy. To compare the
effect of the rotational noise and the number of sensors, we per-
formed the complete analysis for all subjects considering only

the motion jacket sensors (no noise added). We observe a small
decrease in performance in comparison to the results using all
sensors (c.f. Figures 3 and 5a, respectively). Moreover, when
comparing the performance of subject 4 with and without noise,
we observe that performance decrease in the first case, specially
for the Gaussian and NCC classifiers

8. Conclusion

This paper presents the outcome of the Opportunity activ-
ity recognition challenge. It illustrates the use of a common
database to assess performance of different methods over sev-
eral subjects and recording conditions. We study the recogni-
tion of modes of locomotion and gestures using data from 4
subjects performing daily activities recorded with different in-
ertial sensor modalities. Moreover, one of the subjects has a
different sensor configuration and noisy data.
As a baseline for future studies, we report the performance

achieved by standard classification techniques such as k-NN,
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Table 5: Classification performance in terms of area under the ROC curve (AUC).

Modes of Locomotion Gesture recognition
Method S1 S2 S3 [S2 S3] S4 S1 S2 S3 [S2 S3] S4
LDA 0.76 0.77 0.77 0.74 0.63 0.86 0.76 0.85 0.80 0.79
QDA 0.84 0.82 0.84 0.82 0.67 0.87 0.76 0.89 0.82 0.90
NCC 0.79 0.72 0.74 0.70 0.61 0.76 0.70 0.77 0.73 0.70
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Figure 2: Modes of locomotion (Task A) - Performance evaluation on the Opportunity challenge dataset using the measures pro-
posed by Ward et al. (2011). Each group of five columns denotes the accuracy of LDA, QDA, 1-NN, 3-NN and NCC, respectively.
Note that the data of subject 4 has rotational noise added and only sensors on the motion jacket are used.

NCC, LDA, and QDA. These results highlight the effect of
class imbalance in the computed F-measures and overall perfor-
mance. As a matter of fact, in continuous, unsegmented data –
as obtained in real-life conditions and provided in the database–
the Null class is typically overrepresented. Furthermore, fea-
tures of these class likely overlap with the activities of interest.
This aspect should not be neglected at the design stages (e.g. by
using risk functions when optimising the classifier parameters).
Methods contributed to the challenge were mostly based on

well established classification techniques. For the classification
of modes of locomotion, these methods perform at a similar
level as the proposed baseline. In contrast, they perform bet-
ter for gesture recognition. Only one of the proposed methods
fuses different classification techniques, in this case 1-NN and
SVM. Overall, this method outperforms the others for gesture
segmentation and recognition (Task B1, B2). Especially when
the Null class is not taken into account. We note that while a
large number of sensors were provided, no work did use sensor
or feature selection approaches. Similarly, only four submis-
sions explicitly addressed the issue of missing values, either
by interpolation or repetition of previous decisions. Among
them, those who use interpolation consistently obtain high per-

formance.
One main goal of this work is to promote data sharing

and comparison of recognition methods using common bench-
marks. To achieve this, the described dataset is made publicly
available, includingmatlab scripts allowing to reproduce the re-
sults here presented. Data and scripts are available at the UCI
Machine learning repository3. Moreover, the full Opportunity
dataset, including wearable and ambient sensors recorded on
10 subjects is also available4. We hope this initiative will al-
low other researchers to replicate and outperform the presented
results, thus assessing the improvement that can be achieved
using more complex techniques.
Furthermore we stress that this rich dataset offers many op-

portunities for further comparative assessments and possibly
new challenges. A few non-exhaustive examples of upcoming
research activities that may benefit from this dataset include e.g:
Sensor and feature selection techniques to find the most suit-

able features to use for activity recognition, and whether raw
sensor readings or composite information based on additional

3http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
4http://www.contextdb.org
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Figure 3: Gesture recognition (Tasks B2,C) - Performance evaluation on the Opportunity challenge dataset using the measures pro-
posed by Ward et al. (2011). Each group of five columns denotes the accuracy of LDA, QDA, 1-NN, 3-NN and NCC, respectively.

knowledge is most adequate (e.g., Zinnen et al. (2009)).
Dynamic multimodal data fusion. In particular the dynamic

selection of the best sensor configuration according to their
availability, as well as runtime exploitation of new resources
(see Banos et al. (2012) for an example on transfer learning
techniques).
Hierarchical activity inference. Inferring high-level activi-

ties from low-level primitives opens the door to investigate the
identification of relevant action primitives, and the combination
of machine learning and reasoning techniques.
Finally, this dataset may be useful for assessing novel ap-

proaches including semi-supervised learning, active learning
and hierarchical clustering relying on sparse labels or assisting
experts by spotting relevant areas in the dataset.
In summary, the main characteristics of the dataset com-

prising a large number of sensors, the realism of the activities
recorded, as well as their complexity and careful annotation at
a fine-grained and high-level, allow its use for studying a wide
range of aspects of activity recognition and provide a shared
tool for successful method comparison across the community.
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Figure 4: Gesture recognition - Use of a class-independent threshold to reject Null class samples (see section 7.3). Each group of
five columns denotes the accuracy of LDA, QDA, 1-NN, 3-NN and NCC, respectively.
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Figure 5: Gesture recognition - Using only motion-jacket sensors without rotational noise. Each group of five columns denotes the
accuracy of LDA, QDA, 1-NN, 3-NN and NCC, respectively.
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