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Abstract

A brain-computer interface (BCI) is a communication system that translates brain-activity into commands for a
computer or other devices. In other words, a BCI allows users to act on their environment by using only brain-activity,
without using peripheral nerves and muscles. In this paper, we present a BCI that achieves high classification accuracy
and high bitrates for both disabled and able-bodied subjects. The system is based on the P300 evoked potential and
is tested with five severely disabled and four able-bodied subjects. For four of the disabled subjects classification
accuracies of 100% are obtained. The bitrates obtained for the disabled subjects range between 10 and 25 bits/min.
The effect of different electrode configurations and machine learning algorithms on classification accuracy is tested.
Further factors that are possibly important for obtaining good classification accuracy in P300-based BCI systems for
disabled subjects are discussed.

Key words: Brain-Computer Interface, P300, Disabled Subjects, Fisher’s Linear Discriminant Analysis, Bayesian Linear
Discriminant Analysis

1. Introduction

The major goal of BCI research is to develop
systems that make it possible for disabled users
to communicate with other persons, to control ar-
tificial limbs, or to control their environment. To
achieve this goal, many aspects of BCI systems
are currently being investigated. Research areas in-
clude evaluation of invasive and non-invasive tech-
nologies to measure brain-activity, development of
new BCI applications, evaluation of control-signals
(i.e. patterns of brain-activity that can be used
for communication), development of algorithms
for translation of brain-signals into computer com-
mands, and the development and evaluation of BCI
systems specifically for disabled subjects (see Wol-
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paw et al. (2002); Lebedev and Nicolelis (2006) for
general reviews of BCI research). In this paper, we
discuss BCI systems for disabled users based on
a noninvasive method to measure brain-activity,
namely the electroencephalogram (EEG).

One of the earliest systems that used the EEG and
was tested with disabled subjects was described by
Birbaumer et al. (1999). In their pioneering work,
Birbaumer et al. showed that patients suffering from
amyotrophic lateral sclerosis (ALS) can use a BCI
to control a spelling device and communicate with
their environment. The system relied on the fact
that patients were able to learn voluntary regulation
of slow-cortical potentials, i.e. voltage shifts of the
cerebral cortex which occur in the frequency range
1-2 Hz. Drawbacks of the system were that it usu-
ally took several months of patient training before
the subjects could control the system and that com-
munication was relatively slow.

Parallel to the work of Birbaumer et al. BCI
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systems were developed that used changes in brain-
activity correlated to motor-imagery as a control-
signal (Pfurtscheller and Neuper, 2001). While
these systems were for a long time tested exclu-
sively with able-bodied and quadriplegic subjects,
recently tests have been performed with ALS pa-
tients and other disabled subjects. Positive results
have been obtained by Kübler et al. (2005) who
showed that ALS patients can learn to control
motor-imagery based BCI systems. However, as for
the system based on slow cortical potentials, users
were trained over several months and communica-
tion was relatively slow. Negative results have been
obtained by Hill et al. (2006), who tested a motor-
imagery based BCI with several completely locked-
in patients and could not obtain signals that were
suitable for communication. One possible reason
for the different results is the fact that in the study
of Kübler et al. the patients were not completely
locked in whereas the patients in the study of Hill
et al. were completely locked in. Furthermore in the
study of Kübler et al. several training sessions were
used whereas in the work of Hill et al. only one, rel-
atively long training session was used. In summary,
it has thus been shown that motor-imagery based
systems can be used by disabled subjects, however
positive evidence is limited to cases in which sub-
jects were not completely locked-in and followed a
long training protocol.

In the present work a control-signal is used that
can be detected reliably and does not require ex-
tended subject training: the P300 event-related po-
tential. The P300 is a positive deflection in the hu-
man EEG, appearing approximately 300ms after
the presentation of rare or surprising, task-relevant
stimuli (Sutton et al., 1965). Farwell and Donchin
(1988) were the first to employ the P300 as a control-
signal in a BCI. They described the P300 speller sys-
tem, with which subjects were able to spell words
by sequentially choosing letters from the alphabet.
A 6×6 matrix containing the letters of the alpha-
bet and other symbols was displayed on a computer
screen. Rows and columns of the matrix were flashed
in random order. To choose a symbol, subjects had
to silently count how often it was flashed. Flashes
of the row or column containing the desired symbol
evoked P300-like EEG signals, while flashes of other
rows and columns corresponded to neutral EEG sig-
nals. The target symbol could be inferred with a sim-
ple algorithm that searched for the row and column
which evoked the largest P300 amplitude.

Since the work of Farwell and Donchin much of

the research in the area of P300 based BCI systems
has concentrated on developing new application
scenarios (see for example Polikoff et al. (1995);
Bayliss (2003)), and on developing new algorithms
for the detection of the P300 from possibly noisy
data (see for example Xu et al. (2004); Kaper et al.
(2004); Rakotomamonjy et al. (2005); Hoffmann
et al. (2005); Thulasidas et al. (2006)). Recently, two
studies have been published in which P300-based
BCI systems were tested with disabled subjects.
These studies are described in the following.

Piccione et al. (2006) tested a 2D cursor control
system with five disabled and seven able-bodied
subjects. For cursor control, a four-choice P300
paradigm was used. Subjects had to concentrate on
one of four arrows flashing every 2.5 s in random
order in the peripheral area of a computer screen.
Signals were recorded from one electrooculogram
electrode and four EEG electrodes, preprocessed
with independent component analysis and classi-
fied with a neural network. The results described
by Piccione et al. showed that the P300 is a viable
control-signal for disabled subjects. However the av-
erage communication speed obtained in their study
was relatively low when compared to state of the art
systems, as for example the systems described by
Kaper et al. (2004); Thulasidas et al. (2006). This
was the case for the disabled subjects, as well as for
able-bodied subjects and can probably be ascribed
to the use of signals from only few electrodes, the
small number of different stimuli, and long inter
stimulus intervals (ISIs).

Sellers and Donchin (2006) also used a four-
choice paradigm and tested their system with three
subjects suffering from ALS and three able-bodied
subjects. In their study four stimuli (’YES’, ’NO’,
’PASS’, ’END’) were presented every 1.4 s in ran-
dom order, either in the visual modality, in the
auditory modality, or in a combined auditory-visual
modality. Signals from three electrodes were classi-
fied with a stepwise linear discriminant algorithm.
The research of Sellers and Donchin showed that
P300 based communication is possible for subjects
suffering from ALS. The research also showed that
communication is possible in the visual, auditory,
and combined auditory-visual modality. However,
as in the work of Piccione et al., the achieved classi-
fication accuracy and communication rate were low
when compared to state of the art results. This can
again be ascribed to the small number of electrodes,
the small number of different stimuli, and long ISIs.

In the present work a six-choice P300 paradigm
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is tested using a population of five disabled and
four able-bodied subjects. Six different images were
flashed in random order with a stimulus interval of
400 ms. Electrode configurations consisting of four,
eight, sixteen and thirty two electrodes were tested.
Bayesian Linear Discriminant Analysis (BLDA) and
Fisher’s Linear Discriminant Analysis (FLDA) were
tested for classification. For four of the disabled sub-
jects and for all the able-bodied subjects commu-
nication rates and classification accuracies were ob-
tained that are superior to those of Piccione et al.
(2006); Sellers and Donchin (2006). Factors that are
possibly important for obtaining good classification
accuracy in BCI systems for disabled subjects are
discussed.

Additionally, to stimulate further research on
data analysis techniques for P300-based BCI sys-
tems and to enable other researchers to reproduce
results, the datasets and some of the algorithms
used in the present work are made available for
download on the website of the EPFL BCI group
(http://bci.epfl.ch/p300).

The layout of the paper is as follows. In Section 2
the subject population, the experiments that were
performed, and the methods used for data prepro-
cessing and classification are described. Results are
given in Section 3. A discussion of the results follows
in Section 4. A description of FLDA and BLDA is
given in Appendices A and B.

2. Materials and methods

2.1. Experimental setup

Users were facing a laptop screen on which six im-
ages were displayed (see Fig. 1). The images showed
a television, a telephone, a lamp, a door, a window,
and a radio. The images were selected according to
an application scenario in which users can control
electrical appliances via a BCI system. The appli-
cation scenario served however only as an example
and was not pursued in further detail.

The images were flashed in random sequences, one
image at a time. Each flash of an image lasted for 100
ms and during the following 300 ms none of the im-
ages was flashed, i.e. the interstimulus interval was
400 ms.

The EEG was recorded at 2048 Hz sampling rate
from 32 electrodes placed at the standard positions
of the 10-20 international system. A Biosemi Active
Two amplifier was used for amplification and analog

Fig. 1. The display used for evoking the P300. Images were
flashed, one at a time, by changing the overall brightness of
images.

to digital conversion of the EEG signals.
Signal processing and machine learning algo-

rithms were implemented with MATLAB. The
stimulus display and the online access to the EEG
signals were implemented as dynamic link libraries
(DLLs) in C. The DLLs were accessed from MAT-
LAB via a MEX interface.

2.2. Subjects

The system was tested with five disabled and
four healthy subjects. The disabled subjects were
all wheelchair-bound but had varying communica-
tion and limb muscle control abilities (see Table 1).
Subjects 1 and 2 were able to perform simple, slow
movements with their arms and hands but were un-
able to control other extremities. Spoken communi-
cation with subjects 1 and 2 was possible, although
both subjects suffered from mild dysarthria. Sub-
ject 3 was able to perform restricted movements
with his left hand but was unable to move his arms
or other extremities. Spoken communication with
subject 3 was impossible. However the patient was
able to answer yes/no questions with eye blinks.
Subject 4 had very little control over arm and hand
movements. Spoken communication was possible
with subject 4, although a mild dysarthria existed.
Subject 5 was only able to perform extremely slow
and relatively uncontrolled movements with hands
and arms. Due to a severe hypophony and large
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fluctuations in the level of alertness, communication
with subject 5 was very difficult.

Subjects 6 to 9 were PhD students recruited from
our laboratory (all male, age 30 ± 2.3). None of
subjects 6 to 9 had known neurological deficits.

2.3. Experimental schedule

Each subject completed four recording sessions.
The first two sessions were performed on one day and
the last two sessions on another day. For all subjects
the time between the first and the last session was
less than two weeks. Each of the sessions consisted
of six runs, one run for each of the six images. The
following protocol was used in each of the runs.

(i) Subjects were asked to count silently how often
a prescribed image was flashed (For example:
”Now please count how often the image with
the television is flashed”).

(ii) The six images were displayed on the screen
and a warning tone was issued.

(iii) Four seconds after the warning tone, a ran-
dom sequence of flashes was started and the
EEG was recorded. The sequence of flashes
was block-randomized, this means that after
six flashes each image was flashed once, after
twelve flashes each image was flashed twice,
etc.. The number of blocks was chosen ran-
domly between 20 and 25. On average 22.5
blocks of six flashes were displayed in one run,
i.e. one run consisted on average of 22.5 target
(P300) trials and 22.5 · 5 = 112.5 non-target
(non P300) trials.

(iv) In the second, third, and fourth session the
target image was inferred from the EEG with
a simple classifier 2 . At the end of each run the
image inferred by the classification algorithm
was flashed five times to give feedback to the
user.

(v) After each run subjects were asked what their
counting result was. This was done in order to
monitor performance of the subjects.

The duration of one run was approximately one
minute and the duration of one session including
setup of electrodes and short breaks between runs
was approximately 30 minutes. One session com-

2 The classifier was trained from the data recorded in the
first session. The algorithm described in Hoffmann et al.
(2006) was used for preprocessing and the algorithm de-
scribed in Hoffmann et al. (2004) was used for classification.

prised on average 810 trials, and the whole data for
one subject consisted on average of 3240 trials.

2.4. Offline analysis

The impact of different electrode configurations
and machine learning algorithms on classification
accuracy was tested in an offline procedure. For each
subject four-fold cross-validation was used to esti-
mate average classification accuracy. More specifi-
cally, the data from three recording sessions were
used to train a classifier and the data from the left-
out session was used for validation. This procedure
was repeated four times so each session served once
for validation.

2.4.1. Preprocessing
Before learning a classification function and be-

fore validation, several preprocessing operations
were applied to the data. The preprocessing opera-
tions were applied in the order stated below.

(i) Referencing
The average signal from the two mastoid elec-
trodes was used for referencing.

(ii) Filtering
A 6th order forward-backward Butterworth
bandpass filter was used to filter the data. Cut-
off frequencies were set to 1.0 Hz and 12.0
Hz. The MATLAB function butter was used
to compute the filter coefficients and the func-
tion filtfilt was used for filtering.

(iii) Downsampling
The EEG was downsampled from 2048 Hz to
32 Hz by selecting each 64th sample from the
bandpass-filtered data.

(iv) Single trial extraction
Single trials of duration 1000 ms were ex-
tracted from the data. Single trials started at
stimulus onset, i.e. at the beginning of the in-
tensification of an image, and ended 1000 ms
after stimulus onset. Due to the ISI of 400 ms,
the last 600 ms of each trial were overlapping
with the first 600 ms of the following trial.

(v) Windsorizing
Eye blinks, eye movement, muscle activity, or
subject movement can cause large amplitude
outliers in the EEG. To reduce the effects of
such outliers, the data from each electrode
were windsorized. For the samples from each
electrode the 10th percentile and the 90th
percentile were computed. Amplitude values
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S1 S2 S3 S4 S5

Diagnosis Cerebral palsy Multiple sclero-
sis

Late-stage
amyotrophic
lateral sclerosis

Traumatic
brain and
spinal-cord
injury, C4 level

Post-anoxic
encephalopathy

Age 56 51 47 33 43

Age at illness onset 0 (perinatal) 37 39 27 37

Sex M M M F M

Speech production Mild disarthria Mild disarthria Severe dis-
arthria

Mild disarthria Severe
hypophony

Limb muscle control Weak Weak Very weak Weak Very weak

Respiration control Normal Normal Weak Normal Normal

Voluntary eye move-
ment

Normal Mild nystag-
mus

Normal Normal Balint’s
syndrome

Table 1
Subjects from which data was recorded in the study of the environment control system.

lying below the 10th percentile or above the
90th percentile were then replaced by the 10th
percentile or the 90th percentile, respectively.

(vi) Scaling
The samples from each electrode were scaled
to the interval [−1, 1].

(vii) Electrode selection
Four electrode configurations with different
numbers of electrodes were tested. The elec-
trode configurations are shown in Fig. 2.

(viii) Feature vector construction
The samples from the selected electrodes were
concatenated into feature vectors. The dimen-
sionality of the feature vectors was Ne × Nt,
where Ne denotes the number of electrodes
and Nt denotes the number of temporal sam-
ples in one trial. Due to the trial duration of
1000 ms and the downsampling to 32 Hz, Nt al-
ways equalled 32. Depending on the electrode
configuration Ne equalled 4, 8, 16, or 32.

2.4.2. Machine learning and classification
Classifiers and the percentile values used for wind-

sorizing were trained on the data from three ses-

sions and validated on the left-out fourth session.
Training data sets contained 405 target trials and
2025 non-target trials and validation data sets con-
sisted of 135 target and 675 non-target trials (these
are average values cf. Section 2.3). Bayesian Linear
Discriminant Analysis (BLDA) was used to learn
classifiers (see Appendix B). To compare the per-
formance of BLDA with a standard algorithm, in a
second set of experiments classifiers were computed
with Fisher’s Linear Discriminant Analysis (FLDA)
(see Appendix A). Both algorithms were fully auto-
matic, i.e. no user intervention was required to ad-
just hyperparameters, and the computation of clas-
sifiers took less than one minute on a standard PC.

After the classifiers had been trained, they were
applied to validation data in the following way. For
each run in the validation session, the single trials
corresponding to the first twenty blocks of flashes
were extracted using the preprocessing operations.
Then the single trials were classified. This resulted
in twenty blocks of classifier outputs. Each block
consisted of six classifier outputs, one output for
each image on the display. To decide which image
the user was concentrating on, the classifier out-
puts were summed over blocks for each image and
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Fig. 2. Electrode configurations used in the experiments. From left to right: Configuration I (4 electrodes), configuration II (8
electrodes), configuration III (16 electrodes), and configuration IV (32 electrodes).

then the image with the maximum summed classi-
fier output was selected. Different tradeoffs between
the time needed to take a decision and the classifi-
cation accuracy were simulated by varying the num-
ber of summed classifier outputs, i.e. the number of
blocks.

3. Results

3.1. General observations

In Fig. 3 classification accuracy averaged over
sessions and the corresponding bitrates are plotted
against the time needed to take a decision. Elec-
trode configuration (II) in conjunction with BLDA
as classification method was used for the graphs in
Fig. 3 3 and the bitrates were computed by apply-
ing the definition of Wolpaw et al. (2002) to the
average accuracy curves. The bitrates for all pos-
sible combinations of electrode configuration and
classification algorithm are listed in Table 2.

Data for subject 5 are not included in Fig. 3 and
in Table 2 because classification accuracies above
chance level could not be obtained. During the ex-
periments a speech therapist helped to communi-
cate with subject 5. However it was not clear if the
subject understood the instructions given before the
experiments. Furthermore the level of alertness of
the subject fluctuated strongly and rapidly during
experiments.

All of the subjects, except for subjects 6 and 9,
achieved an average classification accuracy of 100%

3 Electrode configuration (II) was chosen for plotting be-
cause it represents a good tradeoff between classification
performance and practical applicability of a BCI system.
To keep the plots uncluttered, the curves for FLDA, which
for electrode configuration (II) are very similar to those of
BLDA, are not shown.

after 12 or more blocks of stimulus presentations
were averaged (i.e. after 28.8 s). Subject 6 reported
that he accidentally concentrated on the wrong stim-
ulus during one run in session 1. This explains the
lower average classification accuracy for this subject.
In all other runs the average classification accuracy
after more than 12 blocks was 100% for subject 6.
The somewhat lower performance for subject 9 is
restricted to session 4, i.e. in sessions 1 to 3 subject
9 always reached 100% classification accuracy. The
reason for the lower performance in session 4 might
be fatigue.

The best performance was achieved by subject 8.
Subject 8 was highly concentrated and motivated
during the experiments. It is known that motiva-
tion and arousal in general increase P300 amplitude
(Carrillo-de-la Pena and Cadaveira, 2000). One pos-
sible explanation for the very good performance of
subject 8 might thus be the fact that the subject
was very motivated.

3.2. Differences between disabled and able-bodied
subjects

The differences that can be observed between
disabled and able-bodied subjects depend on the
performance measure used. If maximum classifica-
tion accuracy is used as performance measure no
differences can be found between able-bodied and
disabled subjects. This is shown for classification
with BLDA and the eight electrodes configura-
tion in Fig. 3. The same behavior was found for
the other combinations of classifier and electrode
configuration (not shown). If bitrate is used as
performance measure, differences between disabled
and able-bodied subjects can readily be observed.
Able-bodied subjects achieved higher maximum bi-
trates than disabled subjects. This was the case for
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Fig. 3. Classification accuracy and bitrate plotted vs. time. The panels show the classification accuracy obtained with BLDA
and the eight electrode configuration, averaged over four sessions (circles) and the corresponding bitrate (crosses), for disabled
subjects (S1-S4) and able-bodied subjects (S6-S9).

all combinations of classifier and electrode config-
uration (see Table 2). Closely linked to maximum
bitrate is the classification accuracy for small num-
bers of blocks of presentations. For this measure of
performance, differences between able-bodied and
disabled subjects can also be observed. The classi-
fication accuracy of disabled subjects (especially of
subjects 1 and 2) increases more slowly than that
of the able-bodied subjects (see Fig. 3).

3.3. Electrode configurations and classification
methods

Using different electrode configurations in con-
junction with BLDA yielded the performance curves
shown in Fig. 4. The performance curves obtained
with FLDA are shown in Fig. 5. For both figures,
classification accuracy was averaged over sessions
and over all subjects. For both classification meth-
ods a strong increase in classification accuracy can
be observed between the electrode configurations
consisting of four and eight electrodes. Using more
than eight electrodes yielded only relatively small
increases in performance for BLDA and resulted in
a decrease of performance for FLDA (cf. Figs. 4, 5,
Table 2). For the configurations consisting of four
and eight electrodes, the classification accuracy and
bitrates obtained with BLDA were slightly better
than those obtained with FLDA. For the configu-
rations consisting of more than eight electrodes the
performance of BLDA was clearly better than that
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Fig. 4. Classification accuracy obtained with BLDA, aver-
aged over all subjects and sessions, plotted against time, for
all electrode configurations.

of FLDA. For all electrode configurations the differ-
ences in accuracy between BLDA and FLDA were
strongest when only a small number of blocks was
used, i.e. in the range 0–20 s. (cf. Figs. 4, 5).

3.4. Averaged waveforms

Detecting the target image from a sequence of
EEG trials relies on differences between the wave-
forms of target and non-target trials. To visualize
these differences the averaged waveforms at elec-
trode Pz are plotted in Fig. 6 4 . As expected, dis-
abled subjects and able-bodied subjects show a

4 Electrode Pz was chosen for plotting because it typically
shows the largest P300 amplitude.
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Subject BLDA-4 BLDA-8 BLDA-16 BLDA-32 FLDA-4 FLDA-8 FLDA-16 FLDA-32

S1 8.8 8.8 7.7 13.0 6.2 7.1 5.0 6.5

S2 6.8 10.8 11.4 11.2 6.8 13.0 6.3 6.3

S3 21.9 24.7 24.7 21.9 24.7 28.0 28.0 19.3

S4 14.9 19.3 21.9 29.8 13.1 17.0 19.0 14.9

S6 25.9 25.9 25.9 34.1 22.3 22.3 17.0 13.1

S7 22.3 22.3 38.7 38.7 19.0 19.3 21.9 19.3

S8 38.7 49.4 56.0 64.6 43.8 56.3 49.9 38.7

S9 17.0 19.3 22.3 17.0 8.0 13.0 14.9 13.0

Avg. (S1-S4) 13.1±6.8 15.9±7.5 16.4±8.2 19.0±8.6 12.7±8.6 16.3±8.8 14.6±11.0 11.7±6.5

Avg. (S6-S9) 26.0±9.2 29.3±13.7 35.7±15.2 38.6±19.7 23.3±15.0 27.6±19.3 25.8±16.0 21.0±12.1

Avg. (All) 19.5±10.2 22.6±12.5 26.1±15.3 28.8±17.6 18.0±12.6 22.0±15.2 20.2±14.1 16.4±10.3

Table 2
Maximum average bitrate per minute. Bitrates were computed from average accuracy curves and are shown for all combinations
of classification algorithm and electrode configuration. Mean bitrate and standard deviations were computed for disabled
subjects (S1-S4), able bodied subjects (S6-S9), and all subjects.
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Fig. 5. Classification accuracy obtained with FLDA, aver-
aged over all subjects and sessions, plotted against time, for
all electrode configurations.

P300-like peak in the target condition which is not
present in the non-target condition. The latency of
the P300 is higher for the disabled subjects (around
500 ms) when compared to the one from able-
bodied subjects (around 300 ms). The amplitude at
the P300 peak is smaller for the disabled subjects
(around 1.5 µV) than for the able-bodied subjects
(around 2 µV).

4. Discussion

4.1. Differences to other studies

Compared to other P300-based BCI systems for
disabled users, the classification accuracy and bi-
trate obtained in the current study are relatively
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Fig. 6. Top: Average waveforms at electrode Pz for disabled
subjects (S1-S4). Bottom: Average waveforms at electrode
Pz for able-bodied subjects (S6-S9). Shown are the average
responses to target stimuli (solid line) and non-target stimuli
(dashed line) from all four sessions. A prestimulus interval
of 100 ms was used for baseline correction of single trials.

high. In the work of Sellers and Donchin (2006) the
best classification accuracy for the able-bodied sub-
jects was on average 85% and the best classification
accuracy for the ALS patients was on average 72%
(values taken from Table 3 in Sellers and Donchin
(2006)). In the present study the best classification
accuracy for the able-bodied subjects was on average
close to 100% and the best classification accuracy for
disabled subjects was on average 100% (see Fig. 3).
Bitrates in bits/min were not reported in the study
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of Sellers and Donchin. In the work of Piccione et al.
(2006) average bitrates of about 8 bits/min were re-
ported for both disabled and able-bodied subjects.
In the present study the average bitrate obtained
with electrode configuration (II) was 15.9 bits/min
for the disabled subjects and 29.3 bits/min for the
able-bodied subjects.

Due to differences in experimental paradigms and
subject populations the classification accuracy and
bitrate obtained in the two studies described above
cannot be compared directly to those obtained in
the present study. Nevertheless, several factors that
might have caused the differences can be identified.
These factors are described below.

– Number of choices
In the present study a six-choice paradigm was
used, whereas in the experiments of Sellers and
Donchin and Piccione et al. four-choice paradigms
were used. As a consequence the target stimulus
occurred with a probability of 0.25 in the experi-
ments of Sellers and Donchin and Piccione et al.,
whereas in the present work it occurred with a
probability of 0.16. Smaller target probabilities
correspond to higher P300 amplitudes (Duncan-
Johnson and Donchin, 1977), thus the P300 in our
system might have been easier to detect.

In general, when designing a P300-based BCI,
one has to take into account that disabled sub-
jects might suffer from visual impairments. Sys-
tems such as the P300 speller in which users have
to focus on a relatively small area of the display
might thus not be appropriate for disabled sub-
jects. Reducing the number of choices enlarges
the area occupied by one item on the screen and
thus facilitates concentration on one item. This
might be particularly important for subjects
who have little remaining control over their eye-
movements. Such subjects might use covert shifts
of visual attention (Posner and Petersen, 1990)
to control a P300-based BCI, which should be
easier when a small number of large items is used.

– Interstimulus interval
Several factors have to be kept in mind when
choosing an ISI for a P300-based BCI system.
Regarding classification accuracy, longer ISIs
theoretically yield better results. This should be
the case because longer ISIs (within some limits)
cause larger P300 amplitude. On the other hand,
a consequence of long ISIs is a longer overall du-
ration of runs. Disabled subjects might have diffi-

culties to stay concentrated during long runs and
thus P300 amplitude and classification accuracy
might actually decrease for longer ISIs.

Regarding bitrate, the factors described above
have to be considered together with the fact that
for a given classification accuracy higher bitrates
are obtained with shorter ISIs. Additionally one
has to consider that if the ISI is made too short,
subjects with cognitive deficits might have prob-
lems to detect all target stimuli and classification
accuracy might decrease.

Given the complex interrelationship of several
factors an optimal ISI for P300-based BCIs can
only be determined experimentally. Here we have
shown that an ISI of 400 ms yields good results.
Sellers and Donchin have used an ISI of 1.4 s,
and Piccione et al. have used an ISI of 2.5 s. The
results obtained in their studies seem to indicate
that these ISIs are too long.

4.2. Electrode configurations

The electrode configuration used in a BCI deter-
mines the suitability of the system for daily use.
Clearly, systems that use only few electrodes take
less time for setup and are more user friendly than
systems with many electrodes. However, if too few
electrodes are used not all features that are neces-
sary for accurate classification can be captured and
communication speed decreases.

For P300-based BCI systems different electrode
configurations have been described in the literature.
Good results have been reported using only three
or four midline electrodes (Fz, Cz, Pz, Oz) (Serby
et al., 2005; Sellers and Donchin, 2006; Piccione
et al., 2006). Krusienski et al. (2006) described an
eight electrode configuration consisting of the mid-
line electrodes and the four parietal-occipital elec-
trodes PO7, PO8, P3, and P4. Kaper et al. (2004)
employed a ten electrode configuration consisting
of the midline electrodes, the parietal-occipital elec-
trodes PO7, P08, P3, P4 and the central electrodes
C3, C4. Thulasidas et al. (2006) used a set of 25 cen-
tral and parietal electrodes.

Here we have tested different electrode configu-
rations, consisting of 4, 8, 16, and 32 electrodes, in
combination with the BLDA and FLDA classifica-
tion algorithms. The results show that for both al-
gorithms a significant increase in classification ac-
curacy can be obtained by augmenting the set of
four midline electrodes with the parietal electrodes
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P7, P3, P4, and P8. For most of the subjects, in-
spection of the average waveforms at the parietal
electrodes showed that in target trials there was a
negative peak with a latency of about 200 ms which
was weaker in the non-target condition. This N200-
like component probably is responsible for the in-
crease of classification accuracy when the parietal
electrodes are included. Further research is needed
to clarify the possible functional significance of this
component.

With the BLDA algorithm a small further in-
crease in classification accuracy could be obtained
by using the configurations consisting of 16 or 32
electrodes. With the FLDA algorithm, classification
decreased when more than 8 electrodes were used.
This probably happened because the FLDA algo-
rithm is unable to deal with training data sets in
which the number of features is large compared to
the number of training examples.

In summary, regardless of the classification algo-
rithm that is used, the eight electrode configuration
represents a good compromise between suitability
for daily use and classification accuracy and seems
to capture most of the important features for P300
classification.

4.3. Machine learning algorithms

Many of the characteristics of a BCI system de-
pend critically on the employed machine learning
algorithm. Important characteristics that are influ-
enced by the machine learning algorithm are classi-
fication accuracy and communication speed, as well
as the amount of time and user intervention neces-
sary for setting up a classifier from training data.

A simple and efficient algorithm that has rela-
tively often been used in P300-based and other BCI
systems is FLDA (Pfurtscheller and Neuper, 2001;
Bostanov, 2004; Kaper, 2006). In a comparison of
classification techniques (Krusienski et al., 2006)
for P300-based BCIs, FLDA was among the best
methods in terms of classification accuracy and ease
of use. However, using FLDA becomes impossible
when the number of features becomes large, relative
to the number of training examples. This is known
as the small sample size problem. The small sample
size problem occurs because the between-class scat-
ter matrix used in FLDA becomes singular when
the number of features becomes large. In the present
study the solution to this problem was to use the
Moore-Penrose pseudoinverse of the between-class

scatter matrix (see Appendix A). This allows to
use FLDA, even if the number of features is high.
However, with this approach the performance of
FLDA deteriorated when the number of electrodes
was increased.

In BLDA, the small sample size problem, and
more generally the problem of overfitting are solved
by using regularization. Through a Bayesian analy-
sis, the degree of regularization can be automatically
estimated from training data without the need for
user intervention or time consuming cross-validation
(see Appendix B). With the datasets used in this
work, the BLDA algorithm is superior to FLDA in
terms of classification accuracy and bitrates, espe-
cially if the number of features is large. A further
advantage, which was however not exploited in this
work, is that the BLDA algorithm yields probabilis-
tic outputs.

In summary, BLDA is an interesting alternative
to FLDA which offers good classification accuracy
and does not constrain the practical applicability of
a BCI system.

5. Conclusion

In this work an efficient P300-based BCI system
for disabled subjects was presented. We have shown
that high classification accuracies and bitrates can
be obtained for severely disabled subjects. Due to
the use of the P300, only a small amount of training
was required to achieve good classification accuracy.

Future improvements to the work presented here
might consist in testing the system with completely
locked-in patients and in defining useful BCI appli-
cations adapted to the needs of disabled users. Also
it might be useful to perform studies with larger
numbers of subjects in order to confirm the results
found in the present work.
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Appendix A. Fisher’s LDA (FLDA)

The goal in Fisher’s linear discriminant analysis
(FLDA) is to compute a discriminant vector that
separates two or more classes as well as possible.
Here we consider only the two-class case. We are
given a set of input vectors xi ∈ RD, i ∈ {1 . . . N}
and corresponding class-labels yi ∈ {−1, 1}. Denot-
ing by N1 the number of training examples for which
yi = 1, by C1 the set of indices i for which yi = 1,
and using analogous definitions for N2, C2, the ob-
jective function for computing a discriminant vector
w ∈ RD is

J(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

, (A.1)

where

µk =
1

Nk

∑

i∈Ck

wTxi, σ2
k =

∑

i∈Ck

(wTxi − µk)2.

(A.2)
This means that one is searching for discriminant
vectors that result in a large distance between the
projected means and small variance around the pro-
jected means (small within-class variance). To com-
pute directly the optimal discriminant vector for a
training data set, matrix equations for the quanti-
ties (µ1 − µ2)2 and σ2

1 + σ2
2 can be used. We first

define the class means mk.

mk =
1

Nk

∑

i∈Ck

xi (A.3)

Now we can define the between-class scatter matrix
SB and the within-class scatter matrix SW .

SB =(m1 −m2)(m1 −m2)T (A.4)

SW =
2∑

k=1

∑

i∈Ck

(xi −mk)(xi −mk)T (A.5)

With the help of these two matrices the objective
function for FLDA can be written as a Rayleigh quo-
tient.

J(w) =
wTSBw

wTSW w
(A.6)

By computing the derivative of J and setting it to
zero, one can show that the optimal solution for w
satisfies the following equation:

w ∝ S−1
W (m1 −m2). (A.7)

A potential problem in FLDA is that the between-
class scatter matrix can become singular, and the in-
verse of SW can become ill-defined. In particular this
happens when the number of features D becomes

larger than the number of training examples N . A
simple solution for this problem is to replace the in-
verse S−1

W by the Moore-Penrose pseudo-inverse S†W
(Tian et al., 1988).

The optimal solution for w then reads:

w ∝ S†W (m1 −m2). (A.8)

The output of FLDA given an input vector x̂ is sim-
ply the product wTx̂. In the P300-based BCI de-
scribed in the present study, the output of FLDA
was summed over trials and the image correspond-
ing to the maximum of the summed output values
was then selected (cf. Section 2.4.2).

Appendix B. Bayesian LDA (BLDA)

BLDA can be seen as an extension of Fisher’s Lin-
ear Discriminant Analysis (FLDA). In contrast to
FLDA, in BLDA regularization is used to prevent
overfitting to high dimensional and possibly noisy
datasets. Through a Bayesian analysis the degree of
regularization can be estimated automatically and
quickly from training data without the need for time
consuming cross-validation.

We have obtained very good results with BLDA
and we think that the BLDA algorithm might
be of general interest to the BCI community. A
MATLAB implementation of BLDA can be down-
loaded from the webpage of the EPFL BCI group
(http://bci.epfl.ch/p300). Algorithms that are
closely related to the method presented below are
the Bayesian least-squares support vector machine
(Van Gestel et al., 2002) and the algorithm for
Bayesian non-linear discriminant analysis described
by Centeno and Lawrence (2006). BLDA is also
closely related to the so-called evidence framework
for which detailed accounts are given by MacKay
(1992); Bishop (2006).

As a starting point for the description of BLDA
we use the fact that FLDA is a special case of least
squares regression. Least squares regression is equiv-
alent to FLDA if regression targets are set to N

N1

for examples from class 1 and to − N
N2

for examples
from class -1 (where N is the total number of train-
ing examples, N1 the number of examples from class
1, and N2 the number of examples from class -1).
A proof for the equivalence between least squares
regression and FLDA can be found in the book of
Bishop (2006). Given the connection between re-
gression and FLDA, our approach for BLDA is to
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perform regression in a Bayesian framework and set
target values as mentioned above.

The assumption in Bayesian regression is that tar-
gets t and feature vectors x are linearly related with
additive white Gaussian noise n.

t = wTx + n (B.1)

Given this assumption, we can write down the like-
lihood function for the weights w used in regression:

p(D|β, w) =
(

β

2π

)N
2

exp(−β

2
‖XTw−t‖2). (B.2)

Here t denotes a vector containing the regression
targets, X denotes the matrix that is obtained from
the horizontal stacking of the training feature vec-
tors, D denotes the pair {X, t}, β denotes the in-
verse variance of the noise, and N denotes the num-
ber of examples in the training set. It is assumed
that the feature vectors contain one feature which
always equals one; the bias term which is commonly
used in regression can thus be omitted.

To perform inference in a Bayesian setting we have
to specify a prior distribution for the latent vari-
ables, i.e. for the weight vector w. The expression
for the prior distribution is:

p(w|α) =
( α

2π

)D
2

( ε

2π

) 1
2

exp(−1
2
wTI′(α)w),

(B.3)
where I′(α) is a square, D+1 dimensional, diagonal
matrix

I′(α) =




α 0 . . . 0

0 α . . . 0
...

...
. . .

...

0 0 . . . ε




, (B.4)

and D is the number of features. The prior for the
weights thus is an isotropic, zero-mean Gaussian dis-
tribution. The effect of using a zero-mean Gaussian
prior for the weights is similar to the effect of the
regularization term used in ridge regression and reg-
ularized FLDA. The estimates for w are shrunk to-
wards the origin and the danger of overfitting is re-
duced. The prior for the bias (the last entry in w) is
a zero-mean univariate Gaussian. Setting ε to a very
small value, the prior for the bias is practically flat.
This expresses the fact that a priori we do not make
assumptions about the value of the bias parameter.

Given likelihood and prior the posterior distribu-
tion can be computed using Bayes rule.

p(w|β, α,D) =
p(D|β, w)p(w|α)∫

p(D|β, w)p(w|α) dw
. (B.5)

Since both prior and likelihood are Gaussian, the
posterior is also Gaussian and its parameters can
be derived from likelihood and prior by completing
the square. The mean m and covariance C of the
posterior satisfy the following equations.

m = β(βXXT + I′(α))−1Xt (B.6)

C = (βXXT + I′(α))−1 (B.7)

By multiplying the likelihood function (equation
B.2) for a new input vector x̂ with the posterior
distribution (equation B.5) followed by an integra-
tion over w, we obtain the predictive distribution,
i.e. the probability distribution over regression tar-
gets conditioned on an input vector:

p(t̂|β, α, x̂,D) =
∫

p(t̂|β, x̂,w)p(w|β, α,D) dw.

(B.8)
The predictive distribution is again Gaussian and
can be characterized by its mean µ and its variance
σ2.

µ = mTx̂ (B.9)

σ2 =
1
β

+ x̂TCx̂ (B.10)

In the P300-based BCI described in the present
study, only the mean value of the predictive distri-
bution was used for taking decisions. More precisely,
mean values were summed over trials and the im-
age corresponding to the maximum of the summed
mean values was then selected (cf. Section 2.4.2).

In a more general setting, class probabilities could
be obtained by computing the probability of the tar-
get values used during training. Using the predic-
tive distribution from equation B.8 and omitting the
conditioning on β, α,D we could use:

p(ŷ = 1|x̂) =
p(t̂ = N1

N |x̂)
p(t̂ = N1

N |x̂) + p(t̂ = −N2
N |x̂)

.

(B.11)
Both the posterior distribution and the predictive

distribution depend on the hyperparameters α and
β. We have assumed above that the hyperparame-
ters are known, however in real-world situations the
hyperparameters are usually unknown. One possi-
bility to solve this problem would be to use cross-
validation to determine the hyperparameters that
yield the best prediction performance. However, the
Bayesian regression framework offers a more elegant
and less time-consuming solution for the problem of
choosing the hyperparameters. The idea is to write
down the likelihood function for the hyperparame-
ters and then maximize the likelihood with respect
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to the hyperparameters. The maximum likelihood
solution for the hyperparameters can be found with
a simple iterative algorithm which we do not discuss
in detail here but which is described by MacKay
(1992); Bishop (2006).
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