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Abstract 

Structural Health Monitoring (SHM) has the potential to provide quantitative and reliable 

data on the real condition of structures, observe the evolution of their behaviour and detect 

degradation. This paper presents two methodologies for model-free data interpretation to 

identify and localize anomalous behaviour in civil engineering structures. Two statistical 

methods based on i) moving principal component analysis and ii) robust regression analysis 

are demonstrated to be useful for damage detection during continuous static monitoring of 

civil structures. The methodologies are tested on numerically simulated elements with 

sensors for a range of noise in measurements. A comparative study with other statistical 

analyses demonstrates superior performance of these methods for damage detection. 

Approaches for accommodating outliers and missing data, which are commonly 

encountered in structural health monitoring for civil structures, are also proposed. To 

ensure that the methodologies are scalable for complex structures with many sensors, a 

clustering algorithm groups sensors that have strong correlations between their 



measurements. Methodologies are then validated on two full-scale structures. The results 

show the ability of the methodology to identify abrupt permanent changes in behavior. 
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1 Introduction  

The collapse of a structure deters the public confidence in safety of the infrastructure they 

use every day. Once in use, each structure is subjected to evolving patterns of loads and 

other actions. Often the intensity and type of these actions are very different from those 

taken into account during design. The sum of these uncertainties created during design, 

construction and use poses a great challenge to the engineers and institutions in charge of 

structural safety, maintenance and operation [1]. For these reasons, the number of structures 

that are being monitored is rapidly growing. The most difficult challenge that faces the 

Structural Health Monitoring (SHM) community is not the lack of measurement technology 

but rather, finding rational methods to acquire, process, and analyze large amounts of data 

in order to extract useful information related to the health of structures [2-3]. Despite 

continuous evolution of research, for continuous static monitoring, no reliable strategies for 

identifying damage have been proposed and verified for broad classes of civil structures.  

 

Moyo and Brownjohn [4] proposed a detection of anomalous structural behaviour using 

discrete wavelet analysis. Experimental studies on structural damage identification based 



on wavelet packet transform have been done with good results [5-7]. Other techniques 

widely used are based on autoregressive methodologies. They first estimate the relations 

between sensors and all their previous measurements, and then identify new events based 

on the evolution of the parameters of the autoregressive model [8-13]. Deraemaeker et al. 

[14] presented a methodology for damage detection under changing environmental 

conditions. The effects of environment are treated using factor analysis and damage is 

detected using statistical process control with the multivariate Shewhart-T control charts. 

Posenato et al. [15] proposed a methodology based on Moving Principal Component 

Analysis (MPCA). After comparing several algorithms for different levels of damage, 

Posenato et al. [15] selected MPCA as the best algorithm.   

 

The majority of the data-interpretation methods studied for continuous monitoring fail to 

include practical complications in the data set such as variations due to daily traffic and 

measurement noise. Simple external events such as traffic, environmental changes or other 

short term actions may mask the presence of damage or also result in false alarms.  Sensors 

also involve noise in measurements. Large levels of noise can render data-interpretation 

algorithms ineffective [16-18]. 

 

Many algorithms also require that the measurement series is stationary and complete. 

However, collected time series are often incomplete due to the nature of long-term static 

monitoring [19]. For example, periodic maintenance of the system can generate 

interruptions of measurements and consequently create big gaps in the time series. Missing 

values can also be due to instrument failure, extreme natural phenomena, power 



interruptions or simply due to removal of erroneous measurements. Incomplete data sets 

significantly distort results from data interpretation. Therefore, data preparation is 

extremely critical to take care of missing values. Data imputation methods have been 

shown to perform better than list-wise deletion or pair-wise deletion [20-21]. Several 

techniques have been proposed to generate replacement values for the missing data. For 

example, Wei and Tang [19] proposed a generic framework for missing data using neural 

networks. A two-stage filling algorithm was implemented. One drawback of this algorithm 

is that it requires a long training period due to the use of a neural network. Other techniques 

based on k-Nearest Neighbour method [22-25] and regression [26-27], can be used only in 

case of Missing at Random (MAR) and not in case of Missing Completely at Random 

(MCAR). Techniques based on autoregressive analysis [28-29] can detect trends in data. 

However, they are not useful for damage detection. 

 

Outliers may strongly and misleadingly affect conclusions of widely used methodologies 

for damage detection. Outliers can be either removed and the datasets can be handled using 

methods for managing missing data, or they can be replaced by appropriate values [30-31]. 

Penny and Jolliffe [32] conduct a comparison study on several multivariate outlier detection 

methods and the results indicate that no technique is superior to all others. A detailed 

review on the most recent algorithms for managing missing data have been done by Ben-

Gal [33] and Yenduri and Iyengar [34]. 

 

The decreasing cost of sensors is causing an increase in the number of monitored structures. 

Most monitored structures have sensors that measure several types of parameters. Examples 



are applications such as the Götaälvbron bridge in Sweden where more than 70000 sensors 

are installed in a single bridge (55000 strain sensors and 11000 temperature sensors) [35] 

and the new I35 bridge in Minneapolis with more than 350 sensors (150 strain gauge 

vibrating wires, 150 thermocouples, 10 potentiometers, 20 accelerometers, 4 corrosions, 12 

long gauge optical fibres,...) [1][36]. Analyzing databases with large amounts of 

heterogeneous data is a complex task. Implementing a methodology to process and analyze 

all data could be critical in terms of computation time. The majority of algorithms, in 

particular those based on autoregressive analysis, are applicable only on time series from a 

few sensors; Clustering techniques may help through dividing the problem into classes of 

inferior complexity [37]. To the authors’ knowledge, a methodology that handles these 

complexities without manual intervention is currently unavailable. 

 

This paper presents a methodology for automatically detecting structural damage. Damage 

is assumed to result in abrupt and permanent changes in datasets obtained from long-term 

static monitoring. This methodology is also shown to be suitable for handling noise, 

outliers and incomplete data. The research builds upon previous work by Posenato et al. 

[15] on MPCA for measurement data interpretation. In addition, when there are many 

sensors, they can be organized into clusters to reduce dimensionality.  

 

The paper is organized as follows: Section 2 provides a short description of the model-free 

data analysis. Section 3 describes the numerical simulation used to compare the damage 

detection performances of several algorithms and describes the damage detection 

methodologies. Section 4 presents a comparative study between MPCA and other methods. 



Section 5 presents how MPCA can be generalized and applied in cases of missing data and 

outliers. This section introduces a clustering-with-overlapping algorithm based on the 

correlation between the sensors. Section 6 presents examples of the applications of the 

proposed methodology to full-scale structures. 

 

2 Model-free data-interpretation methods  

Static monitoring can lead to damage identification by comparing static structural response 

(displacements or strains due to environmental effects and applied loading) with predictions 

from behaviour models. For each structure, a team of experts is required to analyze the data 

and develop a precise model to validate the results. Structural models are difficult to create 

and may not accurately reflect real behaviour. Difficulties and uncertainties increase in 

presence of complex civil structures so that well-defined and unique behaviour models of 

structures cannot be clearly identified. Furthermore, model based structural identification 

may not succeed in identifying the right damage.  

 

Another approach is to evaluate data statistically. This approach involves examining 

changes in time series over time. The methodology is completely data-driven, i.e., the 

analysis of data is done without any information of the structure. Therefore the 

methodology is applicable to many types of structures. Practitioners have difficulties in 

choosing the best algorithm from the numerous algorithms available for signal processing. 

Posenato et al. [15] compared several algorithms for different levels of damage scenarios. 

The comparative study showed that for quasi-static monitoring of civil structures, new 



methodologies such as MPCA perform better than wavelet methods, Short Term Fourier 

Transform and Instance-Based Method. Few other comparisons have been done for these 

methods.  

 

Typical practical applications are, however, more complex than studied by Posenato et al. 

[15], Nair et al. [12], Brownjohn et al. [38] and Omenzetter et al. [39]. More specifically 

the varying sensor noise levels, presence of outliers or missing data and finally the number, 

types and location of sensors may preclude the simultaneous interpretation. Evaluating the 

performance of the algorithms with respect to these aspects can lead to the selection of the 

robust methods for interpretation of measurements from continuous monitoring. 

 

The following algorithms are compared in this paper. 

- Auto Regressive with Moving Average (ARMA) [2][9][12][40] ; 

- Box-Jenkins (BJ) [4];   

- Seasonal ARIMA [10]; 

- Discrete Wavelet Transform (DWT) [4][41]; 

- Wavelet Packet Transform (WPT) [5][6-7][42]; 

- Robust Regression Analysis (RRA) [43-44]; 

- Instance Based Method (IBM) [15][46-47] ; 

- Correlation Anomaly Scores Analysis [48]; 

- Moving Principal Components Analysis (MPCA) [15]. 

 



 

3 Validation of analysis methods 

3.1 Numerical Simulation 

To evaluate the efficiency of the proposed algorithms for damage detection, a large dataset 

from a structure that has been monitored under several levels of damage is required. Since 

obtaining such datasets from a real structure is difficult, in this study a finite element model 

of a beam studied by University of Genoa [49] has been used. The main aim of numerical 

simulation is to simulate the behaviour of a bridge (two-span continuous beam) in healthy 

and in various damage states [15], see Figure 1. A thermal load has been applied to the 

beam in order to simulate structural behaviour due to seasonal temperature variations, see 

Figure 2. Geometric properties of the structure are as follows. Each span is 5 metres in 

length (L). The beam has a rectangular cross section that is 0.50 metres deep (h) and 0.30 

metres wide (t). The beam is discretised into 600 4-node quadrilateral elements, i.e. 100 

elements in the x-direction (beam length) and 6 elements in the y-direction. Each element 

of the mesh has a length of 0.10 meters and a height of 0.08 meters. 

In the FE model, both thermal and moving loads can be applied. Simulating damage as 

stiffness reduction in one or more sections of the beam is also possible. The response is 

measured by means of a ‘virtual’ monitoring system installed in the structure. As shown in 

Figure 1, the monitoring system is composed of six pairs of elongation sensors; six sensors 

are located on the lower surface and six on the upper surface. Each sensor has a gauge 

length of 1 meter. The sensors are assumed to have a measurement precision of 2 microns.  



Cracks are simulated in order to model local degradation in the material properties. The 

structural behaviour is simulated in both healthy and damaged states, in order to test 

whether the statistical algorithms are able detect when and where damage occurs. Various 

combinations of damage location and severity are simulated. 

 

 

 

 

 

Each simulated time series is representative of structural response measured at a given sensor 

location over eight years assuming four measurements per day (11000 measurement events). Time 

series show harmonic variations due to seasonal variations of temperature in healthy and damaged 

states, see Figure 3. However, no obvious correlation to damage formation is directly detectable 

from the elongation sensor time histories. A small shift of periodicity is observed for only high 

degrees of damage.  

The algorithms are tested for the following damage scenarios: 

Figure 1: Schema of the FE model with sensor locations used to test the methodology (black lines). 
In subsequent figures, sensors are referred to as sn1, sn2, etc. 

   
 

Sensor7           Sensor8           Sensor9  Sensor10        Sensor11         Sensor12 

Sensor1           Sensor2          Sensor3   Sensor4          Sensor5           Sensor6 



A1-A5 Damage at sensor 2 with a 80 % reduction in stiffness in 4 finite elements. 

Five tests are simulated without daily noise in the sensor measurements. The 

temperature at the bottom of the beam is set to TB=Tref +η and the 

temperature at the top is kept constant at TT= Tref +10 [°C]. Tref is a 

sinusoidal function with period of one year and amplitude 10 [°C]. η 

represents a normal random variable that is used to simulate variations in 

daily temperature and traffic. η. It has a mean µ=0 and a standard deviation σ 

between 0 [°C] and 5 [°C] depending on the damage scenario as shown 

below.   

A1:     σ =0 [°C] 

A2 :     σ =1.25 [°C]  

A3 :     σ =2.5°[C] 

A4 :     σ =3.75 [°C]  

A5 :     σ =5 [°C]  

B1-B10 Damage at sensor 2 with a 80% reduction in stiffness in 4 finite elements. 

The temperatures at the top and at the bottom of the beam are TT = Tref 

+10[°C]+ noise (µ=0 and σ=5 [°C]) and TB= Tref + noise, (µ=0 and σ =3 

[°C]), respectively (see Figure 2). Ten scenarios are simulated with noise in 

the sensor measurements ranging from 0 microns in scenario B1 to 20 

microns in scenario B10. Damage is introduced in all scenarios after 7000 

measurements. 

 



 

 

 

 

Figure 2: Evolution of the temperature at the top 
and bottom of the two span continuous beam for a 
period of 8 years  

 Figure 3: Measurements from sensor 2 taken at a 
rate of four measurements per day for 8 years. 
Damage occurs after 7000, from Posenato et al. 
[15]. 

 

3.2 Damage Detection Methodologies 

Application of the model-free data analysis to Structural Health Monitoring involves an 

initial phase (called initialization) when the structure is assumed to be undamaged. The aim 

of this initialization period (training set) is to estimate the variability of the time series and 

to define the thresholds of the confidence interval (±3σ, σ is the standard deviation) for 

detecting anomalous behaviour. This period is normally one or two years. Once thresholds 

are fixed, the parameters of the process are monitored to ensure that they are within the 

predefined range. 

 

In this paper several methods for autoregressive analysis are studied: ARMA, Box-Jenkins 

and Seasonal ARIMA. The ARMA analysis cannot be applied directly to the time series 

generated by the sensors due to its seasonal components. The time series are first de-

trended of the seasonal component. For de-trending the data, three methods are used, (i) 



harmonic regression, (ii) simple average window and (iii) moving average window. To 

discriminate between damaged and non-damaged states of the structure, a Damage 

Sensitive Feature (DSF) is defined considering the AR coefficients ai of the ARMA [12]. 

Thus the proposed DSF for an ARMA model in which the autoregressive part has order p is 

defined as follows: 

∑
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The optimal model order of the ARMA is obtained using the Akaike information criteria 

(AIC). In order to obtain the AR and MA coefficients the Burg Algorithm is applied. The 

ARMA coefficients are allowed to vary and are computed after each acquisition based on a 

moving window composed of only the last 300 measurements. The DSF is then compared 

with the confidence interval (±3σ) calculated for the training period.  

 

The Box-Jenkins method is applied to the time series from each sensor. The idea is that 

under normal conditions, the Box-Jenkins representation of time series can be reduced to an 

ARMA model. When a permanent damage occurs on the structure at time t, an exogenous 

input with the shape of a step function (always 0 before t and 1 after t) can be introduced 

into the Box-Jenkins representation. An analysis of the evolution of the coefficient of the 

exogenous variable (DSF) can identify the occurrence of damage. Before identification of 

the ARMA for the time series, low frequency components are filtered using wavelet 

analysis. The estimation of the Box-Jenkins coefficients is done at each step using a 

Kalman filter on a moving window containing the last 600 measurements. 



 

The seasonal ARIMA is applied to the time series of each sensor. The coefficients of the 

ARIMA method can vary with time. They are identified at each step within a moving 

window that is bigger than the period. Changes in the ARIMA coefficients can reveal 

damage sustained by the structure. In this study, a window of two years is used and the 

confidence interval of ±3σ is calculated from the variation of the ARIMA coefficients 

during the third year. 

 

DWT is applied to the time histories of each sensor. Since the recording of strain data is 

synchronous, a measure of dissociation between data from two sensors gives information 

about localized changes. Using the definition of a semivariogram [4], the DSF for the DWT 

can be defined as: 
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X and Y are the two sensors whose measurements are analyzed. i is the modulation,  j is the 

scale level and k is the translation parameter. If the value of DSF is within the confidence 

interval of ±3σ calculated for the training period, there is no damage. If the DSF is out of 

±3σ confidence interval, damage is present. 

 

The WPT is not applied directly on the time series from each sensor. Such an approach 

produces energy plots that are difficult to analyze due to periodic components of the time 

series. For this reason WPT is applied to the difference between the time series of the two 

sensors closest to the damage and normalized according to the measurements of the first 



year. The DSF is defined as the energy contained in a node of the decomposition [5-7]. The 

DSF for the WPT can be defined as: 

( )∑=
k

ijkij DDSF 2  (3)  

Where i is the modulation, j is the scale level and k is the translation parameter and Dijk is 

the wavelet coefficient. The WPT is applied along a moving window of constant size. In 

each iteration, the DSF of all the modulations at scale level 3 is analyzed to evaluate if they 

are within the ±3σ confidence interval calculated during the training period.  

 

The Robust Regression Analysis is applied to the couple of sensors closest to the damage. 

If the relation between two sensors y and x can be written as ŷ=ax+b, then at time t a 

damage is present if for n consecutive times |y-ŷ|>ασ. a, b are the coefficients of the robust 

regression line estimated from the measurements of the first year. σ is the standard 

deviation of y-ŷ based on the second year. α defines the confidence interval and is set equal 

to 3. 

 

For IBM, no moving window is considered. The reference set is composed of all 

measurements taken during the first year (1460 measurements) and the confidence interval 

of ±3σ is calculated considering the minimum distances of all measurements taken during 

the subsequent year from the reference set. Damage is detected if a sequence of Na 

consecutive measurements is outside the confidence interval. 

 



The Correlation Anomaly Scores Analysis is applied to all time series using a moving 

window of one year (1460 measurements). At each step a score index E is calculated for all 

the nodes of the stochastic neighbourhood graph [48]. The confidence interval of ±3σ is 

calculated according the variation of the score E during the second year. Damage is 

detected if the score of a sensor is out of the confidence interval. 

 

The MPCA is applied to all simulated time histories using a moving window of one year; at 

each step the eigenvectors related to the main eigenvalues are analyzed. The confidence 

interval of ±3σ is calculated from the variation of the extracted eigenvectors during the 

second year. 

 

4 Results 

Results of a comparative study between all the selected algorithms are presented in Table 1. 

Results show that MPCA and WPT work more effectively than other methods. MPCA is 

the most appropriate for long-term Structural Health Monitoring tasks as depicted by the 

simulations in this study. Only MPCA and WPT are able to detect all damage scenarios.  

 

In this section results are shown for three scenarios for each algorithm. The selected 

scenarios are A1, B1 and B10. The aim is to show the influence of noise on damage 

detection. A1 and B10 are the two extreme scenarios, i.e., without noise and with maximum 

noise, while B1 is a scenario with a level of noise that is common in civil engineering. 

 



In Figure 4-6, autoregressive results are presented for three scenarios. All the 

autoregressive algorithms detect the damage only in scenario A1. The value of the DSF 

exceeds the confidence interval immediately after the introduction of the damage. In 

scenarios B1 and B10, the DSF remains bounded within the confidence interval such that 

the damage is not detected. The variations due to the added noise mask the damage. When 

damage is detected, there is no information regarding whether the anomalies are temporary 

or permanent. The autoregressive analysis performs well only for scenario A1. One reason 

is that the strategy used to simulate the thermal load is based on a random process such that 

the thermal load at time t is uncorrelated with the load at time t-1. Consequently, a 

measurement at time t cannot be expressed as a linear combination of the previous 

measurements. Autoregressive analysis is not appropriate for measurement series in which 

there is a poor relation between the current measurement and past values. 

 

Discrete wavelet decomposition results in a tree in which each node represents the variation 

with time of a specific frequency band. Figure 7 is a plot of the damage sensitive feature 

23
12DSF (see Equation 2) that is a result of wavelet decomposition of the difference between 

measurements from sensors 2 and 3. Only in scenario A1, damage is detected. For the other 

two scenarios, the DSF remains bounded inside the confidence interval. The damage is not 

detected since the DWT takes into account only changes of signals over time. These results 

show that DWT is sensitive to noise. 

 



Figure 8 shows the DSF31, defined according to Equation 3, from the WPT of the difference 

between measurements taken from sensors 2 and 3. Damage initiation is detected in all the 

scenarios. However, results do not indicate if the damage is permanent or temporary. In all 

scenarios, the value for the DSF exceeds its confidence interval after the damage. In 

scenario A1, after the damage the DSF remains outside the confidence interval and the 

damage can be considered to be permanent. In scenarios B1 and B10 the DSF takes values 

outside of its confidence interval but does not remain permanently outside the thresholds. 

The algorithm is able to detect the event for scenarios B1 and B10. However, it is not clear 

from the DSF if the anomaly is temporary or permanent. 

 

In Figure 9, RRA applied to measurements from two sensors that are closest to the damage 

is shown. The first plot gives the regression line calculated for scenario A1. In this scenario, 

the shift of the regression line due to the damage is visible and this shift is permanent. The 

second and the third plots are for scenarios B1 and B10. They show the evolution of the 

absolute value of the difference between the deformation at sensor 2 and the regression 

line. In scenario B1 the damage is detected because there are several consecutive points 

outside the confidence interval after the introduction of the damage. In scenario B10 the 

damage is not detected because all the points remain bounded inside the confidence 

interval. 

 

In Figure 10 the results of the IBM applied to the three sensors that are closest to the 

damage are presented for three scenarios. The reference set is composed of all 



measurements taken in the first year and the confidence interval of ±3σ is calculated 

considering all the minimum distances of measurements taken during the subsequent year 

from the reference set. For all three scenarios the minimum distance from the training set 

(reference period) is plotted. In scenario A1, the moment when the damage occurred is 

detected because after damage, all points are outside the confidence interval. The damage is 

also detected in scenario B1 as there are many consecutive points outside of the 3σ 

threshold. In scenario B10 damage is not detected as all the points remain inside the 

confidence interval. 

 
In Figure 11, the Correlation Anomaly Scores Analysis calculated for the K-Nearest 

Neighbours (K=3) of the sensor closest to the damage are reported for three scenarios. The 

damage initiation and the fact that it is permanent, is detected only in scenarios A1 and B1. 

The damage is detected because the E score coefficient calculated for Sensor 2 is 

permanently outside the confidence interval. In scenario B10 the damage is not detected 

because the E score coefficient remains bounded inside its confidence interval. 

 

In Figure 12, MPCA diagnostic plots of the eigenvectors related to the main eigenvalues 

are shown for three scenarios. Damage initiation and its location are detectable in all graphs 

by following the evolution of the two main eigenvectors. Specifically, one of the 

eigenvectors (eigenvector 11) indicates a new state, while the other (eigenvector 12) 

indicates when the damage has occurred. In the MPCA the location of damage can be 

inferred from the main eigenvectors because the sensors close to the damage have one or 

more rapidly changing components. In all figures, the evolution of main eigenvectors of the 



sensor closest to the damage are shown. The MPCA has the advantage of discovering the 

time of damage occurrence from the main eigenvectors, and also the damage location by 

observing the components with higher variation. It can also indicate whether or not the 

structure reaches a new stable condition.  

Scenario A1 Scenario B1 Scenario B10 

   

Figure 4:  Damage Sensitive Feature (DSF) calculated using ARMA analysis for the sensor closest to the damage for 
scenarios A1, B1 and B10.  Only damage in scenario A1 is detected. The confidence interval of ±3σ is calculated 
according the variation of the DSF during the first year (x-axis: number of measurements; y-axis: DSF). 
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Figure 5:  DSF evolution from Box-Jenkins analysis of measurements from sensor closest to the damage. Only damage 
in scenario A1 is detected. The confidence interval is calculated according the variation of the DSF during the training 
period (first year) (x-axis: number of measurements; y-axis: DSF). 
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Scenario A1 Scenario B1 Scenario B10 

   

Figure 6: Plots of one coefficient of the ARIMA method calculated for the sensor closest to the damage. Only damage 
in scenario A1 is detected. The confidence interval is calculated the variation of the coefficients during the third year 
(x-axis: number of measurements; y-axis: evolution of an auto-regressive coefficient). 
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Figure 7: DSF from the DWT of the node [1,2] calculated for the difference between sensors 2 and 3. Only damage in 
scenario A1 is detected. The training set for the definition of the confidence interval contains all the measurements 
done in the first year (x-axis: number of measurements; y-axis: DSF). 

 

 

 

 

 

 



Scenario A1 Scenario B1 Scenario B10 

   

Figure 8: DSF from the WPT of the node [3,1] calculated for the difference between sensors 2 and 3. The damage 
initiation is detected in all three scenarios. The training set for the definition of the confidence interval contains all the 
measurements done in the first year (x-axis: number of measurements; y-axis: DSF). 

 

Scenario A1 Scenario B1 Scenario B10 

   

Figure 9: Robust Regression Analysis method for measurements from the two sensors that are closest to the damage. In 
the first plot the regression line shifts due to the damage (x-axis: deformation from sensor 2 in millimeters; y-axis: 
deformation from sensor 3 in millimetres). The second and the third plots show the absolute value of the error 
evolution between the deformation at sensor 2 and the regression line (x-axis: number of measurements; y-axis: error 
in millimetres). The confidence interval is calculated using the measurements of the first year. 
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Figure 10: Instance-based method calculated for the three sensors that are closest to the damage. They show that 
damage initiation and that the situation is permanent and not temporary. (x-axis: number of measurements; y-axis: 
distance in millimetres). Damage is detected in scenarios A1 and B1. 

 

Scenario A1 Scenario B1 Scenario B10 

   

Figure 11 Plots of Correlation Anomaly Scores Analysis calculated for the K-Nearest Neighbours (K=3) closest to 
sensor 2. They show the damage initiation and that the situation is permanent and not temporary (x-axis: number of 
measurements; y-axis: correlation anomaly scores E). Damage is detected in scenarios A1 and B1. 

 

Scenario A1 Scenario B1 Scenario B10 

   



   

Figure 12: Plots of the eigenvectors related to the two main eigenvalues calculated using MPCA. They detect the 
damage and identify its location. Eigenvector 11 identifies the new state of the structure when it becomes stable again. 
Eigenvector 12 detects the damage introduced after 1750 days (measurement 7000) (x-axis: number of measurements; 
y-axis: eigenvector). The damage is detected in all three scenarios. 
 

Figure 5 - 12 and Table 1 illustrate that noise reduces the ability to detect damage. In Figure 

13 the influence of the noise on damage detection is shown for the case studied in this 

paper. Few algorithms are able to discover damage from time histories with levels of noise 

commonly observed in civil engineering applications (shown by dashed line in Figure 13). 

  

Figure 13: Plot showing the number of algorithms that are able to detect damage for increasing levels of 
noise in measurements. Results are for a damage scenario at sensor 2 with 80 % reduction in stiffness in 4 
cells  
 

Table 1 and Figure 13 indicate that the number of algorithms that are able to detect damage 

decreases with increasing levels of noise in the measurements. Only two algorithms, 

MPCA and WPT, are able to detect the damage in all simulated scenarios. The MPCA has 

Expected level of noise 



an advantage over WPT in that it is able to differentiate between events that introduce a 

permanent change in structural behaviour (see Figure 12) and those that temporarily alter 

structural behaviour. In the following sections, methods for data preparation are studied in 

order to ensure that MPCA is effective in the presence of outliers and missing data. 

 

5 Extending MPCA to accommodate missing data and outliers 

Currently, many software packages are available for data analysis. From the perspective of 

practical data analysis, a limitation in several of these software packages is that they cannot 

accommodate missing data other than by means of list-wise deletion. In addition, many of 

them do not take into account the presence of outliers, which may also distort the results of 

the analysis and thus affect damage detection. Figure 14 and 15 show, respectively, 

situations of missing data and the presence of outliers. The purpose of this section is to 

describe and evaluate simple and practical solutions for missing data and outliers. Figure 16 

presents the sequence of steps necessary to extend MPCA for data interpretation tasks in 

structural health monitoring. Clustering is necessary for the analysis of datasets from 

monitoring situations that involve a large number of sensors, probably of various types. 

Each of the steps in Figure 16 is discussed in detail in the following subsections. 

 



  

Figure 14: Missing data completely at random in 
data obtained from the Colle Isarco Bridge on the 
Brennero Highway in Italy. 

Figure 15: Outliers in data obtained from the 
Colle Isarco Bridge on the Brennero Highway in 
Italy. 

 

 

Figure 16: Sequence of steps in data interpretation 
 

5.1 Missing data 

Measurement data sets that have missing data are common. Missing data can occur for 

reasons such as: power supply interruptions, structural maintenance, revision of reading 

units or other unpredictable situations. Most algorithms are unable to manage periods 

where measurements from sensors are missing.  Replacement of incomplete data may add 

more uncertainty and increase the difficulty of damage detection. MPCA can successfully 

manage situations of missing individual measurements and missing complete sets of 

measurements at random. This section describes the methodology. 
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Datasets from monitoring systems can be expressed as matrices that contain the history of 

measured parameters: 
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N is the total number of observations during the monitoring period, and Ns is the total 

number of sensors in the monitoring system. A moving window composed of Nw 

observations is used. The analysis employs a matrix U(Nw,Ns) that contains a fixed number 

of rows of M. The main concept of the MPCA is that U(t) can be split into a mean part 

U and a second part η(t) with zero-time average such that U(t), U , η(t)∈RNwxNs. The time 

series U(t) can be written as: 

)()t( tηUU +=  (4) 

Using the linear projection of the principal component analysis computed on the covariance 

matrix of U, Equation (4) can be written as: 

∑
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ai(t) is a vector = [ai1… aiNw]’ and it is time dependent and ψi is position dependent. Each 

vector ai(t) describes the principal trend of the system; if the sensors are correlated then at 

time k aik (referred to the main eigenvectors) describes the ith-trend which is, common to 

all sensors. The eigenvector ψi=|ψi1 ψi2 … ψi1|’ represents the contribution of aik to each 

sensor.  

 



In case of missing a single measurement at random the covariance of the measurement 

series with missing data is calculated using fewer values and the accuracy depends on the 

number of missing values in relation to the dimension of the moving window Nw. The 

situations of missing complete measurements are less critical since the dataset can be 

compacted by removing all the rows in which no measurements are present, see Figure 17. 

The effect of compaction is visible only in ai(t). The main ψi remain constant (if no 

significant damage occurred in the period during which there are no measurements, 

otherwise changes will be visible in the components of ψi). 

 

Figure 17: Time series after compacting measurement series with missing data (MCAR) (shown in Figure 
14) obtained from the Colle Isarco Bridge on the Brennero Highway in Italy  
 

Thus MPCA manages situations of missing complete measurements and missing a single 

measurement at random with little pre-processing of the data. For the first case the data set 

is compacted removing rows without measurements.  For the second case, covariances 

between sensors are calculated only when measurements from both sensors are available. 

 

 



5.2 Outliers 

Outlier data points are often present in measurement databases that are obtained from 

structural monitoring systems. Their presence can decrease the sensitivity and the ability to 

determine the presence of damage in structures. In Figure 15, a simulated time history with 

1% of outliers is shown. 

 

In order to study the effect of outliers on the performance of signal processing algorithms, a 

series of numerical experiments are conducted. Outliers are randomly added to the 

measurements simulated using damage scenario B1. The number of outlier data points 

added to each sensor is 1% of the total data points. Figure 3 shows time series with and 

without outliers. The results from the MPCA analysis are presented in Figure 19. In the 

presence of outliers, the MPCA is unable to detect damage. 

 

Figure 20 shows the influence of the number of outliers on damage detection. Only one 

algorithm – RRA, is able to discover damage in the presence of outliers as expected in civil 

engineering applications (shown using dotted line in Figure 20). A small number of wrong 

measurements may significantly reduce the damage detection capabilities of most 

algorithms. For successful application of other techniques including MPCA, data must first 

be treated to remove outliers. 

 



  

Figure 18: Deformation at sensor 2 in scenario B1 
when 1% of outliers are introduced.  

Figure 19: Eigenvector corresponding to the main 
eigenvalue evaluated by MPCA for scenario B1 
with artificial outliers. The algorithm fails to detect 
damage. 

 

Methodologies exist to find outliers and replace them with appropriate values. Three 

algorithms are compared for the detection and cleaning of outliers.  

Three-σ analysis: This algorithm computes the average µ and the standard deviation σ for 

all the measurements in the period between t and t-Np (Np is a small window in which the 

measurements from the sensors are supposed to be stationary) for each sensor si. If an 

outlier is detected at time t+1,i.e., si(t+1) is out of the bound µ±3σ,  then it is replaced with 

the value of the median. 

 

Auto-regressive analysis: For each sensor si at time t, an auto-regressive model is estimated 

considering only the last Np measurements. The standard deviation σref calculated for the 

entire reference period defines the threshold used for outlier detection. At time t an outlier 

is detected if refii tsts σ3)(ˆ)( >− . The outliers are then replaced with the value îs  obtained 

from the auto-regressive model. 



 

 

Figure 20: Plot showing the number of algorithms that are able to detect damage for increasing numbers of 
outliers in measurement sets from damage scenario in which 4 cells at sensor 2 have a stiffness reduction of 
80%. 

 

Interquartile Range Analysis (IQR): This algorithm is described below. 

Input - A data set S composed of all measurements (Nm) of the sensors (Ns)  

- Np Number of points in the moving window 

- Allsensors = list of all available sensors 

Output A data set Sc composed of all measurements (Nm) of the sensors (Ns) 

without outliers 

 

Algorithm:  

 Sc=S  

For each sensor sj in Allsensors 

       For p = 1 to Nm-Np 

               M=list of measurements of sj from p to p+Np 

               Ms=sort M in ascending order 



               Q1= value of Ms at position ¼ of Np 

               Q3= value of Ms at position ¾ of Np 

               Median= value of Ms at position ½ of Np 

               LowerThreshold=Q1-1.5 (Q3-Q1) 

               UpperThreshold=Q3+1.5 (Q3-Q1) 

               if value of M at position ½ of Np > UpperThreshold or  

                value of M at position ½ of Np < LowerThreshold  

                then an outlier is detected 

                        Sc(sj,p+½*Np)=Median 

       Next p 

Next sj 
 

 

All three algorithms are able to detect and remove outliers; however, IQR has certain 

superior characteristics. Three-σ algorithm is influenced by the number of outliers present 

inside the moving window during the analysis. It works properly only when there are no 

outliers in the moving window otherwise the standard deviation is biased by these values 

and consequently points that are outliers may be classified as good. The auto-regressive 

analysis requires a certain relation between the data and its past values. Such a relationship 

is not always present. Furthermore, the estimated autoregressive model may be unstable. 

Hence replacing outliers with the values suggested by the model can lead to a divergent 

time series which, potentially, tends to infinity.  

 



The IQR algorithm is based on robust analysis and therefore is applicable even when there 

are several outliers in the analyzed datasets. For IQR to be effective, in each iteration only 

the central value in the window is compared against the thresholds. Otherwise there is a risk 

of classifying measurements due to changes in structural behaviour as outliers. Thus a new 

measurement m is not immediately checked to be an outlier. An additional number of 

measurements is required such that m becomes the central value in latest moving window.  

 

Consider a case in which the dimension of the window for outlier detection is Np and a 

permanent damage occurs near sensor si. The damage introduces a deviation in the time 

series starting from the k-th measurement; si(k) is the first measurement after damage. 

Suppose that IQR performs the outlier check on the last measurement in each moving 

window. Then the measurement si(k) could be classified as an outlier since it is further from 

the rest of the measurements M. Therefore it would be replaced with the median. 

Consequently all the measurements taken after the occurrence of damage would also be 

classified as outliers and replaced with the median. The abrupt permanent change will not 

be detected by the anomaly detection algorithm. Therefore, there is a risk of classifying 

measurements that reflect an abrupt permanent change in system behavior as outliers. This 

risk is reduced significantly if the IQR algorithm checks only the central measurement in 

the moving window. Therefore, in the event of damage, there is at least Np/2 measurements 

after the permanent change. Consequently the measurements indicating damage will not be 

classified as outliers. 

  



Figure 21 shows the time series of sensor 2 from Scenario B1 after the cleaning of outliers 

with IQR, while Figure 22 and 23 show the MPCA results applied to this cleaned dataset 

for identifying the damage. 

 

Figure 21: Measurement series from sensor 2 in scenario B1 after the removal of outliers using the IQR 
algorithm. 

 

  

Figure 22: Eigenvector corresponding to the main 
eigenvalue calculated with the MPCA in scenario 
B1 after the outliers are removed using the IQR. 

Figure 23: Eigenvector corresponding to the second 
eigenvalue calculated with the MPCA in scenario B1 
after the outliers are removed using the IQR. 

 

Results (Figure 22) show that IQR is a simple and robust cleaning procedure to remove 

outliers from datasets. This procedure is applied to the time series generated by each sensor 



before analyzing for damage detection. Results show that after the filtering of outliers using 

the IQR algorithm, the damage detection becomes once again feasible. 

 

5.3 Clustering 

In applications such as the Götaälvbron bridge in Sweden, where more than 70000 sensors 

are installed in a single bridge, the new I35 bridge in Minneapolis with more than 350 

sensors and the Nam Ngum II dam in Laos with more than 250 measurement instruments, 

data interpretation can be a very complex task due to the large amount of sensors. Most 

algorithms cannot process measurements from many sensors at the same time. The MPCA 

will also fail in these conditions for two main reasons: the time spent for the processing and 

for the interpretation of the results. The computation involved in finding and inverting a 

covariance matrix of large dimensions is time-consuming. Moreover, the analysis is not 

useful when sensors of the same type are installed in uncorrelated positions or when 

measurements of different types are analyzed.  

 

Organizing the data in clusters is also useful when sensors stop working. In the case when 

one (or more) sensor stops functioning, the covariance matrix becomes singular and it is not 

possible to calculate eigenvalues and the eigenvectors. In such circumstances, the only 

available solution is to remove the initial data associated with the failed sensors from the 

calculation and to recalculate from the beginning of the monitoring (even the ±3σ 

thresholds have to be recalculated). When clustering is used, only the clusters that contain 

data from failed sensors have to be recalculated. Another drawback of the analyzing all the 

sensors together is that if several sensors with different trends are considered there will be 



more variability in the eigenvalues and eigenvectors, This introduces more unevenness and 

affects the ±3σ thresholds used for damage detection.  

 

MPCA works well when sensor data show the same trend; the type of sensor is not 

important as long as measurements are strongly-correlated. The principle of the MPCA 

methodology is to limit the analysis to eigenvectors that correspond to the main 

eigenvalues; when uncorrelated sensor data are analyzed, additional eigenvalues and 

eigenvectors reduce reliability. On the contrary, if the sensors are highly correlated, there 

will be only few relevant eigenvalues and the data analysis is more likely to detect damage.  

 

Figure 24: Example of an overlapping clustering created according correlations between sensors. 

Figure 24 shows an example of clustering with overlapping. The purpose of the clustering 

algorithm is to extend MPCA to applications where a significant number of sensors are 

installed on the structure. The aim of this algorithm is to cluster and gather sensors with 

comparable trends and similar sensitivities to damage. MPCA is then applied to each 

cluster of sensors. The clustering overlapping algorithm based on correlations between 

sensors is given below. 

 

 Sensors 

 Cluster 1        Cluster 2       Cluster 3                  Cluster 4           Cluster 5 



Input - A data set S composed of all measurements (Nm) from sensors (Ns) 

- Kc threshold for the creation of the clusters 

- Nref  Number of points in the reference period 

- Allsensors = list of all available sensors 

Output -    LC list of all the clusters 

 

Algorithm:  

1. LC={} 

2. C(Ns,Ns) = correlation matrix calculated on the matrix S(NRef, Ns) 

3. Select the first available sensor sj inside AllSensors 

4. Form a cluster Ci that is composed of all sensors having a high 

correlation with sj, i.e., all sensors corresponding to elements in row j of 

C with values > Kc  

5. LC=LC ∪ {Ci} 

6. Allsensors=Allsensor – {Ci} 

7. While Allsensors ≠{} goto step 3 
 

 

The clustering algorithm groups together the sensors having a correlation higher than a 

fixed threshold Kc; the analysis of small groups of sensors obtained after clustering is easy 

and fast. The overlapping between the clusters is important because without overlapping, 

damage that is located between two uncorrelated clusters could remain undetected. At the 

end of the clustering process, each cluster will contain sensors that are spatially close 



(because correlation improves with proximity between sensors) or sensors that are at 

locations with the same pattern such as those located at symmetrical locations. 

 

The choice of Kc influences the number of clusters and the relation between the sensors in 

each cluster. The value for the constant Kc is chosen on the basis of the following 

considerations: 

0    to 0.2   Very weak to negligible correlation 

0.2 to 0.4   Weak, low correlation (not very significant) 

0.4 to 0.7   Moderate correlation 

0.7 to 0.9   Strong, high correlation 

0.9 to 1.0   Very strong correlation 

If the value of Kc is too low there will be few clusters with many sensors. In this situation it 

will be hard to detect damage since it will be hidden by low sensor correlations. A useful 

estimate of the value of Kc is the square of the correlation coefficient (i.e., calculate r2) 

between sensors. This is an estimate of the amount of variation in the parameter measured 

by sensor si which is directly attributable to the parameter measured by sensor sj. A high 

value indicates that one sensor has a direct and important effect upon another. When there 

is a high dependency between all the sensors, as in the computer simulation reported in this 

paper, the damage initiation will be immediately detected by observing changes in the 

correlations between sensors that are close to the damage and those that are not. 

  

 



6  Full-Scale Structural Health Monitoring 

In this section two full-scale structural applications are presented. Statistical evaluations of 

structural behavior using MPCA and RRA are presented. The Ricciolo (“curl”) viaduct was 

built in 2004-2005 at the Lugano North exit of Swiss motorway A2 [50]. It consists of five 

spans with a total length of 134 meters. The 35-meters long main span crosses Vedeggio 

torrential river. It is a curved box girder that is post-tensioned in various directions. A view 

of the completed main span of the Ricciolo viaduct is given in Figure 25 and the cross-

section of box girder is shown in Figure 26. 

  

Figure 25: View of the main span of Ricciolo 
viaduct. 

 Figure 26: View of the viaduct’s cross-section equipped. 

Parallel sensors and thermocouples were embedded in the girder by installing them on the 

rebar cage before pouring of concrete. Crossed sensors and inclinometers were mounted on 

the hardened concrete surface. The positions of the sensors along the bridge are given in 

Figure 27. 



 

Figure 27: Schematic representation of sensor network on Ricciolo viaduct, plane view, sensors not to 
scale. 

 

Continuous monitoring started in January 2005 at a rate of one measurement session every 

hour. This schedule was perturbed a few times in order to use the instruments in other 

projects. A plot of the average strain is shown in Figure 28; in this graph two sections of 

missing data are also visible. During the first four and a half months, the bridge was under 

construction. Important stages having an influence on the stress and strain distributions are 

given below: 

 

Work schedule from January 10 to May 26, 2005  

1. Post-tensioning from 30 to 70% January 12-14 

2. Partial lowering formworks January 17 

3. Construction of lateral protection walls January 17- April 22 

4. Post-tensioning from 70 to 100% April 25-26 



5. Cast of left side wing April 25-27 

6. Removal of external formworks April 25-27 

 

In order to apply MPCA and Robust Regression Analysis and to present some examples of 

results, the data collected after work stages were completed is used as a reference. Since the 

bridge is in good health condition after the completion of these stages, there are no damage 

events that could have generated unusual behaviour. For the purposes of demonstration, it 

is decided to invert the time scale, so that construction work are placed in the “future,” and 

thus appearing as unusual loading. Main eigenvectors of the MPCA are calculated and 

work stages are identified through observing changes in eigenvectors values, as shown in 

Figure 29.  

In addition, the construction stages are identified as generators of unusual structural 

behaviour since they cause change in the correlations between deformation sensors. Work 

during the construction stage modify the deformed shape and thus the regression lines 

between compared sensors shift or change slope. An example is shown in Figure 30. The 

measurements registered after the work stages are the ones inside the confidence interval 

(±3σ) while the measurements registered during the construction work are outside the 

interval. The RRA is used for its capability to work in situations of missing data and 

outliers. 



  

Figure 28: Average strain measured by three parallel sensors. The picture shows a few periods in which 
the measurements are completely missed. 

 

 

  

  

Figure 29: Detection of construction stages as 
events that create unusual structural behavior 
(inverted time scale) through the change in 
eigenvector values. 

 Figure 30: Detection of construction stages as 
events that create unusual structural behavior 
through the change in correlation parameters 
between two deformation sensors. 

Another application in which a statistical evaluation of structural behaviour based on 

MPCA is performed is the Colle Isarco viaduct on the Italian Brenner-Highway A22. A 

detailed description on this bridge and the monitoring system is provided by Bergmeister 

and Santa [51]. The bridge is shown in Figure 31. A broad set of sensors are installed, 

including both traditional and fibre optic sensors (137 SOFO sensors [52]). In this structure, 
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After construction 

Construction 



the correlation clustering with overlapping algorithm is applied, with the aim to cluster 

sensors with comparable behaviour and similar sensitivities to damage. 

 

Figure 31 shows an example of two clusters; each cluster contains sensors that are spatially 

close as well as a few sensors that are spaced well apart. Figure 32 and 33 show the results 

of the MPCA applied to two clusters after compacting measurement histories due to 

missing data. In the first plot there are no relevant variations of the eigenvector since there 

is no damage to the structure. There was no extraordinary maintenance work performed. In 

the second plot, the time instant when a sensor stopped working properly is detected; the 

figure shows that only the sensor with the problem has a drift while the others do not 

indicate changes in the measurements. 

 

 

 

 

Figure 31: General view, transverse section of the bridge and spatial positioning of sensors along the bridge 
clusters marked with circles and squares. 
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Figure 32: Plot of the main eigenvector of a 
cluster. 

 Figure 33: Plot of the main eigenvector of a 
cluster containing a damaged sensor. 

In both examples, problems of missing data, outliers and too many sensors are present. The 

extended MPCA is successfully applied in both monitoring projects. In the Ricciolo viaduct 

we are able to identify work stages while for the Colle Isarco viaduct only a damaged 

sensor is detected and this is the only relevant event. No false positives are detected in 

either of the case studies. 

 

7 Conclusions 

 

Conclusions from this study are the following: 

• Moving Principal Component Analysis (MPCA) and Robust Regression Analysis 

(RRA) are useful tools for identifying and localizing anomalous behaviour in civil 

engineering structures. These approaches can be applied over long periods of time 

to a range of structural systems in order to discover anomalous states even when 

there are large quantities of data. 



• For quasi-static monitoring of civil structures with noise in measurements, MPCA 

and WPT perform better than wavelet methods, auto regressive analysis, instance-

based methods and correlation anomaly scores. 

• Robust regression has shown lower performance than MPCA and wavelet analysis 

but has the advantage of being insensitive to outliers and missing data. Both MPCA 

and RRA are capable of detecting and locating damage while requiring low 

computational resources. Another important characteristic is their adaptability. Once 

new behavior is identified, adaptation allows detection of further anomalies. 

• MPCA combined with Interquartile Range Analysis is an effective method when 

there are outliers in the measurements. 

• MPCA can also accommodate situations when measurements are missing 

completely and when a single measurement is missing.  

• A clustering algorithm extends the use of MPCA to those applications where a 

significant number of sensors are present in the structure. The clustering algorithm 

uses the correlation between the sensors in order to cluster and gather the sensors 

with comparable trends and similar damage sensitivities, thus allowing the MPCA 

to remain tractable for full scale applications. 

 

Conclusions have been validated on two full-scale structures. The results from this study 

also raise several new issues. Aspects that need to be further investigated include: the 

definition of the training set, the size of the moving window and the thresholds to use for 

damage detection. In this study, these parameters are selected on the basis of preliminary 



tests. A more robust strategy that systematically estimates these parameters is needed. 

Future research could also focus on the use of model-free data interpretation techniques for 

the analysis of heterogeneous data sets.  

 

Finally, synergies with model-based methods [53] could be identified. Although model-

based approaches are more expensive, they provide high quality support for management 

decision making related to capacity assessment, replacement avoidance, strengthening 

following functional changes (for example, changes in loading, widening for extra lane, 

additional transit uses, etc.) as well as measurement system design [54]. Combining the two 

approaches is the subject of current research activities.  
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Table 1 Results of a comparative study between the algorithms using data derived from a 

numerically simulated beam in healthy and damaged states. D = detected, N = not detected 

Algorithms 
Damage scenario 

A1 A2 A3 A4 B1 B2 B3 B4 B5 B6 B7 B9 B10 

ARMA D N N N N N N N N N N N N 

Box-Jenkins D N N N N N N N N N N N N 

Seasonal ARIMA D N N N N N N N N N N N N 

DWT D D D D D D D N N N N N N 

WPT D D D D D D D D D D D D D 

RRA D D D D D D N N N N N N N 

IBM D D D D D D D D D D N N N 

Correlation 

Anomaly Scores 

Analysis 

D D D D D D D D N N N N N 

MPCA D D D D D D D D D D D D D 
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