Vattenfall's Global Climate Impact Abatement Map **IEA**, Paris 2007-02-15 **Bo Nelson** Vattenfall ## SPECIFIC COSTS OF MEASURES TO REDUCE CO₂EMISSIONS, ÖRE*/KG CO₂ # ABATEMENT ALTERNATIVES FOR CO₂ POTENTIALS*, MTON CO₂/YR | Cost, Euro/kg CO ₂ | |--------------------------------------| | In the EU 0 | | ? | | | | 2 | | Great, in the 100s | | | | Great, in the 100s | | Unexploited potential | | Unexploited potential | | | | Great (pure question of cost) | | Still uncertain but promising - 0,10 | | 0,10 | | Not used until after coal | | lacement alternatives | | Unexploited potential | | Offexploited potential | | ? | | · | | 2/Depends on histual | | ?(Depends on biofuel | | plement) | | Not used until after coal | | lacement alternatives | | Insignificant | | saving of CO ₂ | | r | ## ABATEMENT COSTS OF CO₂ EMISSION REDUCTION - EU EU-study 2001*, öre/kg CO2 ## A "16th Century map" of abatement opportunities ## Global cost curve model of GHG abatement opportunities: - 6 sectors: power, industry (focus on steel and cement), transportation, buildings, forestry, agriculture - 6 regions: North America, Western Europe, Eastern Europe incl. Russia, other industrialized countries, China, Rest of World - 3 time frames: 2010, 2020, 2030 The report studies abatement potentials, not forecasts ## Global warming – millions at risk in 2080s 6 The EU has decided on 2°C as the maximum prudent global warming level Source: Parry (2001) ## The 2°C warming target - risks at different CO2e concentration levels Source: Meinshausen (2004); European Environment Agency ## **Overall methodology** - 1. Focus on abatement opportunities ("supply") no independent research into how much abatement is needed ("demand") - 2. IEA and EPA forecasts through 2030 used as business-as-usual emission projections - 3. Abatement cost defined as the additional cost* of a low-emission technology/ opportunity compared to the business-as-usual, measured as EUR/ton of avoided CO₂e emissions. Focus have been on measures with a cost below 40 EUR/ton - 4. Abatement volumes are "realistic potentials", based on assumptions of realistic deployment rates of GHG-efficient technologies/measures per region and over time - 5. Abatement opportunities documented in cost curve model, to be able to assess relative economic attractiveness of different abatement options - 6. Cooperation with Academic Review Panel consisting of Professors Socolow, Pacala, and Williams from Princeton, Professor Anderson from Imperial College, and Professor Bergman from Stockholm School of Economics ^{*} Operational cost + depreciation ## **Current sources of greenhouse gas emissions** 2002; Percent BACKUP ^{* 45%} of electricity consumption in the industry sector and 55% in buildings ^{**} Australia, New Zealand, Japan, Singapore, South Korea, Taiwan, UAE, Saudi Arabia, Qatar, Oman, Kuwait, Israel, Bahrain, Mexico ^{***} Africa, South and Central America excl. Mexico, Asia excl. China and countries included in "Other industrialized" (see previous note) Source: IEA World Energy Outlook 2004; EPA ## **Vattenfall's Global Climate Impact Abatement Map** Abatement cost = additional cost of a low emission technology/ opportunity compared to business-as-usual (operational cost + depreciation) - 6 sectors: power, industry, transportation, buildings, forestry, agriculture - 6 regions: North America, Western Europe, Eastern Europe incl. Russia, other industrialized countries, China, Rest of World - 3 time frames: 2010, 2020, 2030 The report shows realistic abatement potentials, not forecasts! ## What's needed by 2030 to contain global warming below 2°C? CO₂e emissions per year, Gton Abatement required by 2030 compared to the BAU ## Emissions growth through 2030 in the business as usual forecast ## Global cost curve of GHG abatement opportunities beyond business as usual ## Examples of negative cost abatement opportunities #### **Opportunity** ## **Barriers** #### **Improved insulation** - 25% less energy for heating versus BAU - 60% lower lifecycle heating cost* - Average abatement cost: -130 EUR/t CO₂e - Total abatement opportunity: 1.6 GtCO₂e #### **Misaligned incentives:** - Builders minimize upfront building costs - not life-cycle cost - Buyers typically not involved in specifying insulation levels #### **Compact Fluorescent Lamp** © Vattenfall AB - 80% reduced energy consumption - 41% lower lifecycle cost for consumer - Average abatement cost: -90 EUR/t CO₂e 13 Total abatement opportunity: 0.2 GtCO₂e #### End-user behavior: - Lacking awareness of opportunities - Savings low compared to total household budget - Require very short payback times ^{*} Example for typical house in mild region with electrical heating ## Examples of abatement cost calculations – power sector #### Wind power #### **Opportunity** - Average abatement cost: - 21 EUR / tCO2e - Of which 5 EUR / tCO2e is cost induced by the high penetration - Total abatement opportunity: 0.5 GtCO₂e #### **Barriers** #### **Environmental impact:** - Wind mill sites are often perceived as obstacles - At higher penetration rates, intermittency becomes a costly issue #### Carbon capture & storage - Potentially installed on 55% of all coal plants by 2030 - Abatement cost: 20 30 EUR/tCO₂e in 2030 - Total abatement opportunity: 3.1 GtCO₂e #### **Storage:** Storage alternatives still need to be tested and approved #### **Technological development:** Technology currently existing but needs to be proven at scale in integrated solutions ## Marginal abatement cost in the different demand scenarios 2030 ## Abatement potential per sector Abatement potential below 40 EUR/ton, 2030, GtCO₂e Reduction in electricity consumption ^{*}I.e. 35% reduction through measures in the power sector itself (reducing emissions per MWh produced), and a total 57% including also the indirect effect of reduced electricity demand versus BAU due to energy efficiency measures in the industry and buildings sectors 16 ## Three different types of sectors | | GtCO ₂ e | EUR/tCO ₂ e | Key characteristics | |-------------------------------|---------------------|------------------------|--| | Power and industry | 11.9 | 15–40 | Mainly industrialized countries Small numbre of large, rational emitters High cost Minor consumer implications Competitive distortion issues | | Transportation and buildings | 6.6 | <5 (often negative) | Mainly industrialized countries Billions of small emitters Low/negative cost High consumer implications | | Forestry , agriculture, waste | 8.2 | 10–40 | 60+% developing countries Billions of small emitters Medium/high cost Big social implications Hard to measure & monitor | | TOTAL | 26.7 | | | ## Estimates of total global cost for society # Estimates of total abatement cost for the global society* % of global GDP 2030 #### **Comparables** % of global GDP 2005 ^{*} Lower boundary: Opportunities addressed in order of increasing cost and negative costs are set to zero; upper boundary: Average cost EUR 40/ton ^{**} Official Development Assistance from OECD countries; does not include humanitarian aid or private donations ## Key regulatory mechanisms identified in the abatement investigation #### Cost of abatement A Policies/ standards for buildings and transportation, or a certificate system © Vattenfall AB - B Long-term stable international system for power and industry - D International system for agriculture and deforestation, linked to the overall developing world agenda Mechanism to drive selected key technologies down the learning curve ## **Conclusions** - Emissions can be reduced substantially - •The abatement potential is well distributed over sectors and regions - Global cooperation needed to realize potentials - Price signals are of crucial importance - "Lubricating measures" needed in some sectors - Total cost limited - Speed up learning curves ## **Key sources of uncertainty** | | Description | Examples | |--|---|--| | 1. Baseline uncertainty | Macroeconomic factors | GDP development, population growth | | 2. Assessment of realistic abatement volumes/ deployment rates | Estimate of realistic realization rates
considering political, social and technical
barriers | Forestry, agriculture, nuclear, bio
fuels, CO₂ storage, etc | | 3. Development of abatement cost | Technology progress and learning rates Fuel price development | CCS, Hybrids, Biofuels, Solar PV Biomass, fossil fuels, uranium, etc | | 4. Overall rate of innovation | Development of unforeseen
new technologies Introduction of unforeseen, original
"entrepreneurial solutions" driven by
individual initiative and market
opportunities | Iron-seeding of oceans, aerosols, reducing warming, etc. Compare with NO_x reduction case (several unexpected solutions introduced) | ## **Key sources used** | | Business as usual trends | Abatement | |-------------------|--|--| | Power | IEA World Energy Outlook 2004UDI for plant vintages | IEA World Energy Outlook | | Industry | IEA World Energy Outlook 2004 IEA for process CO₂ (Dolf Gielen) USEPA (2006), Global Mitigation of Non-CO2 Greenhouse Gases | IEA (Dolf Gielen) USEPA (2006) for non-CO₂ Japan Cement Association Ecofys Awrence Berkeley Lab (Lynn Price) Institute of Technical Information for Building Materials Industry of China | | Buildings | IEA World Energy Outlook 2004 US Energy Information Agency for
residential/commercial split MGI for breakdown by end-use | IEA Light's Labour's Lost IEA Annual Energy Outlook MGI buildings models Dolf Gielen, IEA Ecofys | | Transport | IEA World Energy Outlook 2004 IEA / WBSCSD transport model | McKinsey (DRIVE initiative, Automotive Practice, Biofuels initiative, MGI) WRI (Rob Bradley, Lee Schipper, Liz Marshall) NRDC (Nathanael Greene, Dale Bryk) Rocky Mountain Institute (Amory Lovins) Princeton (Rob Socolow, Bob Williams, Eric Larson) USEPA (Ben Ellies) | | Agriculture/Waste | • USEPA (2006) | USEPA (2006) and (Deborah Ottinger, Ben DeAngelo, Christa Clapp) Steve Pacala, Princeton NCAR (Jeff Fiedler) Texas A&M University (Bruce McCarl) | | Forestry | Princeton (Steve Pacala) | Princeton (Steve Pacala) IPCC (Dr. N.H.Ravindranath) Lawrence Berkeley National Laboratory (Dr. Sathaye) Woods Hole Research Centre (Dr. Houghton) Nature Conservancy (Zoe Kant) Environmental Defence (Stephan Schwartzman) Ecofys (Dr. Niklas Hohne) Forest Stewardship Council (Daniel Arancibia) Max Planck Institute (Annette Freibauer) IPAM (Paulo Moutinho) | ## Academic review panel | Name | Institution | |-----------------------|---| | Prof. Dennis Anderson | Imperial college | | Prof. Lars Bergman | Stockholm School of Economics | | Prof. Steve Pacala | Princeton University | | Prof. Robert Socolow | Princeton University | | Prof. Robert Williams | Princeton University | ## Fuel price assumptions used Real 2002 prices - assumed constant through period | Fuel | Price | assumptions | Comment | |----------------|-------------|----------------------------|--| | Crude oil | 40
19.6 | USD / bbl
EUR / MWh th | | | Heavy fuel oil | 250
17.6 | USD / ton
EUR / MWh th | Typical price LSFO FOB Cgo
Rotterdam | | Natural gas | 7
19.9 | USD / mbtu
EUR / MWh th | Price delivered to plant | | Average coal | 2.8
8.0 | USD / mbtu
EUR / MWh th | Price delivered to plant | | Biomass* | 5
14.2 | USD / mbtu
EUR / MWh th | IEA BAU assumption; imported
biomass assumed to be long-term
price setting | | Uranium | 80
3.1 | USD / kg
EUR / MWh th | Historical average | Note: 1 bbl crude = 5.8 mbtu; 1 ton HFO = 40.4 mbtu; 1 kg 235U = 77 TJ; 1 EUR = 1.2 USD * Reflects EU market prices; assumed to be 20% lower in Eastern Europe, China, and other industrials, 60% lower in developing countries ## **Economic development in IEA reference case (BAU)** Annual growth rate, percent | | Developmen | t 2002 - 2030 | |--------------------------|------------|---------------| | Macro economic driver | Globally | OECD | | GDP | 3.2 % p.a. | 2.2 % p.a. | | Population | 1.0 % p.a. | 0.4 % p.a. | | Energy demand | 1.6 % p.a. | 1.1 % p.a. | | Energy related emissions | 1.7 % p.a. | 0.9 % p.a. | ## www.vattenfall.com/climatemap