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ABSTRACT Edge-driven software applications often deployed as online services in the cloud-to-edge
continuum lack significant protection for services and infrastructures against emerging cyberattacks. Very-
Short Intermittent Distributed Denial of Service (VSI-DDoS) attack is one of the biggest factors for
diminishing the Quality of Services (QoS) and Quality of Experiences (QoE) for users on edge. Unlike
conventional DDoS attacks, these attacks live for a very short time (on the order of a few milliseconds) in
the traffic to deceive users with a legitimate service experience. To provide protection, we propose a novel and
efficient approach for detecting VSI-DDoS attacks using reinforced transformer learning that mitigates the
tail latency and service availability problems in edge clouds. In the presence of attacks, the users’ demand for
availing ultra-low latency and high throughput services deployed on the edge, can never be met. Moreover,
these attacks send very-short intermittent requests towards the target services that enforce longer delays in
users’ responses. The assimilation of transformer with deep reinforcement learning accelerates detection
performance under adverse conditions by adapting the dynamic and the most discernible patterns of attacks
(e.g., multiplicative temporal dependency, attack dynamism). The extensive experiments with testbed and
benchmark datasets demonstrate that the proposed approach is suitable, effective, and efficient for detecting
VSI-DDoS attacks in edge clouds. The results outperform state-of-the-art methods with 0.9% — 3.2% higher
accuracy in both datasets.

INDEX TERMS Reinforced transformer learning, VSI-DDoS, edge clouds, QoS/QoE, cloud applications.

I. INTRODUCTION

The advent of beyond 5G technology and the era of
information-centric decision-making will require deploying
multiple edge-driven applications for making day-to-day life
more comfortable. For instance, to make mass adoption
possible for technologies like augmented and virtual reality,
autonomous vehicles, smart cities, tele-healthcare, massive
Internet of Things (IoT) devices, home automation, etc. [1],
high availability and low-latency service requirements have
to be insured. Hence, edge clouds have emerged to mitigate
such problems. However, these bring several security issues
as nodes are distributed across the edge of the networks for
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deploying applications closer to users. Besides these, edge
computing adds three primary features such as backbone
network alleviation — by processing data without exchange
with distant clouds, agile service response — reduces delay
in transmission and increased response time, and robust
cloud backup — extending capability using the distant cloud.
Despite the benefit of edge clouds, service providers face
several challenges when deploying their services in edge
clouds including (but not limited to), e.g., ensuring high
availability of services, defense against emerging attacks, and
optimal placement of applications among highly distributed
geographical nodes.

Even though methods [2], [3], [4] exist to mitigate security
holes in the edge clouds, there is still a lack of solutions
for multiple problems. These include slow-rate DDoS attacks
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FIGURE 1. Illlustration of attack parameter variation in VSI-DDoS attack. g
is the degree of HTTP requests concentration from multiple bots, A
represents an idle period, and (e; — t;) indicates attack intensity.

with various burst times when the attackers target mission-
critical services, users’ Quality of Experience (QoE), and
systems’ Quality of Service (QoS) to sabotage performance
over the long term instead of a short period. These attacks
primarily target the availability of the systems by sending a
large amount of traffic to exhaust resources such as CPU,
bandwidth, or memory [5]. In these cases, the legitimate
users’ services are frequently denied or interrupted, resulting
in significant financial losses for the service providers. Over
time, these attacks become more intelligent, sophisticated and
robust through strengthening attack vectors every round and
exponentially increasing the attack size, frequency, and ran-
domness. Therefore, defending against such attacks is a pri-
ority in academic and industry communities, specifically for
edge clouds to meet users’ expected latency and throughput.
Concurrently, several low-rate DDoS attacks have emerged,
which are different from classical volume-based or resource-
exhaustion DDoS attacks [6], [7]. The primary goal of
such low-rate attacks is to degrade the QoS performed by
employing TCP congestion control mechanisms [7]. They are
stealthy, and they maintain low-volume, resulting in poten-
tial violations of customer service-level agreements (SLAS).
Notably, Very-Short Intermittent Distributed Denial of Ser-
vice (VSI-DDoS) [8] is one of the low-rate attacks and also
the biggest threat to services deployed on edge. Typically,
it is hard to visualize damages caused by low-rate attacks.
However, there are growing concerns about such attacks and
their potential implications for violating SLAs associated
with the edge cloud, where deployed applications are sen-
sitive to latency and throughput [9]. Moreover, these attacks
send short and intelligent legitimate HTTP requests for a short
period (often tens of milliseconds) to multiple target services
that maximize the response time and reduce users’ QoS/QoE
in the long run (see Fig. 1). Hence, detecting such attacks at
an early stage is more challenging than using classical DDoS
detection methods.

Transformer learning primarily applies and performs well
in natural language processing (NLP) and computer vision
tasks [10], [11]. A key factor to success in these areas is
how text, images or videos are represented through repre-
sentation learning [11]. Transformer models are built based
on multi-head attention, which helps analyze time-series data
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because it considers contextual information (past-future), dif-
ferent representation subspaces, and adapting periodic and
nonperiodic patterns. The impressive success of transformers
inspires us to use a transformer with reinforcement learning
in securing edge systems, which remains unexplored. Pri-
marily, transformer-based reinforcement learning is known
to be unstable and inefficient for making downstream appli-
cations [12]. The features, including experience replay and
multi-head attention, are crucial to adapt dynamic temporal
behaviour and discernible patterns in data to induce contex-
tual information in learning to detect VSI-DDoS attacks in
edge clouds. Hence, we propose a transformer-based neural
model with learnable time representation to detect VSI-DDoS
attacks on the edge.

Reinforced transformer learning (RTN) is a learning
approach in which a transformer-based model is trained in
a reinforcement learning environment. It helps in model
training to achieve higher efficacy under multiple settings
to detect VSI-DDoS attacks. However, the transformer inte-
grates deep reinforcement learning to employ said features
to mitigate emerging service-targeted attacks in edge clouds.
This paper makes the following contributions by combining
the requirements for low-rate and VSI-DDoS detection with
the capability of autonomy in edge clouds.

1) First, we introduce a transformer-based VSI-DDoS
detection approach on edge with learnable time repre-
sentation in its architecture, known as VSI-TN.

2) Second, we introduce a transformer-induced deep rein-
forcement learning approach known as VSI-RTN to
make attack detection efficient and autonomous for
edge clouds.

3) Third, transformer integration with deep reinforce-
ment learning makes it possible to prioritize learning
on context-driven information (e.g., attack dynamism,
temporal dependency) for detecting VSI-DDoS attacks
under uncertainty.

4) Lastly, systematic and extensive experimental analyses
are carried out with testbed and benchmark datasets
while comparing them with state-of-the-art baseline
models, including DNN-based models (e.g., Bi-LSTM,
LSTM) and Deep Reinforcement Learning model (i.e.,
DeROL [13]).

Organization. The rest of the paper is structured as fol-
lows. Section II discusses prior research on transformers and
deep reinforcement learning methods for DDoS detection.
The proposed system model is reported in Section III while
Section IV presents detailed experimental analysis. Finally,
the conclusion and future work are given in Section V.

Il. RELATED WORK

Cyber threats in web applications have been rising due to
massive-scale services or microservices deployment on edge
for multiple domains. Users expect services from service
providers with expected QoS when using Internet services.
However, service providers can be severely affected by users’
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unexpected QoS experience when using services deployed on
edge. Typically, users browse multiple web pages together,
and if latency reaches several seconds, they move to other
service providers. Because users do not like to use underpriv-
ileged services for longer, resulting in substantial financial
loss for providers. Hence, Google and Amazon' are putting
much effort into reducing tail latency up to a certain level that
reduces users’ inconvenience. When service providers iden-
tify such behaviour, it ends with new types of attacks, e.g.,
low-rate attacks. These attacks differ from classical DDoS
attacks that paralyze complete links or resources down by
sending exponential traffic.

Remarkably, the recent VSI-DDoS attacks target primarily
applications that offer QoS/QoE sensitive services on edge
in contrast to classical DDoS attacks. Mitigation is vital
to developing mechanisms to counter such attacks early,
but hard to make it in edge clouds. Most existing meth-
ods were developed for classical DDoS detection based on
machine learning [14], deep learning [15] and deep reinforce-
ment learning [13]. Saied ef al. [16] present an ANN-based
model for detecting high and low-rate DDoS attacks, eval-
uated only with TCP, UDP, and ICMP protocols. A low-
rate DDoS attack detection method for the cyber-physical
system is reported in [17] using Deep Convolutional Neu-
ral Network (DCNN) and deep Q-network, underperform-
ing for sparse data. Recently, Forough et al. [2] reported
a VSI-DDoS attack detection mechanism using LSTM-att
model but having poor performance and underperforming in
adverse conditions. Yeom et al. [S] use LSTM (Long Short
Term Memory) based model for source-side DoS attack
detection. They deploy detection modules on a gateway of
a target subnet to detect DoS attacks in advance. Still, this
type of deployment is costly, and the involvement of several
network service providers and different vendors makes it
nearly impossible. Roosmalen et al. [18] employ DNN (Deep
Neural Network) based supervised detection approach to
identify botnets on packet flows. However, it only considers
the detection of known botnet anomalies without temporal
information. Wu et al. [19] introduce a transformer-based
approach that utilizes a positional encoding technique to
associate sequential information between features and a
self-attention mechanism to facilitate network traffic type
classification. However, it lacks consideration of temporal
information during model training and is assessed only with
two benchmark datasets. Yeom ez al. [20] propose a collab-
orative source-side DDoS attack detection framework based
on LSTM. This approach involves sharing attack detection
results amongst source-side networks of multiple regions,
making this method expensive and difficult to collaborate
with different real-world entities. Moura et al. [9] discuss the
employment of open-source programmable asset orchestra-
tion to defend against faults, congestion, or cyber-attacks in
edge cloud systems. Unal et al. [21] propose a multi-anomaly

IThe tail latency is defined as the latency of a server’s 99th percentile
response, which is the delay that users experience in the worst case.
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detection model for cyber threat data. Pretrained transform-
ers’ variant is used to encode log sequences for learning the
structure along with anomaly types. It employs natural lan-
guage processing to find-out cyber threats from system logs,
which cannot be used in real-time detection and mitigation of
anomalies. Table 1 gives a comparison amongst existing and
our proposed methods.

Many deep reinforcement learning approaches have been
developed to detect, protect, and be resilient against cyber
threats by utilizing experience replay or feedback mecha-
nisms in multiple domains [22]. However, exploring deep
Q-learning combined with a transformer for detecting
VSI-DDoS attacks remains an open problem. A high tempo-
ral dependency and dynamic behaviour adoption in a short
period of time cause VSI-DDoS detection more difficult;
also, they bear legitimate behaviour during attacks targeting
multiple services for degrading users’ QoS/QoE.

Ill. SYSTEM MODEL

Due to the complex nature of VSI-DDoS attacks (e.g.,
stealthy, sub-saturating, legitimate utilization of server’s
resources, varied data patterns in each slot of extreme increase
of request), the detection methods [23] overlook attacks
before degrading the QoS of web services. For example, the
sudden increase of HTTP requests in a short period exceeds
the server queue limit and causes a delayed response to
legitimate users. Therefore, it’s necessary to have a model to
capture those patterns to improve the detection performance.
The transformer plays a vital role in accomplishing such tasks
and is advantageous due to having a self-attention mecha-
nism. Moreover, to employ the features of deep Q-learning
combined with transformer, we formulate the VSI-DDoS
detection problem as learnable time-representation, experi-
ence replay, and dynamic policy update for performing the
detection operations early and efficiently.

A. PROBLEM FORMULATION

Given the VSI-DDoS problem, identifying attacks in ser-
vices deployed among edge servers formulated as a classifi-
cation task with two classes: legitimate and attack. However,
multiple categories of attacks exist [2], [8] (e.g., VSI-DDoS
vertical, VSI-DDoS horizontal, VSI-DDoS application) to
manipulate services at different levels of deployed applica-
tions. Therefore, without losing generality, we assume that
X and Y = {0, 1} denote an instance space and the set of
possible classes with timestamp #, where 0 and 1 encode as
legitimate and attack instances, respectively. Given training
data in the form of a finite set of observations:

D= |y} S X XY, (1)

drawn independently from p(X, Y), i.e., the probability distri-
bution p on X’ x ). The goal of detecting VSI-DDoS attacks
is to learn a classifier h, which is a mapping X — ) that
assigns a label to each instance x; € X. Thus, the output
of the classifier h is defined as transformer (hr) and deep
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TABLE 1. Comparison of existing methods.

Model Model features for Application-layer | Low-rate No. of features Aut ted feature Datasets Accurac
security problems DDoS DDoS ) representation Testbed | Benchmark Y
Inference based on signatures from
ML [14] previous samples of network traffic 20 96.00
Source-side DoS attack detection by
LSTM [5] learning irregular seasonal pattern 3 92.00
Detect and mitigate known and unknown
ANN[16] DDoS attacks in real time environments B v 98.00
One shot learning for multiple
DeROL [13] network attacks detection v B v B
Learning from the most important
LSTM-Att [2] discernible patterns of sequence data v 28,41,42 v v 89.74
Detect VSI-DDoS adopting dynamic
VSI-TN (Ours) temporal behavior of data v 39,40,81 4 v 98.70
Detect VSI-DDoS by priority learning
VSI-RTN (Ours) o contextdrvon formation v 39,40,81 v v v 98.43
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FIGURE 2. Architecture of the proposed VSI-TN - a transformer-based neural model with time-representation layer using Time2Vec [25].

Q-learning with transformer (hgpr).

Y == hr(x,) € {0, 1}. (@)
.);\t = hQT (hT(-xt)9 Rp{xh Ed(lviv an)’ Ma(sta Sl’)}) € {07 1}
3)

where hy(-) is a transformer based model in which the hy
in Eq(2) receives time transformed x;, as input, and Eq(3)
receives x; as input. R, represents deep Q-learning with
belief-vector, E; - will estimate based on the legitimate data
l,; and the attack data ay, for the current state. M, computes
the similarity between samples at different states and feeds
them to the classifier and the policy modules. It is worth
noting that the proposed method can detect multi-class VSI-
DDoS attacks and overperform existing methods.

B. TRANSFORMER-BASED NEURAL NETWORK
Transformer-based models (e.g., BERT [10]) consist of sev-
eral encoder and decoder layers with multi-head attention.

94680

To solve our problem, we employ the transformer’s encoder
layer for input data’s intensive and compact feature rep-
resentation. We instantiate and train hy for VSI-TN using
multi-head attention layers (as shown in Figure 2) inspired
from self-attention layer [24]. The input is transformed into
three vectors: the query vector g, the key vector k, and the

value vector v with dimension d;, = dy = dy = dpodel,
packed them as K, V, Q. The attention is computed using the
following [24].
Attention(Q, K, V) ft (QKT>V @)
ention(Q, K, V) = softmax
~dg

The transformer architecture employs one time-embedding
layer (time2vec), three encoder layers, and a classification
head placed after the last layer for smooth initiation of the
training process.

1) LEARNING TEMPORAL REPRESENTATION
For learning and adopting dynamic temporal behaviour of
data, we harmonize the Time2Vec [25] architecture with our
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FIGURE 3. lllustration of Time2Vec layer.

proposed approach for model agnostic vector representation
of time. This vector representation is expressed as follows.
200y = {‘”’T T =0 )
Flwt+e) 1<i<k
where (w; T 4 ¢;) represents the non-periodic and F(w;T + ¢;)
indicates periodic features of the time vector. As a result,
two additional features are obtained from Time2Vec layer
followed by concatenation with original input as shown in
Figure 3. In each training iteration, the transformer receives
32 sequences with window size 25 and has 39 features
(specific to UVSI-DDoS-I and II datasets) per instance for
optimal training performance.

C. REINFORCED TRANSFORMER NETWORK

Considering the nature of system states, temporal depen-
dency, and adapting dynamic attack behaviour, we assume
that deep Q-learning with a transformer could provide an
appropriate solution for detecting VSI-DDoS attacks in edge
clouds. Therefore, we propose VSI-RTN blends with VSI-TN
to improve the model efficacy as shown in Figure 4, inspired
by DeROL [13]. VSI-RTN differs from DeROL: (1) the new
VSIDDoS Attack Classifier based on VSI-TN model, and (2)
the Rule Base module. First, the VSI-TN model is designed to
efficiently adapt the VSI-DDoS attack’s dynamic behaviour.
Second, the Rule Base module refers to when DRL policy
has found doubtful belief-vectors from the classifier module.
After assessing the rule-based module, the classifier will be
updated to improve the reinforced learning process.

Here, we utilize Deep Q-Network (DQN) as a function
approximator that maps from partially observed states to
action without storing Q-values. Deep reinforcement learning
(DRL) policy composes Long Short Term Memory (LSTM)
hidden layers, fanh as an activation function, and an output
layer with an action handler. The reinforcement learning (RL)
agent has three categories of actions.

1) Automatic classification (a,) based on the received
belief vector and environment parameters, aye{do, a1},
aop being classified as legitimate and a; as attack. The
classifier is responsible for producing belief vectors by
estimating a distance metric and training the VSI-TN
model once it receives a labelled instance from the
analyst manager.

2) Assign the classification task (a.) to a Rule Base mod-
ule for further assessment. If no rules are applied or
found, the request is queued to wait for new rules from
the analyst manager (i.e., the next action).
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3) Delay the classification task (ag) if the classifier’s
output is not satisfactory and a similar classification
task is already sent to the Rule-Base module, then the
RL agent verifies the correct classification of similar
task with the Rule-Base followed by classifier updation
to produce expected accuracy.

VSIDDoS attack classifier (VAC) has three components:

a Euclidean distance metric, a memory component, and a
transformer model. It estimates similarity scores for a new
sample using the distance metric corresponding to each class
while the memory component stores for already seen sam-
ples. Let S be the recently classified sample stored in the
classifier. S; € S be a subset of classified samples from
legitimate(i = 0) and attack(i = 1) class (number of classes,
k = 2). Similar to [13], for a new sample x, the distance
between each class(?) is measured by:

di(x) = min < dmax s mlS"l d(z, x) > (6)
z€S;
where d,q, is the maximum distance used, d(z, x) repre-
sents an Euclidean distance between samples z and x. Belief-
vector E; = {eg,---,ej, -+ ,eq} is expressed in terms
of similarity scores and e¢; = (dpqx — di(x)). The trans-
former model updates independently whenever DRL policy
encounters non-decisive samples, i.e., when it cannot take the
automatic classification action a,.

Reward function validates as correct automatic classifica-
tion with 0 as a legitimate label and 1 as an attack label.
RL agent receives a —2 reward for incorrect classification.
Reward for assigning a classification task to a rule-base
decreases linearly by a factor of 0.5 depending on the present
analyst’s load (L4(t)), i.e., (—0.5) x La(t). The reward for
delaying a classification task decreases exponentially with
each time unit of delay (7p). The exact reward function
is —270/10 " Accordingly, the Q-value gets updated at each
time(z) for every action-state pair as follows.

Or11(s(2), a(t)) = O,(s(?), a(t)) + al[r(t + 1)
+y argivf) Oi(s(t + D), a(t + 1))

— 0i(s(2), a(1))] (N

where r(¢ + 1) is obtained reward after action a(z) in state
s(t) for learned value r(t + 1) + y rzw)lc) Oi(s(t + 1), a(t +
a(t+

1)). Further, move to the next state-action pair s(¢t 4+ 1) and
a(t + 1) that maximize Q-values seen in the next state and
also minimize the time difference error between the learned
value and the current estimated value. Here, the learning rate
« assumes close to zero, i.e., 0 < o < 1, and discounted
factor y to 0.5. Loss function to update Q-values for each
training batch is given below [26].

> [0i(s(r). a(t)) — (r(t + 1) + y max

- a(t+1)

x Qi(x(t + 1), a(t + DNI*  (8)

The DRL policy illustrated in Figure 5 receives the follow-
ing parameters at time ¢ when sample x enters the system:
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FIGURE 4. Detailed architecture of VSI-RTN, inspired by DeROL [13] where the VSI-RTN uses Rule Base to accumulate training data for the
Model Base to improve real-time model efficacy.
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FIGURE 5. Detailed architecture of DRL policy that consists of one LSTM layer, one hidden layer, and an activation layer to learn and
optimize for four possible actions {ay, a;, ac, aq}.

(i) belief vector Ey(x) € RX; (ii) the analyst load Ly(¢); Algorithm 1 VSI-RTN

(iii) the delayed sample load Lp(t); (iv) classification delay Require: New Sample from Sample Generator module
Tp(x), and (v) similarity score p(x) reported by Analyst Ensure: Trained DQN and VSI-TN model
Manager obtain when compares the similarity between x and 1: for iteration i = {1, 2 R} do
queued samples for labelling. The input to the DRL policy is 2. for new sample m = {1,2, ..., n} do
expressed as follows: 3: add m to sample scheduler (S.,)
o(t) £ {Eq(x), La(t), Lp(1t), Tp(x), p(x)} ) 4: while S, has pending samples do
DRL employs e-greedy policy to explore different actions Z %(f;ni i?;?l;ﬁli);iicghE q. 9)
to maximize Q-value and summarized as follows. 7. generate an estimation of the Q-values
ac if Py <e€and Py <0.25 O(o(2)) for available actions, a € {ay, a., az} by the DQN
a(e, Py, Py) = Ya; Py <eand0.25 <Py <0.50 (10) 8: take action a; according to policy ¢ given
a, otherwise Qo(1))
9: if action a is a. then
where action a,, is automatic classification, action a. is ask 10: send S, to Analyst Manager for correct
for classification and action ay is delay classification. labelling, VAC’s updation and training of VSI-TN
During the learning process, we heuristically decide the 11 send S, to Sample Scheduler for further
€ value to 0.05 for optimal DRL policy with exploration classification attempt
and exploitation of varied actions. P, and P, are random 12: end if
probabilities associated with each decision. During testing, 13: obtain reward r(f)
€ is set to 0, which results in exploiting known actions to 14: end while
maximize the Q-value. Here, the DRL policy acts as an offline 15: end for
policy learner since it learns from taking different actions 16: if training phase then
{ac, aq,ap} as described in Eq(10). The Q-value function 17: train DQN using loss Eq. (8)
0:(s(2), a(?)) is learnt independently from previous policy, 13: end if

i.e., greedy policy. The steps to explain how VSI-RTN works 19
is given in Algorithm 1.

. end for

94682 VOLUME 10, 2022



A. B. Bhutto et al.: Reinforced Transformer Learning for VSI-DDoS Detection in Edge Clouds

IEEE Access

IV. EXPERIMENTAL EVALUATION

This section evaluates the VSI-TN and VSI-RTN models
for assessing the efficacy of VSI-DDoS detection by con-
ducting extensive experiments using testbed and benchmark
datasets. We explain our testbed setup, data collection, and
benchmark datasets following data pre-processing. We also
explain window-based time transformation, which is only
used for the VSI-TN model. Afterwards, we assess the
VSI-TN and the VSI-RTN models to adopt different learning
dynamics with and without DRL settings. Finally, we com-
pare and analyse the performance with state-of-the-art
methods.

A. DATASETS
We conducted experiments with four real-world datasets,
including two testbeds and two benchmark datasets.

1) TESTBED SETUP AND DATA COLLECTION

Testbed setup and data collection is designed and developed
by following similar settings available in [27]. We configure
an edge server with an n-tier web application benchmark
RUBiSz(i.e., web server, an application server, and a DB
server) to assess our proposed VSI-DDoS detection models.
The 3-tier architecture is followed and deployed on the edge
cloud illustrated in Figure 6. Web application server deployed
as an independent instance with the same virtual specification
and offered services using RUBIS. The imitation of legiti-
mate users were made using the workload generator RUB-
BoS.? The Apache Bench in collaboration with LOIC # was
used to create bots for injecting VSI-DDoS attacks towards
deployed services. We collect data by considering two main
scenarios with and without VSI-DDoS attacks simulating
on and off periods across multiple periods using R-RMON
tool. The R-RMON is a remote resource monitoring tool
developed by us to monitor systems, application resources,
and services. The scenarios are known as UVSI-DDoS-I and
UVSI-DDoS-II, which are explained below.

e UVSI-DDoS-I: This scenario is designed to inject ver-
tical VSI-DDoS attacks by targeting deployed web
services using synchronized bots. We consider 8 =
40 milliseconds as common burst time for each interval
with 5000 HTTP requests. Here, we scaled the attack
vertically to increase the intensity of attacks in each
interval to degrade the QoS of legitimate users.

o UVSI-DDoS-II: In this scenario, we set B = 100 mil-
liseconds with 2000 HTTP requests for each interval.
We scaled the attack horizontally with multiple bots
to impact longer burst time with the same number of
requests that degrade the QoS of legitimate users.

Further, we set A = 2 seconds and data collected for

2 hours for each scenario from three levels in the testbed,
including physical, virtual, and applications. It is worth men-

2https://github.com/uillianluiz/RUBiS

3 https://github.com/michaelmior/RUBBoS
4https://github.com/NewEraCracker/LOIC
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FIGURE 6. lllustration of UVSI-DDoS testbed architecture.

tioning that we employed normal load generator Locust® with
1000 users to ensure having enough legitimate users and
experience QoS degradation. We chose fixed and random
starting points of attacks for both scenarios.

2) BENCHMARK DATASETS

We used two benchmark datasets for evaluating our pro-
posed methods, namely, CIC-DDo0S2019 [28] and UNSW-
NB15 [29] due to the non-availability of benchmark datasets
for VSI-DDoS. CIC-DDo0S2019 is a realistic dataset that col-
lects through background traffic using B-Profile System [30].
The dataset simulates and collects the behaviour of multiple
users with protocols such as HTTP, SSH and having 18 varia-
tions of DDoS attacks for training and testing. UNSW-NB15
dataset is composed of real-time scenarios that combine
modern normal activities and synthetic contemporary attack
behaviour, collected through IXIA PerfectStrom® tool.

B. DATA PROCESSING

Before feeding data into the learning models, we preprocess
both testbed and benchmark datasets by converting, normal-
ization, filling missing values, extracting relevant features,
and time transformation.

For both UVSI-DDoS datasets, we extract relevant features
and processes across the training and testing set. The UVSI-
DDoS-I dataset consists of 38847 attacks and 105040 legiti-
mate instances with 39 features. The UVSI-DDoS-II dataset
contains 37875 attacks and 27620 legitimate instances with
39 features.

On the other hand, CIC-DD0S2019 has 87 features
across training and testing data and has 226437 attack and
112731 legitimate instances. UNSW-NB15 dataset consists
of 9 attacks and 49 extracted features. Details of datasets are
also summarized in Table 2.

5 https://locust.io/
6https://research.unsw.edu.au/proj ects/unsw-nb15-dataset
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TABLE 2. Details of testbed and benchmark datasets.

Datasets Instances(#™*) Attacks(#) Features(#)
UVSI-DDoS-I 143887 38847 39
UVSI-DDoS-1I 65495 37875 39
UNSW-NBI15 257673 164673 40
CICDDo0S2019 339168 226437 81
* Number of.
Pmces‘sed Data 39 b/
F\athiIes ¥
I « 25 —>
X-25
J y
«— 39 —> ’

y

Feature Conversion

FIGURE 7. lllustration of window-based time transformation.

1) WINDOW-BASED TIME TRANSFORMATION

After obtaining relevant features and standardization,
we employ the window-based time transformation to embed
temporal information for both datasets. For x number of
data instances, the matrix looks like x x 39 with 39 features.
Each instance contains a label(y) at the end. This matrix
is sampled with a continuous window size of 25 resulting
in x — 25 instances of block size (25, 39). The assigned
label for each block belongs to 25th element (the last one
in the block); this way, the model can learn both short and
long-term temporal patterns. Finally, a three-dimensional
matrix of size (x — 25, 25, 39) is obtained and fed as input
to learning models. The steps to explain how window-based
time transformation works are given in Algorithm 2.

Algorithm 2 Time Transformation
Require: Data instances with temporal order
Ensure: Transformed instances based on window size (w)
1: I = number of instances in X
2: w = window size (i.e., w = 25)
3: for iterationi = {1,2,...,l —w} do
4 iz, element of X; for k = {in, ..
instances from X)
izp label in X' = label for (i + w)y, instance in X
6: end for
7: return X’

S +w =D} (k

i

C. RESULTS AND ANALYSIS
The evaluation metrics include Area Under the Receiver
Operating Characteristic Curve (AUC) [31], precision, recall,
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and accuracy to establish the model’s capability for detecting
VSI-DDoS attacks. The occurrences of attack class are rarer
than the legitimate class, leading to class imbalance problems
and vice versa depending on the time data were collected.
Hence, we employ AUC as a validation measure to alleviate
this problem.

We begin our experiments with the characterization of data
using cumulative density analysis for CPU utilization and
tail latency in the UVSI-DDoS-I testbed dataset as shown
in Figure 8. Figure 9 shows the same for CPU utilization
and memory usage in the UVSI-DDoS-II testbed dataset. The
cumulative difference between legitimate and attack is very
close (seen in the Figures), increasing detection difficulty.
Figure 10 shows the latency variation of HTTP requests in the
presence and absence of VSI-DDoS attacks within the UVSI-
DDoS-I dataset. Under normal traffic conditions, latency
remains very close to 0. However, during the attack period,
it peaks between 200 ms to 800 ms. We used the Keras library
with the Tensorflow backend for implementing the proposed
VSI-TN and VSI-RTN models.

1) VSI-TN

We begin with the UVSI-DDoS-I dataset for assessing mod-
els with time-representation layers that achieve significant
model performance in detecting VSI-DDoS and iterate for
other datasets. The hyper-parameters of each model are tuned
with a grid search mechanism to obtain optimal model per-
formance. Based on these, we achieve the best results with
a sliding window size of 25 instances, 12 attention heads,
10 epochs, and a batch size of 32 for the VSI-TN model.
The dropout value sets 0.1 and employs a global average
pooling for the encoder layer to prevent model overfitting.
ADAM [32] optimizer was used for our experiments with
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FIGURE 10. Latency analysis for UVSI-DDoS-I testbed in presence and
absence of attacks.

TABLE 3. Hyperparameters of VS/-TN for UVSI-DDoS-I dataset. In case of
UVSI-DDoS-11 dataset size of query, key and value were reduced to

128 and number of attention heads was set to 6; reduced size of the
neural net eliminated over fitting issue caused by relatively small sized
UVSI-DDoS-I1 dataset.

Parameter Name Symbol Value
Size of Query Q4 256
Size of Key Kq 256
Size of Value Vy 256
Attention Heads Hp 12
Learning Rate « 0.001
Batch Size Br 32
Total Epoch epochs 10
Validation Split validation_split 0.2

‘binary-crossentropy’ as loss function and sigmoid as acti-
vation function to obtain an accurate and stable model. The
validation split 0.2 achieves optimal model accuracy. The
model’s hyperparameters are given in Table 3.

2) VSI-RTN

Transformer-based reinforcement learning assesses with lim-
ited labelled data to alleviate the model stability problem.
Limited labelled data from a security system is typical
because we need expert efforts to label them. After training
them on different data sizes to confirm the superior learning
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FIGURE 12. ROC analysis - VSI-TN with baseline models.

behaviour expected from reinforcement settings, we evaluate
both VSI-TN and VSI-RTN models. These data sizes include
10%, 30%, 50%, 80% and 100% of both UVSI-DDoS-I
and UVSI-DDoS-II datasets that maintain temporal consis-
tency. VSI-RTN verifies this with learning stability under
variable data size and data imbalance ratios (see Figure 16).
We observe that VSI-TN does not achieve stable performance
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TABLE 4. Hyperparameters of VSI-RTN.

TABLE 6. Comparison across training data size for VSI-TN.

TABLE 5. Comparison among baseline models with proposed methods
using UVSI-DDoS-I and UVSI-DDoS-11 datasets.

UVSI-DDoS-I UVSI-DDoS-1I
Model Name AUC ACC AUC ACC
Bi-LSTM 98.26 98.67 90.88 85.17
LSTM 97.78 98.37 90.81 82.43
NB 96.03 97.04 66.20 60.01
VSI-TN (Ours) 98.62 98.7 91.18 91.44
VSI-RTN (Ours) 99.25 98.43 95.88 90.26

with varied data size and data imbalance ratios as given in
Table 6.

Table 4 explains the hyperparameters for the VSI-RTN
model. We perform our experiments with a random selection
of 20 samples per training iteration in the reinforced learning
process by maintaining the ratio of 15 : 5, where 15 samples
were legitimate, and 5 samples were attacks.

The proposed approach carries extensive experiments with
UVSI-DDoS testbed and CIC-DDoS datasets. Figure 11
shows training and validation loss curves for VSI-TN on
the UVSI-DDoS dataset Scenario-I. Training loss can keep
decreasing and eventually infuse. In contrast, validation loss
fluctuates during the initial epochs and eventually immerses
as well. Table 5 shows performance of the proposed models
(i.e., VSI-TN and VSI-RTN) using both UVSI-DDoS dataset
scenarios. We observe that our proposed models outperform
baseline models with 0.9% to 3.2% more AUC score using
the UVSI-DDoS dataset. The proposed models achieve supe-
rior performance by automatically uncovering the relations
of attack patterns with temporal information via multi-head
self-attentions. Moreover, with experience replay and the
adaptation of new attacks via the reinforced learning process,
the model could evolve and better detect future attacks. In par-
ticular, in the later experiment presented in Figure 16, the
detection performance remains high across different attack
scenarios and high variants of unique attacks coming into the
systems.

a: LEARNING DYNAMICS OF VSI-RTN

To assess the learning stability and emulate real-time appli-
cations behaviour deployed on edge, we carried out extensive
experiments to observe the performance correlation among
different ratios of data for VSI-TN model within the rein-
forced learning process, i.e., VSI-RTN model. Figure 13
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Parameter Name Symbol Value UVSI-DDoS-1 UVSI-DDoS-II
Training Iterations Tn 2000 Data AUC ACC AUC ACC

Sample Size Sn 20 10% 96.63 97.21 53.57 46.45
LSTM Units in DQN Lp 200 30% 95.04 96.42 73.72 72.80
Learning Rate « 0.001 50% 98.08 98.4 50.19 42.37
Discount Factor v 0.5 80% 97.14 97.67 89.82 90.24
Epsilon Value € 0.05 100% 96.7 97.61 91.18 91.44
Size of Q, K, V dg,dy, dy 156

Attention Heads Hr 12

Batch Size Br 8

shows the decreasing losses on UVSI-DDoS-I data and Fig-
ure 14 shows accumulated rewards along training iterations
for two models. One is the proposed VSI-RTN model, and
another baseline model named RNN-RL, which uses LSTM
instead of transformer in reinforcement settings. We have
reported three different runs for loss and rewards for the
VSI-RTN model, all showing a similar trend. Compared to
the baseline model RNN-RL, VSI-RTN can achieve higher
rewards in less amount of iterations. In terms of loss, the base-
line model suffers several spikes during training. As shown in
Figure 16, the proposed model achieves stable performance
even fed varying amounts of data over time to the models.
In Figure 16, Unique Normal RL and Unique Attack RL
refer to normalized total unique normal and attack instances
seen by DRL policy while training. Unique Normal and
Unique Attack show the amount of unique normal and attack
instances that were sent back to the analyst manager and,
in turn, fed to the VSI-TN component for independent train-
ing. As we can see, there is a steady growth in the AUC
score as we increase the data size. Also, we observe that
increased data size leads to a steady increase of unique data
received by the DRL policy. Unique data sent for training the
VSI-TN that originally decreases and eventually remains the
same without compromising performance. It illustrates that
VSI-TN in reinforcement settings can be trained with fewer
instances to make expected decisions for the model. This
training strategy can eliminate learning instability and data
imbalance problems and train the VSI-TN with only relevant
training examples. The resultant model is cost-effective and
efficient under those constraints.

Figure 15a shows that introducing a high penalty for delay
classification implies maximum effect by progressing model
training with lower delay in UVSI-DDoS-I data due to high
non-similarity within data instances. The typical case is the
fluctuation in performance at the beginning for wrong classi-
fications; eventually, the model minimizes them. Throughout
the training, correct classification dominates over requests for
labelling from the rule base. Figure 15b shows the results of
the same experiment on UVSI-DDoS-II data, where the train-
ing performance of the model fluctuates during initial steps
and eventually minimizes the wrong classification. In addi-
tion, classification is requested from the analyst manager in
case of previously unobserved data due to low confidence in
the classifier by the RL agent. During this process, if sim-
ilar to already sent data arrives, then the classification task
is delayed because of the analyst manager’s classification.
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TABLE 7. Overall performance of our proposed models in comparison to
other works using CIC-DDoS dataset.
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FIGURE 15. Probabilities of actions for each sample during training with

UVSI-DDoS-1 and UVSI-DDoS-II datasets.

TABLE 8. Overall performance of VSI-TN in comparison to other works
using UNSW-NB15 dataset.

In such a way, the model does not need to repeatedly send a
request for classification to the analyst manager. Instead, the
model can learn efficiently and use the same manual labour.

D. COMPARISON WITH EXISTING METHODS

To verify our proposed models compared to state-of-the-art
methods, we consider the CIC-DD0S2019 and UNSW-NB15
datasets for the non-availability of the VSI-DDoS benchmark
datasets. Table 7 shows the performance of our proposed
models, where VSI-TN and VSI-RTN outperform existing
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Model(s) Test AUC | ACC Precision | Recall

set
DDoSNet [15] 0.12% | - - 99 99 Exp-Name AUC ACC Precision Recall
GRU-SDN [33] - 99.74 | - 99.83 99.79 LSTM-Att [2] 96.64 96.6 97.57 95.9
LSTM (baseline) 3.44% | 61.46 | 99.2 99.2 99.9 LSTM (baseline) 96.82 85.68 79.38 99.95
Bi-LSTM (baseline) 3.44% | 50 98.97 | 98.97 1 Bi-LSTM (baseline) 96.67 93.13 96.15 93.66
VSI-TN (Ours) 344% | - 99.69 | 99.8 99.88 VSI-TN (Ours) 98.19 98.26 97.99 98.87
VSI-RTN (Ours) 3.44% | 98.56 | 99.8 - -
VSI-RTN (Ours) 100% | 98.96 | 98.74 | 1 98.73

works. Our models differ from existing methods: (i) exper-
iments made for a maximum amount of test sets 19 mil-
lion instances, (ii) developed transformer-induced multi-task
deep reinforcement learning, (iii) dynamic adoption of attack
behaviour, and (iv) mitigate service availability and QoS/QoE
problems in edge clouds, outperforms in compare to exist-
ing methods such as DNN-based baseline models, DDoS-
Net [15], and GRU-SDN [33].

Results on UNSW-NBI15 dataset are reported in Table 8.
LSTM-Att [2] offers AUC of 96.64% and 96.6% accu-
racy, whereas baseline LSTM shows 96.82% AUC and
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FIGURE 16. Performance variants of VSI-TN in the VSI-RTN pipeline in correlation with different amounts of data received in the reinforced learning
process. Unique Normal RL and Unique Attack RL represent total unique normal and attack instances seen by the DRL Policy of the VSI-RTN model while
training. Unique Normal and Unique Attack indicate the number of unique normal and attack instances seen by the VSI-TN component of VSI-RTN. The
counts are normalized across all the percentages for every type of count to scale between 0 and 1.

TABLE 9. Training and testing time analysis for the proposed and the baseline models.

Training-time (sec) Testing-time (per instance, psec)
Dataset LSTM BiLSTM | VSI-TN (Ours) VSI-RTN (Ours) LSTM BiLSTM | VSI-TN (Ours) VSI-RTN (Ours)
UVSI-DDoS-1 2263.2 34443 2527.3 1316.51 44.15 60.58 76.86 79.23
UVSI-DDoS-I1 591.8 1057.8 454.8 4379 16.83 37.63 20.49 7.95
UNSW-NB15 2890.7 4887.2 4165.4 1341.55 63.04 62.47 67.01 79.84
CIC-DD0S2019 6143.2 9875.4 9272.8 1358.16 66.78 64.60 68.75 83.64

lower accuracy of 85.68% compared to LSTM-Att [2]. Our
proposed model achieves higher accuracy of 98.26% with
an improvement of 1.66% to 12.57% compared to other
methods.

Training time and testing time analysis across our pro-
posed and other deep learning-based methods is given in
Table 9. From the table, once data size increases, the training
time for all methods is also growing, but testing time per
instance remains closer or similar. In the case of UVSI-
DDoS-I data, VSI-TN has a testing time of 76.86uSec
slightly higher than LSTM with 44.15uSec and BiLSTM
with 60.58uSec. For UVSI-DDoS-II data, VSI-TN has a
testing time of 20.49uSec less than BILSTM with 37.63uSec
and slightly higher than LSTM with 16.83uSec. In addition,
UNSW-NBIS5 testing times for VSI-TN, BiLSTM and LSTM
are pretty close to one another with 67.01uSec, 62.47uSec
and 63.04uSec, respectively. Similarly, in the case of CIC-
DDoS2019, VSI- TN requires 68.75uSec per instance, Bil-
STM requires 64.60uSec, and LSTM requires 66.78uSec,
respectively. For the VSI-RTN model, training times are for
10000 iterations in each dataset, requires 1316.51 Sec for
UVSI-DDoS-1, 437.9 Sec for UVSI-DDoS-II, 1341.55 Sec

94688

for UNSW-NB15, and 1358.16 Sec for CIC-DDo0S2019,
respectively. Testing time per instance for VSI-RTN remains
relatively close to one other despite increased data size. This
analysis shows that the proposed VSI-DDoS detection mod-
els perform well on the microsecond scale, implying that
models can improve service availability by controlling these
attacks on the edge at a very early stage.

The ROC curve of VSI-TN, along with other baseline
methods for UVSI-DDoS-I and UVSI-DDoS-II test data, are
shown in Figure 12. ROC curve shows the model’s ability to
differentiate between the target classes in True Positive Rate
(TPR) and False Positive Rate (FPR). The proposed VSI-TN
outperforms BiLSTM, LSTM, and Gaussian NB, which also
reflects from Area Under the Curve (AUC) score reported in
Table 5. As a result, VSI-TN achieves stable learning ability,
adapts to dynamic and temporal data behaviour, and manages
data imbalance problems when detecting VSI-DDoS attacks
in edge clouds.

V. CONCLUSION AND FUTURE WORK
This paper demonstrated that VSI-DDoS attacks primarily
target time-sensitive services deployed on edge to degrade
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users’ QoS/QoE. Hence, we developed a reinforced trans-
former learning-based approach to detect such attacks that
mitigate the problems of service non-availability and dirty
users’ QoS/QoE experience in edge clouds. The integration
of transformer and deep reinforcement learning makes the
model more intelligent and effective as it uses an encod-
ing layer for compact feature representation of raw data.
Our proposed model has multiple features, such as adopting
dynamic attack behaviour, learning stability, and a rule-base
for smoother decisions, outperforming testbed and bench-
mark datasets under adverse conditions. Multihead atten-
tion of transformer-based models helps to analyze contextual
information in time-series data, resulting in better attack
detection capability. Our comprehensive experimental evalu-
ation shows that the proposed approach outperforms state-of-
the-art methods and ensures model stability, efficiency, and
robustness for detecting VSI-DDoS attacks at an early stage.
Moreover, the time analysis shows the feasibility of using our
proposed model in the early detection of VSI-DDoS attacks
in edge clouds with testing time in microseconds.

An extension of this work is undergoing by deploying
diverse mission-critical edge applications in 6G testbed to
handle users’ QoS/QoE problem:s.
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