
TrecTools: an Open-source Python Library for Information
Retrieval Practitioners Involved in TREC-like Campaigns

Joao Palotti
Qatar Computing Research Institute

Doha, Qatar
jpalotti@hbku.edu.qa

Harrisen Scells
The University of Queensland

Brisbane, Australia
h.scell@uq.net.au

Guido Zuccon
The University of Queensland

Brisbane, Australia
g.zuccon@uq.edu.au

ABSTRACT
This paper introduces TrecTools, a Python library for assisting
Information Retrieval (IR) practitioners with TREC-like campaigns.
IR practitioners tasked with activities like building test collections,
evaluating systems, or analysing results from empirical experiments
commonly have to resort to use a number of different software tools
and scripts that each perform an individual functionality – and at
times they even have to implement ad-hoc scripts of their own.
TrecTools aims to provide a unified environment for performing
these common activities.

Written in the most popular programming language for Data
Science, Python, TrecTools offers an object-oriented, easily exten-
sible library. Existing systems, e.g., trec_eval, have considerable
barrier to entry when it comes to modify or extend them. Fur-
thermore, many existing IR measures and tools are implemented
independently of each other, in different programming languages.
TrecTools seeks to lower the barrier to entry and to unify exist-
ing tools, frameworks and activities into one common umbrella.
Widespread adoption of a centralised solution for developing, eval-
uating, and analysing TREC-like campaigns will ease the burden
on organisers and provide participants and users with a standard
environment for common IR experimental activities.

TrecTools is distributed as an open source library under the MIT
license at https://github.com/joaopalotti/trectools

CCS CONCEPTS
• Information systems→Evaluation of retrieval results;Test
collections;

ACM Reference Format:
Joao Palotti, Harrisen Scells, and Guido Zuccon. 2019. TrecTools: an Open-
source Python Library for Information Retrieval Practitioners Involved in
TREC-like Campaigns. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’19), July 21–25, 2019, Paris, France. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3331184.3331399

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331399

1 INTRODUCTION
Rigorous empirical evaluation is a cornerstone of Information Re-
trieval (IR) research, as demonstrated by the many research efforts
centred around the creation of test collections and resources in
evaluation campaigns and shared-tasks like the Text Retrieval Con-
ference (TREC), the Conference and Labs of the Evaluation Forum
(CLEF), the NII Testbeds and Community for information access
Research (NTCIR), etc..

Creating test collections for IR evaluation and participating to
such shared tasks is time consuming – with a large amount of effort
spent in implementing the evaluation settings, rather than the meth-
ods to address the IR task, e.g., creating baselines, selecting docu-
ments for assessment, performing relevance assessment, measuring
system effectiveness, etc. In this paper we present TrecTools1, an
open source Python software package to support the creation and
use of IR evaluation resources. TrecTools aims to support both IR
campaign organizers and participants to deal with a number of
recurrent, tedious and time-consuming procedures. For evaluation
campaigns organisers, TrecTools allows one to (1) easily create
common IR baselines using popular toolkits such as Indri [20]
and Terrier [12], (2) create document pools for relevance assess-
ment from retrieval runs, making many popular pooling strategies
available, (3) evaluate each considered run using a wide range of
evaluation measures, (4) perform statistical significance analysis
between runs and baselines, and (5) create standard visualisations
and reporting of IR systems effectiveness. For evaluation campaigns
participants and subsequent users (i.e., those that did not originally
participate in the campaign), TrecTools allows one to perform the
relevant aforementioned tasks at the campaign level (i.e., across all
participants) or at an individual level (i.e., for a single participant
in a campaign).

Before TrecTools, IR practitioners were required to use a se-
ries of separate, independent and unlinked tools such as trec_eval
for computing evaluation measures, workspaces e.g., in R/Matlab
for statistical analysis and result plotting, etc., and were required
to implement their own routines for other tasks, such as pooling.
TrecTools aims to provide practitioners with a unified environ-
ment to perform these common tasks, as well as standard and
verified (i.e., by automatically comparing the output of existing
tools, e.g., trec_eval, using unit tests) implementations of com-
mon approaches (evaluation measures, pooling strategies, etc.) for
each task. In particular, TrecTools goes beyond the popular software
package trec_eval [4] by additionally implementing a number of
common IR workflows, such as document pool creation and result
visualisation, as well as extend the range of evaluation measures

1See http://www.ielab.io/trectools

https://github.com/joaopalotti/trectools
https://doi.org/10.1145/3331184.3331399
https://doi.org/10.1145/3331184.3331399
http://www.ielab.io/trectools

SIGIR ’19, July 21–25, 2019, Paris, France Palotti et al.

supported. TrecTools is built upon standard Data Science libraries
in Python, such as Numpy, Scipy, Pandas and Matplotlib, intending
to allow for a rapid and smooth learning curve for new users.

2 RELATEDWORK
trec_eval is perhaps the most popular software used by IR re-
searchers. This tool takes as input a run and a relevance assess-
ments (qrels) files, and outputs many of the core IR evaluation
measures, including mean average precision (MAP), binary pref-
erence (bpref) and precision at different cut-offs (e.g., P@10). The
input formats imposed by trec_eval (i.e., the TREC result and qrel
formats) have become a de-facto standard for other, subsequent
tools. However, there are a number of evaluation measures not
implemented in trec_eval, including ad-hoc measures like Rank
Biased Precision (RBP) [14], diversity measures like α-nDCG [5],
risk-sensitive measures like U-risk [24], and multi-dimensional rel-
evance measures [27]. TrecTools, on the other hand, implements
all the measures listed above, and eases the implementation of new
measures through extensible classes; we furthermore plan to imple-
ment newmeasures arising from the C/W/L framework [3], e.g., IFT
goal and rate, and the bejewelled player model. In addition, it facili-
tates the analysis of the evaluation results by providing automated
statistical analysis, plots generation and LATEXtables generation.

Similar to TrecTools, the Java-based EvALL tool provides native
and verified implementations of most IR evaluation measures, and
includes features such as statistical significance analysis, results
visualisation, and LATEXtables generation [1]. TrecTools goes how-
ever beyond EvALL’s functionalities by supporting other tasks in
the collection creation pipeline, e.g, providing utilities for creating
retrieval baselines and assessment pools.

PyIndri [23] and Pytrec_eval [22] are Python interfaces to
the Indri IR toolkit and trec_eval, respectively. While comparable
to TrecTools with respect to baselines creation and IR measures
provision (although still limited to those in trec_eval), these tools
lack many of TrecTools’ functionalities (e.g., results analysis, tables
and assessment pools generation, etc.).

Other tools have been released to aid evaluation campaign or-
ganisers, including VisualPool [10] and ircor [21]. VisualPool
allows to visualise the results of using different document pooling
strategies, thus informing collection creators about the effect of
using a strategy over another for selecting documents for relevance
assessment. Many of the popular pooling strategies implemented
in VisualPool are also available in TrecTools, e.g., Depth@K [19],
CombMAXTake@N or CombMNZTake@N [13], RRFTake@N [6]
and RBPTake@N [14]. ircor is an R package that provides imple-
mentations of correlation measures for comparing results rankings
or system rankings. This tool implements for example τ -AP [26], a
extension of the Kendall-τ correlation that puts higher weight to
matches found at higher rank positions. TrecTool also provides an
implementation of τ -AP (as well as, Kendall-τ , Pearson and Spear-
man). Nevertheless, ircor implements variations of τ -AP that cope
with ties [21]: a functionality not yet present in TrecTool – but
planned for future releases.

3 TRECTOOLS FEATURES
TrecTools is implemented in Python using standard Data Science
libraries and using the object-oriented paradigm. Each of the key

components of an evaluation campaign is mapped to a class: classes
for runs (TrecRun), topics/queries (TrecTopic), assessment pools
(TrecPools), relevance assessments (TrecQrel) and the evaluation
results (TrecRes). Evaluation results can be produced by TrecTools
itself using the evaluation metrics implemented in the tool, or
be imported from the output file of trec_eval and derivatives.
General features of TrecTools are shown in Figure 1. The features
that are currently implemented and available to use in TrecTools
are as follows.

Querying IR Systems. Benchmark runs can be obtained di-
rectly from one of the IR toolkits that are integrated in TrecTools.
There is support for issuing full-text queries to Indri, Terrier2 and
PISA3 toolkits. Future releases will include other toolkits (e.g., Elas-
ticsearch, Anserini [25], etc.) and support for specific query lan-
guages (e.g., Indri’s query language, Boolean queries). Examples of
baselines creation are given in Figure 2.

Pooling Techniques. The following techniques for pool cre-
ation from a set of runs are implemented: Depth@K [19], Take@N [11],
Comb-Min/Max/Med/Sum/ANZ/MNZ [13], RRFTake@N [6], RBP-
Take@N [14]. Examples are shown in Figure 3.

Evaluation Measures. Currently implemented and verified
measures include widely used metrics such as Precision at depth
K, Recall at depth K, MAP, NDCG, Bpref and RBP [14], as well
as recently developed ones, such as uBpref [15], uRBP [27] and
the MM framework [17]. Implemented in TrecTools is the option
to break ties using document score (i.e., similar to trec_eval), or
document ranking (i.e., similar to the original implementation of
RBP4). Additionally, TrecTools also allows to compute the resid-
ual of the evaluation measure and analyse the relative presence of
un-assessed documents. Examples are given in Figure 4.

Correlation and Agreement Analysis. The Pearson, Spear-
man, Kendall and τap correlations between system rankings can be
computed directly using TrecTools. Agreement measures between
relevance assessment sets can be obtained with Kappa or Jaccard.
Examples are provided in Figures 5 and 6.

Fusion Techniques. Runs can be fused using the following
techniques: Comb-Max/Min/Sum/Mnz/Anz/Med (both using scores
and document rankings) [9], RBPFusion [14], RRFFusion [6], or
BordaCountFusion [2]. Fusion techniques are provided for meta-
analysis. Examples are shown in Figure 7.

4 CONCLUSION
In this paper we introduced TrecTools, an open source Python
library for assisting IR practitioners with TREC-like evaluation
campaigns. Some of the use cases for campaign organisers using
TrecTools include automatically creating baselines by querying the
Indri and Terrier IR toolkits (Figure 2), creating meta-rankings using
multiple runs (Figure 3), performing analysis of agreement between
assessments made by different assessors (e.g., Kappa coefficient,
Figure 6), and producing visualisations and LATEX results tables (Fig-
ure 1). Some of the use cases for participants of campaigns and
regular users include performing statistical significance analysis
between runs and LATEXresults tables (Figures 4). While TrecTools
2Thanks to Craig Macdonald for implementing support for Terrier v5.0.
3Thanks to Antonio Mallia for implementing support for PISA (https://github.com/
pisa-engine/pisa)
4Available at https://people.eng.unimelb.edu.au/ammoffat/abstracts/mz08acmtois.html

https://github.com/pisa-engine/pisa
https://github.com/pisa-engine/pisa
https://people.eng.unimelb.edu.au/ammoffat/abstracts/mz08acmtois.html

TrecTools: an open-source Python library for IR practitioners SIGIR ’19, July 21–25, 2019, Paris, France

from trectools import TrecQrel , procedures

qrels_file = "./qrel/robust03_qrels.txt"

qrels = TrecQrel(qrels_file)

Generates a P@10 graph with all the runs in a directory

path_to_runs = "./ robust03/runs/"

runs = procedures.list_of_runs_from_path(path_to_runs , "*.gz")

results = procedures.evaluate_runs(runs , qrels , per_query=True)

p10 = procedures.extract_metric_from_results(results , "P_10")

procedures.plot_system_rank(p10 , display_metric="P@10")

Sample output with one run for each participating team in robust03:

Figure 1: Code Snippets and toy examples with TrecTools.
Note the plot is generated by simply calling the method
procedures.plot_system_rank().

does not help with obtaining relevance assessments, it can be inte-
grated into existing tools such as Revelation! [8]. TrecTools is by
no means a ‘completed’ package: it is open to new evaluation mea-
sures and activities as suggested and contributed by the community
– and it is fully extensible. Despite the care taken for correctness of
results, no software is bullet proof — although, for TrecTools, unit
tests are written for each component of the library and methods
are also validated against previously released tools for an activity,
if any. TrecTools has already been successfully used throughout
the creation and results analysis of the CLEF eHealth evaluation
campaigns [7, 16, 18, 28].

Acknowledgements. Guido Zuccon is the recipient of an Aus-
tralian Research Council DECRAResearch Fellowship (DE180101579).

REFERENCES
[1] Enrique Amigó, Jorge Carrillo-de Albornoz, Mario Almagro-Cádiz, Julio Gonzalo,

Javier Rodríguez-Vidal, and Felisa Verdejo. 2017. Evall: Open access evaluation
for information access systems. In SIGIR. ACM, 1301–1304.

[2] Javed A. Aslam and Mark Montague. 2001. Models for Metasearch. In SIGIR.
ACM, 276–284. https://doi.org/10.1145/383952.384007

[3] Leif Azzopardi, Paul Thomas, and Alistair Moffat. 2019. cwl_eval: An Evaluation
Tool for Information Retrieval. In SIGIR. ACM.

[4] Chris Buckley et al. 2004. The trec_eval evaluation package.
[5] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova,

Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity
in information retrieval evaluation. In SIGIR. ACM, 659–666.

[6] Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. 2009. Reciprocal
rank fusion outperforms condorcet and individual rank learning methods.. In
SIGIR, Vol. 9. 758–759.

[7] Jimmy, Guido Zuccon, João Palotti, Lorraine Goeuriot, and Liadh Kelly. 2018.
Overview of the CLEF 2018 Consumer Health Search Task. In CLEF. http:
//ceur-ws.org/Vol-2125/invited_paper_17.pdf

[8] Bevan Koopman and Guido Zuccon. 2014. Relevation!: An open source system
for information retrieval relevance assessment. In SIGIR. 1243–1244.

from trectools import TrecTopics , TrecTerrier , TrecIndri

Loads some topics from a file (e.g., topics.txt)

"""

<topics >

<topic number ="201" type=" single">

<query >amazon raspberry pi </query >

<description > You have heard quite a lot about cheap computing as being

the way of the future ,

including one recent model called a Raspberry Pi. You start thinking about

buying one , and wonder how much they cost.

</description >

</topic >

</topics >

"""

topics = TrecTopics ().read_topics_from_file("topics.txt")

Or... load topics from a Python dictionary

topics = TrecTopics(topics ={'201': u'amazon␣raspberry␣pi'})

topics.printfile(fileformat="terrier")

#<topics >

<top >

<num >201</num >

<title >amazon raspberry pi </title >

</top >

#</topics >

topics.printfile(fileformat="indri")

#<parameters >

<trecFormat >true </trecFormat >

<query >

<id >201</id>

<text ># combine(amazon raspberry pi)</text >

</query >

#</parameters >

topics.printfile(fileformat="indribaseline")

#<parameters >

<trecFormat >true </trecFormat >

<query >

<id >201</id>

<text >amazon raspberry pi </text >

</query >

#</parameters >

tt = TrecTerrier(bin_path="<PATH >/ terrier/bin/") # where trec_terrier.sh

is located

Runs PL2 model from Terrier with Query Expansion

tr = tt.run(index="<PATH >/ terrier/var/index", topics="topics.xml.gz",

qexp=True ,

model="PL2", result_file="terrier.baseline", expTerms=5, expDocs=3,

expModel="Bo1")

ti = TrecIndri(bin_path="~/<PATH >/indri/bin/") # where IndriRunQuery is

located

ti.run(index="<PATH >/ indriindex", topics , model="dirichlet",

parameters ={"mu":2500} ,

result_file="trec_indri.run", ndocs =1000, qexp=True , expTerms=5, expDocs =3)

Figure 2: Code Snippets for manipulating topic formats and
querying IR toolkits (shown here: Terrier and Indri).

[9] Joon Ho Lee. 1997. Analyses of Multiple Evidence Combination. In SIGIR. ACM,
267–276. https://doi.org/10.1145/258525.258587

[10] Aldo Lipani, Mihai Lupu, and Allan Hanbury. 2017. Visual Pool: A Tool to
Visualize and Interact with the Pooling Method. In SIGIR. ACM, 1321–1324.
https://doi.org/10.1145/3077136.3084146

[11] Aldo Lipani, Joao Palotti, Mihai Lupu, Florina Piroi, Guido Zuccon, and Allan
Hanbury. 2017. Fixed-cost pooling strategies based on IR evaluation measures.
In ECIR. Springer, 357–368.

[12] Craig Macdonald, Richard McCreadie, Rodrygo LT Santos, and Iadh Ounis. 2012.
From puppy to maturity: Experiences in developing Terrier. Proc. of OSIR at SIGIR
(2012), 60–63.

[13] Craig Macdonald and Iadh Ounis. 2006. Voting for candidates: adapting data
fusion techniques for an expert search task. In CIKM. ACM, 387–396.

[14] Alistair Moffat and Justin Zobel. 2008. Rank-biased Precision for Measurement of
Retrieval Effectiveness. ACM Trans. Inf. Syst. 27, 1, Article 2 (Dec. 2008), 27 pages.
https://doi.org/10.1145/1416950.1416952

[15] Joao Palotti, Lorraine Goeuriot, Guido Zuccon, and Allan Hanbury. 2016. Ranking
health web pages with relevance and understandability. In SIGIR. ACM, 965–968.

[16] João Palotti, Guido Zuccon, Lorraine Goeuriot, Liadh Kelly, Allan Hanbury,
Gareth J. F. Jones, Mihai Lupu, and Pavel Pecina. 2015. ShARe/CLEF eHealth
Evaluation Lab 2015, Task 2: User-centred Health Information Retrieval. In CLEF.

[17] Joao Palotti, Guido Zuccon, and Allan Hanbury. 2018. MM: A new Framework
for Multidimensional Evaluation of Search Engines. In CIKM. ACM, 1699–1702.

https://doi.org/10.1145/383952.384007
http://ceur-ws.org/Vol-2125/invited_paper_17.pdf
http://ceur-ws.org/Vol-2125/invited_paper_17.pdf
https://doi.org/10.1145/258525.258587
https://doi.org/10.1145/3077136.3084146
https://doi.org/10.1145/1416950.1416952

SIGIR ’19, July 21–25, 2019, Paris, France Palotti et al.

from trectools import TrecPool , TrecRun

r1 = TrecRun("./ robust03/runs/input.aplrob03a.gz")

r2 = TrecRun("./ robust03/runs/input.UIUC03Rd1.gz")

len(r1.topics ()) # 100 topics

Creates document pools with r1 and r2 using different strategies:

Strategy1: Creates a pool with top 10 documents of each run:

pool1 = TrecPool.make_pool ([r1, r2], strategy="topX", topX =10) # Pool with

1636 unique documents.

Strategy2: Creates a pool with 2000 documents (20 per topic) using the

reciprocal ranking strategy by Gordon , Clake and Buettcher:

pool2 = TrecPool.make_pool ([r1,r2], strategy="rrf", topX=20, rrf_den =60) #

Pool with 2000 unique documents.

Check to see which pool covers better my run r1

pool1.check_coverage(r1, topX =10) # 10.0

pool2.check_coverage(r1, topX =10) # 8.35

Export documents to be judged using Relevation! visual assessing system

pool1.export_document_list(filename="mypool.txt", with_format="relevation")

Figure 3: Code Snippets for generating and exporting docu-
ment pools using different pooling strategies.

from trectools import TrecQrel , TrecRun , TrecEval

A typical evaluation workflow

r1 = TrecRun("./ robust03/runs/input.aplrob03a.gz")

r1.topics ()[:5] # Shows the first 5 topics: 601, 602, 603, 604, 605

qrels = TrecQrel("./ robust03/qrel/robust03_qrels.txt")

te = TrecEval(r1, qrels)

rbp , residuals = te.getRBP () # RBP: 0.474, Residuals: 0.001

p100 = te.getPrecisionAtDepth (100) # P@100: 0.186

Check if documents retrieved by the system were judged:

r1.get_mean_coverage(qrels , topX =10) # 9.99

r1.get_mean_coverage(qrels , topX =1000) # 481.390

On average for system 'input.aplrob03a ' participating in robust03 , 480

documents out of 1000 were judged.

Loads another run

r2 = TrecRun("./ robust03/runs/input.UIUC03Rd1.gz")

Check how many documents , on average , in the top 10 of r1 were retrieved

in the top 10 of r2

r1.check_run_coverage(r2, topX =10) # 3.64

Evaluates r1 and r2 using all implemented evaluation metrics

result_r1 = r1.evaluate_run(qrels , per_query=True)

result_r2 = r2.evaluate_run(qrels , per_query=True)

Inspect for statistically significant differences between the two runs

for P_10 using two -tailed Student t-test

pvalue = result_r1.compare_with(result_r2 , metric="P_10") # pvalue: 0.0167

Figure 4: Code snippets showing evaluation options avail-
able in TrecTools.

[18] João Palotti, Guido Zuccon, Jimmy, Pavel Pecina, Mihai Lupu, Lorraine Goeuriot,
Liadh Kelly, and Allan Hanbury. 2017. CLEF 2017 Task Overview: The IR Task at
the eHealth Evaluation Lab - Evaluating Retrieval Methods for Consumer Health
Search. In CLEF. http://ceur-ws.org/Vol-1866/invited_paper_16.pdf

[19] K Spark-Jones. 1975. Report on the need for and provision of an’ideal’information
retrieval test collection. Computer Laboratory (1975).

[20] Trevor Strohman, Donald Metzler, Howard Turtle, andW Bruce Croft. 2005. Indri:
A language model-based search engine for complex queries. In Proceedings of the
International Conference on Intelligent Analysis, Vol. 2. 2–6.

[21] Julián Urbano andMónicaMarrero. 2017. The Treatment of Ties in APCorrelation.
In SIGIR. 321–324.

[22] Christophe Van Gysel and Maarten de Rijke. 2018. Pytrec_Eval: An Extremely
Fast Python Interface to Trec_Eval. In SIGIR. ACM, 873–876.

[23] Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke. 2017. Pyndri:
a Python Interface to the Indri Search Engine. In ECIR, Vol. 2017. Springer.

[24] LidanWang, Paul N Bennett, and Kevyn Collins-Thompson. 2012. Robust ranking
models via risk-sensitive optimization. In SIGIR. ACM, 761–770.

from trectools import misc , TrecRun , TrecQrel , procedures

qrels_file = "./ robust03/qrel/robust03_qrels.txt"

path_to_runs = "./ robust03/runs/"

qrels = TrecQrel(qrels_file)

runs = procedures.list_of_runs_from_path(path_to_runs , "*.gz")

results = procedures.evaluate_runs(runs , qrels , per_query=True)

check the system correlation between P@10 and MAP using Kendall 's tau

for all systems participating in a campaign

misc.get_correlation(misc.sort_systems_by(results , "P_10"),

misc.sort_systems_by(results , "map"), correlation =

"kendall") # Correlation: 0.7647

check the system correlation between P@10 and MAP using Tau's ap for all

systems participating in a campaign

misc.get_correlation(misc.sort_systems_by(results , "P_10"),

misc.sort_systems_by(results , "map"), correlation =

"tauap") # Correlation: 0.77413

Figure 5: Code Snippets for obtaining correlation measures
from a set of runs.

Code snippet to check correlation between two sets of relevance

assessment (e.g., made by different cohorts - assessments made by

medical doctors Vs. crowdsourced assessments)

from trectools import TrecQrel

original_qrels_file = "./ robust03/qrel/robust03_qrels.txt"

Changed the first 10 assessments from 0 to 1

modified_qrels_file = "./ robust03/qrel/mod_robust03_qrels.txt"

original_qrels = TrecQrel(original_qrels_file)

modified_qrels = TrecQrel(modified_qrels_file)

Overall agreement

original_qrels.check_agreement(modified_qrels) # 0.99

Fleiss ' kappa agreement

original_qrels.check_kappa(modified_qrels) # P0: 1.00, Pe = 0.90

Jaccard similarity coefficient

original_qrels.check_jaccard(modified_qrels) # 0.99

3x3 confusion matrix (labels 0, 1 or 2)

original_qrels.check_confusion_matrix(modified_qrels)

[[122712 10 0]

[0 5667 0]

[0 0 407]]

Figure 6: Code Snippets for obtaining agreement measures
from a pair of relevance assessments.

from trectools import TrecRun , TrecEval , fusion

r1 = TrecRun("./ robust03/runs/input.aplrob03a.gz")

r2 = TrecRun("./ robust03/runs/input.UIUC03Rd1.gz")

Easy way to create new baselines by fusing existing runs:

fused_run = fusion.reciprocal_rank_fusion ([r1,r2])

TrecEval(r1, qrels).getPrecisionAtDepth (25) # P@25: 0.3392

TrecEval(r2, qrels).getPrecisionAtDepth (25) # P@25: 0.2872

TrecEval(fused_run , qrels).getPrecisionAtDepth (25) # P@25: 0.3436

Save run to disk with all its topics

fused_run.print_subset("my_fused_run.txt", topics=fused_run.topics ())

Figure 7: Code Snippets for generating fusing two runs (Re-
ciprocal Rank fusion shown here).
[25] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible ranking

baselines using Lucene. JDIQ 10, 4 (2018), 16.
[26] Emine Yilmaz, Javed A Aslam, and Stephen Robertson. 2008. A new rank correla-

tion coefficient for information retrieval. In SIGIR. ACM, 587–594.
[27] Guido Zuccon. 2016. Understandability biased evaluation for information re-

trieval. In ECIR. Springer, 280–292.
[28] Guido Zuccon, João Palotti, Lorraine Goeuriot, Liadh Kelly, Mihai Lupu, Pavel

Pecina, Henning Mueller, Julie Budaher, and Anthony Deacon. 2016. The IR
Task at the CLEF eHealth Evaluation Lab 2016: User-centred Health Information
Retrieval. In CLEF, Vol. 1609. 15–27.

http://ceur-ws.org/Vol-1866/invited_paper_16.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 TrecTools Features
	4 Conclusion
	References

