
Analysis and Retrofitting of
Security Properties for

Proprietary Software Systems

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs
der Fakultät für Elektrotechnik und Informationstechnik an der

Ruhr-Universität Bochum

vorgelegt von

Ralf Hund

aus Heidelberg

10. Juni 2013

Erstgutachter: Prof. Dr. Thorsten Holz
(Ruhr-Universität Bochum)

Zweitgutachter: Prof. Dr. Felix C. Freiling
(Friedrich-Alexander-Universität Erlangen-Nürnberg)

Abstract

In this thesis, we present new methods to analyze and extend the security prop-
erties of software systems. We concentrate on proprietary software environments
in which no source code of the relevant components is available. Analyzing and
retrofitting security aspects of proprietary software is an especially intricate task
and requires the development and use of customized techniques and tools.

The contributions of the thesis are thus twofold. First, we develop tools and
revise existing techniques to analyze proprietary systems. To that end, static reverse
engineering is used to extract algorithms from proprietary software. Second, we also
provide solutions to overcome security-related shortcomings in proprietary systems
by extending them, i.e., we retrofit proprietary systems. Overall, we present an
analysis and/or retrofitting of four different software systems in this thesis.

At first, we describe the reverse engineering of the proprietary GMR-1 satellite
phone communication encryption algorithm. We present a generic approach to iden-
tify and extract unknown cryptographic algorithms in mobile firmware images and
provide an in-depth description of such an analysis using the example of one con-
crete GMR-1 firmware. In the end, we were able to successfully extract the unknown
GMR-1 encryption algorithm which later proved to be vulnerable to cryptographic
attacks.

Another contribution is the development of new side channel timing attacks
against kernelspace ASLR implementations. We therefore reverse engineered the
proprietary ASLR implementation of Windows operating systems and present three
different side channel attacks which allow a local attacker to reconstruct large parts
of the privileged kernel space by abusing side channels in the processor’s memory
management facilities. This allows us to effectively bypass kernelspace ASLR pro-
tections. We also present a mitigation solution with negligible overhead that renders
the attack infeasible.

The third topic of this thesis is the design and implementation of the dynamic
runtime components of the control flow integrity (CFI) framework MoCFI. MoCFI
protects binary iOS applications against attackers that exploit software vulnerabil-
ities to execute arbitrary code. We therefore developed techniques to allow for pro-
tecting arbitrary binary program images on iOS. Our evaluation shows that MoCFI
is capable of protecting various popular applications with reasonable overhead.

Finally, we present a new approach to detect malicious command and control
(C&C) bot connections. By enriching network-level information with host-level
data, we create so-called behavior graphs that connect system activity with network
packet data. This is achieved by monitoring the proprietary native API of Windows.
Our evaluation shows that behavior graphs can be used to accurately tell apart C&C
connections from legitimate benign traffic.

Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Entwicklung neuer Methoden
zur Analyse und nachträglichen Erweiterung von Sicherheitseigenschaften von Soft-
waresystemen. Die Arbeit konzentriert sich dabei auf proprietäre Softwareumge-
bungen in denen kein Quellcode für die relevanten Softwarekomponenten verfügbar
ist. Sowohl die Analyse als auch Erweiterung proprietärer Software erfordert die
Entwicklung und den Einsatz speziell angepasster und neuartiger Techniken und
Werkzeuge. Die Dissertation unterteilt sich in vier Themenbereiche, in denen je-
weils unabhängig voneinander die Analyse und/oder Erweiterung bestimmter Soft-
waresysteme präsentiert wird.

Der erste Themenkomplex umfasst das Reverse Engineering der unbekannten Ver-
schlüsselung des proprietären Satellitentelephonie-Standards GMR-1. Es wird ein
generischer Ansatz zur Identifizierung und Extraktion unbekannter kryptographis-
cher Algorithmen in mobilen Firmware-Images vorgestellt. Anhand der umfassenden
Analyse einer konkreten Firmware wird der GMR-A5-1 Verschlüsselungsalgorithmus
rekonstruiert. Dieser weist große Ähnlichkeiten zur bekanntermaßen angreifbaren
GSM-A5/2 Verschlüsselung auf.

Ein weiterer Beitrag ist die Entwicklung neuartiger timingbasierter Seitenkanalan-
griffe auf Kernelspace ASLR Implementierungen. Hierfür wurde die proprietäre Im-
plementierung von Windows Betriebssystemen rekonstruiert und es wurden darauf
aufbauend drei verschiedene timingbasierte Angriffe entwickelt. Diese erlauben es
einem lokalen Angreifer, große Teile des privilegierten Kernelspace-Adressraums zu
rekonstruieren. Dadurch können ASLR Sicherheitsmechanismen vollständig umgan-
gen werden. Es wird außerdem eine Betriebssystemerweiterung präsentiert, welche
die diskutierten Angriffe effektiv verhindert.

Als drittes Thema befasst sich die Arbeit mit dem Entwurf und der Implemen-
tierung der Laufzeitkomponenten des Kontrollflussintegrität-Frameworks MoCFI.
MoCFI schützt beliebige binäre iOS Applikationen gegen Angreifer indem die Aus-
nutzung von Softwareschwachstellen verhindert wird. Zu diesem Zweck wurden neue
Techniken entwickelt um binäre Anwendungen zur Laufzeit effizient und fehlerfrei zu
überwachen. Die Evaluation des Frameworks zeigt, dass MoCFI in der Lage ist di-
verse weitverbreitete iOS Applikationen mit akzeptablen Geschwindigkeitseinbußen
zu schützen.

Im letzten Teil der Arbeit wird ein neuer Ansatz zur Identifizierung von bösartigen
Command and Control (C&C) Bot-Netzwerkverbindungen vorgestellt. Durch die
Kombination von Netzwerk- mit Host-basierten Informationen werden Verhaltens-
graphen erzeugt. Diese verbinden die Systemaktivität eines Bots mit generierten
Netzwerkpaketen indem die proprietäre, native Windows-API überwacht wird. In
der Evaluation kann gezeigt werden, dass dieser neuartige Ansatz eine effektive Un-
terscheidung zwischen bösartigen C&C und gutartigen Verbindungen ermöglicht.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Topic and Contributions . 3
1.3 Outline . 6
1.4 Publications . 7

2 Security Analysis of a Proprietary Satphone System 9
2.1 Introduction . 9

2.1.1 Contributions . 11
2.1.2 Outline . 12

2.2 Technical Background . 12
2.2.1 Satellite Telecommunication Systems 12
2.2.2 Satellite Telephone Architecture 14
2.2.3 ARM Architecture . 15
2.2.4 TMS320C55X DSP Architecture 16
2.2.5 GSM-A5/2 . 17

2.3 Related Work . 17
2.4 General Approach . 21

2.4.1 Assumptions . 21
2.4.2 Approach . 22

2.5 Reverse Engineering the Encryption Algorithms 23
2.5.1 Hardware Architecture . 23
2.5.2 Firmware Extraction . 26
2.5.3 Virtual Memory Reconstruction 26
2.5.4 DSP Initialization . 28
2.5.5 Crypto Code Identification 33
2.5.6 Cipher and Weaknesses . 34

2.6 Conclusion and Future Work . 36

vii

Contents

3 Practical Timing Side Channel Attacks Against Kernel Space ASLR 39
3.1 Introduction . 39

3.1.1 Contributions . 40
3.2 Technical Background . 42

3.2.1 Address Space Layout Randomization 42
3.2.2 Memory Hierarchy . 45

3.3 Related Work . 49
3.4 Timing Side Channel Attacks . 50

3.4.1 Attacker Model . 50
3.4.2 General Approach . 51
3.4.3 Handling Noise . 53

3.5 Implementation and Results . 54
3.5.1 First Attack: Cache Probing 55
3.5.2 Second Attack: Double Page Fault 61
3.5.3 Third Attack: Address Translation Cache Preloading 68

3.6 Mitigation Approaches . 71
3.7 Conclusion and Future Work . 73

4 Providing Control Flow Integrity for Proprietary Mobile Devices 75
4.1 Introduction . 75

4.1.1 Contributions . 77
4.1.2 Outline . 78

4.2 Technical Background . 78
4.2.1 Control Flow Integrity . 78
4.2.2 ARM Architecture . 81
4.2.3 Apple iOS . 81
4.2.4 Objective-C . 83

4.3 Related Work . 85
4.4 Framework Design . 88

4.4.1 Technical Challenges . 89
4.4.2 General Framework Design 90

4.5 Implementation Details . 93
4.5.1 Load Time Initialization . 93
4.5.2 CFI Enforcement . 94
4.5.3 Trampolines . 96
4.5.4 Dispatching Through Exception Handling 99
4.5.5 Examples . 101

4.6 Discussion and Limitations . 103
4.7 Evaluation . 105

4.7.1 Qualitative Tests . 105
4.7.2 Performance Tests . 106

viii

Contents

4.8 Enhancing Privacy Through Policy Enforcement 107
4.8.1 Technical Background . 108
4.8.2 Design and Implementation 110
4.8.3 Evaluation . 110

4.9 Conclusion and Future Work . 111

5 Behavior-Graph-Based C&C Detection for Proprietary Operating Sys-
tems 113
5.1 Introduction . 113

5.1.1 Contributions . 115
5.1.2 Outline . 116

5.2 Related Work . 116
5.2.1 Host-Based Detection . 116
5.2.2 Network-Based Detection . 117

5.3 System Overview . 117
5.3.1 Behavior Graphs . 118
5.3.2 C&C Template Generation 120

5.4 System Details . 121
5.4.1 Analysis Environment . 121
5.4.2 Behavior Graph Generation 123
5.4.3 Graph Mining, Graph Clustering, and Templating 128

5.5 Evaluation . 129
5.5.1 Evaluation Datasets . 130
5.5.2 Template Generation . 131
5.5.3 Detection Accuracy . 132
5.5.4 Template Quality . 134
5.5.5 Template Examples . 134

5.6 Conclusion and Future Work . 137

6 Conclusion 139

List of Acronyms 141

List of Figures 143

List of Tables 145

List of Listings 147

Bibliography 149

ix

1
Introduction

1.1 Motivation

The rapid development of the computer industry has fundamentally changed the
way we communicate with each other. Groundbreaking advancements in the field
of hardware manufacturing lead to lowered costs of computer devices which in turn
opened the digital world to large parts of the global population. The concurrent
breakthrough of the Internet was the second pivotal element that contributed to
the global interconnection of almost all electronic devices nowadays. As a natural
consequence, this digital revolution has also led to a shift of traditional fields into
the digital world, in both the private and business domain. For example, our social
life increasingly takes place on social media sites such as Facebook, shopping needs
are satisfied by a plethora of web shops and financial transactions from private
individuals up to multi-billion companies are processed digitally.

While this technologic progress clearly facilitates our everyday lives, it also comes
with certain downsides. Namely, it also raises new kinds of security and privacy is-
sues that have to be addressed accordingly. There exists a growing incentive for
attackers and criminals to move their malicious and criminal activities towards dig-
ital systems. This is mainly caused by the large amount of sensitive and possibly
valuable data that are being stored and processed digitally. Sensitive data can
range from private authentication data (e.g., for online banking sites or web shops)
up to corporate secrets that can cause immense damage if they land in the wrong
hands. Recent incidents such as the infamous Stuxnet malware proved that digi-
tal warfare has even become standard practice for many secret agencies operating
worldwide [143].

Apart from such large scale operations that are backed by immense financial
budgets, we can also observe that digital attacks in general are getting increasingly
sophisticated on the technical side, which emphasizes the importance of new com-
prehensive and innovative security measures. Not only have attacks become more

1

CHAPTER 1: INTRODUCTION

advanced, recent trends such as the emergence of mobile devices have opened new
attack vectors. By definition, a mobile device mainly communicates with remote
services over wireless transmissions. Due to the broadcast nature of wireless con-
nections, attackers might easily eavesdrop on potentially sensitive conversations or
data transmissions — even in case they are far away from their victim. Mobile
communication systems thus must provide tap-proof wireless connections. Further-
more, devices typically connect to a variety of different local networks depending on
their current location. For example, users might use their mobiles to log into several
wireless hot spots at airport or train stations, connect to the home or corporate net-
work, and log into several different operator GSM networks without even noticing.
Each of these networks may have different security requirements and measures in
place, which opens many new attack surfaces for malicious adversaries.

Another important area is the development and implementation of generic and ef-
ficient measures to mitigate the exploitation of user application vulnerabilities. As
operating system vendors implemented such generic anti-exploitation techniques,
attackers concurrently refined their methods to bypass them. This has lead to the
consecutive development of techniques such as stack cookies [68], W ⊕ X [116] and
address space layout randomization [30]. Modern operating systems thus provide
multiple generic defense techniques that complement each other and significantly
raise the hurdle for an attacker to mount successful attacks against software vul-
nerabilities. However, the past has shown that inadequate assumptions and short-
comings in the concrete implementations may quickly break the entire approach. It
is thus necessary to evaluate these implementations against new innovative kind of
attacks.

Moreover, the rapid success of Internet software sales portals such as the Apple
App Store or the Google Android Market has opened the software market to a wider
variety of developers. While such portals mostly exist for mobile platforms at the
time of writing, both Microsoft and Apple announced that they plan on porting this
concept to their desktop operating systems in the near future. Even non-commercial
developers can easily create new applications and quickly make them available to
a large user group. This also raises security concerns as it is unclear as to which
extent developers follow secure coding practices.

Eventually, the analysis and evaluation of software security schemes is thus an
important topic in an effort to assure the resilience of computer systems against ma-
licious attackers. However, it is non-trivial to achieve this goal since the majority
of computer platforms rely on proprietary software. When we speak of proprietary
software in this thesis, we mean software whose source code is not being published
and is thus only available as compiled binary packages. Proprietary software is
prevalent especially among digital end user systems. Consequently, the two biggest
end user operating system vendors Microsoft and Apple almost exclusively offer bi-
nary software and third party vendors that implement programs for these platforms

2

1.2 TOPIC AND CONTRIBUTIONS

typically follow the same strategy.

The presence of proprietary software raises a diversity of security concerns. Firstly,
it complicates the assessment and evaluation of security properties since oftentimes,
it is unclear which security critical algorithms (e.g., encryption) are employed and
even if they are known it is still cumbersome to ensure the absence of undermining
implementation flaws. Many past incidents have proven that proprietary software
vendors often rely on the security by obscurity principle which is known to cause
many security issues. However, it is non-trivial to analyze proprietary software
since many high-level abstractions are lost during the compilation process. Special
approaches and techniques are therefore required.

A second problem that arises is how to retrofit proprietary software systems with
improved security measures. End users cannot rely on vendors to distribute new or
revised security techniques that overcome existing weaknesses all the time. There-
fore, it is necessary to extend existing binary software packages. This however poses
many significant obstacles that have to be overcome since it is impossible to simply
modify existing high-level source code. New approaches and techniques are required
to retrofit proprietary software.

1.2 Topic and Contributions

In this thesis, we analyze the security aspects of different software systems and also
extend them to improve the overall security properties of the respective systems.
Analyzing and retrofitting proprietary software is an especially intricate task since
the source code of the analyzed programs is not available. This requires the devel-
opment and use of customized techniques and tools. In a typical scenario, it is nec-
essary to deal with binary code, which inherently operates on a low-level hardware
assembler layer that impedes the abstract reconstruction of program semantics.

The contributions of the thesis are thus twofold. First, we develop tools and
revise existing techniques to analyze proprietary systems. To that end, static reverse
engineering is used to extract algorithms from proprietary software. Second, we also
provide solutions to overcome security-related shortcomings in proprietary systems
by extending them, i.e., we retrofit security to proprietary systems. Overall, we
present an analysis and/or retrofitting of four different software systems in this
thesis.

Security Analysis of a Proprietary Satphone System. We show how to ex-
tract the secret encryption algorithm employed in one of the two most widely used
satellite telephony systems, GMR-1. Although the GMR-1 standard is publicly
available from the ETSI standardization institute, the encryptions algorithms that
are employed for wireless satphone to satellite communications are only presented as

3

CHAPTER 1: INTRODUCTION

a black box. There exist no concrete information on the structure and inner work-
ings of the algorithm. However, the strength of the encryption plays an essential
role to ensure privacy of users since data transmissions (especially the ones directed
from the satellite to the satphone) are broadcasted to a large region surrounding
the targeted receiver. Furthermore, satellite phones are often used in life-critical
situations, e.g., for military purposes or by war correspondents. Our analysis tar-
gets the publicly available firmware image of a satellite phone that implements the
GMR-1 standard. Due to the special hardware layout of the device and the fact
that it incorporates two different processor architectures, we developed methods
to identify relevant code regions inside the firmware. We present methods to re-
construct the virtual memory layout of the firmware, identifying the digital signal
processor (DSP) image within the firmware, and show how the completely unknown
encryption algorithms can be spotted within a large chunk of code instructions. To
that end, we applied and advanced a variety of existing techniques for the purpose
of identifying unknown encryption algorithms in binary code. We then successfully
extracted the encryption/decryption algorithms of the GMR-1 standard. The re-
sults of this work were later used to mount practical and efficient crypto attacks
against this algorithm, showing that the encryption of the GMR-1 system is insecure
by today’s standards.

Practical Timing Side Channel Attacks Against Kernel Space ASLR.
The second contribution of this thesis is an analysis on the feasibility of timing side
channel attacks against kernelspace Address Space Layout Randomization (ASLR)
implementations. ASLR[30] is a modern security approach that aims at hindering
the exploitation of software vulnerabilities. Therefore, the base loading addresses of
program and library images in the address space of a running system process or the
kernel are randomized. As a consequence, an attacker (who does not have access
to the address space information previous to successful exploitation) cannot know
the concrete memory addresses that she must access or execute in the last stage of
the exploit. ASLR can be applied to both unprivileged (i.e. usermode) and privi-
leged (i.e. kernelmode) domains. In this thesis, we analyze the feasibility of timing
side channel attacks against privileged kernelmode ASLR protections. We therefore
focus on the proprietary implementations of Microsoft Windows operating systems
starting from Windows Vista. At first, we reverse engineered the ASLR algorithm
in the operating system to figure out which components are randomized and as to
which extend this happens, i.e. how high the randomization entropy is. We then
developed three different attacks that allow a local attacker on the system to re-
construct at least parts of the concealed kernelspace. In any case, the sum of code
and data with known base addresses is big enough to allow for mounting arbitrary,
turing-complete return-oriented programming (ROP) attacks [133]. We thus suc-

4

1.2 TOPIC AND CONTRIBUTIONS

cessfully break the kernelspace ASLR implementations of Windows. Furthermore,
we also show how to reverse engineer the proprietary cache hash function of Intel
Sandy Bridge processors, the latest hardware architecture of Intel CPUs at the time
of writing. As explained later on, this was a necessary requirement to mount one
of the three side channel attacks. In the final step, we discuss mitigations to the
attack and provide a concrete software-based solution in the operating system that
renders our timing attacks infeasible.

Providing Control Flow Integrity for Proprietary Mobile Devices. An-
other contribution of this thesis is the dynamic component of the CFI [2] framework
Mobile CFI (MoCFI). MoCFI is a security retrofitting tool for the Apple iOS oper-
ating system. iOS is employed on all mobile Apple devices such as iPhones, iPads,
and iPods. MoCFI introduces CFI to iOS applications and works solely on the bi-
nary level, no source code access to the protected applications is needed. Providing
CFI is, similarly to ASLR, a preventative approach to hindering the exploitation
of software vulnerabilities within application code. To that end, the code (in our
case in binary form) of the application is statically analyzed and the valid control
flow graph (CFG) is extracted. The CFG specifies allowed transitions between code
blocks in the application code. Whenever a software exploit against a vulnerability
is executed, this constitutes a violation of the allowed CFG execution transitions
because the program will eventually execute shellcode. This allows to even detect
sophisticated ROP attacks. In order to enforce the CFI rules at runtime, a dynamic
rewriting library is needed that redirects all control flow transition of the applica-
tion code and verifies that each respective control flow transition is valid. In this
thesis, we provide the design and implementation of a dynamic CFI enforcement
framework for the proprietary and restrictive Apple iOS operating system. We de-
scribe the obstacles that one faces in doing so and explain how these issues are
addressed by MoCFI. Furthermore, we also extended the framework to not only
provide protection against software exploits, but also introduce the possibility to
apply fine-grained policies for individual iOS applications. By default, iOS ships
with an application sandbox, but only assigns a generic sandboxing profile to all
third-party applications. This profile grants every application access to multiple
privacy-sensitive data sources (e.g., the address book, GPS coordinates, etc.). By
extending MoCFI in a new tool called PSiOS, we give the end user the opportunity
to assign individual profiles to each installed third-party application.

Behavior-Graph-Based C&C Detection for Proprietary Operating Sys-
tems. Lastly, we introduce a new approach to detect malicious bot network con-
nections. Bots are a special type of malware and constitute a significant threat.
Their distinctive feature is the establishment of a command and control (C&C)

5

CHAPTER 1: INTRODUCTION

server connection that allows them to be controlled remotely. Bots can then be
used, e.g., for denial of service (DOS) attacks or to spy on the infected computer sys-
tem. Researchers have proposed various either network- or host-based approaches to
mitigate bots by detecting C&C network connections. However, these approaches
oftentimes suffer from high false positive rates since they cannot tell apart C&C
from benign connections, which are also frequently established by bots. We present
a new model to solve this problem in the form of behavior graphs. Behavior graphs
combine network and host information to allow for an improved modeling of C&C
connections. In this thesis, we explain the behavior graph generation in the bot
detection framework Jackstraws. The framework eventually produces behavior-
graph-based C&C templates that allow matching malicious connections effectively
with only few false positives. Behavior graph generation is provided for the propri-
etary Windows platform since this is the prevalent targeted platform for malware.

1.3 Outline

The thesis is structured in four different chapters. Each chapter covers one main
topic of the thesis and is a self-contained unit that can be read independently from
the other chapters.

Chapter 2 describes the reconstruction of the GMR-1 encryption algorithms from
a proprietary satphone firmware image. The chapter first gives an introduction
into satellite telephony and reverse engineering in general. We then present existing
related work on identifying cryptograph primitives in binary code. The chapter also
explains a general approach in reverse engineering mobile device firmware. To be
precise, we present techniques to reconstruct the virtual memory mapping of the
firmware image, identify and understand the DSP initialization, extract the DSP
firmware and finally finding the searched-for (and unknown) encryption/decryption
algorithms.

Chapter 3 presents three different timing side channel attacks against kernelspace
ASLR facilities, with a special focus on the proprietary Windows operating system
implementation. The chapter first explains the necessary technical background and
related work in the area of hardware caches and side channel timing attacks. We
then proceed to present our proposed attacks that circumvent the ASLR protec-
tion scheme of the kernel. We also provide detailed insights into implementation
aspects, conduct an evaluation of the attacks on different hardware configurations,
and present a mitigation solution that nullifies the proposed attack.

Chapter 4 introduces the dynamic components of the MoCFI control flow in-
tegrity framework for proprietary Apple iOS based devices. The chapter explains
various implementation details and shows an evaluation using multiple popular iOS
applications. We also present an extension of the framework called PSiOS that

6

1.4 PUBLICATIONS

allows for individual fine-grained application policies.
Chapter 5 presents our behavior graph generation that is embedded into the

Jackstraws system. We discuss related work on network- and host-based bot
detection, explain the system from an abstract view, and then give many details
on the behavior graph generation. We also provide an evaluation of the system to
demonstrate its effectiveness.

1.4 Publications

The work presented in this thesis has been published at several academic confer-
ences. This section gives an overview on the publications that are related to the
contents of this thesis, as well as any additional academic publications that emerged
in the course of the PhD studies.

Chapter 2 was published together with Driessen, Willems, Paar, and Holz [52] in
our paper about the analysis of two satphone standards. The publication received
the best paper award at the 33th IEEE Symposium on Security & Privacy.

The results of Chapter 3 are based on joint work with Willems and Holz [82] that
presents our attacks against kernelspace ASLR. The paper is was published at the
34th IEEE Symposium on Security & Privacy.

The findings of Chapter 4 were published together with Davi, Dmitrienko, Egele,
Fischer, Holz, Nürnberger, and Sadeghi [50] in our publication about the MoCFI
framework at the NDSS Symposium 2012. Furthermore, the PSiOS extension was
developed in the course of the master thesis of Tim Werthmann and has been pub-
lished as joint work with Werthmann, Davi, Sadeghi, and Holz [154] at ASIACCS
2013 and received the distinguished paper award.

Chapter 5 was published as part of a paper together with Jacob, Kruegel, and
Holz [87] about the C&C connection detection system Jackstraws at the USENIX
Security Symposium 2011.

Several other publications emerged in the course of my studies, which are not
part of this thesis though. Namely, the findings of my diploma thesis about a
new form of software attacks in the form of return-oriented rootkits were published
together with Holz and Freiling [81]. The results of the InMAS project, a long-
term project in an effort to create an effective automated malware analysis system,
were published together with Engelberth, Freiling, Gorecki, Göbel, Holz, Trinius,
and Willems [58]. Therefore, I contributed in the field of automated unpacking of
packed binaries. New hardware-based approaches to provide improved automated
analysis of malicious programs by using processor features were published together
with Willems, Fobian, Felsch, Holz, and Vasudevan [157]. Similarly, together with
my colleague Carsten Willems and Thorsten Holz we developed a novel malware
analysis system that leverages hypervisor-based CPU features [158].

7

2
Security Analysis of a Proprietary
Satphone System

2.1 Introduction

The rapid technological progress of the semiconductor industry during the last
decades has lead to groundbreaking advancements in the development of mobile
electronic devices. As several complex and power-efficient computer chips can now
be incorporated even on small hardware boards, this evolution opened the creation
of new mobile communication systems that allow for communicating from even re-
mote places of the world. The first widespread communication system that heavily
benefited from this revolution were mobile phone systems, which are available world-
wide nowadays. More recently, several providers emerged that offer satellite phones
(abbr. satphones) in order to fill the gaps left behind by radio-based telephony.

In a satellite communication system, the satphone directly communicates with
one or more satellites in the earth orbit. This allows to almost provide a gapless
service coverage worldwide. Satphones have thus become an essential building block
for reachability in remote places. This includes, e.g., oil rigs, ships on the high sea,
expedition teams, planes, etc., and generally situations in which a reliable emergency
system is required to communicate with the outer world in case of need. Satellite
systems were originally developed and employed for military purposes. Since the
90s, several private companies emerged that opened the service to businesses and
private persons.

Backbone providers and device manufacturer quickly realized that common stan-
dards are required to push the success of mobile communication systems so that
providers do not go their own ways. This offers various advantages to the user:
she can choose between several mobile device models and the competition between
multiple vendors cuts the prices. Therefore, official standards were introduced by
standardization institutes. The Global System for Mobile Communications (GSM)

9

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

standard has emerged as the de-facto standard of cellular mobile phone communi-
cation with more than four billion subscribers in 2011. It is thus the most widely
deployed standard for cellular networks and almost every mobile phone adheres to
the corresponding specifications. Although large parts of the GSM standard are
published freely, several security-critical aspects are kept secret. Unfortunately, the
European Telecommunications Standards Institute (ETSI), which is the creator of
the GSM, chose to rely on security by obscurity in that regard.

One important security aspect of every mobile communication system is the use
of encryption algorithms to encrypt voice and data traffic between the device and
its remote receiver/sender station. This is especially important due to the broad-
cast nature of every mobile device. Transmission are not only sent directly to the
receiver, but are distributed to a large area surrounding the user. This makes it very
easy to spy on mobile communication even if the eavesdropper is not close to the
victim. Moreover, mobile devices are oftentimes used in sensitive situations, such as
for military use or by war reporters. Since the encryption algorithms are kept secret
and devices almost always exclusively consist of proprietary software and hardware
components, the question arises how the end user can trust the confidentiality of
her conversations and data transmissions.

Briceno et al. [36] reverse engineered the GSM algorithms in 1999. Since then,
several researchers proved that the employed algorithms are insufficient and can be
easily attacked in order to achieve real-time decryption of transmitted data without
any foreknowledge about the key material [31, 26, 33]. However, no similar studies
have been conducted about satellite systems. Briceno also does not provide any
insights into the internals of the reverse engineering process that was used to extract
the algorithms. It thus remains unclear which concrete approaches and methods
were employed and how they can be adopted for other systems.

Two satphone standards were developed analogously to the GSM cellular stan-
dards in the past:

• Geostationary Earth Orbit (GEO) Mobile Radio Interface (better known as
GMR-1) is a family of ETSI standards that were derived from the terrestrial
cellular standard GSM. In fact, the specifications adopt large parts of the
existing GSM standard and only explicitly specify those parts that differ.
This protocol family is can be considered as the de-facto standard and has
undergone several revisions to support a broader range of services. GMR-
1 also supports the transmission of packet-oriented data streams, similar to
GPRS. The newest GMR-1 3G specifications support IP-based voice, data,
and video transmissions.

• The GMR-2 family is a concurrent ETSI standard developed in collaboration
with Inmarsat. It deviates from the GMR-1 specifications in numerous ways;

10

2.1 INTRODUCTION

most notably the network architecture is different. It is only used by Inmarsat
at the time of writing.

Similarly to GSM, the specification documents of both GMR-1 and GMR-2 are
publicly available. The employed encryption is however treated as a black box and
no further information about the encryption algorithms is given. This information
is only made available to licensees of the standard. Since both GMR-1 and GMR-2
borrow large parts of the specification from GSM — in fact the GMR standards in
places only specify differences to the GSM and adopt the rest — and GSM has been
proven to rely on weak encryption algorithms, the question arises whether GMR
uses the same or similar encryption schemes that are also vulnerable.

We are convinced that encryption algorithms of popular communication systems
should be publicly available so that researchers can evaluate their effectiveness
against eavesdropping attacks. This significantly helps in finding weak spots within
these algorithms and increases the trust end users can have in the privacy of their
voice and data transmissions. We think that it is virtually impossible to hide these
algorithms from potential adversaries such as criminals or secret agencies anyway
since they have the means to obtain this information.

In order to analyze and evaluate the proprietary encryption algorithms used by
the GMR standards, it is at first necessary to retrieve these encryption algorithms.
Since they are only made available to GMR licensees, the only solution that remains
is to extract the cipher code from firmwares of satphones. In this thesis, we analyzed
the Thuraya SO-2510 phone that implements the GMR-1 standard. It was released
in November 2006 and is one of the most popular handsets sold by Thuraya.

2.1.1 Contributions

We are the first to perform an empirical security analysis of the satphone standard
GMR-1, focusing on the encryption algorithms implemented in the handsets. This
includes reverse-engineering of firmware images to understand the inner working of
the phones, developing tools to analyze the code, and incorporating prior work on
binary analysis to efficiently identify cryptographic code.

We provide several solutions to overcome various challenges that emerge through-
out the analysis and are oftentimes resulting from the special structure of satphone
devices. At first, we present means to reconstruct the virtual memory mapping of
the firmware image. One of the core differences of mobile communication devices
in comparison to desktop systems is the use of different and multiple CPU archi-
tectures. Satphones typically contain an additional DSP co-processor that adopts
specific computation tasks. We tackle the architectural differences and show how
to tell apart DSP code and data from the regular ARM architecture. Finally, we
present our approach to identifying unknown cryptographic entities in code.

11

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

The solutions we provide are partially specific to the concrete Thuraya firmware
that we analyzed. Nevertheless, we think that the general approach can be ported to
other satphone or mobile devices in general. In fact, we later successfully analyzed
the firmware from another phone that implements GMR-21.

The firmware image was the only starting point for our analysis and we stress that
we conducted our analysis only using static tools since we did not have a satphone at
our disposal. We also did not have any foreknowledge about the searched encryption
algorithms which makes it especially difficult to find the searched-for needle in
the haystack. In the end, were able to successfully reconstruct the proprietary
encryption algorithm of GMR-1. The algorithm showed striking resemblance to
one of the weak algorithms employed in GSM and later proved to be vulnerable to
similar kinds of attacks.

This chapter is based on a previous publication together with Driessen, Willems,
Paar, and Holz [52].

2.1.2 Outline

The chapter is structured in the following way: in Section 2.2 we introduce the
technical background relevant to our analysis. Section 2.3 discusses related work in
the field of identification of cryptographic entities. The general approach that we
employed to extract the encryption algorithm is presented in Section 2.4. Section 2.5
describes the individual steps of our analysis in-depth. In the end, Section 2.6
summarizes our analysis and discusses possible topics for future work.

2.2 Technical Background

In this section, we introduce the relevant technical background for our analysis. We
present basic concepts of satellite telephone systems, differences in the hardware
structure of satphones in comparison to traditional devices, present the two CPU
architectures ARM and TMSC55X that are used in the analyzed firmware, and give
a brief overview over the GSM-A5/2 encryption algorithm.

2.2.1 Satellite Telecommunication Systems

Satellite telecommunication systems significantly differ from traditional landline
or cellular-based infrastructures from the end-user device perspective. Instead of
communicating with an operator or nearby base station, satphones send and receive
messages directly from an orbital satellite. The satellite serves as an arbiter and
forwards incoming satphone transmissions to a fixed gateway station that is operated

1This analysis is not part of this thesis.

12

2.2 TECHNICAL BACKGROUND

Operator Control
Facility

C-Band

L-Band
Spotbeam

C-Band

End User Devices

Gateway
Station

PSTN

Figure 2.1: Layout of a geostationary orbit telephone network [88].

by the service provider. From there on, communication data takes its normal way
into the public switched telephone network (PSTN). Multiple satellites may be in
place, whereas each one serves a dedicated region. Figure 2.1 shows a schematic
overview over a satellite telecommunication system. The satellite and end user
devices communicate over a low frequency channel (the L-Band). The service area of
each satellite is separated into several so-called spotbeams, which are circular regions
that use same frequencies. This is mainly done to allow the reuse of frequency ranges
for areas that are far afield from each other, since the service area covered by a single
satellite can be huge.

Figure 2.2 shows an example of the spotbeam coverage of the Inmarsat system.
The three big rectangles (light blue, green, and dark blue) constitute the service
areas of three different satellites; the small circular areas are the spotbeams. Please
note that any transmission from the satellite to the satphone is broadcasted to an
area at least as large as the spotbeam they occur in. It is therefore easily possible
to eavesdrop on transmitted data from a victim being located more than 1000 km
away.

Apart from L-Band spotbeam connections, the satellite acts as a forwarder be-
tween the device and a ground-based gateway station on a C-Band connection.
Please note that no further information is given on C-Band connections in the GMR
standards. Thus it is unknown which protocols and algorithms are employed there
and we did not focus on these connections in this thesis. Apart from the gateway
station, the satellite operator also runs control facilities that allow maintaining and
controlling the satellites.

As mentioned in the introduction, the GMR standards cover topics such as signal-
ing, encodings, and protocols but only treat encryption as a black box. Figure 2.3

13

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

Figure 2.2: Inmarsat spotbeam coverage map [73].

Figure 2.3: Schematic overview on the authentication and encryption facilities of
GMR satellite-to-device (and vice versa) connections.

shows a schematic overview on the sparse information that is given in the documents.
After a wireless physical connection between both devices has been established, the
satellite proceeds to send a random number to the satphone. The phone’s SIM card
then calculates a session key and an authentication response using the A3 and A8
algorithms. From then on, each packet is encrypted using the A5-GMR algorithm.
No information on the inner workings on any of the employed algorithms is provided.
More information about GMR can be found in the literature [161, 105, 60, 104, 88].

2.2.2 Satellite Telephone Architecture

We now briefly elaborate on the general architectural structure of satphones and
the hardware behind such devices. In Section 2.5, we provide more details on the
specific phone we studied during our analysis.

14

2.2 TECHNICAL BACKGROUND

In general, the architecture of satphones is similar to the architecture of cellular
phones [153]. Both types of phones have to perform a lot of signal processing due
to speech processing and wireless communication, thus they typically ship with a
dedicated digital signal processor (DSP) for such purposes. Consequently, complex
mathematical operations (like for example data compression or speech encoding) are
outsourced to the DSP where the actual computations are performed. More relevant
for our purpose is the fact that DSPs are also suitable for executing cryptographic
algorithms efficiently, which makes DSP code a prime candidate for holding GMR
cipher code.

The core of the phone is a standard microprocessor (usually an ARM-based CPU)
that serves as the central control unit within the system. This CPU initializes
the DSP during the boot process. Furthermore, both processors share at least
parts of the main memory or other peripheral devices to implement inter-processor
communication. To understand the flow of code and data on a phone, we thus also
need to analyze the communication between the two processors.

The operating system running on a phone is typically a specialized embedded
operating system that is designed with respects to the special requirements of a
phone system (e.g., limited resources, reliability, real-time constraints, etc.). All
of the software is deployed as one large, statically linked firmware binary. For
our analysis, we were especially interested in the inter-processor communication
functionality provided by the operating system as well as the DSP initialization
routine. This is due to the fact that cipher code will likely be implemented in the
DSP for performance reasons. Our interest for the DSP initialization routine arises
from the fact that it typically reveals where DSP code is located in the firmware
and how it is mapped to memory.

2.2.3 ARM Architecture

Mobile devices typically employ different processors than desktop or server devices.
This mainly stems from differing requirements since power is a limited resource.
Therefore, vendors must employ energy-saving components in their product. The
prevalent desktop architecture x86 from Intel is a complex instruction set computer
(CISC) architecture. During execution, every instruction first has to be translated
into several micro instructions that are closer to the low level structure of the chip.
This translation step requires a significant amount of additional transistors and in
the end increases the power consumption. On the other hand, reduced instruction
set computer (RISC) architectures follow a simple structure and do not require
this additional translation step. This saves space on the silicon board and lowers
the power consumption. Thus, most mobile devices (including satphones) employ
RISC CPUs. ARM is the most prevalent CPU architecture for mobile devices and
is also used by the GMR-1 device we analyzed. We present a brief summary of the

15

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

technical details of the architecture in the following.

ARM is a 32bit RISC architecture that provides the typical instruction set to
allow for arithmetic and logic instructions, control flow instructions (branches and
subroutine calls), and memory access instructions. It uses a fixed instruction length,
which means that every instruction is 32bit long and instructions generally have to
be aligned in memory, i.e., an instruction address must be divisible by four without
any remainder. The CPU provides 16 general purpose register that are labeled R0-
R15. However, the last three registers are typically allocated as the link register
(LR), stack pointer (SP), and instruction pointer (IP). All the remaining registers
can be used without any further imposed restrictions.

ARM is a load store architecture which means that memory accesses can only
be implemented using dedicated load (LDR) and store (STR) instructions. All other
instructions only use registers as operands. Common instructions may use up to
three operand, one destination register and two source registers. The destination
register is always the left-most register in the textual encoding. Thus, the instruction
layout typically looks as follows:

INSTR rDest , rSource1 , rSource2

For example, an addition that computes r0 = r1 + r2 is implemented as be
ADD r0, r1, r2.

The official ARM specifications also impose the calling convention for subroutine
calls. Therefore, the first four parameters of a subroutine are provided in the regis-
ters R0-R3, all remaining parameters are passed on the stack. The called subroutine
can use R0-3 as scrap registers, the values of all other registers must be restored
upon return and the return address of the called function is not stored on the stack
but is instead provided in the LR register.

ARM also specifies the use of an memory management unit (MMU) for providing
virtual memory. The MMU supports multi-level page table translations, a fine-
grained permission system, and quick translation caching using translation lookaside
buffers (TLBs). It is accessed using the co-processor instructions MCR and MRC.

2.2.4 TMS320C55X DSP Architecture

The TMS320C55X DSP architecture is part of the Texas Instruments TMS320
series. As with most other DSPs, the CPU is designed as a complementary chip for
special purposes and typically does not act as the main CPU of the system. The
chip is often used in devices such as mobile phones, audio players, and so on.

C55X is a 16bit architecture that is specialized on performing digital signal pro-
cessing computations with a special focus on power efficiency. The DSP provides
four general purpose registers, eight auxiliary registers, four accumulator registers,
and various specials purpose registers (e.g., program status word, stack pointer,

16

2.3 RELATED WORK

etc.). The instruction set is large and flexible and provides various instructions for
special arithmetic purposes. Instructions are encoded in variable length ranging
from one up to six bytes. C55X is not a load store architecture which means that
most instructions may directly access the memory.

2.2.5 GSM-A5/2

Similar to GMR-1, the GSM-A5/2 cipher was also not part of the official GSM
specification. The algorithm was reverse engineered and analyzed in 1999 by Briceno
et al. [36]. Figure 2.4 shows a structure of the algorithm. It consists of four linear
feedback shift registers (LFSR) R1-R4 of a length between 19 and 23 bits. All four
registers are clocked using a special clocking mechanism. The result of the clocking
operation is a single output bit. According to Barkan et al. [26], the key stream is
generated in the following four steps:

1. Initialization of the internal LFSR states using the key and frame number.

2. Force bits R1(15), R2(16), R3(18), and R4(10) to be one.

3. Execute 99 clocks and discard output

4. Execute 228 clocks to produce they key stream

The first three register are clocked under the control of R4. Clocking of R1-R3
happens depending on whether certain bits in R4 agree with a majority function.
Three specific bits of R1-R3 (of which one is inverted) serve as the input to a
majority function whose output is xored to form the final output bit. From the
228 key stream bits, the first half is used to encrypt base station to mobile device
communication, while the latter half encrypts the communication from the mobile
device to the base station. Since GSM-A5/2 is a stream cipher, the key stream bits
are simply xored against the plain text to produce the cipher text.

An obvious conclusion that can be drawn from the inner workings of GSM-A5/2
is that the corresponding cipher code is bound to contain plenty of shift and xor
operations. LFSR clocking constitutes the majority of the cipher computation and
the registers have to be shifted and their output has to be xored.

2.3 Related Work

In this section, we discuss related work in the field of detection of cryptographic al-
gorithms in binary code. The automatic identification of cryptographic algorithms
without access to high-language source code has been documented by numerous
researchers recently either as a whole or as a required stepping stone to enable fur-
ther analysis of a binary program. Existing approaches stem from the fields of bot

17

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

Figure 2.4: The GSM-A5/2 cipher [25].

analysis, e.g., to facilitate analysis of malware that employs unknown encryption
algorithms for communication with a remote command and control (C&C) server,
or automatic protocol reverse engineering which is bound to filter out possible en-
cryption or decryption phases before the actual analysis can take place.

Lutz [113] automatically identifies decryption code to methodically obtain the
plain text of encrypted malware network traffic. He therefore observed three specific
attributes that speak for the presence of a decryption algorithm. Using a dynamic
analysis on top of the Valgrind framework, the system is able to identify where and
when plain text is present in memory by leveraging memory tainting and feature
extraction. The author shows that his system is capable of analyzing an instance
of the Kraken bot.

ReFormat is a tool developed by Wang et al. [151] that aims at analyzing en-
crypted messages for the purpose of automatic protocol reverse engineering. It is
driven by the observation that there exist two different phases: message decryption
and normal protocol processing. Transitions in execution traces from the former
phase to the latter are detected by heuristics that leverage the fact that respective
code from both phases is likely to execute a significant amount of different CPU
instructions.

Dispatcher is a framework written by Caballero et al. [38] and also aims at en-
abling automatic protocol reverse engineering using automatic approaches to detect
and circumvent encryptions of any type. The heuristics to detect cryptographic
code are driven by the observation that encryption code differentiates in the type of
used instructions. As a consequence, dispatcher is able to analyze the MegaD C&C

18

2.3 RELATED WORK

protocol and several open protocols.

Finally, Gröbert et al. [75] presented a set of different methods to identify cryp-
tographic primitives in binary code using dynamic analysis. Their approaches not
only have the ability to spot corresponding algorithms, but allow detecting and
extracting crypto keys. The authors also improve the detection rates of existing
system by refining and advancing existing methods and compare their approaches
to previous work and show that they can achieve a higher detection rate and more
accurate results.

The following paragraphs give an overview on the central approaches employed in
the referenced work, along with the underlying observations and assumptions. Note
that some approaches can be classified as static analysis, while others can only be
performed in the context of a dynamic analysis. Since it is oftentimes possible
to apply the same approach both statically and dynamically (e.g. by working on
execution traces rather than disassemblies), we — in contrast to previous work —
refrain from any classification attempts in these categories.

Signatures

Signatures take advantage of the fact that known cryptographic algorithms often
contain a set of concrete and mostly unique instruction sequences that can be spot-
ted using instruction encoding signatures. Furthermore, many algorithms contain
unique constants or data structures that suggest the presence of a specific encryp-
tion or decryption. For example, AES and DES are bound to use static S-boxes
that can be found in the data sections of a program. Gröbert used a more ad-
vanced approach by combining mnemonics and constants to tuples. These tuples
are then pre-computed using open implementations of common crypto algorithms
and matched against the sample program. As soon as the percentage of matched
tuples for a given code piece exceeds a pre-defined threshold, this is considered as a
match.

Density of Specific Instruction Types

Many cryptographic algorithms inherently require the computation of a large num-
ber of bitwise and arithmetic operations. This leads to an abnormal high density
of such specific instructions inside encryption or decryption code. One can leverage
this fact by rating all basic blocks or functions according to their amount of bitwise
and arithmetic instructions.

It is also possible to loosen this premise by only assuming that crypto code gener-
ally contains very different instruction types in comparison to other algorithms. For
example, ReFormat tries to detect the turning point from message decryption to
normal protocol processing by observing an apparent change of executed instruction

19

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

types.

Variation of Information Entropy

One of the main consequences of a well-designed encryption algorithm is that pro-
duced cipher text has high information entropy. On the contrary, the plain text
that is used as the input of the encryption function typically has considerably lower
entropy since the data usually follows a pre-defined structure, such as text encod-
ings or binary formats. If we, for the sake of convenience, assume that the input
buffer of an encryption is equal to the output buffer, than the actual encryption
leads to a considerable increase of the buffer’s entropy. Likewise, decryption leads
to a considerable decrease of information entropy.

It is possible to leverage this fact by identifying the input and output buffers
of functions and monitoring changes in the information entropy in both respective
data areas after a function was executed. For example, Lutz uses memory tainting
and feature extraction for this purpose. Note that dynamic analysis is required for
this approach in order to measure the entropy of concrete values.

Loop Detection

Implementations of cryptographic computations typically use several loop constructs
in their code to compute recurring operations. The amount and size of loops de-
pend on the processed data structure types (e.g. arrays, matrices, etc.) and the
structure of the underlying algorithm. Occurrences of loops with distinct attributes
in certain code pieces can thus be indicative of cryptographic computations. Since
loops are a common construct and are used in the majority of not crypto-related
code, this approach is usually rather used as a supplement in conjunction with the
other described methods. Loop detection can also be hampered by the presence of
loop unrolling compiler optimizations.

The approach can be performed both statically and dynamically, whereas the
latter approach has the advantage that concrete numbers of loop iterations are
known.

Verifiable Input and Output Relation

Encryptions and decryptions are deterministic in that they always generate the same
output for identical input. If candidate functions are identified using approaches
described above, then the dynamically observed input and output can be reproduced
using a set of reference implementations of known cryptographic algorithms. In
case the reproduced output matches the observed output, then the corresponding
encryption or decryption algorithm was found.

20

2.4 GENERAL APPROACH

The advantage of this approach is that it allows identifying concrete algorithms.
On the downside, it cannot be used to identify previously unknown algorithms.

2.4 General Approach

In this section, we outline the general methodology we used for identifying and
extracting encryption algorithms from satphones. Furthermore, we also discuss the
assumptions that helped us during the analysis phase and provide an overview of
our target satphone.

We analyzed a recent firmware of the Thuraya SO-2510 satphone that implements
the GMR-1 specification. The starting point of our analysis was the publicly avail-
able firmware upgrade. The entire analysis was performed purely statically since
we did not have a real satellite phone at our disposal that we could use to perform
a dynamic analysis. Furthermore, we did not have access to a whole device simula-
tor that enables debugging of the firmware image, thus we had to develop our own
set of analysis tools. However, the ARM code for the main microprocessor can be
partially executed and debugged in a CPU emulator such as QEMU.

The process of reverse engineering a concrete satphone is to some extent specific
to that particular device as different phones implement different hard- and software
components. Nevertheless, we try to abstract from these peculiarities as much as
possible in this section.

2.4.1 Assumptions

The approach that we employed follows three underlying assumptions:

1. The satphone uses two different CPU architecture: one main CPU (typically
ARM) and one DSP.

2. The searched-for encryption algorithms are implemented in the DSP code for
efficiency reasons.

3. There is no obfuscation that requires the use of dynamic analysis techniques.

Please note that the first assumption does not restrict our approach to any signif-
icant degree since almost any mobile device uses the two-processor concept. There-
fore, it is also reasonable to assume that the encryption is implemented in the DSP
code since these are tailored to executing math-heavy operations. Our last assump-
tion mainly stems from the absence of any concrete device during our analysis.
Static analysis can be impeded by the presence of code obfuscation. However, we
did not experience any such measures in the firmware and we expect that no other

21

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

vendor has taken such measures. If this were the case, the firmware image would
have to be unpacked first.

Furthermore, we also presume three assumptions that facilitate the finding of the
relevant pieces of cryptographic code:

1. The key length of the encryption algorithm is known.

2. The frame length is equal to the key length.

3. Since the GMR standards are derived from GSM, the ciphers bear at least
some resemblance to the well-known, LFSR-based GSM-A5 algorithms.

The first two assumptions can be derived from the publicly available parts of the
GMR specification [61]. The third assumption was conjectured by us. Note that
the standard only specifies the general parameters of the crypto algorithms, but
no details about the actual algorithm are publicly available. Nevertheless, these
assumptions enabled us to decrease the search space of potential code. The last
assumption is rather speculative, but also helped us in finding the algorithm.

2.4.2 Approach

The approach we followed to analyze the satphone can be separated into the fol-
lowing four steps:

1. Firmware extraction: extract the firmware image from the firmware installer.

2. Virtual memory reconstruction: reconstruct the correct memory mappings of
the code and data sections in the firmware image.

3. DSP initialization: identify the DSP initialization procedure in order to ex-
tract the DSP code/mapping.

4. Crypto code identification: search for the encryption algorithms in the DSP
code using specific heuristics.

The first step can vary depending on the type of installer that is employed. In
our experience, the firmware image is oftentimes provided as a separate file in the
installer package file. The second step is necessary to reconstruct the execution
environment in the static analysis. Therefore, the correct mappings of the firmware
in the device memory have to be known because otherwise the code cannot be
disassembled correctly. The next step is to identify the DSP code and data within
the firmware. A reasonable starting point is to search for the DSP initialization
routine in the ARM code since the DSP is typically initialized at some point in the
bootstrap process of the ARM. The DSP initialization also discloses the DSP code
and data addresses. In the last step, one has to search for the unknown encryption
algorithm with the help of certain heuristics and assumptions.

22

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

2.5 Reverse Engineering the Encryption Algorithms

We used the Thuraya SO-2510 phone in our analysis which follows the GMR-1
standard. This decision was solely driven by the fact that the firmware of this
satphone is publicly available from the vendor’s website. Thuraya is a satellite
communication provider based in Abu Dhabi that operates three satellites spanning
most of the European, African, and Asian continents. The company also offers
custom made satphones that integrate into their system easily, such as the analyzed
Thuraya SO-2510.

We also later analyzed a second satphone (the GMR-2 Inmarsat IsatPhone Pro),
which is not part of this thesis. However, the analysis showed that albeit the differ-
ences in employed hardware chips and software components, the overall procedure
of reverse engineering as depicted in Section 2.4 largely applies to both phones. We
thus think that the approach can be applied to other satphones in similar fashion.

In the following, we at first present the technical hardware details of the analyzed
phone. The rest of the analysis is structured analogous to the four different steps
presented in Section 2.4.

2.5.1 Hardware Architecture

The Thuraya SO-2510 runs on a Texas Instruments OMAP5910 hardware platform.
The board is structurally identical to the OMAP1510. OMAP is a series of propri-
etary system on a chip (SoC) boards from Texas Instruments that are mainly used
for image and video processing. The core of the platform is an ARM CPU along
with a Texas Instruments C55x DSP processor. This information can be deduced
from corresponding strings in the binary and from pictures of the actual compo-
nents soldered on the circuit board [114]. Figure 2.5 provides a detailed functional
overview of the architecture as a whole.

Both processors (i.e., the TI925T ARM and TMS320C55X DSP cores) can com-
municate with each other using the memory interface traffic controller (TC), which
serves as the central hub that manages accesses between the different devices and
buses in the system. There also exists two dedicated shared peripheral bus (one
for the ARM and one for the DSP core) for connecting the processors to attached
components such as USB devices and DSP peripherals.

Memory modules and their mapping to the processors’ address space are of special
interest for identifying the DSP initialization routines, as explained in Section 2.4.
As depicted in the figure, both processors share the same SDRAM and can access
additional memory (e.g., SRAM or Flash) on equal terms through the TC. The
system is initialized by the ARM processor, i.e., DSP code or data has to be loaded
by the ARM CPU into the specific memory regions of the DSP during the boot-
strapping process. The DSP code can be located in the on-chip SARAM (which

23

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

Figure 2.5: Functional overview of the OMAP5910 Platform [145].

24

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

Byte Address Range On-Chip External Interface

0x0000 0000 - 0x01FF FFFF
EMIFS (Flash CS0)

32M bytes
0x0200 0000 - 0x03FF FFFF Reserved

0x0400 0000 - 0x05FF FFFF
EMIFS (Flash CS1)

32M bytes
0x0600 0000 - 0x07FF FFFF Reserved

0x0800 0000 - 0x09FF FFFF
EMIFS (Flash CS2)

32M bytes
0x0A00 0000 - 0x0BFF FFFF Reserved

0x0C00 0000 - 0x0DFF FFFF
EMIFS (Flash CS3)

32M bytes
0x0E00 0000 - 0x0FFF FFFF Reserved

0x1000 0000 - 0x13FF FFFF
EMIFF (SDRAM)

64M bytes
0x1400 0000 - 0x1FFF FFFF Reserved

0x2000 0000 - 0x2002 FFFF
IMIF Internal SRAM

192K bytes
0x2003 0000 - 0x2FFF FFFF Reserved
0x3000 0000 - 0x5FFF FFFF Local Bus space for USB Host
0x6000 0000 - 0xDFFF FFFF Reserved

0xE000 0000 - 0xE0FF FFFF
DSP public memory space

(accessible via MPUI)
16M bytes

0xE100 0000 - 0xEFFF FFFF
DSP public peripherals
(accessible via MPUI)

0xF000 0000 - 0xFFFA FFFF Reserved
0xFFFB 0000 - 0xFFFB FFFF MPU public peripherals
0xFFFC 0000 - 0xFFFC FFFF MPU/DSP shared peripherals
0xFFFD 0000 - 0xFFFE FFFF MPU private peripherals
0xFFFF 0000 - 0xFFFF FFFF Reserved

Figure 2.6: Global memory map of the ARM core of an OMAP5910 board [145].

holds 96 KB of memory) or in externally connected memory storages such as 192
KB sized SRAM. In both cases the memory holds unified code and data regions.
Writes to the SARAM region of the DSP are therefore especially interesting for ex-
tracting the corresponding DSP code. The official OMAP5910 documents suggest
that pre-defined memory regions are to be used by the two MMUs for mapping
the various different memory types [145], as shown in Figure 2.6. The DSP public
memory space is thus mapped to the address range 0xE0000000 - 0xE0FFFFFF.
This also includes the DSP SARAM memory. Furthermore, many peripheral reg-
isters are mapped into predefined address regions of the ARM address space from
0xFFFB0000 to 0xFFFEFFFF. Among other things, these registers can be used to
reset the DSP processor.

Since the DSP address space is constructed by a dedicated MMU, the specifica-
tions also suggest an own memory map for the DSP. This is depicted by Figure 2.7.
The SARAM regions (and thus the DSP code) are therefore contained in the address
range 0x010000 - 0x027FFF.

25

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

0x00 0000 - 0x00 FFFF 0x00 0000 - 0x00 7FFF
DARAM

64K bytes

Byte Address Range Word Address Range Internal Memory External Memory

0x01 0000 - 0x02 7FFF 0x00 8000 - 0x01 3FFF
SARAM

96K bytes
0x02 8000 - 0x04 FFFF 0x01 4000 - 0x02 7FFF Reserved
0x05 0000 - 0xFF 7FFF 0x02 8000 - 0x7F BFFF Managed by DSP MMU

0xFF 8000 - 0xFF FFFF 0x7F C000 - 0x7F FFFF
PDROM

(MPNMC = 0)
Managed by DSP MMU

Figure 2.7: Global memory map of the DSP core of an OMAP5910 board [145].

2.5.2 Firmware Extraction

The firmware of the Thuraya SO-2510 is publicly available as a 16 MB sized binary
file from the vendor’s website. The firmware file is neither (partially) packed nor en-
crypted and thus the ARM code can be analyzed directly without having to take any
additional steps. The firmware version used in this thesis is 6.8 ML 20090421 143005.

2.5.3 Virtual Memory Reconstruction

In the very beginning of the boot process of the satphone, the firmware image is
loaded into the physical SDRAM address space and the ARM execution is started
from the memory address 0x00000000. The bootstrapping code then proceeds to
initialize several memory mapped registers that steer various aspects of the memory
mapping and attached peripherals. Subsequently, the code initializes the ARM
virtual address space using the special coprocessor registers.

ARM employs a Virtual Memory System Architecture (VMSA) that is controlled
by accessing dedicated MMU coprocessor registers. It enables the underlying op-
erating system to construct a fine-grained and dynamical address space to, e.g.,
facilitate the implementation of multitasking and sophisticated access control sys-
tems. The virtual memory mapping is determined by a set of common two-level
translations pages that separate the virtual address space into 4 KB (small) or 64
KB (large) pages. Please note that this thesis only covers small pages for the sake
of brevity. All related figures on this section only apply to small page translation.
The translation of large pages is very similar and is described in the official reference
manual [23].

Figure 2.8 shows the translation of an ARM virtual address to the final physical
address using the two-level small page translation process. The translation of an
address is determined by the first-level and second-level descriptors which reside in
the first and second page table respectively. The first-level descriptor is determined
by the initial pointer to the first page table (the translation base) that is stored in a
dedicated MMU register, along with first-level index (i.e. bits 20-31) of the virtual
address. Consequently, the second-level descriptor is determined using the page

26

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

Translation Base SBZ

Translation Base First-Level Index

Translation Table
Base

First-Level IndexVirtual Address

Address of First-
Level Descriptor

0 0

Page IndexSecond-Level Idx.

Page Table Base Address
First-Level
Descriptor

0 1

Page Table Base Address Second-Level Idx.
Address of Second-

Level Descriptor
0 0

4KB Page Base Address
Second-Level

Descriptor

4KB Page Base Address Page IndexPhysical Address

1 0

Flags

First-Level Fetch

Second-Level Fetch

Access Flags

Figure 2.8: Illustration of the two-level ARM MMU virtual address translation
process [23].

table base address of the first-level descriptor, along with second-level index (i.e.
bits 12-19) of the virtual address. This yields the page base address in the second-
level descriptor which (together with the page index) compose the final physical
address. The translation process can be further customized by adjusting the special
access flags in the lower bits of the page table descriptors. For example, this allows
marking memory regions to be only accessible in privileged CPU modes. The virtual
address mapping of the entire address space can be reconstructed if the translation
base and thus all other page tables are known.

MMU registers can be read and modified using the coprocessor register p15 and
the special ARM coprocessor access instruction MCR. Since this register is only used
for MMU control accesses, which appear rarely in comparison to other instructions,
the corresponding initialization can be found by searching for MCR instructions that
access the coprocessor register p15. We therefore implemented an IDA extension
script that automates this task. Since the searched for code piece is located within
the first hundred instructions of the bootstrapping code (which starts at offset 0),
it can also be spotted by manual human analysis in our case.

In the analyzed Thuraya SO-2510 firmware, there exist static page table de-
scriptors that are already included in the firmware image. Thus, all first-level and
second-level descriptors are already contained in the file. Consequently, the MMU

27

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

ROM :00000104 loc_104:

ROM :00000104 LDR R0 , =0xFFFECC1C

ROM :00000108 LDR R1 , =0x45A9

ROM :0000010C STR R1 , [R0]

ROM :00000110 LDR R1 , =0x804000

ROM :00000114 SUB R1 , R1 , #0x800000

ROM :00000118 MOV R2 , #1

ROM :0000011C MCR p15 , 0, R2 ,c3 ,c0 , 0

ROM :00000120 MCR p15 , 0, R1 ,c2 ,c0 , 0

ROM :00000124 MCR p15 , 0, R0 ,c8 ,c7 , 0

List of Listings 2.1: An excerpt of the ARM MMU initialization code in the
Thuraya SO-2510 firmware.

setup code confines itself to initializing MMU flags and setting the translation base
register.

Listing 2.1 shows an excerpt of the found MMU initialization code. According to
the official ARM reference manual, the translation base register is set by moving
the appropriate pointer into the second coprocessor subregister c2. The instruction
at offset ROM:00000120 sets this subregister to R1, which in turn holds the static offset
0x804000 - 0x800000 = 0x4000. Consequently, the first-level page table starts at the
physical offset 0x4000 in the firmware image.

In the next step, we created an IDA extension script that automatically parses
the entire static firmware page table and remaps the physical pages to their virtual
addresses within IDA. After rerunning the auto-analysis of IDA, this yields a correct
disassembly of the entire ARM code of the firmware, resulting in 12.451 identified
subroutines and a total of 1.122.097 ARM instructions. All data and code addresses
in the disassembly are valid and the ARM code is thus amenable to further analysis.

2.5.4 DSP Initialization

As explained previously, code that performs cryptographic operations can be imple-
mented in a DSP more efficiently than in a common integer CPU such as ARM. It
is therefore a reasonable assumption that the encryption algorithms are contained
in the DSP assembler code.

The DSP has to be initialized by the ARM CPU during the bootstrap process
by loading the DSP code and data into DSP accessible memory regions first (e.g.
the DSP internal SARAM). We call this code and data the DSP firmware in the
following. The DSP firmware is thus contained within the ARM firmware image.
In the simplest case, it is stored as a single contiguous data region within the ARM
firmware. In order to spot this region, one can make use of the fact that the
TMSC55X DSP code follows a distinct format and structure, due to the structured

28

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

binary representation of instructions in form of opcodes and operand encodings.
Unfortunately, this approach is not applicable to the Thuraya SO-2510 firmware as
the DSP code is not present in plain contiguous form.

In order to retrieve the DSP firmware, a promising approach is to search for the
DSP initialization routine in the ARM code. To that end, we propose two different
ways to find the corresponding piece of code.

Static Strings Firstly, the firmware image contains plenty of referenced static
strings. IDA uses a built-in heuristic to identify possible string messages in the auto-
analysis phase. This results in 90.995 detected strings. It has to be noted that the
actual number is significantly smaller due to imperfections in the string detection
heuristic, which oftentimes incorrectly classifies short random byte sequences as
ASCII strings. Nevertheless, the total number of true strings still amounts to tens
of thousands. To our surprise, these strings often include debugging or assertion
strings that reveal the name of variables and function that are otherwise unknown.
Assertion and debugging strings are typically used in the software development
process to find bugs, but are stripped from final release builds. It is unclear as to why
this is not the case in the present Thuraya SO-2510 firmware. The firmware contains
several strings that can be obviously associated to the DSP initialization routine,
such as Start DSP Image Loading... at virtual address 0x8330F4. Assertion
strings also reveal the original source code file name of certain code parts. Most
interestingly, at least four functions can be directly attributed to a source code file
named dsp main. This allows obtaining a coarse overview of DSP control code and
greatly reduces the relevant code base and allows to search for the initialization
code manually with a reasonable amount of effort.

DSP Memory References We also followed another more methodical approach
that does not rely on the presence of redundant static strings. As explained in
Section 2.5.1, the DSP memory space and the DSP peripherals are mapped into
the ARM address range 0xE0000000 - 0xEFFFFFFF. The peripheral registers are
mapped within the address range 0xFFFB0000 - 0xFFFEFFFF. DSP code and data
has to be copied to DSP accessible memory and the DSP has to be configured
and reset during the DSP startup process. As a natural consequence, the ARM
code holds static memory references to the corresponding address ranges, which
can again be searched for automatically in the code. We thus wrote a script that
identifies all memory access instructions with references inside the mapped DSP
memory range and a selected set of peripheral registers that are likely to be used
in the previously described scenario. For example, we search for accesses to the
ARM RSTCT1 register at address 0xFFFECE10, which is responsible for resetting the
DSP processor. This yields a total of 38 instructions in 16 different functions.

29

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

Further manual analysis reveals the presence of two independent DSP firmware
load routines which reference two different DSP firmware images. For the sake
of convenience, both functions are called dsp fwload a (address 0x00833110, 123
ARM instructions) and dsp fwload b (address 0x015E7138, 167 ARM instructions)
in the following.

DSP Firmware Extraction

We reverse engineered the dsp fwload a function in the ARM code to deduce how
the DSP firmware is assembled from the original firmware. Listing 2.2 shows a high-
level C representation of the code. The loading routine takes a pointer argument
to the initial DSP firmware (called dsp fw img). It consists of two loops that load
the DSP image section-wise. Sections are small chunks of the DSP firmware that
are located in the ARM firmware. Note that these sections do not necessarily have
to be contiguous in the ARM firmware. The outer loop traverses the different
sections, while the inner loop copies the corresponding data chunks of each section.
As a consequence, section data is stored as one chunk in the original firmware.
Furthermore, the data is byte-swapped using a 16 bit alignment because of differing
endiannesses of the ARM and DSP cores. Because of sections being non-contiguous
and byte swapping, it is not feasible to spot the DSP code making use of the special
instruction encoding of the DSP architecture.

According to the official OMAP5910 system initialization instructions, the OMAP-
5910 development tool chain provides a converter program OUT2BOOT that converts
DSP code from the COFF object format of the DSP compiler into C arrays that
can be included in the C source code as headers. The documentation [146] states

the header file that OUT2BOOT produces consists of an array that
holds the sections of code/data. A record consisting of the following
fields represents each section:

• The section length in 16-bit words

• The DSP destination run-time address for the section.

• The code/data words for the section.

The sample code that is provided in the documentation to load COFF sections
described above from C array representations [146] is largely identical to the reverse
engineered algorithm shown in Listing 2.2. We thus assume the code was borrowed
from there.

Using the reverse engineered dsp fwload a algorithm, one can reassemble the final
DSP image from the original firmware manually since references to the sections can
be deduced from the code. Alternatively, it is also possible to attach a QEMU
ARM emulator to IDA, let it execute only the dsp fwload a function and dump

30

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

void dsp_fwload_a(unsigned short *dsp_fw_img) {

unsigned short section_length = dsp_fw_img [0] / 2;

int next_section = 1;

while(section_length) {

char *section_addr = 0xC010000 + dsp_fw_img[next_section];

int section_offset = next_section + 1;

for(i = 0; i < section_length; i++) {

*(short *) section_addr = (dsp_fw_img[section_offset] << 8) | (

dsp_fw_img[section_offset + 1]);

section_addr += 2;

section_offset += 2;

}

section_length = dsp_fw_img[section_offset];

next_section = section_offset + 1;

}

}

List of Listings 2.2: Reverse engineered high-level C representation of
dsp fwload a.

the contents of the final DSP image, which is then contained in the memory area
starting from 0xC010000. As described previously in Section 2.5.1, the DSP memory
is mapped to 0xE0000000. It is unclear why dsp fwload a rather loads the code
to a different address. We assume that either the internal hardware-wired mapping
was changed or that additional shared DSP memory is used to hold or load the
DSP image. Please note that this is of no importance for the rest of the analysis.
The DSP memory references are nevertheless important to spot the DSP peripheral
register accesses that lead to both firmware load functions.

We also reverse engineered the second firmware load routine dsp fwload b. The
corresponding high-level representation is depicted in Listing 2.3. The code bears
significant resemblance to the first firmware load routine in that it also loads the
DSP firmware from different sections that are appended in one large data byte
array within the ARM firmware. However, every section has a section type at the
beginning of the section data that determines the final load address in DSP memory.
Section data is byte-swapped to take the differing endianness into account, just as
in dsp fwload a. The final DSP firmware image can be obtained by reconstructing
the firmware load routine using the statically stored firmware data byte array at
address 0x158BE7C. Again, it also possible to dynamically execute dsp fwload b

in an emulator such as QEMU and dump the written DSP code and data starting
from address 0x5000000.

31

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

void dsp_fwload_b(unsigned short *dsp_fw_img) {

unsigned short word_length = dsp_fw_img [0] / 2;

if(! word_length)

return;

unsigned short next_offset = 1;

do {

unsigned short section_type = dsp_fw_img[next_offset];

unsigned int section_base_address;

switch(section_type) {

case 1:

section_base_address = 0x5010000;

break;

case 2:

section_base_address = 0x5020000;

break;

case 16:

section_base_address = 0x5100000;

break;

case 17:

section_base_address = 0x5110000;

break;

default:

section_base_address = 0x5000000;

}

unsigned short *section_addr = (unsigned short *)

(section_base_address + (dsp_fw_img[next_offset + 1] & 0xFFFE))

;

next_offset += 2;

for(int i = 0; i < word_length; i++, section_addr += 2,

next_offset += 2)

*section_addr = dsp_fw_img[next_offset + 1] |

(dsp_fw_img[next_offset] << 8);

section_size = dsp_fw_img[next_offset ++];

word_length = section_size / 2;

} while(word_length);

}

List of Listings 2.3: Reverse engineered high-level C representation of
dsp fwload b.

32

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

2.5.5 Crypto Code Identification

An initial rudimentary analysis of both extracted DSP firmware images using the
IDA disassembler reveals that the first firmware (taken from dsp fwload a) only
contains a small amount of actual DSP instructions. It contains ten different func-
tions which are mostly responsible for processor initialization tasks. We assume that
this is rather a test image. Since also the DSP initialization routine dsp fwload a

greatly resembles the examples from the official documentation, it might be reason-
able to assume that this is sample code that was not stripped from the final release
build. For the rest of the analysis, we thus focused on the analysis of the second
DSP firmware obtained from dsp fwload b.

The second DSP firmware image holds a total of 22.575 instructions organized in
384 different functions. In contrast to the ARM firmware, no strings, symbols, or
similar meta data are present or available. Since the cryptographic code can only
constitute a small share of the entire firmware code that cannot be identified manu-
ally without huge effort, we applied the previous work on identifying cryptographic
primitives as described in Section 2.2. We confined ourselves to approaches that
can be applied statically, as we had no real satphone at our disposal at the time
of the analysis. If this were the case, then accessing a debugging interface on the
hardware device thorugh the widespread JTAG interface would have been possible.
This approach can be cumbersome nevertheless, since debugging interfaces are of-
tentimes disabled in release boards. Furthermore, it is infeasible to apply approaches
that require the availability of concrete algorithms beforehand (e.g., signature-based
searches), since we know nothing about the actual GMR-1 crypto algorithms.

Another problem that has to be addressed is the presence of compression and
encoding algorithms on the firmware. Due to the nature of the algorithms, they also
happen to contain very similar instructions types than cryptographic code. This
does not the render related search approaches useless, but merely makes it more
complicated to confirm that a given piece of code is actually part of an encryption
or decryption process.

Since GMR-1 is derived from GSM, we speculated that the cipher algorithm
employed in GMR-1 bears at least some resemblance to the GSM-A5/2 cipher from
GSM (see Section 2.2.5). Due to the nature of this algorithm (e.g., the presence
of feedback shift registers), the cipher code is as well bound to contain a lot of bit
shift and XOR operations — unless it is somehow obfuscated.

We thus implemented a plugin for IDA that counts the occurrences of such instruc-
tions in each function and sets them in relation to the total number of instructions
in the function; on the analogy of the ideas to spot cryptographic primitives that
have been described in Section 2.3. Table 2.1 lists the six top-rated functions found
when using this heuristic. The four topmost functions are rather short sequences
of code that bear striking resemblance to feedback register shift operators and they

33

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

Function address % relevant instr.

0001D038 43%
0001CFC8 41%
0001D000 41%
0001D064 37%
00014C9C 25%
00014CAC 25%

Table 2.1: Functions rated by percentage of relevant arithmetic and logical instruc-
tions.

are adjacent in memory, which suggest they are related. A disassembly and a high
level C representation of one of the functions is depicted in Listing 2.4. Further
analyzing the call sites of these four functions reveal an accessed memory region
holding variables which equal

• the assumed key length,

• the assumed number and length of the feedback registers, and

• the assumed frame-number lengths (see Section 2.4.1).

These points, plus the fact that GSM-A5/2 also contains four LFSR clocking
routines, are strong indicators that one has spotted the correct region of the crypto
code and not another resembling algorithm such as encoding or speech compression.
Starting from this code area, we manually reverse engineered the relevant code
portions to obtain the cryptographic algorithm employed in the DSP. In our derivate
implementation, the resulting C source spans over 184 lines of code and contains 9
functions. The source code is not listed in this thesis for the sake of brevity, but
it can be publicly downloaded from our GMR website [29]. The correctness of the
reverse engineered algorithm could be verified from an external source by decrypting
previously recorded satphone traffic where the crypto key could be extracted from
the SIM card of the device.

2.5.6 Cipher and Weaknesses

We now give a short summary of the layout of the extracted GMR-A5-1 cipher.
More details and insights into the algorithm and its attack surfaces can be found
in the corresponding paper [52]. Figure 2.9 shows the structure of the algorithm.
As can be seen at first glance, the algorithm is very similar to GSM-A5/2. It also
consists of four LFSRs along with three majority function elements. The authors of
GMR-A5-1 mainly interchanged the bit positions that serve as inputs and outputs
during clocking and the keystream generation.

34

2.5 REVERSE ENGINEERING THE ENCRYPTION ALGORITHMS

ROM:1D038 mov dbl(* abs16(#1EF4h)), AC1

ROM:1D03D sftl AC1 , #-1h, AC2

ROM:1D040 mov dbl(* abs16(#1EF4h)), AC1

ROM:1D045 xor AC2 , AC1

ROM:1D047 bfxtr #0FFF0h, AC1 , AR1

ROM:1D04B and #1h, AR1 , AC3

ROM:1D04E and #1h, AC1 , AC1

ROM:1D051 xor AC3 , AC1

ROM:1D053 xor AC0 , AC1

ROM:1D055 sftl AC1 , #16h, AC0

ROM:1D058 xor AC2 , AC0

ROM:1D05A mov AC0 , dbl(* abs16(#1EF4h))

ROM:1D05F ret

// #1EF4h -> reg3

void update_reg3(int arg) {

int t = BIT((reg3 >> 1) ^ reg3 , 5);

reg3 = (((t ^ BIT((reg3 >> 1) ^ reg3 , 1) ^ arg) << 22) ^ (reg3 >>

1);

}

List of Listings 2.4: Disassembly and corresponding high-level C representation
of one DSP LFSR clock routine.

Figure 2.9: The GMR-A5-1 cipher.

35

CHAPTER 2: SECURITY ANALYSIS OF A PROPRIETARY SATPHONE
SYSTEM

The algorithm can work in two different modes of operation: initialization and
generation. In initialization mode, the cipher at first performs the following four
steps:

1. Set all four LFSRs to zero.
2. Compute initialization value I by combining frame number with encryption

key using a certain xor scheme.
3. Clock I into all four registers
4. Set least-significant bits of all LFSRs to zero.

The algorithm then proceeds to execute 250 clocks, discards the output and is ready
to operate in generation mode to produce keystream data. The number of keystream
bits varies depending on the current channel context. The standard specifies differ-
ent traffic and control channels (abbreviated as TCHx and SDCCH/SACCH/FAC-
CHx respectively).

In an additional crypto analysis (which is not part of this thesis), it could be
shown that traditional attacks which were presented against GSM-A5/2 can also
be mounted against GMR-A5-1. More specifically, previous attacks presented by
Petrovic and Fuster-Sabater [122] can be extended for a known-keystream attack.
This allows to reconstruct the internal states of the keystream generation within
reasonable computational effort and thus decrypt all transmitted packets without
any additional knowledge about the key material.

2.6 Conclusion and Future Work

In this chapter, we presented a generic approach to reverse engineering unknown
encryption algorithms from mobile devices and performed an actual analysis of a
Thuraya SO-2510 phone that implements the widespread GMR-1 satellite telephony
standard. GMR-1 uses a proprietary encryption scheme that is not part of the of-
ficial specification documents. In order to assess the resistance of GMR-1 satphone
against real world eavesdropping attacks, we reverse engineered the unknown en-
cryption algorithms. Previous research efforts already proved that the GSM mobile
communication standards (which are closely related to GMR) employ a vulnerable
encryption scheme and we speculated that similar attacks can be ported to GMR-1.

We presented the individual steps from reconstructing the virtual memory layout
of the device firmware to finding the unknown encryption algorithm in-detail. Ana-
lyzing mobile devices greatly differentiates from traditional desktop or server based
reverse engineering due to the different hardware layout and software components
adjusted accordingly. We showed how these challenges can be tackled and leveraged
previous work on identifying cryptographic primitives in binary code.

Our analysis verified our concerns that GMR-1 uses an insufficient algorithm. In
fact, we showed that GMR-A5-1 structurally closely resembles GSM-A5/2 which is

36

2.6 CONCLUSION AND FUTURE WORK

known to be vulnerable by modern standards. This poses a significant threat to
security-sensitive scenarios in which the privacy of the transmission can make the
difference between life and death. Our findings reinforce our opinion that encryption
algorithms should be made available to the public so that researchers can test and
verify their resistance against attacks rather than relying on the security by obscurity
principle.

In terms of future work, it would be interesting to to analyze more proprietary
mobile devices to confirm the general applicability of our approach. We already
successfully conducted the analysis of the competing GMR-2 standard and also
identified its proprietary encryption algorithm [52]. Another interesting topic for
future work is to increase the automation of the reverse engineering process to
accelerate and facilitate the analysis.

37

3
Practical Timing Side Channel Attacks
Against Kernel Space ASLR

3.1 Introduction

Modern operating systems employ a wide variety of methods to protect both user
and kernel space code against memory corruption attacks that leverage vulnera-
bilities such as stack overflows [12], integer overflows [32], and heap overflows [45].
Control flow hijacking attempts pose a significant threat and have attracted a lot of
attention in the security community due to their high relevance in practice. Even
nowadays, new vulnerabilities in applications, drivers, or operating system kernels
are reported on a regular basis. To thwart such attacks, many mitigation tech-
niques have been developed over the years. A few examples that have received
widespread adoption include stack canaries [47], non-executable memory (e.g., No
eXecute (NX) bit and Data Execution Prevention (DEP) [106]), and Address Space
Layout Randomization (ASLR) [30, 117, 163].

Especially ASLR plays an important role in protecting computer systems against
software faults. The key idea behind this technique is to randomize the system’s
virtual memory layout either every time a new code execution starts (e.g., upon
process creation or when a driver is loaded) or on each system reboot. While the
initial implementations focused on randomizing user mode processes, modern op-
erating systems such as Windows 7 randomize both user and kernel space. ASLR
introduces diversity and randomness to a given system, which are both appealing
properties to defend against attacks: an attacker that aims to exploit a memory
corruption vulnerability does not know any memory addresses of data or code se-
quences which are needed to mount a control flow hijacking attack. Even advanced
exploitation techniques like return-to-libc [136] and return-oriented programming
(ROP) [133] are hampered since an attacker does not know the virtual address of
memory locations to which she can divert the control flow. As noted above, all

39

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

major operating systems such as Windows, Linux, and Mac OS X have adopted
ASLR and also mobile operating systems like Android and iOS have recently added
support for this defense method [34, 117, 127, 39].

Broadly speaking, successful attacks against a system that implements ASLR rely
on one of three conditions:

1. In case not all loaded modules and other mapped memory regions have been
protected with ASLR, an attacker can focus on these regions and exploit the
fact that the system has not been fully randomized. This is an adoption
problem and we expect that in the near future all memory regions (both
in user space and kernel space) will be fully randomized [93, 72]. In fact,
Windows 7/8 already widely supports ASLR and the number of applications
that do not randomize their libraries is steadily decreasing. Legacy libraries
can also be forced to be randomized using the Force ASLR feature.

2. If some kind of information leakage exists that discloses memory addresses [54,
141, 91], an attacker can obtain the virtual address of specific memory areas.
She might use this knowledge to infer additional information that helps her to
mount a control flow hijacking attack. While such information leaks are still
available and often used in exploits, we consider them to be software faults
that will be fixed to reduce the attack surface [9, 11].

3. An attacker might attempt to perform a brute-force attack [134]. In fact,
Shacham et al. showed that user mode ASLR on 32-bit architectures only
leaves 16 bit of randomness, which is not enough to defeat brute-force attacks.
However, such brute-force attacks are not applicable for kernel space ASLR.
More specifically, if an attacker wants to exploit a vulnerability in kernel code,
a wrong offset will typically lead to a complete crash of the system and thus
an attacker has only one attempt to perform an exploit. Thus, brute-force
attacks against kernel mode ASLR are not feasible in practice.

In combination with DEP, a technique that enforces the W ⊕ X (Writable xor
eXecutable) property of memory pages, ASLR significantly reduces the attack sur-
face. Under the assumption that the randomization itself cannot be predicted due to
implementation flaws (i.e., not fully randomizing the system or existing information
leaks), typical exploitation strategies are severely thwarted.

3.1.1 Contributions

In this chapter, we study the limitations of kernel space ASLR against a local
attacker with restricted privileges. We introduce a generic attack for systems run-
ning on the Intel Instruction Set Architecture (ISA). More specifically, we show
how a local attacker with restricted rights can mount a timing-based side channel

40

3.1 INTRODUCTION

attack against the memory management system to deduce information about the
privileged address space layout. We take advantage of the fact that the memory
hierarchy present in computer systems leads to shared resources between user and
kernel space code that can be abused to construct a side channel. In practice, timing
attacks against a modern CPU are very complicated due to the many performance
optimizations used by current processors such as hardware prefetching, speculative
execution, multi-core architectures, or branch prediction that significantly compli-
cate timing measurements [109]. Previous work on side-channels attacks against
CPUs [7, 79, 147] focused on older processors without such optimization and we
had to overcome many challenges to solve the intrinsic problems related to modern
CPU features [109].

We stress that our side channel attacks are generic and we tested our approach on
both Windows and Linux systems. However, it is still necessary to tailor our attacks
to the concrete ASLR implementation of the operating system (see Section 3.5).
Since ASLR implementations always compromise with regards to the used random-
ness, it is reasonable and practically required to make use of these assumptions in
the attacks. However, the kernel ASLR implementation of the most prevalent desk-
top operating system Windows is proprietary and no details are known publically.
In this thesis, we put a special focus on proprietary Windows operating systems.
Therefore, we had to reverse engineer the undocumented Windows kernel ASLR
implementation. We also provide a mitigation solution at the end that retrofits the
Windows operating system with an improved exception handler that thwarts our
presented attacks.

We have implemented three different attack strategies that are capable of suc-
cessfully reconstructing (parts of) the kernel memory layout. We have tested these
attacks on different Intel and AMD CPUs (both 32- and 64-bit architectures) on
machines running either Windows 7 or Linux. Furthermore, we show that our
methodology also applies to virtual machines. As a result, an adversary learns pre-
cise information about the (randomized) memory layout of the kernel. With that
knowledge, she is enabled to perform control flow hijacking attacks since she now
knows where to divert the control flow to, thus overcoming the protection mecha-
nisms introduced by kernel space ASLR. Furthermore, we also discuss mitigation
strategies and show how the side channel we identified as part of this work can be
prevented in practice with negligible performance overhead.

In summary, the contributions of this thesis are the following:

• We present a generic attack to derandomize kernel space ASLR that relies on
a side channel based on the memory hierarchy present in computer systems,
which leads to timing differences when accessing specific memory regions. Our
attack is applicable in scenarios where brute-force attacks are not feasible
and we assume that no implementation flaws exist for ASLR. Because of the

41

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

general nature of the approach, we expect that it can be applied to many
operating systems and a variety of hardware architectures.

• We present three different approaches to implement our methodology. We
successfully tested them against systems running Windows 7 or Linux on
both 32-bit and 64-bit Intel and AMD CPUs, and also the virtualization
software VMware. As part of the implementation, we reverse-engineered an
undocumented hash function used in Intel Sandybridge CPUs to distribute the
cache among different cores. Our attack enables a local user with restricted
privileges to determine the virtual memory address of key kernel memory
locations within a reasonable amount of time, thus enabling ROP attacks
against the kernel.

• We discuss several mitigation strategies that defeat our attack. The runtime
overhead of our preferred solution is not noticeable in practice and successfully
prevents the timing side channel attacks discussed in this thesis. Furthermore,
it can be easily adopted by OS vendors.

This chapter is based on a previous publication together with Willems and Holz [82].

3.2 Technical Background

We review the necessary technical background information before introducing the
methodology behind our attack.

3.2.1 Address Space Layout Randomization

As explained above, ASLR randomizes the system’s virtual memory layout either
every time a new code execution starts or every time the system is booted [30, 94,
117, 163]. More specifically, it randomizes the base address of important memory
structures such as for example the code, stack, and heap. As a result, an adversary
does not know the virtual address of relevant memory locations needed to perform
a control flow hijacking attack (i.e., the location of shellcode or ROP gadgets). All
major modern operating systems have implemented ASLR. For example, Windows
implements this technique since Vista in both user and kernel space [127], Linux
implements it with the help of the PaX patches [117], and MacOS ships with ASLR
since version 10.5. Even mobile operating systems such as Android [34] and iOS [39]
perform this memory randomization nowadays.

The security gain of the randomization is twofold: First, it can protect against re-
mote attacks, such as hardening a networking daemon against exploitation. Second,
it can also protect against local attackers by randomizing the privileged address

42

3.2 TECHNICAL BACKGROUND

space of the kernel. This should hinder exploitation attempts of implementation
flaws in kernel or driver code that allow a local application to elevate its privileges,
a prevalent problem [42, 142]. Note that since a user mode application has no
means to directly access the kernel space, it cannot determine the base addresses
kernel modules are loaded to: every attempt to access kernel space memory from
user mode results in an access violation, and thus kernel space ASLR effectively
hampers local exploits against the OS kernel or drivers.

Windows Kernel Space ASLR

In the following we describe the kernel space ASLR implementation of Windows
(both 32-bit and 64-bit). The information presented here applies to Vista, Win-
dows 7, and Windows 8. We obtained this information by reverse-engineering the
corresponding parts of the operating system code.

During the boot process, the Windows loader is responsible for loading the two
core components of the OS, the kernel image and the hardware abstraction layer
(HAL), which is implemented as a separate module. At first, the Windows loader
allocates a sufficiently large address region (the kernel region) for the kernel image
and the HAL. The base address of this region is constant for a given system. Then,
it computes a random number ranging from 0 to 31. This number is multiplied by
the page size (0x1000) and added to the base address of the reserved region to form a
randomized load address. Furthermore, the order in which the kernel and the HAL
are loaded is also randomized. Both components are always loaded consecutively
in memory, there is no gap in between. This effectively yields 64 different slots to
which the kernel image and the HAL each can be loaded (see also Figure 3.1). In
summary, the formula for computing the kernel base address is as follows:

k base = kernel region + (r1 ∗ 0x1000) + (r2 ∗ hal size),

where r1 ∈ {0 . . . 31} and r2 ∈ {0, 1} are random numbers within the given ranges.
Kernel and HAL are commonly mapped using so called large pages (2 MB) which
improves performance by reducing the duration of page walks; both components
usually require three large pages (= 6 MB). An interesting observation is that the
randomization is already applied to the physical load addresses of the image and
that for the kernel region, the formula

virtual address = 0x80000000 + physical address

holds. The lower 31 bits of virtual kernel addresses are thus identical to the physical
address. Again, this is only true for addresses in the kernel region and does not
generally apply to kernel space addresses. For the rest of the chapter, note that we
assume that the system is started without the /3GB boot option that restricts the

43

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

32 slots

… … ntoskrnl
…

HAL

32 slots

… … ntoskrnl

kernel region (6mb, 3 large pages)

(1)

(2)

…
HAL

Figure 3.1: ASLR for Windows kernel region (not proportional). Slot and load
order (either (1) or (2)) are chosen randomly.

random start slots

region 2 (2mb , 4kb page granularity)

… … drv 3 drv 4 drv 5 drv 1 drv 2

… … drv 8 drv 6 drv 7

region 1 (2mb, 4kb page granularity)

Figure 3.2: Two example driver regions randomized using Windows kernel ASLR.

kernelspace to 1 GB. In this case, the kernelspace base address would be 0xC0000000
instead.

Once the kernel is initialized, all subsequent drivers are loaded by the kernel’s
driver load routine MmLoadSystemImage. This mechanism contains a different ASLR
implementation to randomize the base address of drivers in the subroutine Mi-

ReserveDriverPtes. The process works as follows: the kernel first reserves a mem-
ory region of 2 MB using standard 4 KB sized pages (a driver region). It then
randomly chooses one out of 64 page-aligned start slots in this region where the
first driver is loaded to. All subsequent drivers are then appended, until the end
of the 2 MB region is hit, which is when the next driver is mapped to the begin-
ning of the region (i.e., a wrap-around occurs). In case a region is full, a new 2MB
driver region with a random start slot is allocated (see Figure 3.2). For session-
wide drivers such as win32k.sys, a similar randomization with 64 slots for each
driver image is applied in a dedicated session driver region. We observed that the
loading order of drivers is always the same in practice.

44

3.2 TECHNICAL BACKGROUND

3.2.2 Memory Hierarchy

There is a natural trade-off between the high costs of fast computer memory and the
demand for large (but inexpensive) memory resources. Hence, modern computer
systems are operating on hierarchical memory that is built from multiple stages
of different size and speed. Contemporary hierarchies range from a few very fast
CPU registers over different levels of cache to a huge and rather slow main memory.
Apparently, with increasing distance to the CPU the memory gets slower, larger,
and cheaper.

We focus on the different caches that are used to speed up address translation
and memory accesses for code and data. As illustrated in Figure 3.5, each CPU
core typically contains one dedicated Level 1 (L1) and Level 2 (L2) cache and often
there is an additional Level 3 (L3) shared cache (also called last level cache (LLC)).
On level 1, instructions and data are cached into distinct facilities (ICACHE and
DCACHE), but on higher stages unified caches are used. The efficiency of cache
usage is justified by the temporal and spatial locality property of memory accesses [4].
Hence, not only single bytes are cached, but always chunks of adjacent memory. The
typical size of such a cache line on x86/x64 is 64 bytes.

Different forms of cache organization are possible and the two most important
design decisions are: where to store a certain block of memory in the cache (associa-
tivity) and which block to remove when the cache is full (replacement strategy). In
a full associative cache, every memory block can be placed anywhere in the cache,
resulting in the necessity to search the complete cache when a certain memory block
is looked for. On the contrary, in a direct mapped cache each memory location can
only reside in one single dedicated cache slot. This decreases the lookup complexity
dramatically, but also increases the probability of collisions and, therefore, the cache
miss rate. A typically used trade-off is an n-way set associative mapping, in which
memory addresses can reside in n different cache locations.

In order to find out if the data from a certain memory location is currently stored
in a cache, not only this data but also (a part of) its address has to be stored. This
address information is called tag and its necessary size is determined by the mapping
strategy. In a full associative cache, the complete address needs to be stored. In so
called set associative caches, or direct mapped caches, the requested address is split
into an index and a remaining tag value. The index then decides which cache slots’
tag values have to be verified. Figure 3.3 illustrates this situation. As an example,
consider a 32-bit address and a 256 KB cache with 64 byte cachelines. The cache is
4-way set associative and, thus, the available slots are grouped into 1024 different
sets (= 256 ∗ 1024/(64 ∗ 4)). Hence, 10 bits are necessary in order to select the
appropriate set (step 1) and these form the cache index. The upper 16 bits of the
address are then used as tag value and are stored with each cacheline to correctly
identify (step 2) each stored address. To finally address (step 3) one of the 64 bytes

45

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

(2) Locate
cacheline in
selected set

(1) Select
set

(3) Select
byte in
cacheline

set 1

cacheline tag

cacheline tag

cacheline tag

cacheline tag

cacheline tag

cacheline tag

cacheline tag

cacheline tag

…

cacheline tag

cacheline tag

cacheline tag

cacheline tag

tag
bit 31..16

index
bit 15..6

offset
bit 5..0

set 2 set 1024

Figure 3.3: Address to cache index and tag mapping.

within each cacheline, the lower 6 address bits are used (called (block) offset).

An important question is where to store certain memory content in the caches
and how to locate it quickly on demand. All described caches operate in an n-way
set associative mode. Here, all available slots are grouped into sets of the size n
and each memory chunk can be stored in all slots of one particular set. This target
set is determined by a bunch of cache index bits that are taken from the memory
address. As an example, consider a 32-bit address and a typical L3 cache of 8 MB
that is 16-way set associative. It consists of (8, 192 ∗ 1, 024)/64 = 131, 072 single
slots that are grouped into 131, 072/16 = 8, 192 different sets. Hence, 13 bits are
needed to select the appropriate set. Since the lower 6 bits (starting with bit 0) of
each address are used to select one particular byte from each cacheline, the bits 18
to 6 determine the set. The remaining upper 13 bits form the address tag, that has
to be stored with each cache line for the later lookup.

One essential consequence of the set associativity is that memory addresses with
identical index bits compete against the available slots of one set. Hence, memory
accesses may evict and replace other memory content from the caches. One common
replacement strategy is Least Recently Used (LRU), in which the entry which has not
been accessed for the longest time is replaced. Since managing real timestamps is
not affordable in practice, the variant Pseudo-LRU is used: an additional reference
bit is stored with each cacheline that is set on each access. Once all reference bits
of one set are enabled, they are all cleared again. If an entry from a set has to be
removed, an arbitrary one with a cleared reference bit is chosen.

46

3.2 TECHNICAL BACKGROUND

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PDP

PDE

PTE

Frame
PDP Tables

Page Directories Page Tables

32 bit Virtual Address – Regular Page

2 9 9 12

Physical Memory

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

PDE

1st Frame

Page Directories

32 bit Virtual Address – Large Page

2 9 21

Physical Memory

… PDP Tables

PDP

Figure 3.4: Address resolution for regular and large pages on PAE systems.

Virtual Memory and Address Translation

Contemporary operating systems usually work on paged virtual memory instead of
physical memory. The memory space is divided into equally sized pages that are
either regular pages (e.g., with a size of 4 KB), or large pages (e.g., 2 or 4 MB).
When accessing memory via virtual addresses (VA), they first have to be translated
into physical addresses (PA) by the processor’s Memory Management Unit (MMU)
in a page walk : the virtual address is split into several parts and each part operates
as an array index for certain levels of page tables. The lowest level of the involved
paging structures (PS), the Page Table Entry (PTE), contains the resulting physical
frame number. For large pages, one level less of PS is needed since a larger space
of memory requires less bits to address. In that case, the frame number is stored
one level higher in the Page Directory Entry (PDE). In case of Physical Address
Extension (PAE) [84] or 64-bit mode, additional PS levels are required, i.e. the
Page Directory Pointer (PDP) and the Page Map Level 4 (PML4) structures.

Figure 3.4 illustrates the address resolution for regular pages (upper part) and
large pages (lower part) on PAE systems. Notice that in the first case, the resulting
PTE points to one single frame. In the second case, the PDE points to the first one
of a set of adjacent frames, that in sum span the same size as a large page.

In order to speed up this address translation process, resolved address mappings
are cached in Translation Lookaside Buffers (TLBs). Additionally, there often are

47

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

ITLB

CPU

ICACHE DCACHE

ITLB0
ITLB
DTLB0

PML4/PDP/
PDE Cache

L2 Cache

L3 Cache

Physical Memory

MMU

Unified TLB1

4

1
0

3

5

>
1

0
0

>
1

0
0

1

6

Figure 3.5: Intel i7 memory hierarchy plus clock latency for the relevant stages
(based on [90, 101]).

dedicated caches for the involved higher level PS [83]. Depending on the underly-
ing system, the implementation of these translation caches differs a lot. Current
x86/x64 systems usually have two different levels of TLB: the first stage TLB0 is
split into one for data (DTLB) and another for instructions (ITLB), and the second
stage TLB1 is used for both. Further, the TLBs are often split into one part for
regular pages and another for large pages.

Even with TLBs and PS caches, the address translation takes some clock cycles,
during which the resulting physical address is not available yet. As an effect, the
system has to wait for the address translation before it can check the tag values of
the caches. Therefore, lower caches (mostly only the L1 cache) are virtually indexed,
but physically tagged. This means that the cache index is taken from the virtual
address but the stored tag values from the physical one. With that approach, the
corresponding tag values already can be looked up and then quickly compared once
the physical address is available.

Figure 3.5 illustrates all the different caching facilities of the Intel i7 processor.
The vertical arrows are labeled with the amount of clock cycles that are normally
required to access the particular stages [101, 90]. The dashed arrow (pointing from
the TLB1 to the DCACHE) indicates that PS are not only cached in the TLB or
PML4/PDP/PDE caches, but may also reside as regular data within the DCACHE
or higher level unified caches.

An essential part of each virtual memory system is the page fault handler (PFH).

48

3.3 RELATED WORK

It is invoked if a virtual address cannot be resolved, i.e., the page walk encounters
invalid PS. This may happen for several reasons (e.g., the addressed memory region
has been swapped out or the memory is accessed for the first time after its allo-
cation). In such cases, the error is handled completely by the PFH. Although this
happens transparently, the process induces a slight time delay. Besides translation
information, the PS also contain several protection flags (e.g., to mark memory as
non-executable or to restrict access to privileged code only). After successful trans-
lation, these flags are checked against the current system state and in case of a
protection violation, the PFH is invoked as well. In that case an access violation
exception is generated that has to be caught and handled by the executing process.
Again, a slight time delay may be observable between accessing the memory and
the exception being delivered to the exception handler.

3.3 Related Work

Timing and side channel attacks are well-know concepts in computer security and
have been used to attack many kinds of systems, among others cryptographic
implementations [97, 152, 5], OpenSSL [6, 37], SSH sessions [138], web applica-
tions [40, 64], encrypted VoIP streams [160, 155], and virtual machine environ-
ments [125, 165, 166].

Closely related to our work is a specific kind of these attacks called cache games [35,
79, 119, 147]. In these attacks, an adversary analyzes the cache access of a given
system and deduces information about current operations taking place. The typical
target of these attacks are cryptographic implementations: while the CPU performs
encryption or decryption operations, an adversary infers memory accesses and uses
the obtained information to derive the key or related information. In a recent work,
Gullasch et al. showed for example how an AES key can be recovered from the
OpenSSL 0.9.8n implementation [79] and Zhang et al. introduced similar attacks
in a cross-VM context [166].

We apply the basic principle behind cache attacks in our work and introduce dif-
ferent ways how this general approach can be leveraged to obtain information about
the memory layout of a given system. Previous work focused on attacks against the
instruction/data caches and not on the address translation cache, which is concep-
tually different. We developed novel approaches to attack this specific aspect of a
computer system. Furthermore, all documented cache attacks were implemented
either for embedded processors or for older processors such as Intel Pentium M (re-
leased in March 2003) [79], Pentium 4E (released in February 2004) [147], or Intel
Core Duo (released in January 2006) [7]. In contrast, we focus on the latest proces-
sor architectures and need to solve many obstacles related to modern performance
optimizations in current CPUs [109]. To the best of our knowledge, we are the first

49

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

to present timing attacks against ASLR implementations and to discuss limitations
of kernel space ASLR against a local attacker.

3.4 Timing Side Channel Attacks

Based on this background information, we can now explain how time delays intro-
duced by the memory hierarchy enable a side channel attack against kernel-level
ASLR.

3.4.1 Attacker Model

We focus in the following on local attacks against kernel space ASLR: we assume
an adversary who already has restricted access to the system (i.e., she can run
arbitrary applications) but does not have access to privileged kernel components and
thus cannot execute privileged (kernel mode) code. We also assume the presence
of a user mode-exploitable vulnerability within kernel or driver code, a common
problem [42]. The exploitation of this software fault requires to know (at least
portions of) the kernel space layout since the exploit at some point either jumps to
an attacker controlled location or writes to an attacker controlled location to divert
the control flow.

Since the entire virtual address space is divided in both user and kernel space, an
attacker might attempt to directly jump to a user space address from within kernel
mode in an exploit, thus circumventing any kernel space ASLR protections. How-
ever, this is not always possible since the correct user space might not be mapped at
the time of exploitation due to the nature of the vulnerability [93]. Furthermore, this
kind of attack is rendered impossible with the introduction of the Supervisor Mode
Execution Protection (SMEP) feature of modern CPUs that disables execution of
user space addresses in kernel mode [86].

We also assume that the exploit uses ROP techniques due to the W ⊕X property
enforced in modern operating systems. This requires to know a sufficiently large
amount of executable code in kernel space to enable ROP computations [81, 133].
Schwartz et al. showed that ROP payloads can be built automatically for 80%
of Linux programs larger than 20 KB [130]. Further, we assume that the system
fully supports ASLR and that no information leaks exist that can be exploited. Note
that a variety of information leaks exist for typical operating systems [91], but these
types of leaks stem from shortcomings and inconsequences in the actual implemen-
tation of the specific OS. Developers can fix these breaches by properly adjusting
their implementation. Recently, Giuffrida et al. [72] argued that kernel information
leakage vulnerabilities are hard to fix. While we agree that it is not trivial to do
so, we show that even in the absence of any leak, we can still derandomize kernel
space ASLR.

50

3.4 TIMING SIDE CHANNEL ATTACKS

One of our attacks further requires that the userland process either has access
to certain APIs or gains information about the physical frame mapping of at least
one page in user space. However, since this prerequisite holds only for one single
attack – which further turns out to be our least effective one – we do not consider
it in the general attacker model but explain its details only in the corresponding
Section 3.5.1.

In summary, we assume that the system correctly implements ASLR (i.e., the
complete system is randomized and no information leaks exist) and that it enforces
the W ⊕X property. Hence, all typical exploitation strategies are thwarted by the
implemented defense mechanisms.

3.4.2 General Approach

In this thesis, we present generic side channels against processors for the Intel ISA
that enable a restricted attacker to deduce information about the privileged address
space by timing certain operations. Such side channels emerge from intricacies of
the underlying hardware and the fact that parts of the hardware (such as caches
and physical memory) are shared between both privileged and non-privileged code.
Note that all the approaches that we present in this thesis are independent of the
underlying operating system: while we tested our approach mainly on Windows
7 and Linux, we are confident that the attacks also apply for other versions of
Windows or even other operating systems. Furthermore, our attacks work on both
32- and 64-bit systems.

The methodology behind our timing measurements can be generalized in the
following way: At first, we attempt to set the system in a specific state from user
mode. Then we measure the duration of a certain memory access operation. The
time span of this operation then (possibly) reveals certain information about the
kernel space layout. Our timing side channel attacks can be split into two categories:

• L1/L2/L3-based Tests: These tests focus on the L1/L2/L3 CPU caches
and the time needed for fetching data and code from memory.

• TLB-based Tests: These tests focus on TLB and PS caches and the time
needed for address translation.

To illustrate the approach, consider the following example: we make sure that
a privileged code portion (such as the operating system’s system call handler) is
present within the caches by executing a system call. Then, we access a designated
set of user space addresses and execute the system call again. If the system call takes
longer than expected, then the access of user space addresses has evicted the system
call handler code from the caches. Due to the structure of modern CPU caches,
this reveals parts of the physical (and possibly virtual) address of the system call
handler code as we show in our experiments.

51

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

Accessing Privileged Memory

As explained in Section 3.2.2, different caching mechanisms determine the duration
of a memory access:

• The TLB and PS caches speed up the translation from the virtual to the
physical address.

• In case no TLB exists, the PS entries of the memory address must be fetched
during the page walk. If any of these entries are present in the normal
L1/L2/L3 caches, then the page walk is accelerated in a significant (i.e., mea-
surable) way.

• After the address translation, the actual memory access is faster if the target
data/code can be fetched from the L1/L2/L3 caches rather than from the
RAM.

While it is impossible to access kernel space memory directly from user mode, the
nature of the cache facilities still enables an attacker to indirectly measure certain
side-effects. More precisely, she can directly access a kernel space address from user
mode and measure the duration of the induced exception. The page fault will be
faster if a TLB entry for the corresponding page was present. Additionally, even if a
permission error occurs, this still allows to launch address translations and, hence,
generate valid TLB entries by accessing privileged kernel space memory from user
mode.

Further, an attacker can (to a certain degree) control which code or data regions
are accessed in kernel mode by forcing fixed execution paths and known data access
patterns in the kernel. For example, user mode code can perform a system call
(sysenter) or an interrupt (int). This will force the CPU to cache the associated
handler code and data structures (e.g., IDT table) as well as data accessed by the
handler code (e.g., system call table). A similar effect can be achieved to cache
driver code and data by indirectly invoking driver routines from user mode. Drivers
oftentimes provide interfaces to user applications by creating special device files. If
an application reads, writes, or sends device I/O control codes to such a file, then
callback functions inside the driver to handle the request are triggered. This can,
for example, be used to read or write network data to the TCP/IP system driver.
Accordingly, a user mode application can craft special events to device files and
make sure that code and data from specific drivers are present in the caches upon
return to user mode.

Note that the x86/x64 instruction set also contains a number of instructions
for explicit cache control (e.g., invlpg, invd/wbinvd, clflush, or prefetch) [84].
However, these instructions are either privileged and thus cannot be called from
user mode, or they cannot be used with kernel space addresses from user mode.

52

3.4 TIMING SIDE CHANNEL ATTACKS

Hence, none of these instructions can be used for our purposes. As a result, we
must rely on indirect methods as explained in the previous paragraphs.

3.4.3 Handling Noise

While performing our timing measurements we have to deal with different kinds of
noise that diminish the quality of our data if not addressed properly. Some of this
noise is caused by the architectural peculiarities of modern CPUs [109]: to reach
a high parallelism and work load, CPU developers came up with many different
performance optimizations like hardware prefetching, speculative execution, multi-
core architectures, or branch prediction. We have adapted our measuring code to
take the effects of these optimizations into account. For example, we do not test
the memory in consecutive order to avoid being influenced by memory prefetch-
ing. Instead, we use access patterns that are not influenced by these mechanisms
at all. Furthermore, we have to deal with the fact that our tool is not the only
running process and there may be a high CPU load in the observed system. The
thread scheduler of the underlying operating system periodically and, if required,
also preemptively interrupts our code and switches the execution context. If we
are further running inside a virtual machine, there is even more context switching
when a transition between the virtual machine monitor and the VM (or between
different VMs) takes place. Finally, since all executed code is operating on the same
hardware, also the caches have to be shared to some extent.

As mentioned above, our approach is based on two key operations: (a) set the
system into a specific state and (b) measure the duration of a certain memory access
operation. Further, these two operations are performed for each single memory
address that is probed. Finally, the complete experiment is repeated multiple times
until consistent values have been collected. While it is now possible — and highly
probable — that our code is interrupted many times while probing the complete
memory, it is also very likely that the low-level two step test operations can be
executed without interruption. The mean duration of these two steps depends on
the testing method we perform, but even in the worst case it takes no more than
5,000 clock cycles. Since modern operating systems have time slices of at least
several milliseconds [1, 107], it is highly unlikely that the scheduler interferes with
our measurements. Accordingly, while there may be much noise due to permanent
interruption of our experiments, after a few iterations we will eventually be able to
test each single memory address without interruption. This is sufficient since we
only need minimal measurement values, i.e., we only need one measurement without
interruption.

53

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

3.5 Implementation and Results

We now describe three different implementations of timing side channel attacks that
can be applied independently from each other. The goal of each attack is to precisely
locate some of the currently loaded kernel modules from user mode by measuring
the time needed for certain memory accesses. Note that an attacker can already
perform a ROP-based attack once she has derandomized the location of a few kernel
modules or the kernel [81, 130].

The first attack is based on the concept of cache probing, where we try to evict
the code/data of a loaded kernel module from the L3 caches in a controlled way.
We achieve this by consecutively accessing certain user-controlled addresses that are
mapped into the same cacheset where we assume the loaded kernel code. A practical
obstacle is that the latest Intel CPUs based on the Sandybridge architecture do not
use a single L3, but uniformly distribute the data to their different L3 cache slices.
In order to apply this method to these CPUs, we thus first had to reverse-engineer
the hash function used by the CPU in a black-box fashion since it is (to the best of
our knowledge) not publicly documented.

In the following two experiments, we do not measure the time for code/data
fetching, but we focus on the time needed for address translation. Depending on
the used system, several caching facilities are also involved in mapping virtual to
physical addresses, and these can be utilized for our means as well. Our second
attack induces a double page fault, which allows us to obtain a complete picture
of what ranges of kernel memory are allocated and which not. By examining the
portions and sizes of neighboring allocations, we are able to locate certain drivers
for which we have previously built allocation signatures.

In the third attack we again indirectly load kernel code into the caches by issuing
a sysenter instruction. In contrast to our first method, we do not evict that loaded
code from the L3, but instead we determine its virtual address directly. To that
end, we execute kernel space memory at various locations, which obviously results
in page faults. By measuring the time elapsed between calling into kernel space and
return of the page fault we can infer if the address translation information for that
very address has been cached before.

Depending on the randomness created by the underlying ASLR implementation,
the first attack might still require partial information on the location for the kernel
area. For the Windows ASLR implementation (see Section 3.2.1), this is not the
case since only 64 slots are possible of the kernel. The first attack requires either the
presence of two large pages or the knowledge of the physical address of a single page
in user space. Our second attack has no requirements. However, due to the way the
AMD CPU that we used during testing behaves in certain situations, this attack
could not be mounted on this specific CPU. The third attack has no requirements
at all.

54

3.5 IMPLEMENTATION AND RESULTS

Method Requirements Results CPUs Success

Cache Probing large pages or PA of evic-
tion buffer, partial informa-
tion about kernel region
location

ntoskrnl.exe

and hal.sys

all X

Double Page Fault none allocation map,
several drivers

all but
AMD

X

Cache Preloading none win32k.sys all X

Table 3.1: Summary of timing side channel attacks against kernel space ASLR on
Windows.

We have evaluated our implementation on the 32-bit and 64-bit versions of Win-
dows 7 Enterprise and Ubuntu Desktop 11.10 on the following (native and virtual)
hardware architectures to ensure that they are commonly applicable on a variety of
platforms:

1. Intel i7-870 (Nehalem/Bloomfield, Quad-Core)

2. Intel i7-950 (Nehalem/Lynnfield, Quad-Core)

3. Intel i7-2600 (Sandybridge, Quad-Core)

4. AMD Athlon II X3 455 (Triple-Core)

5. VMWare Player 4.0.2 on Intel i7-870 (with VT-x)

Table 3.1 provides a high-level overview of our methods, their requirements, and
the obtained results. We implemented an exploit for each of the three attacks.

For the sake of simplicity, all numbers presented in the remainder of this section
were taken using Windows 7 Enterprise 32-bit. Note that we also performed these
tests on Windows 7 64-bit and Ubuntu Desktop (32-bit and 64-bit) and can confirm
that they work likewise. The Ubuntu version we used did not employ kernel space
ASLR yet, but we were able to determine the location of the kernel image from user
space. In general, this does not make any difference since the attacks also would
have worked in the presence of kernel space ASLR.

In the following subsections, we explain the attacks and discuss our evaluation
results.

3.5.1 First Attack: Cache Probing

Our first method is based on the fact that multiple memory addresses have to be
mapped into the same cache set and, thus, compete for available slots. This can

55

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

be utilized to infer (parts of) virtual or physical addresses indirectly by trying to
evict them from the caches in a controlled manner. More specifically, our method
is based on the following steps: first, the searched code or data is loaded into the
cache indirectly (e.g., by issuing an interrupt or calling sysenter). Then certain
parts of the cache are consecutively replaced by accessing corresponding addresses
from a user-controlled eviction buffer, for which the addresses are known. After
each replacement, the access time to the searched kernel address is measured, for
example by issuing the system call again. Once the measured time is significantly
higher, one can be sure that the previously accessed eviction addresses were mapped
into the same cache set. Since the addresses of these colliding locations are known,
the corresponding cache index can be obtained and obviously this is also a part of
the searched address.

For illustration assume a traditional L3 cache with 8 MB, 64 byte cachelines and a
16-way set associativity. These specifications result in 8*1024*1024/(64*16)=8192
different sets, which means that bits 18 to 6 of each physical addresses utilize as
the cache index (bit 5 to 0 are used as the block offset to indicate the selected
byte within each cacheline). For probing we choose a certain system service in
the Windows kernel, which can be executed by calling the sysenter instruction
with a particular value loaded into the eax register. The probing now works in the
following way:

for i = 0 to 8191 do
(1) perform system call
(2) access 16 memory locations that are mapped to cacheseti (in order to
replace the interrupt handler from the cache)
(3) perform system call again and measure required time
(4) resulti ← i with highest execution time

end for

Several obstacles have to be addressed when performing these timing measure-
ments in practice. First, the correct kind of memory access has to be performed:
higher cache levels are unified (i.e., there are no separate data and instruction
caches), but on lower levels either a memory read/write access or an execution has
to be used in order to affect the correct cache type. Second, accessing the collid-
ing addresses only once is not enough. Due to the Pseudo-LRU algorithm it may
happen that not the searched address is evicted, but one from the eviction buffer.
Therefore, it is necessary to access each of the colliding addresses twice. Note that
it is still possible that code within another thread or on other CPUs concurrently
accesses the search address in the meantime, setting its reference bit that way. To
overcome this problem, all tests have to be performed several times to reduce the
influence of potential measuring errors and concurrency.

More serious problems arise due to the fact that the cache indexes on higher levels

56

3.5 IMPLEMENTATION AND RESULTS

are taken from the physical instead of the virtual addresses. In our experiments,
the eviction buffer is allocated from user mode and, hence, only its virtual address
is known. While it is still possible to locate the colliding cacheset, no information
can be gathered about the corresponding physical addresses. In general, even if
the physical address of the searched kernel location is known, this offers no knowl-
edge about its corresponding virtual address. However, the relevant parts of the
virtual and physical address are identical for the kernel region of Windows (see
Section 3.2.1). Hence, all the relevant bits of the virtual address can be obtained
from the physical address.

Cache probing with the latest Intel CPUs based on the Sandybridge [84] architec-
ture is significantly harder, even if the attacker has a contiguous region of memory
for which all corresponding physical addresses are known. These processors employ
a distributed last level cache [84] that is split into equally sized cache slices and
each of them is dedicated to one CPU core. This approach increases the access
bandwidth since several L3 cache accesses can be performed in parallel. In order
to uniformly distribute the accesses to all different cache slices, a hash function is
used that is not publicly documented. We thus had to reconstruct this hash func-
tion in a black-box manner before cache probing can be performed, since otherwise
it is unknown which (physical) addresses are mapped into which cache location.
We explain our reverse-engineering approach and the results in a side note before
explaining the actual evaluation results for our first attack.

Side Note: Sandybridge Hash Function

In order to reconstruct the Sandybridge hash function, we utilized the Intel i7-2600
processor. This CPU has an 8 MB L3 cache and 4 cores, resulting in 2 MB L3 slices
each. Hence, the hash function has to decide between 4 different slices (i.e., resulting
in 2 output bits). Since our testing hardware had 4 GB of physical memory, we have
reconstructed the hash function for an input of 32 bits. In case of larger physical
memory, the same method can be applied to reverse the influence of the upper bits
as well.

We started with the reasonable assumption that L3 cachelines on this CPU still
consist of 64 bytes. Hence, the lowest 6 bits of each address operate as an offset
and, therefore, do not contribute as input to the hash function. Accordingly, we
assumed a function h : {0, 1}32−6 → {0, 1}2.

In order to learn the relationship between the physical addresses and the resulting
cache slices, we took one arbitrary memory location and an additional eviction buffer
of 8 MB and tried to determine the colliding addresses within (i.e., those which are
mapped into the same cacheset of the same cache slice). Since the L3 cache operates
on physical addresses, the eviction buffer had to be contiguous. Therefore, we used
our own custom driver for this experiment.

57

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

PA

h2 =

h1 =

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Cache index Block offset Input to hash function for slice index

h = (h1, h2)
h1 = b31 ⊕ b30 ⊕ b29 ⊕ b27 ⊕ b25 ⊕ b23 ⊕ b21 ⊕ b19 ⊕ b18

h2 = b31 ⊕ b29 ⊕ b28 ⊕ b26 ⊕ b24 ⊕ b23 ⊕ b22 ⊕ b21 ⊕ b20 ⊕ b19 ⊕ b17

Figure 3.6: Results for the reconstruction of the undocumented Sandybridge hash
function.

Performance optimization features of modern CPUs like hardware prefetching,
speculative execution, and branch prediction make it impossible to directly identify
single colliding addresses. Therefore, we performed a two-step experiment: (1) we
identified eviction buffer regions of adjacent memory addresses that collide with
the probe address and then (2) we located the particular colliding addresses within
these regions. We have performed these tests several hundred times with different
physical addresses in order to gain variety in the test data. As a result of each single
test we got a tuple (p, CA = {ca1, ca2, ...}) whereas p is the used probe address and
each cai is a colliding address from our eviction buffer. By manually comparing
those tuples (p, CA) and (p’, CA’) with a hamming distance of one between p and
p’, we were able to learn the influence of particular bits on the colliding addresses
from CA and CA’.

In the end we were able to fully reconstruct the hashing function h that decides
which cache slice is used for a given address. It turned out that only the bits 31 to
17 are considered as input values. Each cache slice operates as a separate smaller
2 MB cache, whereas the address bits 16 to 6 constitute as the cache index (11 bits
are necessary to address all sets of such a 2 MB cache). Figure 3.6 shows how the
32 bits of a physical address are used as inputs to the hash function, cache index,
and block offset.

Evaluation Results

We evaluated cache probing on all of our testing machines. We assume that the
base address of the kernel region (see kernel base from Section 3.2.1) is known.
This is a reasonable assumption in practice since this information can be reliably
extracted using the method presented in Section 3.5.2. In Windows this address
actually is constant for a particular system.

Figure 3.7 shows the correlation of the different parts of the virtual and physical
address inside the kernel region. In essence, bits 16 to 12 of the kernel’s base

58

3.5 IMPLEMENTATION AND RESULTS

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

cacheline L3 cache index

identical for virtual and physical address (in kernel_region)

randomized

PA

 Kernel PA/VA

Kernel Base VA

tag

zero kernel_region base address

=
=

Figure 3.7: Correlation of different memory addresses.

address are randomized in Windows’ ASLR implementation and must be known by
an attacker. Since the PA and VA for bits 30 to 0 are identical in the kernel region,
it is also sufficient to know bits 16 to 12 of the physical address. This bit range
overlaps with the L3 cache index. In other words: if the L3 cache index is known,
then an attacker can tell the virtual base address of the kernel.

We used cache probing to extract parts of the physical address of the system
call handler KiFastCallEntry. The offset from this function to the kernel’s base
address is static and known. If we know the address of this function, then we also
know the base address of the kernel (and HAL).

We performed the following steps for all cache sets i:

1. Execute sysenter with an unused syscall number.
2. Evict cache set i using the eviction buffer.
3. Execute sysenter again and measure the duration.

The unused syscall number minimizes the amount of executed kernel mode code
since it causes the syscall handler to immediately return to user mode with an
error. Step 1 makes sure that the syscall handler is present in the caches. Step
2 tries to evict the syscall handler code from the cache. Step 3 measures if the
eviction was successful. If we hit the correct set i, then the second sysenter takes
considerably longer and from i we can deduce the lower parts of the physical address
of the syscall handler. Along with the address of the kernel region, this yields the
complete virtual address of the syscall handler, and thus the base of the entire kernel
and the HAL.

We performed extensive tests on the machine powered by an Intel i7-870 (Bloom-
field) processor. We executed the cache probing attack 180 times; the machine was
rebooted after each test and we waited for a random amount of time before the
measurements took place to let the system create artificial noise. Figure 3.8 shows
the cache probing measurements. The x-axis consists of the different L3 cache sets
(8, 192 in total) and the y-axis is the duration of the second system call handler in-
vocation in CPU clocks, after the corresponding cache set was evicted. The vertical
dashed line indicates the correct value where the system call handler code resides.
There is a clear cluster of high values at this dashed line, which can be used to
extract the correct cache set index and thus parts of the physical (and possibly

59

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

Figure 3.8: Cache probing results for Intel i7-870 (Bloomfield).

virtual) address. We were able to successfully determine the correct syscall handler
address in each run and there were no false positives. The test is fast and generally
takes less than one second to finish.

Discussion

For successful cache probing attacks, an adversary needs to know the physical ad-
dresses of the eviction buffer, at least those bits that specify the cache set. Fur-
thermore, she somehow has to find out the corresponding virtual address of the
kernel module from its physical one. This problem is currently solved by using large
pages for the buffer, since under Windows those always have the lowest bits set to 0.
Therefore, their first byte always has a cache index of 0 and all following ones can be
calculated from that. However, this method does not work with Sandybridge pro-
cessors, since there we need to know the complete physical address as input to the
hash function that decides on which cache slice an address is mapped. Furthermore,
allocating large pages requires a special right under Windows (MEM LARGE PAGES),
which first has to be acquired somehow. One possible way to overcome this problem
is to exploit an application that already possesses this right.

In case of non-Sandybridge processors, large pages are not needed per se. It
is only necessary to know the physical start address of the eviction buffer. More

60

3.5 IMPLEMENTATION AND RESULTS

generically, it is only necessary to know parts of the physical base address of one
user space address, since this can then be used to align the eviction buffer. Our
experiments have shown that these parts of the physical base address of the common
module ntdll, which is always mapped to user space, is always constant (even after
reboots). Though the concrete address varies depending on the hardware and loaded
drivers and is thus difficult to compute, the value is deterministic.

3.5.2 Second Attack: Double Page Fault

The second attack allows us to reconstruct the allocation of the entire kernel space
from user mode. To achieve this goal, we take advantage of the behavior of the TLB
cache. When we refer to an allocated page, we mean a page that can be accessed
without producing an address translation failure in the MMU; this also implies that
the page must not be paged-out.

The TLB typically works in the following way: whenever a memory access results
in a successful page walk due to a TLB miss, the MMU replaces an existing TLB
entry with the translation result. Accesses to non-allocated virtual pages (i.e., the
present bit in the PDE or PTE is set to zero) induce a page fault and the MMU
does not create a TLB entry. However, when the page translation was successful,
but the access permission check fails (e.g., when kernel space is accessed from user
mode), a TLB entry is indeed created. Note that we observed this behavior only
on Intel CPUs and within the virtual machine. In contrast, the AMD test machine
acted differently and never created a TLB entry in the mentioned case. The double
page fault method can thus not be applied on our AMD CPU.

The behavior on Intel CPUs can be exploited to reconstruct the entire kernel
space from user mode as follows: for each kernel space page p, we first access p from
user mode. This results in a page fault that is handled by the operating system and
forwarded to the exception handler of the process. One of the following two cases
can arise:

• p refers to an allocated page: since the translation is successful, the MMU
creates a TLB entry for p although the succeeding permission check fails.
• p refers to an unallocated page: since the translation fails, the MMU does not

create a TLB entry for p.

Directly after the first page fault, we access p again and measure the time du-
ration until this second page fault is delivered to the process’s exception handler.
Consequently, if p refers to an allocated kernel page, then the page fault will be
delivered faster due to the inherent TLB hit.

Due to the many performance optimizations of modern CPUs and the concurrency
related to multiple cores, a single measurement can contain noise and outliers. We
thus probe the kernel space multiple times and only use the observed minimal
access time for each page to reduce measurement inaccuracies. Figure 3.9 shows

61

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

Figure 3.9: Example of double page fault measurements for an Intel i7-950 (Lyn-
nfield) CPU.

Figure 3.10: Zoomed-in view around 0xa0000000 (Intel i7-950 (Lynnfield) CPU).

62

3.5 IMPLEMENTATION AND RESULTS

measurement results on an Intel i7-950 (Lynnfield) CPU for eight measurements,
which we found empirically to yield precise results. The dots show the minimal
value (in CPU clocks) observed on eight runs. The line at the bottom indicates
which pages are actually allocated in kernel space; a black bar means the page is
allocated. As one can see, there is a clear correlation between the timing values and
the allocation that allows us to infer the kernel memory space. Figure 3.10 shows a
more detailred zoomed-in version around the memory address 0xa0000000.

We developed an algorithm that reconstructs the allocation from the timing val-
ues. In the simplest case, we can introduce a threshold value that differentiates
allocated from unallocated pages. In the above example, we can classify all timing
values below 5, 005 clocks as allocated and all other values as unallocated as indi-
cated by the dashed line. This yields a high percentage of correct classifications.
Depending on the actual CPU model, this approach might induce insufficient results
due to inevitable overlap of timing values and thus other reconstruction algorithms
are necessary. We implemented a second approach that aims at detecting transitions
from allocated to unallocated memory by looking at the pitch of the timing curve, a
straightforward implementation of a change point detection (CPD) algorithm [27].

Figure 3.11 shows the double page fault measurements on an Intel i7-870 (Bloom-
field) processor. It is not possible to use a simple threshold value to tell apart allo-
cated from unallocated pages without introducing a large amount of faulty results.
In the zoomed version in Figure 3.12, one can see that it is still possible to distin-
guish unallocated from unallocated pages. Note that this figure uses lines instead
of dots to stress the focus on transitions from high to low values (or vice versa). We
therefore use a change point detection (CPD) algorithm [27] in this case.

Figure 3.13 shows our CPD algorithm in pseudo code. The kernelspace pages
array holds one address for each kernel space page. The timing vector array returns
a list of the timing measurements for a specific address. If there are x iterations,
then the list is x elements long and contains the values for each iteration. The value
of the threshold variable has to be adjusted for each CPU model, but this can be
done by an attacker beforehand. It is also possible to automatically determine this
value form user mode.

Evaluation Results

We evaluated our double page fault based approach on the three Intel CPUs and the
virtual machine, Table 2 shows a summary of the results. We employed the threshold
algorithm on CPU (1) and the CPD algorithm on platforms (2)–(4). The numbers
shown in the table are the average out of ten runs for each machine. Between each
run, we rebooted the operating system to make sure that the kernel space allocation
varies. We took a snapshot of the allocation with the help of a custom driver before
we started the measurements to obtain a ground truth of the memory layout. Since

63

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

Figure 3.11: Double page fault measurements on Intel i7-870 (Bloomfield) proces-
sor.

Figure 3.12: Zoomed-in view of Figure 3.11.

64

3.5 IMPLEMENTATION AND RESULTS

alloc← []
last vec← []
for all addr in kernelspace pages do

vec← timing vector[addr]
diffs ← []
for all i in 0 to len(vec) do

diffs← diffs ∪ (vec[i]− last vec[i])
end for
diffs ← sort(diffs)
cut← len(diffs)/4
diffs ← diffs[cut . . . len(diffs)− cut]
average← sum(diffs)/len(diffs)
if average < −threshold then
alloc← allocation ∪ true

else
if average > threshold then
alloc← alloc ∪ false

else
alloc← alloc ∪ alloc[len(alloc)− 1]

end if
end if
last vec← vec

end for

Figure 3.13: Pseudo code of our CPD reconstruction algorithm.

65

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

CPU model Correctness Runtime

(1) i7-870 (Bloomfield) 96.42% 17.27 sec (8 it.)
(2) i7-950 (Lynnfield) 99.69% 18.36 sec (8 it.)
(3) i7-2600 (Sandybr.) 94.92% 65.41 sec (32 it.)
(4) VMware on (1) 94.98% 72.93 sec (32 it.)

Table 3.2: Results for double page fault timings.

the allocation might change while the measurements are running, the correctness
slightly decreases because of this effect. Nevertheless, we were able to successfully
reconstruct the state of at least 94.92% of all pages in the kernel space on each
machine. With the help of memory allocation signatures (a concept we introduce
next) such a precision is easily enough to exactly reconstruct the location of many
kernel components.

The average runtime of the measurements varies between 18 and 73 seconds and
is therefore within reasonable bounds. One iteration is one probe of the entire
kernel space with one access per page. As noted above, we empirically found that
more than eight iterations on Nehalem CPUs do not produce better results. For
Sandybridge and VMware, more iterations yielded more precise results, mainly due
to the fact that there was more noise in the timings.

Memory Allocation Signatures

The double page fault timings yield an estimation for the allocation map of the
kernel space, but do not determine at which concrete base addresses the kernel and
drivers are loaded to. However, the allocation map can be used, for example, to
spot the kernel region (i.e., the memory area in which the kernel and HAL are
loaded) due to the large size of this region, which can be detected easily.

One could argue that, since the virtual size of each driver is known, one could find
driver load addresses by searching for allocated regions which are exactly as big as
the driver image. This does not work for two reasons: first, Windows kernel space
ASLR appends most drivers in specific memory regions and thus there is usually no
gap between two drivers (see Section 3.2.1). Second, there are gaps of unallocated
pages inside the driver images as we explain next.

In contrast to the kernel region, Windows drivers are not mapped using large
pages but using the standard 4 KB page granularity. Code and data regions of
drivers are unpageable by default. However, it is possible for developers to mark
certain sections inside the driver as pageable to reduce the memory usage of the
driver. Furthermore, drivers typically have a discardable INIT section, that contains
the initialization code of the driver which only needs to be executed once. All code
pages in the INIT section are freed by Windows after the driver is initialized. Code

66

3.5 IMPLEMENTATION AND RESULTS

allocated

… …

.text .data INIT PAGE

loaded driver image

unallocated

Figure 3.14: Example of an allocation signature.

CPU model Matches Code size

(1) i7-870 (Bloomfield) 21 7,431 KB
(2) i7-950 (Lynnfield) 9 4,184 KB
(3) i7-2600 (Sandybridge) 5 1,696 KB
(4) VMware on (1) 18 7,079 KB
(1) with signatures of (2) 9 2,312 KB

Table 3.3: Evaluation of allocation signature matching.

or data in pageable sections that are never or rarely used are likely to be unallocated
most of the time. Along with the size and location of the INIT section, this creates
a memory allocation signature for each driver in the system. We can search for
these signatures in the reconstructed kernel space allocation map to determine the
actual load addresses of a variety of drivers. Figure 3.14 shows an example of a
driver allocation signature.

We evaluated the signature matching on all three Intel CPUs and the virtual
machine. At first, we took a snapshot of the kernel space with the help of a custom
driver. Then we created signatures for each loaded driver. A signature essentially
consists of a vector of boolean values that tell whether a page in the driver was
allocated (true) or paged-out (false). Note that this signature generation step can be
done by an attacker in advance to build a database of memory allocation signatures.

In the next step, we rebooted the machine, applied the double page fault approach,
and then matched the signatures against the reconstructed kernel space allocation
map. To enhance the precision during the signature matching phase, we performed
two optimizations: first, we rule out signatures that contain less than five transitions
from allocated to paged-out memory to avoid false positives. Second, we require a
match of at least 96% for a signature, which we empirically found to yield the best
results.

The results are shown in Table 3. On machine (1), the signature matching re-
turns the exact load addresses of 21 drivers (including big common drivers such as
win32k.sys and ndis.sys); 141 drivers are loaded in total and 119 signatures were
ruled out because they held too few transitions. Hence only one signature had a

67

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

too low match ratio. All identified base addresses are correct, there are no false
positives. Most of the other drivers could not be located since they are too small
and their signatures thus might produce false positives. The 21 located drivers hold
7, 431 KB of code, which is easily enough to mount a full ROP attack as explained
previously [81, 130]. Similar results hold for the other CPUs.

To assess whether the signatures are also portable across different CPUs, we took
the signatures generated on machine (2) and applied them to machine (1). The op-
erating system and driver versions of both machines are identical. This yields 9 hits
with 2, 312 KB of code. This experiment shows that the different paging behavior
in drivers is not fundamentally affected by differing hardware configurations.

Discussion

Although the double page fault measurements only reveal which pages are allocated
and which are not, this still can be used to derive precise base addresses as we
have shown by using the memory allocation signature matching. Furthermore, the
method can be used to find large page regions (especially the kernel region).

3.5.3 Third Attack: Address Translation Cache Preloading

In the previous section we have described an approach to reconstruct the allocation
map of the complete kernel space. While it is often possible to infer the location of
certain drivers from that, without driver signatures it only offers information about
the fact that there is something located at a certain memory address and not what.
However, if we want to locate a certain driver (i.e., obtain the virtual address of
some piece of code or data from its loaded image), we can achieve this with our
third implementation approach: first we flush all caches (i.e., address translation
and instruction/data caches) to start with a clean state. After that, we preload
the address translation caches by indirectly calling into kernel code, for example
by issuing a sysenter operation. Finally, we intentionally generate a page fault by
jumping to some kernel space address and measure the time that elapses between
the jump and the return of the page fault handler. If the faulting address lies in
the same memory range as the preloaded kernel memory, a shorter time will elapse
due to the already cached address translation information.

Flushing all caches from user mode cannot be done directly since the invlpg and
invd/wbinvd are privileged instructions. Thus, this has to be done indirectly by
accessing sufficiently many memory addresses to evict all other data from the cache
facilities. This is trivial for flushing the address translation and L1 caches, since only
a sufficient number of virtual memory addresses have to be accessed. However, this
approach is not suitable for L2/L3 caches, since these are physically indexed and we
do not have any information about physical addresses from user mode. Anyway, in

68

3.5 IMPLEMENTATION AND RESULTS

practice the same approach as described above works if the eviction buffer is chosen
large enough. We have verified for Windows operating systems that large parts of
the physical address bits of consecutively allocated pages are in successive order as
well. Presumably this is done for performance reasons to optimally distribute the
data over the caches and increase the effectiveness of the hardware prefetcher. As
our experiments have shown, even on Sandybrige CPUs one virtually consecutive
memory buffer with a size twice as large as the L3 cache is sufficient to completely
flush it.

During our experiments we tried to locate certain system service handler func-
tions within win32k.sys. To avoid cache pollution and obtain the best measuring
results, we chose the system service bInitRedirDev, since it only executes 4 bytes
of code before returning. As a side effect, we also located the System Service Dis-
patch/Parameter Tables (SSDT and SSPT) within that module, since these tables
are accessed internally on each service call.

In our implementation we first allocated a 16 MB eviction buffer and filled it with
RET instructions. Then for each page p of the complete kernel space memory (or a
set of selected candidate regions), we performed three steps:

1. Flush all (address translation-, code- and unified) caches by calling into each
cacheline (each 64th byte) of the eviction buffer.

2. Perform sysenter to preload address translation caches.
3. Call into some arbitrary address of page p and measure time until page fault

handler returns.

Evaluation Results

The steps described above have to be repeated several times to diminish the effects
of noise and measuring inaccuracies. It turned out that the necessary amount of
iterations strongly depends on the underlying hardware. Empirically we determined
that around 100 iterations are needed on Nehalem, 60 on AMD, and only 30 on
Sandybridge to reliably produce precise results. Inside the virtual machine, we had
to further increase the number of iterations due to the noise that was generated by
the virtual machine monitor. Nevertheless, by increasing it to 100 (the VM operated
on the Sandybridge processor) this timing technique also worked successfully inside
a virtualized environment.

We learned that the noise could be additionally reduced by taking different ad-
dresses randomly from each probed page for each iteration. In addition, we found
out that using relative time differences was less error-prone than using absolute
values. Therefore, we enhanced our testing procedure by performing the measuring
twice for each page: the first time like shown above and the second time without per-
forming the syscall in between. By calculating the relative time difference between

69

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

0x9624e3c0 0x962c84e0 0x96342600 0x963bc720 0x96436840
virtual address

0

50

100

150

200

250

300

cl
o
ck

s

Figure 3.15: Extract of cache preloading measurements.

both timing values, we were able to measure the speedup of address translation
caches for our particular scenario. Figure 3.15 shows an extract of our measuring
results for the Intel i7-950 (Lynnfield) CPU. The x-axis displays the probed virtual
address, while the y-axis displays the relative time difference in clock cycles. The
two vertical lines indicate those locations where the searched system service handler
function resp. the SSDT/SSPT were located. As one can easily see those memory
regions have much higher timing difference values than the others. Though there
was a lot of noise within the data, our algorithms were able to locate those regions
correctly on all of our testing environments.

While this method only reveals the memory page of the searched kernel module,
it is still possible to reconstruct its full virtual address. This can be achieved by
obtaining the relative address offset of the probed code/data by inspecting the
image file of the module. As the measuring operates on a page granularity, it is
best suited to locate kernel modules that reside in regular pages. Nevertheless, with
the described difference technique, also large page memory regions can be identified

70

3.6 MITIGATION APPROACHES

that contain certain code or data. Obviously, the exact byte locations within such
regions cannot be resolved and, therefore, we have used it to locate win32k.sys in
our experiments. Due to its size, this module is sufficient to perform arbitrary ROP
attacks [81, 130].

Discussion

Our third proposed method has no remarkable limitations. However, depending on
the size of the probed memory range and the amount of necessary test iterations, it
may take some time to complete. The probing of a 3 MB region (this is the size of
win32k.sys) for one iteration takes around 27 seconds. Therefore, if an attacker has
employed the double page fault method to identify an appropriate candidate region
and then performs 30 iterations on a Sandybridge processor, it takes 13 minutes
to perform the complete attack. However, since the relative offset of the searched
kernel function can previously be obtained from the image file, the probed memory
region can be reduced drastically, enabling to perform the test in a minute or less.
If the location of candidate regions is not possible, our attack will still work but
take longer time. Furthermore, the technique operates on page granularity. Hence,
drivers residing in large pages can be located, but their exact byte offset cannot be
identified without additional techniques.

3.6 Mitigation Approaches

Since the methods presented in the previous section can be used to break current
ASLR implementations, mitigation strategies against our attacks are necessary. To
that end, there are several options for CPU designers and OS vendors.

The root cause of our attacks is the concurrent usage of the same caching facilities
by privileged and non-privileged code and data, i.e., the memory hierarchy is a
shared resource. One solution to overcome this problem would be to split all caches
and maintain isolated parts for user and kernel mode, respectively. Obviously, this
imposes several performance drawbacks since additional checks had to be performed
in several places and the maximum cache size would be cut in half for both separate
caches (or the costs increase).

A related mitigation attempt is to forbid user mode code to resolve kernel mode
addresses. One way to achieve this is to modify the global descriptor table (GDT),
setting a limit value such that the segments used in non-privileged mode only span
the user space. However, doing so would render some CPU optimization techniques
useless that apply when the flat memory model is used (in which all segments span
the complete memory). Furthermore, the complete disabling of segmentation on
64-bit architectures makes this mitigation impossible. Another option would be to
suppress the creation of TLB entries on successful address translation if an access

71

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

violation happens, like it is done with the tested AMD CPU. Nevertheless, the
indirect loading of kernel code, data, or address mappings through system calls still
cannot be avoided with this method.

Current ASLR implementations (at least under Windows) do not fully randomize
the address space, but randomly choose from 64 different memory slots. By utilizing
the complete memory range and distributing all loaded modules to different places,
it would be much harder to perform our attacks. Especially when dealing with a
64-bit memory layout, the time needed for measuring is several magnitudes higher
and would increase the time needed to perform some of our attacks. Nevertheless,
scattering allocated memory over the full address range would significantly degrade
system performance since much more paging structures would be needed and spatial
locality would be destroyed to a large extent. Furthermore, we expect that our
double page fault attack even then remains practical. Due to the huge discrepancy
between the 64-bit address space and the used physical memory, the page tables are
very sparse (especially those one higher levels). Since page faults can be used to
measure the depth of the valid page tables for a particular memory address, only a
very small part of the complete address space actually has to be probed.

We have proposed a method to identify mapped kernel modules by comparing
their memory allocation patterns to a set of known signatures. This is possible
because parts of these modules are marked pageable or discardable. If no code
or data could be paged-out (or even deallocated) after loading a driver, it would
be impossible to detect them with our signature approach. Again, applying this
protection would decrease the performance, because unpageable memory is a scarce
and critical system resource.

One effective mitigation technique is to modify the execution time of the page
fault handler: if there is no correlation between the current allocation state of a
faulting memory address and the observable time for handling that, the timing
side channel for address translation vanishes. This would hinder our attacks from
Sections 3.5.2 and 3.5.3. We have implemented one possible implementation for
this method and verified that our measuring no longer works. To that end, we have
hooked the page fault handler and normalized its execution time if unprivileged
code raises a memory access violation on kernel memory. In that case we enforce
the execution to always return back to user mode after a constant amount of clock
cycles. For that purpose we perform a bunch of timing tests in advance to measure
the timing differences for memory accesses to unallocated and allocated (for both
regular and large) pages. Inside the hooked page fault handler we delay execution
for the appropriate amount of time, depending on the type of memory that caused
the exception. Since this happens only for software errors – or due to active probing
– there is no general impact on system performance. Note that modifying the page
fault handler renders our attack infeasible, but there might be other side channels
an attacker can exploit to learn more about the memory layout of the kernel.

72

3.7 CONCLUSION AND FUTURE WORK

Even with normalizing the page fault handling time, our cache probing attack
remains feasible. However, cache probing has one fundamental shortcoming: it only
reveals information about physical addresses. If the kernel space randomization is
only applied to virtual addresses, then knowing physical addresses does not help in
defeating ASLR.

The kernel (or an underlying hypervisor) may also try to detect suspicious access
patterns from usermode to kernelspace, for example by limiting the amount of user-
mode page faults for kernel space addresses. Such accesses are necessary for two
of the previously described methods. While our current implementations of these
attacks could be detected without much effort that way, we can introduce artificial
sleep times and random access patterns to mimicry benign behavior. In the end,
this would lead to an increased runtime of the exploits.

In case the attacks are mounted from within a VMM, the hypervisor might also
provide the VM with incorrect information on the true CPU model and features,
for example by modifying the cpuid return values. However, this might have unde-
sirable side-effects on the guest operating system which also needs this information
for optimizing cache usage. Furthermore, the architectural parameters of the cache
(such as size, associativity, use of slice-hashing, etc.) can be easily determined from
within the VM using specific tests.

Finally, the most intuitive solution would be to completely disable the rdtsc

instruction for usermode code, since then no CPU timing values could be obtained
at all. However, many usermode applications actually rely on this operation and,
hence, its disabling would cause significant compatibility issues.

3.7 Conclusion and Future Work

In this chapter, we have discussed a generic, timing-based side channel attack against
kernel space ASLR. Such side channels emerge from intricacies of the underlying
hardware and the fact that parts of the hardware (such as caches and physical
memory) are shared between both privileged and non-privileged mode. We have
presented three different instances of this methodology that utilize timing measures
to precisely infer the address locations of mapped kernel modules. We successfully
tested our implementation on four different CPUs and within a virtual machine and
conclude that these attacks are feasible in practice. As a result, a local, restricted
attacker can infer valuable information about the kernel memory layout and bypass
kernel space ASLR for proprietary Windows operating systems.

As part of our future work, we plan to apply our methods to other operating
systems such as Mac OS X and more kinds of virtualization software. We expect
that they will work without many adoptions since the root cause behind the attacks
lies in the underlying hardware and not in the operating system. We further plan

73

CHAPTER 3: PRACTICAL TIMING SIDE CHANNEL ATTACKS AGAINST
KERNEL SPACE ASLR

to test our methods on other processor architectures (e.g., on ARM CPUs to attack
ASLR on Android [34]). Again, we expect that timing side channel attacks are
viable since the memory hierarchy is a shared resource on these architectures as
well.

Another topic for future work is the identification of methods to obtain the phys-
ical address of a certain memory location from user mode. One promising method
would be to identify certain data structures that are always mapped to the same
physical memory and use the technique of cache probing with them. First exper-
iments have shown that certain parts of mapped system modules are constant for
a given system (e.g., the physical base address of ntdll.dll). Another possibil-
ity is to instrument the characteristics of the Sandybridge hash function to locate
colliding memory locations and infer the bits of their physical address.

74

4
Providing Control Flow Integrity for
Proprietary Mobile Devices

4.1 Introduction

Ever since the Morris worm emerged as the first large scale Internet security incident,
researchers have been aware of the possible consequences that software vulnerabili-
ties pose to Internet security. More than two decades later, software vulnerabilities
still constitute a major security problem and are subject to intense research in
the academic sector. As a consequence, various different defense mechanisms have
been proposed and implemented that aim at mitigating vulnerability exploitation
in a preferably generic way. By doing so, software vulnerabilities may still exist
but they cannot be exploited because the targeted program is terminated before
malicious attackers can make the system execute arbitrary operations.

Software exploits usually work by compromising the control flow of the vulnerable
application at some stage of the execution. There exists a multitude of starting
points for an attacker to divert the control flow. Traditionally, the first software
exploits (such as the Morris worm) abused buffer overflows on either the stack or
the heap [12, 13]. More advanced methods take advantage of errors in the handling
of format string functions [71], integer overflows [32], or use-after-free bugs [10]. On
a more abstract level, all these vulnerabilities lead to a diversion of the control flow
in the targeted process to an attacker-controlled arbitrary memory location. This
eventually allows the attacker to execute arbitrary computations in the context of
the exploited process.

Despites massive efforts to come to grips with the problem of software vulner-
abilities, researchers constantly reveal new holes in security critical applications.
This is partly still caused by the prevalent use of unsafe low-level programming
languages (such as C) that may encourage developers to unknowingly create unsafe
code. However, low-level programming languages are still an essential part of pro-

75

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

gram development because of compatibility issues and since they emit significantly
faster code than safe languages do.

One promising approach to mitigate software exploits makes use of the fact
they, at some stage, inherently divert the application’s control flow to an attacker-
controlled memory location. This invalid transition can be regarded as a violation
of the set of valid and allowed control flow transitions that can occur in the exe-
cution of a program. Frameworks that ensure control flow integrity (CFI) [2] can
successfully detect and thwart control flow hijacking attacks and thus almost all
kinds of software exploits. CFI is a generic approach and – if implemented correctly
– constitutes an efficient protection. It is even possible to detect highly sophisti-
cated attacks such as ROP exploits that bypass W ⊕ X based protection schemes.
The approach is also flexible and more fine-grained than similar approaches such
as ASLR since it works on the control flow transitions level within the protected
program. Note that ASLR systems can also suffer from an insufficient entropy or
from data leakage issues, as described in Chapter 3. The flexibility of the approach
allows CFI frameworks to be used as the foundation for other analysis or protection-
based schemes. In fact, we extended our framework to support the specification of
individual API policy rules per application to greatly increase the user’s privacy in
an iOS system.

CFI frameworks must construct the so-called CFG in advance. This is performed
statically once and yields a graph (usually one per subroutine) that contains all
the legitimate code paths that the instruction pointer may follow during execution.
The CFG is passed on to the dynamic CFI engine when the secured application is
started, which then takes the role of a supervisor at runtime by comparing control
flow transitions against the legitimate paths. If at some point a CFG violation is
detected, the program is terminated so that any exploitation attempt is shut down
before it can do damage. The CFI runtime engine has to be implemented wisely
as it is the only part of the process’s code base that must be trusted at runtime.
Furthermore, CFI naturally comes with a significant performance penalty as every
transition requires an additional check. One major requirement for a CFI engine
thus is to achieve reasonable performance so that the slow down does not affect the
end user in any negative way.

One problem of many CFI solutions is that they rely on the presence of the source
code of the respective protected program. This facilitates the detection of control
flow transitions in the code during the compilation stage, since a variety of high-level
abstractions, such as the abstract syntax tree (AST) of the program, are available.
Relevant program flow transitions and valid target labels can be easily extracted
using this meta information. As opposed to this, the final binary representation
contains close to no additional meta information apart from the plain program code
and data. This also means the developing a CFI solution for proprietary systems
comes with additional challenges that must be tackled appropriately. It is also

76

4.1 INTRODUCTION

easier to introduce the actual CFI check code into existing source code during the
compilation phase rather than providing a runtime library that modifies existing
code. Doing so is highly involved and requires rewriting many parts of the actual
program code without breaking any semantics.

Abadi et al. developed a CFI framework for x86-based processors on Windows
operating systems [2]. At the time of writing, there exists no comparable framework
for smartphone devices, which have been gaining widespread popularity among users
recently. It is unclear as to how an existing proprietary CFI approach can be ported
to mobile devices as they run on fundamentally different hardware architectures than
traditional desktop/server systems.

This chapter discusses the design and implementation of the runtime engine of
the Mobile CFI (MoCFI) framework for iOS operating systems. MoCFI is tailored
to the ARM architecture which is the prevalent CPU architecture on mobile devices.
At the time of writing, we are the first to develop such a framework for this spe-
cific architecture in particular, but also proprietary mobile devices in general. We
chose to target iOS as an operating system for two reasons: first, applications are
developed using Apple’s Objective-C programming language, which compiles to na-
tive code and has an unsafe typing system. This makes iOS applications especially
susceptible to control flow attacks. Second, iOS is a proprietary system. Note that
in fact, some parts of the OS X operating system that iOS relies on are available
as open source [16]. However, the entire application runtime system that is built
around the App Store is proprietary.

4.1.1 Contributions

In this chapter, we describe the design and implementation of the runtime com-
ponents of the MoCFI framework. We had to develop new technical approaches
because of the proprietary nature of the targeted iOS operating system. We thus
cannot rely on compile-time information and have to modify the binary instead of
the source code to insert our checks. Furthermore, MoCFI is the first CFI framework
for mobile devices, which are typical developed for RISC ARM processors which can
be substantially different to x86 CISC processors. We evaluated our framework us-
ing several popular apps and show that the performance overhead remains within
reasonable bounds.

MoCFI was also extended in a second tool called PSiOS which provides fine-
grained policy enforcement for iOS devices. PSiOS allows the user to specify in-
dividual policy rule sets for specific applications. The tool greatly enhances user
privacy in a proprietary environment which otherwise grants extensive access to
privacy-critical resources to every application. Similar solutions have only been
proposed for open source platforms such as Android.

This chapter is based on previous publications together with Davi, Dmitrienko,

77

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

Egele, Fischer, Holz, Nürnberger, and Sadeghi [50], and Werthmann, Davi, Sadeghi,
and Holz [154].

4.1.2 Outline

The chapter is structured in the following way: at first, we introduce CFI, discuss the
related work in this area, and then provide the technical background with regards
to iOS and the ARM architecture in Section 4.2. We then proceed to describe
the design of our prototype in Section 4.4 and the corresponding implementation
details in Section 4.5. Section 4.6 discusses possible limitations of our approach and
how they can be addressed. The evaluation is provided in Section 4.7. Section 4.8
presents the policy enforcement extension PSiOS and Section 4.9 concludes the
chapter and discusses possible future work.

4.2 Technical Background

In this section, we provide the necessary technical background. We first explain the
concept of CFI and then proceed to present various technical aspects of iOS and
the ARM architecture.

4.2.1 Control Flow Integrity

CFI is a security concept in which all control flow transitions of executed programs
are being monitored and validated against a set of allowed transitions. Typically,
the CFI engine holds a list of allowed target transitions for each indirect control
flow transition within the code and checks whether the execution follows along
these allowed transitions. If at any point this is not the case, a control flow vi-
olation is detected which is equivalent to a security violation. As a consequence,
the execution is usually stopped or other corresponding measures are taken. Every
control flow violation is considered as a malicious exploitation attempt from an at-
tacker or program bug, as the program code would never produce a violation under
normal circumstances. Since almost every software vulnerability exploit relies on
attempting a controlled invalid control flow transition at some stage, such exploits
are successfully thwarted by CFI solutions.

The set of valid control flow transitions is dictated by the CFG of the program.
The CFG contains all valid transitions of the code. It is typically constructed
once beforehand in a static analysis. The CFG can be build either during the
compilation phase (thus relying on the presence of the source code of the protected
program/library) or using only the compiled binary code. The former option is
easier to implement due to the availability of high level program information which
can greatly facilitate the CFG construction. The latter option is more involved and

78

4.2 TECHNICAL BACKGROUND

can also be more error-prone but allows to even protecting proprietary applications
for which no source code is available.

Consequently, CFI solutions performs two major individual steps: (1) the con-
struction of the CFG and (2) the CFI enforcement at runtime. In case of binary CFI
solutions, the CFG construction involves disassembling the program and correctly
identifying all control flow transition instructions and their legitimate branch target
addresses. Special care has to be taken concerning the correctness of the disassem-
bly. Code for CISC architectures such as x86/x64 is notoriously cumbersome to
disassemble due to the presence of unaligned instructions and the diverse instruc-
tion set. In contrast, RISC architectures emit code that is easier to disassemble
since all instructions are of the same size and thus aligned in memory. The MoCFI
framework that we present in this thesis operates on ARM CPUs which is a typical
RISC architecture.

In case of a successful disassembly, the next step is to identify all control flow
instructions in the protected code. To that end, the code is typically divided into
basic blocks (BBs). By definition, a BB is a contiguous code portion that has exactly
one entry point and exactly one exit point. As a consequence, the program will
never branch to another location while executing instructions within (i.e., between
the first and last BB instruction) the BB and only the last instruction of the BB
constitutes a control flow transition. Thus, once the basic blocks of the code have
been extracted, only the last instruction of each BB is relevant for the CFG analysis.

Control flow transitions at the end of each BB can be either static or dynamic.
Static transitions have the target address hardcoded in the instruction encoding.
Branches (either unconditional or conditional) to a static memory address are typ-
ical examples. In case the operating system provides the W ⊕ X security property
and thus prevents overwiting of code instructions, CFI frameworks can ignore static
branches within the protected code since the target address is hardcoded in the
instruction which cannot be overwritten by an attacker. The iOS operating system
provides such a security protection. This means that MoCFI only has to consider
dynamic control flow transitions. Typical examples of such transitions are dynamic
branches (e.g., for using a function pointer that is only known at runtime or for im-
plementing switch statements) and subroutine returns. Please note that for returns,
it is difficult to determine valid control flow transitions in the static analysis since
the return addresses are highly dynamic by nature. There are several approaches to
address this issue. We chose to implement a shadow stack at runtime, as explained
in Section 4.5.

Figure 4.1 shows an exemplary CFG with five different basic blocks. The con-
necting edges indicate that BB1 can reach BB2. Similarly, BB2 may transition to
BB3 and BB4, and BB3 and BB4 may jump to BB5 at runtime. Each basic block
contains and arbitrary set of instructions. The only restriction is that none of the
instructions may lead to a control flow transition other than the subsequent instruc-

79

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

BB1

BB2

BB3 BB4

BB5

entry
instr 1
…
instr n
exit

BB layout

Shellcode

ROP Gadgets(2b) Code Reuse

(2a) Code Injection

New Code

Existing Code

(1) Mounts Exploit

Second Stage

(3) Download Next Stages

Figure 4.1: Schematic overview of control flow attacks.

tion. Any further semantics of each BB are irrelevant for CFI guarantees and are
thus not considered by the framework.

The figure also shows how an attacker could redirect the control flow transition
after exploiting a vulnerability at the end of BB4 (1). The two dashed lines (2a)
and (2b) constitute two different kinds of exploit techniques: The former method
(2a) jumps into an attacker supplied shellcode that was injected into the memory
space previously. These kind of attacks are thwarted by the W ⊕ X protection
on iOS. More sophisticated attacks, such as (2b), thus try to abuse existing code
portions in the exploited process’s address space. After that, an attacker usually
downloads second stage code and data from an external server as indicated by (3).
CFI protects against both types of exploits since both control flow transitions at
the end of BB4 constitute CFG violations that are detected by the runtime engine.

The second part of a CFI solution is the runtime engine that monitors the ex-
ecution of the protected program and validates occurring control flow transitions
against the rules defined by the CFG. Binary CFI frameworks usually do this by in-
serting checks at code places that otherwise hold control flow transitions. Therefore,
the code at these specific locations is rewritten so that execution is diverted into a
CFI validation routine. In the following, we will call every control flow transition
instruction that has to be rewritten a check site. The instruction that overwrites
the check site to insert the check to the validation routine is called dispatcher in-
struction. This routine usually resides in a dedicated dynamic library that holds the
CFI runtime engine. The rewriting happens at the very beginning of the process
execution before any protected code is executed.

80

4.2 TECHNICAL BACKGROUND

4.2.2 ARM Architecture

ARM features a 32 bit processor and sixteen general-purpose registers r0 to r15,
where r13 is used as stack pointer (sp) and r15 as program counter (pc). Fur-
thermore, ARM maintains the so-called current program status register (cpsr) to
reflect the current state of the system (e.g., condition flags, interrupt flags, etc.).
In contrast to Intel x86, machine instructions are allowed to directly operate on the
program counter pc (EIP on x86).

In general, ARM follows the Reduced Instruction Set Computer (RISC) design
philosophy, e.g., it features dedicated load and store instructions, enforces aligned
memory access, and offers instructions with a fixed length of 32 bits. However,
since the introduction of the ARM7TDMI microprocessor, ARM provides a second
instruction set called THUMB which usually has 16 bit instructions, and hence, is
suitable for embedded systems with limited memory space.

The ARM architecture procedure call standard (AAPCS) document specifies the
ARM calling convention for function calls [22]. In general, a function can be called
by a BL (Branch with Link) or BLX (Branch with Link and eXchange) instruction.
BLX additionally allows indirect calls (i.e., the branch target is stored in a register),
and the exchange (“interworking”) from ARM to THUMB code and vice versa.
Both instructions have in common that they store the return address (which is
simply the instruction succeeding the BLX/BL) in the link register lr (r14). In
order to allow nested function calls, the value of lr is usually pushed on the stack
when the called function is entered.

Function returns are simply accomplished by loading the return address to pc.
Any instruction capable of loading values from the stack or moving lr to pc can be
used as return instruction. In particular, ARM compilers often use “load multiple”
instructions as returns meaning that the instruction does not only enforce the re-
turn, but also loads several registers, e.g., POP {R4-R7,PC} loads R4 to R7 and the
program counter with new values from the stack.

4.2.3 Apple iOS

Apple introduced iOS in 2007 as the mobile counterpart of its desktop operating
system Mac OS X. It is a proprietary closed source operating system that runs on
all of Apple’s mobile devices including iPhones, iPads, and iPods. Currently, iOS
only supports ARM based processors as all mobile Apple devices exclusively use
this architecture. Please note that, since iOS is heavily based on Mac OS X, both
operating systems partly share the same source code base. Parts of the Mac OS X
kernel, and therefore also parts of iOS, are available as open source software [16].
However, many security relevant features implemented in iOS are not part of the
publicly available source code. iOS is still a proprietary closed platform: third party

81

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

software may only be installed using the Apple App Store, which yields Apple full
control over which application can be used by users. Every App Store application
goes through an automatic review process before it can be made available in the
App Store [15]. This enforcement is guaranteed by using binary signing: every
application has to be signed by Apple before it can be executed on an iOS device.

In terms of software security, the App Store signing process provides a barrier
for malware since it is at least unlikely that obvious malicious programs will be
available through the App Store. The signature can also be revoked in retrospect
by Apple. However, this does not provide any additional security against malicious
attackers exploiting software vulnerabilities in benign applications. Therefore, Ap-
ple introduced several additional software security schemes which we explain in the
following.

The previously discussed W ⊕ X memory protection technique has been im-
plemented since iOS version 2. As a consequence, memory regions can never be
both executable and writable which thwarts the injection and execution of ma-
chine instruction-based shellcode during an exploit. Conventional exploits injecting
shellcode on to the stack (or the heap) [12] are thus not viable on iOS. It is note-
worthy to mention that the W ⊕ X implementation of iOS is significantly stronger
than most similar protections of other operating systems due to the presence of
an additional feature called code signing enforcement (CSE) [167]. CSE prevents
applications from dynamically allocating executable memory unless its signature
includes a special entitlement (as explained later on in this section). On a techni-
cal level, applications thus may not call the memory allocation function mprotect

using the PROT_EXEC flag. The primary idea of CSE is to prevent applications from
dynamically downloading new code at runtime and executing it, thus undermin-
ing the application review process which only covers static application code. As
a side effect, CSE also effectively prevents the use of multi-stage exploits that use
an initial return-to-libc or ROP stub to download a second traditional shellcode.
However, it does not prevent the execution of full ROP shellcode. Apple still has
the possibility to grant special applications a so-called entitlement (which is part of
the application’s signature) that allows the use of dynamically allocated code. For
example, applications that incorporate just in time (JIT) compilers, such as Apple’s
web browser Safari, must include such an entitlement. The bottom line also is that
CFI solutions on iOS do not have to cope with dynamically allocated code.

Another security building block of iOS is the use of the Stack Smashing Protec-
tor (SSP). SSP protects against stack-based buffer overflows by introducing stack
canaries in the pro- and epilogs of compiled subroutines, as described in Section 4.3.
Moreover, SSP features bounds checking for selected critical functions (like memcpy

and strcpy) to ensure that their arguments will not lead to stack overflows. SSP
only protects stacks and does not affect other memory allocation facilities such as
the heap manager.

82

4.2 TECHNICAL BACKGROUND

Starting from iOS v4.3, ASLR randomizes the base addresses of loaded system
libraries and other memory areas (such as stack and heap). However, Apple’s im-
plementation has proven to be particularly inconsequent and thus vulnerable. For
example, the base image of the application is not randomized. This usually allows
to mount arbitrary ROP attack despite the presence of ASLR on system libraries.
Schwartz et al. [130] showed that typically a few kilobytes of code are sufficient.

A recent extension of the iOS operating system is the introduction of the App
Sandbox [14]. The App Sandbox allows developers to assign and revoke certain
access permissions to their applications. The system thereby works at the gran-
ularity of entitlements. Entitlements are security capabilities that are determined
at compile time and incorporated into the signature of the application. Examples
of typical App Sandbox entitlements are access to certain folder such as the music
folder, access to hardware devices such as camera, and access to personal databases
such as the address book. The combination of entitlements and sandboxing allow
containing the damage of an exploited application. However, many applications
hold a variety of different entitlements by default. Moreover, the entitlements are
enforced by the signature which cannot be modified in hindsight. App developers
may choose to apply for a temporary excception entitlement that disables the App
Sandbox entirely. Apple therefore lists a number of app behaviors and use cases
which are incompatible with the App Sandbox and thus need an exception [21].

4.2.4 Objective-C

Almost all iOS applications are written in the object-oriented programming lan-
guage Objective-C. The inherent structure of this language has several implications
on the design and implementation of our framework. In this section, we shed light
on the technical background of Objective-C.

The Objective-C programming language extends standard ANSI C and supports
the same basic syntax. Objective-C provides a syntax for defining classes and meth-
ods, as well as other constructs that promote dynamic extension of classes. One
outstanding characteristics of Objective-C is that all object processing related tasks
involve heavy use of a runtime system [17]. This runtime sytem is implemented
in several shared libraries and plays a pivotal role in the execution of Objective-C
applications.

One of the key Objective-C peculiarities is the method dispatch system. In
Objective-C, messages are the equivalent of method calls in C++/Java. In order to
call a method in an object or class, the system dispatches a message through the
runtime system and does not call the method directly. Every message is dispatched
using a dedicated runtime system function called objc msgSend. The general layout
of an Objective-C message in the Objective-C source code looks as follows:

[object method : arg1 param name1 : arg2 . . . param nameN−1:argN]

83

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

The targeted object is called the receiver and the method signature that consists of
the method and parameters names is called the selector. In conclusion, an Objective-
C message consists of the receiver object, the selector, and the argument values.

Dynamic Binding

One of the key aspects of the runtime implementation of Objective-C is that mes-
sages are compiled to a call to the generic message dispatching routine objc msgSend,
which resides in one of the shared libraries of the Objective-C subsystem. This tech-
nique is called dynamic binding. Thus every object message, including messages be-
tween application internal objects, is implement as an objc msgSend call. Receiver,
selector, and argument values are passed as arguments to this generic function.

Consider the following Objective-C message example:

[scanner setScanLocat ion : 2]

As explained above, scanner constitutes the receiver object, SetScanLocation is
the selector, and the only passed argument is a static value of 2. This message is
translated by the compiler into the following piece of ARM assembler:

MOVS R2, #2

LDR R0 , =(selRef_setScanLocation_ - 0x41CA)

LDR R1 , [R0]

LDR R0 , [SP , #0x3C+var_1C]

BLX _objc_msgSend

The receiver is passed as the first argument in r0. In our case, it is a local
variable referenced through the stack pointer sp. The second parameter is the com-
piled selector. Every selector is assigned a compiled selector of the type SEL that is
registered to the runtime system at application load time. Compiled selectors are
typically stored within the application binary in a specific section that is described
by the Mach-O headers. The runtime system then only works with compiled se-
lectors to refrain from parsing selector strings, which would be a time-consuming
task.

Dynamic binding exacerbates the implementation of a sound CFI solution: at-
tackers may be able to modify the target object or selector parameters and thereby
perform invalid control flow modifications to unexpected objects and methods. This
may eventually lead to the execution of arbitrary attacker-controlled computations.
Naive CFI solutions will not detected this since the transition occurs inside the
Objective-C runtime library.

We added support for dynamic binding to MoCFI as this is an especially impor-
tant topic since almost all applications use the Objective-C API. Thus, the majority
of function calls within iOS applications are typically objc msgSend calls. We track
the correct object types and selectors during the static analysis. Our runtime engine

84

4.3 RELATED WORK

later handles these messages and ensures that valid objects and selectors are being
used by the application. A similar approach was already followed by some existing
analyzers [57, 53]. However, these tools only work statically.

4.3 Related Work

In this section, we discuss the relevant related work in the domain of control flow
integrity solutions. At first, we discuss several security policy enforcement frame-
works, since they are related to CFI. We then present several exploit mitigation
solutions that employ CFI at some stage. Finally, we also discuss orthogonal defense
mechanisms that strive for similar goals as CFI.

Security Policy Enforcement

The underlying principle of monitoring control flow has originally been employed to
enforce execution policies on targeted applications. Such systems do not provide the
comprehensive security guarantees of control flow integrity solutions, which monitor
every control flow transition in the target. However, the principle of security policy
enforcement is still very similar to CFI.

Schneider [128] introduced the general concept of execution monitoring (EM) for
enforcing security policies on targeted code. His paper presents a formal characteri-
zation of EM enforcement mechanisms, an automata-based formalism for specifying
policy rules, and discusses how this security automata can be used for policy en-
forcement. By definition, CFI solutions do not fall under the category of EMs since
they typically modify the target application’s code, which is not allowed for EM
enforcements. Apart from that, both approaches do strive for the same goals.

SASI [59] is a reference monitor developed by Erlingsson and Schneider that also
enforces security policies. The framework was implemented for both the x86 and
Java JVML platform. Although SASI works on the machine level, the x86 im-
plementation still relies on the assembler output of the gcc compiler in the last
compilation step. The engine therefore makes assumptions about the structure of
the assembler output which only apply to code emitted by the gcc compiler. There-
fore, the framework cannot be applied generically to proprietary binary programs
since these might be transformed into binary code using various compilers.

A similar system called Naccio [63] was introduced by Evans and Twyman. Naccio
is a framework that allows the specification and enforcement of security policies
to place arbitrary constraints on resources. It uses code rewriting to insert the
check code. The Java VM as well as the Windows Win32 platform are supported.
However, in case of the latter Naccio only supports the somehow obscure DEC
Alpha CPU architecture whose development was phased out in 2004.

85

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

Polymer [28] is another security policy framework that redirects security-sensitive
operations to a validation routine which then verifies the operation against a list of
pre-defined policies. The system provides a sophisticated policy specification system
in which policy rules can be arranged in hierarchies. In order to insert the policy
checks, the application code is rewritten at runtime. Polymer supports Java VM
applications.

Exploit Mitigation

The first work that introduced the concept of control flow integrity for the purpose
of mitigating software vulnerability exploitation was presented by Kiriansky et al.
as program shepherding [96]. Their system provides three buildings blocks that
ensure that shepherding can

• restrict execution privileges depending on origins,

• restrict control transfer based on instruction class, source, and target, and

• guarantee that inserted check points will never be bypassed by the target code.

The first point ensures that malicious code cannot conceal itself as data rather
than code. Note that this technique has become obsolete by the recent introduction
of W ⊕ X protection schemes in operating systems, which do not permit data to
be executable. The second building block represents the typical core principals
of control flow integrity, while the last point ensures that the system cannot be
outsmarted by a malicious attacker. The authors implemented their approach in a
reference system that is built on top of the x86 dynamic instrumentation platform
DynamoRIO [24], the framework thus only runs on x86 architectures. Therefore,
the target code is instrumented and check code is inserted at appropriate check
sites during the instrumentation – no source code access is required. In order to
achieve reasonable performance, the system makes aggressive use of caching on the
BB level to instrument reoccurring BBs as rarely as possible. Please note that the
paper follows a different approach than MoCFI. Instead of using instrumentation,
we rely on binary rewriting which is a less complicated and faster approach.

Abadi et al. [2] introduced the term control flow integrity (CFI) for exploit miti-
gation. The authors provide a general formal foundation of the concept of CFI and
also present a practical implementation for x86 Windows systems that operates on
top of the instrumentation engine Vulcan [56]. The framework does not rely on
source code access and can be integrated into proprietary software systems. How-
ever, it does require the presence of debug information that is generated during the
compilation process and is typically stripped from final release versions.

86

4.3 RELATED WORK

As pointed out by Abadi et al., CFI can also serve as a supplementary measure
to secure higher-level protection schemes. For example, it can ensure the invulner-
ability of software fault isolation (SFI) [149] systems against malicious attackers
by protecting security-critical components in the framework from being bypassed
or tampered with. One example of this is XFI [3], which extends a CFI engine to
allow for additional integrity constraints on memory accesses.

Recent work has employed CFI to harden security-critical system components
such as hypervisors. For example, HyperSafe [150] is a system that protects x86
hypervisors by enforcing lifetime code and control flow integrity of the hypervisor
code. The framework constructs the CFG and inserts runtime checks to verify the
validity of control flow transitions. HyperSafe requires access to the hypervisor
source code and makes some simplifying assumptions in validating valid return
addresses for subroutine calls which cannot be transferred to the domain of MoCFI.

Orthogonal Defenses

Both the academic and private sector have developed various different defense mech-
anisms independent on CFI solutions. These systems eventually strive for the same
goal: to mitigate the exploitation of software vulnerabilities within application code.
One technique that has received widespread adoption into many common compiler
frameworks is the concept of stack canaries. StackGuard [47] and StackGhost [68]
are compiler modifications that push a randomly generated number (the so-called
stack canary) on the stack in the prolog of each subroutine. Before the subroutine
returns, the epilog checks whether the exact same random number is still present
on the stack. If a buffer overflow occurred in the meantime that targets return
addresses on stack, then this random number is bound to be overwritten by the
exploit too. Since the attacker cannot know the value of the stack canary before-
hand, another value will be written to the stack. Consequently, StackGuard detects
this modification and triggers a security violation before any malicious code can
be executed. Stack canaries have, among others, been implemented in Microsoft’s
Visual Studio compilers, the GCC tool chain and Apple’s Clang compiler. The con-
cept of canaries has also been ported to other data structures such as heap objects.
While they constitute an efficient hurdle to thwart software exploits, stack canaries
can only protect against buffer overflow exploits. The approach also fails to detect
overwriting of local function pointers since these are located below the canary on
the stack and thus cannot be protected.

RAD [41] is a compiler extensions that protects against stack-based overflows by
outsourcing return addresses to a dedicated and specially protected stack. Point-
Guard [48] encrypts pointer values and only decrypts them at runtime as soon as
they are loaded into CPU registers. Both approaches postulate modifications in the
compiler and thus require recompilation to apply the protection. Furthermore, they

87

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

introduce a non-negligible performance overhead.
ASLR is a scheme that leverages the fact that attackers lack the knowledge of

the concrete memory layout of the exploited target process. By randomizing the
loading addresses of the application and all loaded libraries, exploitation attempts
are thwarted since malicious code can never be executed unless concrete or roughly
estimated memory addresses are known. Chapter 3 shows that ASLR, in certain
circumstances, can be prone to side channel attacks. Furthermore, shortcomings in
ASLR implementations such as data leakages [91] or insufficient randomization [134]
can undermine the entire approach.

Another protection scheme that has found widespread adoption is the W ⊕ X
principle (also called Data Execution Prevention (DEP)). W ⊕ X enforces that
memory can never be both writable and executable. The idea behind is to prevent
attackers from injecting and subsequently executing shellcode in vulnerable applica-
tions since doing so requires a memory area that is writable and executable. W ⊕ X
can be considered to be merely a supplementary protection scheme since its presence
alone was proven to be insufficient. Return-to-Libc [136] and ROP [133] attacks are
able to successfully and reliably circumvent W ⊕ X by abusing already existing
code in the system instead of injecting own machine instructions. This allows an
attacker to execute arbitrary computations despite the presence of W ⊕ X.

Binary Rewriting

Binary rewriting is a technique that has been employed by numerous binary security
or optimization frameworks [126, 62, 132, 148, 56] and is also used by MoCFI.
However, all of these frameworks yet require compiler-generated information such
as debug meta data that is typically not shipped with release versions. They can
thus not be applied in our scenario and are inappropriate for effective retrofitting
of binary software.

More related to our work is SecondWrite [115], a generic binary rewriting frame-
work that does not require additional debug information and aims to provide a
stable fundament for retrofitting security-related logics into binary programs. The
system is built on top of the intermediate language toolset LLVM and thus a entirely
different design philosophy.

4.4 Framework Design

In this section, we describe the unique challenges that have to be addressed when
implementing a CFI framework for the proprietary iOS operating system. At first,
we name the various different challenges and explain why existing CFI approaches
cannot be adapted to our scenario. In the second part of the section, we describe
how we addressed these challenges and how our framework is structured.

88

4.4 FRAMEWORK DESIGN

4.4.1 Technical Challenges

Section 4.3 described various different CFI-related solutions that have been proposed
by academic researchers. However, none of these approaches can be transferred to
our scenario due design restrictions and technical peculiarities that we describe in
the following.

Proprietary Software Environment

Almost all existing CFI frameworks require the presence of additional compile-time
meta data that is stripped from release versions. For example, the most current CFI
solution by Abadi et al. for Windows x86-based systems requires the presence of
debug information. Such information is almost never available on proprietary sys-
tems that work with binaries. Distributing debug information with release version
is usually undesirable since it allows to draw various inferences about the original
source code: debug information contains source code filenames, variable and sub-
routine symbols up to concrete source code lines. This greatly facilitates the reverse
engineering of binary code.

We implement MoCFI for a closed operating system, which cannot be modified
in order to include our solution in the standard application load process. Second,
end user devices and even App Store maintainers have no access to the application
source code. Hence, a compiler-based CFI solution is not practicable from the end
user’s perspective.

Due to the bonding of iOS with centralized software distribution facilities, it also
features application encryption and signing. Many existing CFI approaches apply
patches to the static binary files. Similar approaches are unfeasible in the presence
of code signing since modification of application files breaks the signature. Our
system therefore has to make sure that all patches are applied at runtime, after the
signature checks, and before the program execution.

CPU Architecture

The ARM architecture provides a second instruction set called THUMB. Both ARM
and THUMB code can be interleaved arbitrarily, there are no restrictions on the
application as to when it employs which instruction set. Application may thus
switch between both instruction set modes at any point of execution. The runtime
enforcement thus has to support both modes in order to function properly.

As mentioned in Section 4.2.2, ARM does not provide dedicated return instruc-
tions. Instead, any branch instruction that modifies the instruction pointer can be
used as a return. Moreover, returns are usually accomplished using load multiple
register (LDM) instructions that have side effects on other registers than the instruc-
tion pointer, meaning that the return does not only enforce the return to the caller,

89

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

but also restores several registers at the same time. This has several implications at
runtime when handling return instructions with respect to the corresponding side
effects.

Lastly, the ARM program counter pc is a general purpose register which can thus
be directly accessed by a number of instructions, e.g., arithmetic instructions are
allowed to load the result of an arithmetic operation directly into pc. Furthermore,
a load instruction may use the current value of pc as base address to load a pointer
into another register. This complicates a CFI solution on ARM, since we have to
consider and correctly handle all possible control flow changes, and also preserve
the accurate execution of load instruction that use pc as base register.

4.4.2 General Framework Design

Figure 4.2 shows the general design of MoCFI. The entire framework is separated
into two different components: the static analysis and the dynamic runtime en-
forcement. The static analysis only has to be performed once as an initial step.
Therefore, the application has to be decrypted and disassembled. In the next step,
the static analysis of MoCFI generates two kinds of output information: first, it
identifies all relevant branches within the target’s code. This includes all dynamic
branches, subroutine calls, and subroutine returns. As explained in Section 4.2.1,
static branches do not have to be considered due to the active W ⊕ X protection.
Addresses and meta information of relevant branches, which we call check sites in
the following, are saved in the so-called patchfile. The second task of the static
analysis is to reconstruct the CFG of the application and save it in another file.
The output files of the static analysis process only need to be generated once for
each application.

The second component of MoCFI is the dynamic runtime enforcement which is
implemented as a shared system library (called the runtime engine in the following).
The runtime engine adjusts the protected application’s code after process initial-
ization as specified by the previously generated patchfile. At every check site, our
system ensures that the destination of the control flow transition is a valid target
in the pre-generated CFG.

Please note that this thesis only covers the runtime enforcement components of
MoCFI. The interested reader can refer to our paper [50] for more details on the
static analysis. In the following, we explain three core design decisions of the MoCFI
runtime engine that distinguish our solution from similar frameworks.

Binary Rewriting

One of the core design decisions of a CFI framework is how the framework modifies
the target application so that control flow is redirected at the check sites into a

90

4.4 FRAMEWORK DESIGN

Analysis Plugins

Branch Analysis

CFG Generation

Patchfile

CFG

Static Analysis

Runtime Engine

Binary Rewriting CFI Enforcement

Application
Code

Decryption

Encrypted
Application

Load Time Runtime

Runtime Enforcement

patch in memory

instr x1
instr x2
branch

dispatch / validate

Figure 4.2: Design of the MoCFI framework.

validation routine. Previous x86-based enforcement frameworks [2] are built on top
of binary instrumentation engines such as PIN [103] and Vulcan [55]. This decision
stems from the fact that x86 employs a variable-length instruction set encoding.
Overwriting instructions at check sites to implement a jump to the validation rou-
tine would be highly complicated since the overwriting instruction might be longer
than the overwritten instruction, thereby affecting subsequent instructions as well.
In combination with the possibility of PC-relative instructions, this requires to im-
plement a complex instruction parsing engine. Furthermore, x86 provides a variety
of different instructions due to its CISC nature and thus many corner cases would
have to be handled properly. This problem is solved by implementing the CFI
engine on top of existing binary instrumentation frameworks.

However, the design of a mobile CFI framework needs to be approached from
a different angle. Firstly, there exists no binary instrumentation engine for ARM
processors at the time of writing this thesis. Binary instrumentation frameworks are
cumbersome to implement and typically induce a significant performance overhead.
Thirdly, almost all relevant mobile processor architectures (including ARM) to this
date follow the RISC design philosophy which also means that there exists a fixed
instruction length1.

We therefore chose to take a different approach in MoCFI called binary rewrit-
ing [159]. Instead of relying on an instrumentation engine, we directly overwrite the
target code at check sites (typically one single instruction) and provide a static jump
into our validation routine (the dispatcher instruction). This static jump can be

1Please note that THUMB mode can constitute an exception to this rule. We explain how we
tackle this problem in Section 4.5.

91

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

implemented using one single instruction. In some corner cases in THUMB mode,
it might be necessary to overwrite at most two instructions (see Section 4.5).

An important requirement for our framework is that the rewriting has to hap-
pen dynamically after the process was initialized. Static patches are not feasible
since this would break the mandatory digital signature of the binary; the operating
system would thus refuse to load the application. Furthermore, the rewriting must
take place before any application or other library code was executed. We chose to
implement the runtime engine in a dedicated shared library that is included in the
protected application’s load process. At load time, the runtime engine applies bi-
nary rewriting to the check sites, then it starts the actual application. At runtime,
the validation routine validates relevant control flow transitions against the CFG.

Validation Routine and Dispatching

The actual enforcement in the validation routine is one of the core components in
the system. In order to reduce the code base and complexity of the runtime engine,
we favor to use a single generic validation routine that is responsible for all check
sites.

There are several obstacles one faces when using generic validation routines (see
Section 4.5.3). We solve these issues using so-called trampolines. Trampolines are
short instruction sequences that prepare the entrance to the validation routine and
also perform the transition back to the target code after the validation is completed.
Every check site has an individual trampoline and dispatcher instructions thus target
corresponding trampolines and not directly the validation routine. We stress that
we are the first to use the concept of trampolines for CFI enforcement.

Shadow Stack

The static analysis cannot fully pre-compute all valid control flow transitions be-
forehand. Subroutine calls are highly dynamic by nature and thus any return from a
subroutine can possible target a large variety of call sites. We chose to implement a
shadow stack [41] to address this case. At every subroutine call, we save the return
address in a dedicated, safe shadow stack. When the subroutine returns, we then
compare this saved value against the requested return address. If both addresses
do not match, then we detect a control flow validation. The advantage of shadow
stacks is that they are straightforward to implement and require a low performance
overhead.

92

4.5 IMPLEMENTATION DETAILS

4.5 Implementation Details

We developed a prototyp MoCFI implementation that supports iOS versions 4.3.1
up to 5.1.1. At the time of development, no stable jailbreak available for iOS 6.x was
available, which is why we did not test the framework with this version. However,
we expect that only minor changes are needed to port MoCFI and plan to do this as
future work. In this section, we describe the implementation details of the runtime
engine of MoCFI, which is implemented as a shared library. The library itself was
developed using Xcode 4 and the code base amounts to 1,430 lines of code (LOC).
We opted to use a preferably small code base to minimize the risk of implementation
bugs in the framework.

The section is structured on the following way: we describe the load time phase
of the runtime engine, elaborate on various aspects of the runtime CFI enforcement,
explain the use of trampolines in detail, and conclude by providing several examples
of rewritten check sites.

4.5.1 Load Time Initialization

The load time phase is performed once during process initialization. MoCFI carries
out all of the preparatory measures to ensure CFI validation at runtime. The main
task of the load time phase thus is to initialize the MoCFI runtime engine and
rewrite the code of the protected application.

Shared Library Injection

Most UNIX-based operating systems support the injection of libraries by providing
the environment variable LD_PRELOAD that is checked by the OS loader upon initial-
ization of each new process. The loader ensures that the library is loaded before any
other dependency of the actual program binary. iOS provides an analogous method
through the DYLD_INSERT_LIBRARIES environment variable [18]. Setting this vari-
able to point to MoCFI enables us to transparently rewrite arbitrary applications.
To force loading MoCFI into every application started though the touch screen, we
only need to set this environment variable for the initial SpringBoard process.

We stress that MoCFI is initialized before any other dependency of the program
and after the signature of the application was verified (i.e., the program binary itself
is unaltered). Subsequently, MoCFI implements the CFI enforcement by rewriting
the code of the application in memory.

Binary Rewriting

Upon initialization of MoCFI, the load time module first locates the correct patch-
file. Afterwards, it rewrites the binary according to the information stored in the

93

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

patchfile. Since Apple iOS enforces W ⊕ X, code cannot be writable in memory.
Therefore, the code pages must be set to writable (but not executable) first. This
is usually accomplished using the POSIX-compliant mprotect system call. Our
experiments revealed that iOS does not allow the code pages to be changed at all
(mprotect returns a permission denied error). However, this problem can be over-
come by re-mapping the corresponding memory areas with mmap [19] first. When
all relevant instructions of a page are patched, the page permissions are set back
to executable but not writable. Note that the presence of mmap does not give an
adversary the opportunity to subvert MoCFI by overwriting code. In order to do
so, she would have to mount an attack beforehand that would inherently violate
CFI at some point, which in turn would be detected by MoCFI.

4.5.2 CFI Enforcement

In the following, we explain the implementation details of the CFI enforcement of
MoCFI, i.e., the part of the implementation that is continuously triggered while the
protected application executes. We present the structure of our generic validation
routine, explain several technical challenges that arise due to design choices, and
name implications that result from the Objective-C dynamic binding system. We
chose to explain the solutions to the technical challenges in own sections afterwards.

Generic Validation Routine

We use a single generic validation routine (residing in our MoCFI shared library)
that is responsible for validating control flow transitions from all check sites. This
generic validation routine is thus responsible for validating all kinds of different
check sites (internal calls, external calls, returns, Objective-C messages, etc.). This
minimizes the amount of new code that is introduced during runtime which in turn
reduces cache consumption and thus also the overhead. Using multiple validation
routines would also mean that every single routine allocates additional space in
the code and data caches which can greatly reduce the overall performance of the
system.

Technical Challenges

The use of a generic validation routine leads to implications that have to be ad-
dressed accordingly. In the following, we explain several problems that arise in
using a generic validation routine.

Argument preparation. Our binary rewriting engine overwrites the relevant
control flow instructions (i.e., the check sites) with so-called dispatcher instructions.
Dispatchers, however, cannot simply redirect the program flow into the validation

94

4.5 IMPLEMENTATION DETAILS

routine since certain arguments need to be prepared and overwritten instructions
might have to be re-executed at a different location before the validation routine,
as we explain later on. The validation routine requires the following information to
perform the validation:

1. The source address of the check site,

2. the requested destination address of the control flow transition, and

3. the CFG of the application.

The CFG is loaded during the initialization of our runtime engine and is then
available as a global variable. The source and destination addresses of the control
flow transition have to be extracted and arranged properly.

Dispatcher range. The dispatcher instruction itself is implemented as a simple
static branch that directly redirects the program flow to the validation. In ARM,
static direct branches that are encoded directly within the instruction can target a
relative memory interval ranging from -/+ 32MB. This means that the destination
address must not be further away than 32 MB from the dispatcher. However, we
cannot make sure that the runtime engine is loaded close to the protected application
since the operating system does not provide such an option. In fact, the distance
between shared libraries in memory is usually always bigger than 32 MB. As a
consequence, dispatchers cannot directly jump into the generic validation routine
and thus another pre-step is necessary.

Instruction emulation. The dispatcher instruction is always a 32bit instruction,
in both ARM and Thumb mode2. If the protected code is compiled using the Thumb
instruction set (which is usually the case for iOS applications), then we might need
to overwrite an additional instruction before or after the actual check site, since
the check site can only be 16bit long. This means that we have to emulate this
overwritten instruction (see Section 4.5.5 for an example). Notwithstanding the
above, the check site instruction itself also has to be emulated at the end of the
validation. This is a non-trivial task since control flow transition (and thus check
sites) can occur in a variety of different instructions with multiple side-effects (such
as the ARM load multiple instruction LDM [23]).

Objective-C Dynamic Binding

As explained in the background (see Section 4.2), all Objective-C messages are
implemented as a call to the external objc msgSend function in the Objective-C

2Thumb mode allows for mixed 16bit and 32bit instructions and also supports 32bit direct
branches.

95

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

runtime library. Since we strive for validating Objective-C message to ensure that
a concrete check site calls the correct method in the correct object, these calls must
be handled specifically. Otherwise an attacker might have the ability to modify
the object or selector of an objc msgSend call to tamper with the control flow.
The object, selector, and argument values of an Objective-C message are passed as
arguments to objc msgSend. MoCFI detects objc msgSend calls and handles them
appropriately. The additional Objective-C information (i.e., the object class and
selector) are stored by the static analysis and embedded in the CFG information.
Hence, MoCFI uses this information to check whether the called object and selector
indeed match with the designated ones.

4.5.3 Trampolines

In the last section, we listed several technical challenges in using a generic validation
routine. We solve the aforementioned problems by employing so-called trampolines.
Dispatcher instructions thus redirect the program flow to trampolines, which in turn
transfer the execution to the generic validation routine in our MoCFI runtime en-
gine. Hence, the trampolines are used as bridges between the application we aim to
protect and our MoCFI library. Trampolines are essentially dynamically allocated
short pieces of assembler code and we opted to build them as small as possible to
reduce to amount of additionally executed instructions and thus reduce the per-
formance impact. As we explain in the following, there exist multiple trampolines
that are used depending on the type of the corresponding check site instruction.
In the following, we explain how trampolines solve the problems mentioned in Sec-
tion 4.5.2.

Argument preparation. One of the fundamental tasks of a trampoline is to
extract the source and destination address of every control flow validation request.
Therefore, the trampoline at first saves all relevant register values; both the source
and the destination addresses can be inferred from these register values. Further-
more, the trampoline prepares these arguments before it jumps into the generic
validation routine.

Dispatcher range. Trampolines also solve the problem of the limited dispatcher
branch range since they are allocated dynamically during load time using the mmap

system call. mmap allocates memory ranges and also allows to specify at which
virtual memory address the allocated memory should start. We therefore call mmap
and choose a memory address directly adjacent to the protected application image
to ensure that trampolines are allocated within the 32MB range of the code of the
protected application. Note that this approach is not feasible in case the image size
surpasses the 32MB boundary because the distance between the first (or last) code

96

4.5 IMPLEMENTATION DETAILS

instructions and the trampoline becomes too big. However, we have not come across
an application which violates this criterion during our evaluation. Even if this were
the case, we could still fix the problem by overwriting the subsequent instruction
of the check site – a technique which we already employ for the Thumb instruction
set (see Section 4.5.5).

Instruction Emulation. Another advantage of trampolines is that we can largely
refrain from using instruction emulation, which is an error-prone and complex task
due to the complexity of assembler instruction encodings. Instead, we provide cus-
tom trampolines for check sites that would otherwise require instruction emulation.
Trampolines allow us to copy overwritten instructions at the beginning or end of
the trampoline so that they do not have to be emulated in the validation routine.
The only exception in which we have to apply emulation is when we overwrite a
pc-relative control flow instruction, since the instruction then resides in the trampo-
line and not the original memory location. In this case, we perform a rudimentary
emulation. Note that such scenarios are very rare in practice.

Trampoline Types

Our system uses three different types of trampolines that are used depending on
the type of the check site:

• one generic internal trampoline,

• one generic external trampoline, and

• multiple custom trampolines.

We opt to use generic trampolines (i.e., trampolines which are used by multiple
check sites) whenever possible and custom trampolines when we would otherwise
need instruction emulation. Custom trampolines are thus always assigned to one
concrete check site. All trampolines are allocated adjacent to each other using the
mmap system call, as described previously in this section. Specifically, we allocate
custom trampolines for each indirect branch (i.e., indirect jumps / calls and returns),
one generic trampoline for direct internal function calls (i.e., calls within the same
code segment), and one generic trampoline for external function calls. Figure 4.3
illustrates the decision process and shows when which kind of trampoline type is
employed.

The generic internal trampoline is used for dispatching internal subroutine calls,
the generic external trampoline is used for dispatching external subroutine calls,
i.e., calls to API functions that reside in system shared libraries. The reason for
this distinction lies in the fact that we must use two different shadow stacks for

97

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

Is Call?

Dispatch using
direct branch

B(X) <trampoline>

no

Dispatch using
branch with link

BL(X) <trampoline>
yes

Is Internal?

no

Install new trampoline

Use generic internal
trampoline

yes

Use generic external
trampoline

Create new custom
trampoline

Figure 4.3: Flow chart of the trampoline decision process.

internal and external subroutine calls. By intuition, a shadow stack works in the
following way: whenever a subroutine call occurs, we push the return address onto
the shadow stack. Whenever a return occurs, we compare the return address against
the last saved address in the shadow stack. If both values differ, a CFG violation
is detected. However, there exists one corner case in practice that has to be taken
into account.

Consider the following scenario: the target application calls an external API
function; the API then performs a callback into another application subroutine
before returning. When this callback subroutine returns, MoCFI tries to validate
the return address using the shadow stack. However, since MoCFI did not see the
corresponding call into the subroutine, which lies in an external shared library that
is not protected by the runtime engine, this will always produces a violation. The
solution to this dilemma is to use an additional stack (the branch location stack)
that keeps track of possible callback routines. We chose to implement the stack
handling directly at the trampoline stage for convenience and performance reasons
in form of the generic external trampoline.

Detailed Structure

Figure 4.4 shows a detailed instruction listing for each four different trampoline
types that exist. Listing (a) shows the instructions of the generic internal tram-
poline. The trampoline saves all relevant registers in the beginning so that the
effects of the subsequent validation routine, which inherently alters several regis-
ters, can be revoked. The following instructions prepare arguments and branch into
the validation routine in the runtime engine (a pointer to this routine is stored stat-
ically at the end of the trampoline). The validation routine takes one argument:
a pointer to the previously saved registers. This is necessary to reconstruct the
original arguments (which are passed in R0-R3) of the requested subroutine call in
the application code. The validation routine is called using a BLX instruction and
thus returns back into the next trampoline instruction; the control flow destination

98

4.5 IMPLEMENTATION DETAILS

address is returned in register R0 as dictated by the standard ARM calling conven-
tion (see Section 4.2.2). This value is stored temporarily on the stack, the original
register values are restored, and the trampoline proceeds to the destination address.

The generic external trampoline shown in Listing (b) is to some extent similar to
the internal trampoline. The first five instructions are thus identical between both
types. Instead of branching to the destination address, the external call trampoline
branches into the external library and sets the return address to point into tram-
poline. As soon as the external call returns into the trampoline, register values are
saved again and we branch into the branch location stack handler in MoCFI. After
that the trampoline proceeds to return to the protected application.

We provide two different custom trampoline templates: one for Thumb and one
for ARM check sites. Both templates are very similar as can be seen in Listings
(c) and (d). In case of Thumb trampolines (Listing (c)), it might happen that the
dispatcher instruction must overwrite an additional previous instruction. In this
case, the overwritten instruction is copied at the beginning of the custom trampoline.
The trampoline then branches into the validation routine. Note that we also provide
an additional second parameter for custom trampolines. It contains a direct pointer
into a check site metadata structure. This stems from the fact that we have an
individual trampoline anyway and can thus individual pointers to metadata that
would otherwise have to be searched for by the validation routine first. We thus
increase the overall performance by using this additional second parameter. Our
ARM trampoline template (Listing (d)) is very similar, except that there exists
no room for previous instructions. This is due to the fact that ARM dispatcher
instructions never overwrite more than one instruction and thus no additional space
in the trampoline is needed.

4.5.4 Dispatching Through Exception Handling

In rare corner cases, our approach of overwriting the check site with a dispatcher in-
struction is not viable. This can happen when we need to overwrite a 16-bit Thumb
instruction with a 32-bit dispatch instruction but cannot overwrite any previous or
subsequent instruction, e.g., if the instruction preceding the branch references the
program counter or is itself a branch. Consider the following instruction sequence:

...

LDR R2 , [PC , 16]

POP {R4 -R7 , PC}

The first instruction LDR R2, [PC, 16] uses the current value of pc to load a pointer.
Such an instruction cannot be simply moved into a custom trampoline due to the
PC relative addressing of the second operand. In such scenarios, we use an entirely
different approach: upon initialization, we register an iOS exception handler for

99

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

STMFD SP!, {R0-R12 , LR}

MOV R0 , SP

LDR R1 , [PC , 12]

BLX R1 ; -> validate routine

STR R0 , [SP , -4]

LDMFD SP!, {R0-R12 , LR}

LDR PC , [SP , -60]

<Ptr. to validation routine >

(a) Generic internal call trampoline

STMFD SP!, {R0 -R12 , LR}

MOV R0 , SP

LDR R1 , [PC , 40]

BLX R1

; -> validate routine

STR R0 , [SP , -4]

LDMFD SP!, {R0 -R12 , LR}

MOV LR , PC

LDR PC , [SP , -60];

; -> external library

STMFD SP!, {R0 -R3}

LDR R1 , [PC , 16]

BLX R1

; -> handle branch loc. stack

MOV LR , R0

LDMFD SP!, {R0 -R3}

BX LR

<Ptr. to validation routine >

<Ptr. to branch loc. stack

handler >

(b) Generic external call trampoline

<Previous instruction or NOP >

PUSH.W {R0-R12 , LR}

MOV R0 , SP

LDR.W R1 , [PC , 12]

LDR.W R2 , [PC , 12]

BLX R2 ; -> validate routine

POP.W {R0 -R12 , LR}

<Original return instruction >

<Ptr. to check site metadata >

<Ptr. to validation routine >

(c) Custom Thumb trampoline
template

STMFD SP!, {R0 -R12 , LR}

MOV R0 , SP

LDR R1 , [PC , 12]

LDR R2 , [PC , 12]

BLX R2 ; -> validate routine

LDMFD SP!, {R0 -R12 , LR}

<Original return instruction >

<Ptr. to check site metadata >

<Ptr. to validation routine >

(d) Custom ARM trampoline template

Figure 4.4: Trampoline templates.

100

4.5 IMPLEMENTATION DETAILS

illegal instructions. The dispatcher instruction is then simply an illegal 16-bit in-
struction that will trigger our exception handler in the runtime engine of MoCFI.
Since this technique induces additional performance overhead (the CPU has to pro-
cess the entire exception chain first), we only use it for exceptional cases. To further
reduce the use of the exception handler, one could calculate the address from which
pc is loaded in the static analysis phase and replace the relevant load instruction
with a new memory load instruction which could be placed at the beginning of the
trampoline.

Note that our exception handler forwards all exceptions not caused by MoCFI.
Furthermore, by monitoring the exception handling API, we can ensure the po-
sition of our handler within the exception chain is not changed by the protected
application.

4.5.5 Examples

Figure 4.5 shows a detailed overview of the control flow in any of the four different
dispatching scenarios that can occur during a validation. The code depicted on
the top left is the untouched original instruction sequence that is rewritten during
load time by MoCFI into the sequence that is shown in the middle of the figure.
The first case (the black lines) shows how custom trampolines are employed. The
preceding instruction of the check site is overwritten in order to allocate sufficient
room for a 32-bit branch instruction into a custom trampoline. In the beginning
of the custom trampoline, we can see that the previously overwritten instruction
MOV R1, R2 is executed at first. After that, the trampoline saves all register values
and branches to the generic validation routine in the runtime engine, being located
in the shared library. Upon successful validation, MoCFI returns to the custom
trampoline where previously saved registers values are restored and the original
return instruction POP {R4-R7, PC} is executed.

The second case (the green lines) illustrates an exception handler example in
which MoCFI uses the operating system exception handler to dispatch into the
validation routine. The exception handler is registered at load time and remains
active throughout the entire execution of the protected application. As soon as the
illegal instruction is executed, the CPU generates an exception that is passed on to
the operating system which in turn forwards the error handling to our registered
handler. We then reconstruct the registers values that were active at the time the
exception was triggered, call the validation routine, and then cleanup the exception
state and continue the application at the destination address of the control flow
request. Please note that we pass on exception handling if MoCFI recognizes that
the occurred exception is in fact not associated with the rewriting.

In the third case (the orange lines), the figure shows how internal function calls
are dispatched into the generic internal trampoline. This trampoline is in fact used

101

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

Process loaded with MoCFI

Unprotected process

Original App. Image

INS, INS, ...

3

4

Header

Code

MOV R1,R2

POP {R4-R7,PC}

INS, INS, ...

LDR R2, [PC,#16]

POP {R4-R7,PC}

INS, INS, ...

BLX Function_A

INS, INS, ...

Data

1

Rewritten App. Image

INS, INS, ...

Header

Code

B <Custom Trampoline X>

INS, INS, ...

LDR R2, [PC,#16]

ILLEGAL INSTRUCTION

INS, INS, ...

BLX <Generic Internal Tramp.>

INS, INS, ...

Data

Generic External Tramp.

Trampoline Area

Generic Internal Tramp.
1. Save registers
2. Call validate routine
3. Restore registers
4. Branch to req. destination

1. Save registers
2. Call validate routine
3. Restore registers

5. Branch to req. destination
4. Adjust return address

6. Call link register retrieval
7. Return to program

Custom Trampoline X

2. Save registers
3. Call validate routine
4. Restore registers
5. Original Instr.: POP {R4-R7,PC}

1. Previous Instr.: MOV R1, R2

Custom Trampoline X+1

...

MoCFI Runtime Engine

2

Header

Code

Data

Validation Routine

Exception Handler

1. Get patchfile structure
2. Get check site type
3. Validate req. destination
4a. Success: return and continue
4b. Failure: log and exit process

1. Reconstruct registers
2. Call validation routine
3. Cleanup except. and continue

BLX External_Function

INS, INS, ...

BLX <Generic External Tramp.>

INS, INS, ...

Handle Branch Loc. Stack

1. Remove top stack element
2. Return

Shared Library Image

Figure 4.5: Summary and examples of all trampoline types.

102

4.6 DISCUSSION AND LIMITATIONS

by all internal function calls. Since these calls are always 32-bit long, there exists no
need for a custom trampoline. The trampoline functions very similar to the custom
trampolines except that no custom instructions are executed at the beginning or
the end.

The final case (the purple lines) illustrated how external function calls are redi-
rected into the generic external trampoline. The external trampoline at first vali-
dates the control flow request just as in the internal trampoline. However, it then
modifies the return address in the LR register to point into the trampoline. As a
consequence, the called function will return into the trampoline rather than the
application code directly. This is done to then call another subroutine in MoCFI
that is responsible for updating the branch location stack accordingly. We refrain
from describing the details of this subroutine for the sake of brevity.

4.6 Discussion and Limitations

In this section, we discuss possible weak spots of our approach. We show in which
scenarios certain limitations may become relevant and what additional changes
would be necessary in order to increase the effectiveness and usability of MoCFI.

Integration into iOS. In order to install MoCFI on an iOS device, currently a
jailbreak is required. This is merely necessary to modify the environment variable
that injects our library in every process. No other modifications that presume a
jailbreak exist. Since MoCFI performs binary rewriting after the iOS loader has
verified the application signature, our scheme is compatible to application signing.
On the other hand, our runtime engine is not directly compatible to the iOS CSE
(code signing enforcement) runtime model (see Section 4.2.3). CSE prohibits any
code generation (including code rewriting) at runtime on non-jailbroken devices,
except if an application has been granted the dynamic-signing entitlement. To
tackle this issue, one could assign the dynamic-signing entitlement to applications
that should be executed under the protection of MoCFI. On the one hand, this is
a reasonable approach, since the general security goal of CFI is to protect benign
applications rather than malicious ones. Further, the dynamic-signing entitlement
will not give an adversary the opportunity to circumvent MoCFI by overwriting
existing control flow checks in benign applications. In order to do so, she would
have to mount a control flow attack beforehand that would be detected by MoCFI.

On the other hand, when dynamic-signing is in place, benign applications may un-
intentionally download new (potentially) malicious code, or malicious applications
may be accidentally granted the dynamic-signing entitlement (since they should
run under protection of MoCFI) and afterwards perform malicious actions. Fur-
thermore, disallowing code generation at runtime also obviates the need for corre-

103

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

sponding support in MoCFI.

Providing CFI for runtime generated code is a cumbersome and error-prone task.
To address these problems, one could constrain binary rewriting to the load time
phase of an application, so that the dynamic-signing entitlement is not needed while
the application is executing. Further, new sandbox policies can be specified that
only allow the MoCFI library to issue the mmap call to replace existing code, e.g.,
the internal page flags of the affected memory page are not changed, or their values
are correctly reset after MoCFI completed the binary rewriting process.

Error-proneness of the implementation. Finally, special care must be taken
that an adversary cannot tamper with the MoCFI library and thus bypass MoCFI.
Since our library is small in size, the probability for exploitable vulnerabilities is
very low. Given the small code base, we could also apply code verification tools.
We leave this task as future work.

Insecure exception handlers. Similar to other solutions (e.g., Abadi et al.),
our current implementation does not detect attacks exploiting exception handlers:
an adversary can overwrite pointers to an exception handler and then deliberately
cause an exception (e.g., by corrupting a pointer before it is de-referenced). This is
possible because the current compiler implementation used by the iOS development
framework pushes these pointers on the stack on demand. We stress that this is
rather a shortcoming of the compiler and the iOS operating system as it is the task
of the operating system to provide a resilient exception handling implementation.
Similar problems have already been solved on other platforms, such as on Windows
with SafeSEH [108]. Therefore, we highly encourage Apple to port these techniques
to iOS.

Shared library support. As already mentioned in Section 4.5, MoCFI does
currently not protect shared libraries, which an adversary may exploit to launch
a control flow attack. However, extending MoCFI accordingly is straightforward,
because we already overcame the conceptional obstacles. It has to be noted that
Apple explicitly prevents developers from employing shared libraries in their appli-
cation packages. Applications that contain shared libraries do not receive a valid
signature and thus cannot be published in the official App Store. Hence, all loaded
libraries are typically from the operating system and Objective C frameworks. Con-
sequently, we currently disable the return check if an external library calls a function
that resides in the main application. Therefore, MoCFI registers when execution is
redirected to a library and disables the return address check for functions that are
directly invoked by the shared library. However, note that this can be easily fixed
by either applying our trampoline approach to function prologs (i.e., pushing the

104

4.7 EVALUATION

App. name Code size # Calls # Returns # Ind. jumps

Facebook 2.3MB 33,647 5,988 20
TexasHoldem 2.8MB 62,576 4,864 1
Minesweeper 0.7MB 12,485 1,882 20
Gowalla 0.7MB 11,969 1,647 0

Table 4.1: Tested iOS applications and occurrences of specific check sites.

return address on the shadow stack at function entry) or by also applying MoCFI
to shared libraries.

4.7 Evaluation

We performed several tests in our evaluation of MoCFI to assess its effectiveness and
usability. The evaluation can thus be separated into two main parts: at first we used
our framework to protect a variety of real and widespread iOS applications from the
official App Store. Furthermore, we then conducted several performance benchmark
tests to estimate the induced runtime overhead of MoCFI. Performance tests are an
important factor of CFI frameworks since the underlying technique typically comes
with a significant slowdown that can drastically affect the user experience.

4.7.1 Qualitative Tests

We used our framework to protect several popular iOS applications from the official
Apple App Store. We therefore evaluated Facebook, Minesweeper, TexasHoldem,
Gowalla, WhatsApp, ImageCrop, BatteryLife, Flashlight, ImageCrop, InstaGram,
MusicDownloader, MyVideo, NewYork (Game), Quickscan, LinPack, Satellite TV,
and the Audi App. We could not perceive a notable negative overhead when working
with any of the applications. Table 4.1 shows an overview of four of the tested
applications and the number of respective calls, returns, and indirect jumps that
each binary contains. Please note that the rewriting overhead also remains between
reasonable bounds. In any of the binaries, we did not notice an overhead larger
than half a second for the initial rewriting.

For all of these applications, we tried to execute all of their functionality, for
example by surfing several facebook profiles and modifying our own profile in the
Facebook application. We noticed that MoCFI largely works unnoticed by the user.
However, we could also find one compatibility problem in which the framework
mistakenly detects control flow violations. After analyzing the binary we found out
that this is due to the way the GCC compiler implements large switch tables. At the
point of the switch case, the compiler outsources the switch condition evaluation into

105

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

a separate subroutine and then branches to that subroutine using the BLX instruction.
At the end of that subroutine, the compiler does not insert a typical return but
rather jumps to the switch handler (lying in the original subroutine) directly. This
yields a CFG violation since there is no corresponding return to the subroutine call
and the shadow stack thus corrupts. We are unsure as to why the compiler chooses
this kind of optimization. We stress that this is not a fundamental issue of our
approach but rather a specific compiler peculiarity and plan to support such special
cases in future revisions of our framework.

We also tested our framework with a self-developed vulnerable application that
can be exploited from externally using a typical buffer overflow. As expected,
MoCFI successfully detects the invalid control flow transition and terminates the
program.

4.7.2 Performance Tests

We performed two different tests to evaluate the performance overhead induced by
MoCFI:

1. Measure the overhead on the different tests of the iOS benchmark tool Gen-
systek Lite3.

2. Measure an upper bound overhead using a self-developed quicksort implemen-
tation.

Gensystek. Gensystek provides a number of different benchmark checks and runs
on every iOS driven device. Again we want to stress that we only protect the main
application binary. Some of the benchmarks perform API calls at some stages that
divert into unprotected libraries and thus the performance measurements would be
slightly worse in a fully protected system. However, the majority of the compu-
tations in the tests indeed occur within the main binary files. The results of the
measurements are shown in Figure 4.6. The overhead ranges between 3.85x and
5x with the PI Calc benchmark being the slowest test. Please note that these are
very CPU intensive tasks that are not performed by typical applications, which
rather react to user interactions with small computations. We thus think that the
overhead is still reasonable. On the other hand, the overhead for image processing
benchmarks (which are in our opinion more practically relevant) is almost negligible
and amounts to 1% to 21%.

3http://www.ooparts-universe.com/apps/app_gensystek.html

106

http://www.ooparts-universe.com/apps/app_gensystek.html

4.8 ENHANCING PRIVACY THROUGH POLICY ENFORCEMENT

0

20

40

60

80

100

FPU/ALU PI Calc MD5 Calc ScrShot RAM Disk Quartz2D ResizeIMG Trans3D

4,87 3,85 1,19 1,02 5,00 1,21 1,03 1,01 1,09

T
im

e
 in

 S
ec

o
n

d
s

Benchmarks and Slowdown Factor

with MoCFI

without MoCFI

Figure 4.6: Gensystek Lite Benchmarks.

n Without MoCFI With MoCFI

100 0.047 ms 0.432 ms
1000 0.473 ms 6.186 ms
10000 6.725 ms 81.163 ms

Table 4.2: Quicksort measurements.

Quicksort. In order to approximate an upper boundary for performance penal-
ties, we evaluated MoCFI by running a quicksort algorithm. The quicksort algo-
rithm that we chose to implement makes use of a recursive comparison function.
Thus, many control flow validations must be performed since many subroutine calls
occur during execution. The comparison subroutine is also very small in size and the
precentage of check sites hence high. Table 4.2 shows three different measurements
for different array sizes (n=100, n=1000, and n=10000). The measurements show
that in the worst case, MoCFI induced a slowdown factor of approx. 12x. Again,
we stress that this is a worst case scenario that does not apply to the majority of
mobile applications.

4.8 Enhancing Privacy Through Policy Enforcement

In this chapter, we introduced MoCFI as an efficient framework to mitigate control
flow attacks against proprietary iOS applications. In this scenario, attackers exploit
vulnerabilities from the outside of the application to gain access to it and the under-
lying operating system. From a broader perspective, external attackers are not the
only threat for a smartphone end user. Mobile devices carry a plethora of personal
information. The address book, history logs, location data, photos, and similar data
sources allow drawing detailed conclusions about the social life of the owner of the
device. Such information represents financial value to data harvesters. It is one of
the device vendor’s tasks to provide an execution environment in which sensitive
data on the device is protected from illicit access. Specifically, applications should

107

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

not be granted dispensable access to private data. Unfortunately, the approach that
iOS follows is insufficient.

Every application in the App Store has to pass a review phase which aims at
ruling out unsolicited apps. According to the guidelines, applications must ask for
the user’s consent before accessing sensitive information. However, this is merely
a formal restriction and no additional technical measures restrain developers from
secretly accessing sensitive data. In fact, several incidents in the past showed that
the guidelines and the review phase are insufficient [131].

Several researchers already presented privacy-extending frameworks for mobile
platforms. Hornyack et al. [80] introduced a framework for Android that allows
replacing real sensitive data with shadow data and mark certain data sources for
device-only use so that it cannot be transmitted over network connections. Apex [111]
is another policy enforcement framework for Android that gives the user enhanced
control over how sensitive data can be process by applications. Both systems were
developed for open platforms. However, when implementing such a policy enforce-
ment framework for a proprietary system such as iOS, the situation is significantly
different. We cannot simply extend existing libraries and API layers since we do
not have access to the source code of the corresponding components. Furthermore,
concepts such as dynamic binding introduce various implications and greatly exac-
erbate the design and implementation of a sound policy enforcement framework for
iOS systems. All applications under iOS are compiled in binary assembler code and
do not use intermediate language representations such as the Java VM on Android.
This also means that applications are free to directly access various API layers in
the system (the Objective-C API, the POSIX UNIX API, etc.).

We developed a novel tool called PSiOS which is built on top of MoCFI. PSiOS
uses our CFI framework as the basis to provide additional policy enforcement checks
whenever the application calls an external API function. Since our tool is able to
intercept any control flow transition from within the application to any shared
library, we allow for very fine-grained restriction policies that are significantly more
powerful than iOS sandboxing profiles.

4.8.1 Technical Background

In the following, we discuss two important aspects of the technical background of
PSiOS. At first, we discuss the different API layers that must be supported by
a policy enforcement framework on iOS to support fine-grained rules. We then
introduce the iOS sandbox and name its shortcomings over our approach.

108

4.8 ENHANCING PRIVACY THROUGH POLICY ENFORCEMENT

API Layers

The iOS operating system provides multiple APIs for developers. The Objective-C
Core Services can be regarded as the most important set of API functions that
are used by the majority of applications. These services are organized in different
system libraries that are tagged as either private or public frameworks. Private
frameworks are only accessible from system libraries; public frameworks are also
open to the application. Please note that this is merely a guideline provided by
Apple. Since private frameworks lie in the same process memory as the application,
there exists no technical barrier that holds back the application from calling private
framework APIs nevertheless.

Another important observation is that iOS yet supports an orthogonal set of APIs
in form of, e.g., the POSIX API and Mach API. These libraries are completely
independent of Objective-C runtime components and are implemented as direct
system calls into the corresponding system libraries. PSiOS supports all kinds of
APIs.

Shortcomings of the App Sandbox

As mentioned previously in this section, iOS already includes an application sand-
box that can restrict the access to system resources on a per-process basis. The
sandbox is implemented within the iOS kernel and monitors the syscall interface.
Apple therefore introduced so-called entitlements [20]. Entitlements assign certain
rights to certain applications. At the time of writing, there exist 25 different enti-
tlements which control access to several resources, e.g., access to the music folder,
microphone, establishing network connections, and so on. These entitlements are
declared within the digital signature of the application and are enforced by the iOS
sandbox.

The iOS sandbox has the following shortcomings:

1. Entitlements are irrevocable since they are part of the digital signature. Thus,
they cannot be changed in hindsight. Users cannot use individual policies.

2. The iOS sandbox is rather coarse-grained since it works on the syscall level.
It is not possible to provide function-specific granularity.

3. Insecure applications can still be exploited by an adversary who then gains
access to the device’s resources on the same level as the application.

4. The App Sandbox is incompatible with many practical use cases and therefore
exception entitlements are assigned that disable the sandbox [21].

109

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

4.8.2 Design and Implementation

PSiOS extends the underlying MoCFI framework so that the user may provide arbi-
trary policy rules for each individual application on the device. Rules are specified
using an XML-based format. They are fine-grained and allow applying constraints
to individual parameters of Objective-C messages or API function calls. For ex-
ample, this allows restricting the access to certain files by specifying corresponding
constraints on file open library calls (such as fopen). PSiOS is implemented as an
academic prototype to demonstrate the technical feasibiliy of the approach. This
also means that there is no convenient graphical user interface and rules have to be
written manually at the time of writing. We leave this open for future work.

We implemented a new policy enforcement component at runtime on top of
MoCFI, which validates calls to external shared libraries against the policy rule
set. Please note that all CFI checks are still enabled in the background by MoCFI.
Thus attackers cannot exploit software vulnerabilities, take over the execution, and
hence access system resources in the context of the exploited application. Figure 4.7
shows an overview on how PSiOS validates external library calls.

PSiOS allows specifying three different response types in case a policy violation
was detected:

1. Exit : the program is terminated.

2. Log : the incident is logged and the program continues execution.

3. Replace: returns forged data to the application and continues execution.

The replace option is especially interesting and allows returning forged data to
the application in case a termination of the application process is undesirable. The
current implementation of PSiOS replaces the corresponding method implementa-
tion which then returns an empty or arbitrary data structure. This might lead to
compatibility problems in case the application does not expect empty objects to
be returned. We plan to provide alternative replacement strategies for providing
shadow data in the future.

4.8.3 Evaluation

We evaluated PSiOS in several scenarios. First of all, we applied PSiOS to the
data harvesting application SpyPhone [110] to show that our system is capable of
constraining access to various sensitive data sources. We also created individual
policy rules for several popular iOS applications to restrict access to various data
sources that are being accessed at runtime.

110

4.9 CONCLUSION AND FUTURE WORK

MoCFI/PSiOS Runtime Engine

CFI Enforcement
Application

Binary

Policy Rule Set

Policy Enforcement

CFG

Control flow transition
System Library

Objective-C Runtime

Objective-C
Frameworks

Address Book

Network

Location

ObjC message

API call

Valid transition

Terminate / Return
Forged Data

Policy violation

Figure 4.7: Schematic design of PSiOS.

SpyPhone

SpyPhone is a proof-of-concept application that demonstrates how iOS application
can secretly access various sensitive data sources on the device per default. The col-
lected data includes, amongst others, e-mail account information, WLAN network
connection data, unique device or chip identifiers such as the UUID, address book
data, location data, various history logs form web browsers and the phone applica-
tion, photos, and even the keyboard cache. We created a comprehensive policy rule
set to restrict SpyPhone from accessing any privacy-sensitive data source and we
could confirm in our tests that PSiOS indeed blocks access to every single resource
being access by SpyPhone. We therefore used the Replace response mechanism to
return empty data.

Popular Applications

PSiOS was also applied to a number of popular iOS applications to demonstrate
that it is capable of protecting real world applications. Namely, we tested Facebook,
WhatsApp, ImageCrop, BatteryLife, Flashlight, ImageCrop, InstaGram, Music-
Downloader, MyVideo, NewYork (Game), Quickscan, and the Audi App. An indi-
vidual policy rule set was provided for each application, depending on what data the
application accesses. We could successfully restrict the access to the address book
(for Quickscan, Facebook, and Whatsapp), to personal photos (for ImageCrop and
InstaGram), and to the iOS universal unique identifier, short UUID (for Quickscan,
BatterLife, Flashlight, MusicDownloader, MyVideo, NewYork, and Audi).

4.9 Conclusion and Future Work

In this chapter, we described the design and implementation of the mobile CFI
framework MoCFI. The framework runs on proprietary iOS Apple operating sys-
tems and allows to secure binary applications, i.e., no access to source code or debug

111

CHAPTER 4: PROVIDING CONTROL FLOW INTEGRITY FOR
PROPRIETARY MOBILE DEVICES

information is needed. This effectively allows us to retrofit security mechanisms into
iOS that to successfully thwart software attacks that can otherwise be mounted by
an attacker. We addressed a number of unique challenges that stem from the fact
that iOS is a proprietary closed and mobile operating system. We introduced new
techniques to implement a reliable runtime engine that enforces the control flow
transition constraints as dictated by the CFG. The evaluation shows that MoCFI is
able to successfully protect various popular and large iOS applications. Moreover,
the performance overhead induced by the framework amounts to 3.85x to 5x for
CPU intensive tasks. While we think that there is still room for optimizations, it
has to be noted that typical mobile applications do not perform extensive calcu-
lations as this might heavily affect the device’s battery service life. The practical
effect of the performance slowdown is thus lower.

In a second step, we extended MoCFI in the policy enforcement framework PSiOS.
PSiOS closes a privacy gap left by the insufficient sandbox system of iOS. Users can
specify individual policy rules for each installed applications, thereby restricting
access to sensitive data sources that are otherwise accessible to each application
by default. The evaluation showed that PSiOS can be applied to popular iOS
applications and successfully thwarts access to sensitive data when using the proof-
of-concept data harvester SpyPhone.

Interesting future work advancements for MoCFI are to provide shared library
support. This allows to also protecting critical system libraries such as the Objective-
C runtime and several API libraries. Furthermore, we still expect that there is room
for further performance optimizations to reduce the overhead of the CFI checks.
Support for the newest iOS version 6 is also a task for future work.

112

5
Behavior-Graph-Based C&C Detection
for Proprietary Operating Systems

5.1 Introduction

Malicious programs (abbrev. malware) have become a significant threat for end
user and server computer systems. Researchers generally separate malware into
several different classes such as worms, viruses, and trojan horses. One of the the
most prevalent forms of malware that leverages the rising interconnectedness of
computers are bots. Bots differentiate from other malware in that they possess a
networking component that establishes connection to one or more so-called com-
mand and control (C&C) servers. This allows to control the bot from remotely by
sending commands that control the its behavior or to provide bot updates. Bots are
usually part of a bigger botnet that might be composed of millions of compromised
machines in extreme cases [46, 70, 124, 49]. The person that controls the botnet in
the background is commonly referred to as the botmaster. Bots can be used for a
variety of nefarious purposes. For example they can abuse the infected machine’s
network bandwidth to participate in executing distributed denial of service (DDoS)
flooding attacks. They might also be used for spying on data on the infected machine
such as stealing bank account data or confidential company documents.

Researchers have proposed several countermeasures to mitigate the recent rise of
the botnets. These solutions can be classified into two main categories: network-
based and host-based approaches. Network-based approaches aim at creating net-
work signatures solely by monitoring network data that is being sent and received
from infected systems. Therefore, these solutions typically pass through learning
phases in which bots are executed in a safe environment and produced traffic is col-
lected. In the next step, this data is analyzed for unique and reoccurring features
that seem to typify C&C connections. With the help of this data, network signa-
tures that match these connections can be created or the C&C server addresses can

113

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

be logged or incorporated in blacklists. Network-based approaches however suffer
from three major shortcomings that diminish their effectiveness in practice.

Benign connections. Not all network connections established from bots are
malicious per se. Bots frequently open various other non-C&C connections, for ex-
ample to check for a valid Internet connection or to synchronized the local system
time with a remote network daemon. Unfortunately, telling apart legitimate non-
C&C traffic from real C&C traffic is tough to achieve for network-based approaches.
Thus, such solutions typically suffer from high false positive rates since they pro-
duce wrong signatures that also match benign connections from various harmless
applications.

Noise injection attacks. Researchers have proposed a new kind of attack that
leverages the inherent shortcomings of network-based only solutions. These attacks
are closely related to the drawback described in the previous paragraph. Noise
injection attacks [65, 66] produce a large chunk of (mostly useless) network traffic to
conceal real C&C connections in a multitude of other connections. Since network-
based approaches cannot distinguish between both types, they are incapable of
producing meaningful signatures.

Encryption. Network-based solutions are completely rendered useless if the
monitored bot employs traffic encryption since they rely on the semantics of the
contents of network packets. If data is only transmitted in encrypted form, then
these solutions have no means to draw any conclusion about the nature of the
connection or to produce signatures.

These three shortcomings show that the inherent approach of network-based so-
lutions, which is to solely rely on network packet data, is insufficient in many cir-
cumstances. Additional information that enriches the model with more semantical
meaning is needed.

An orthogonal approach to bot detection is host-based solutions, which monitor
and/or detect bot behavior directly on the host and not on the network-level. Typ-
ical examples of host-based solutions include anti-virus engines that either match
manually generated signatures of known malicious programs or try to apply several
heuristics to detect malicious behavior of unknown malware. Since these kinds of
runtime solutions typically try to avoid detecting any false positives, signatures and
heuristics are generated rather conservatively. This also means that it is easy to
bypass any detection by malware even with techniques such as dynamic repacking
in which every binary gets packed with a randomly generated encryption key. Gen-
erally speaking, host-based solutions oftentimes fail to attribute unknown binaries
of existing malware to known families appropriately.

The entire bot problem is further exacerbated by the fact that most malware
is written for Windows due to its tremendous market share for desktop comput-
ers. Windows is a proprietary operating system, which means one cannot simply
extend or modify system libraries in order to add monitoring functionality since

114

5.1 INTRODUCTION

corresponding source codes are not available. Furthermore, there exists a plethora
of API layers that have to be monitored. These layers are eventually abstracted in
Windows in a proprietary mostly undocumented native API in the background.

5.1.1 Contributions

In this chapter, we propose a new combined approach to bot detection. Our ap-
proach adopts concepts from both host- and network-based techniques to overcome
the disadvantages of each respective approach. More specifically, our approach al-
lows to reliably distinguishing malicious C&C connections from irrelevant benign
and even purposely generated junk connections. Instead of relying only on network-
level traffic, we monitor the bot in our special execution environment. By using data
tainting techniques, we can enrich network packets with additional host-based in-
formation that allow drawing further conclusions about the semantics behind the
generated packet. This allows us to determine whether sent packets contain data
from system resources, and also enables one to detect in which way received data is
processed by the bot.

The model we use in our approach are behavior graphs that characterize the exact
behavior of each network connection and its interaction with the operating system.
We present Jackstraws, a system that monitors bots in a special execution envi-
ronment and create behavior graphs for established network connections. Behavior
graphs combine host-level information with network data using taint tracking mech-
anisms. The behavior graphs can be further processed using by machine learning
algorithms to identify subgraphs that are characteristic of malicious C&C connec-
tions. With the help of this data, it is also possible to produce generalized graph
templates that match even new connection from previously unknown bots 1.

In our evaluation, we could show that Jackstraws is capable of generating
templates that recognize malicious C&C traffic from known bots with high accuracy
and few false positives. Moreover, our system was also able to detect C&C traffic
generated by unknown bot samples that were not incorporated in the learning phase.

We stress that Jackstraws works for the proprietary Windows operating sys-
tems and we show at which key points the operating system has to be monitored to
allow for the creation of generic and complete behavior graphs. More specifically,
we show how to monitor the proprietary native API layer which allows us to refrain
from coping with the multitude of open API layers.

This chapter is based on a previous publication together with Jacob, Kruegel,
and Holz [87].

1Please note that the machine learning algorithms are not part of this thesis and are only intro-
duced briefly.

115

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

5.1.2 Outline

The chapter is structured in the following way: Section 5.2 discusses related work.
Section 5.3 gives an abstract overview over Jackstraws and the different compo-
nents that it consists of and implementation details are given in Section 5.4. The
evaluation is presented in Section 5.5. We then conclude the chapter in Section 5.6
with a summary and a discussion of possible future work topics.

5.2 Related Work

Given the importance and prevalence of malware, it is not surprising that there
exists a large body of work on techniques to detect and analyze this class of software.
The different techniques can be broadly divided into host-based and network-based
approaches, and we briefly describe the related work in the following.

5.2.1 Host-Based Detection

Host-based detection techniques include systems such as traditional anti-virus tools
that examine programs for the presence of known malware. Other techniques work
by monitoring the execution of a process for behaviors e.g., patterns of system
calls [67, 100, 118]) that indicate malicious activity. Host-based approaches have
the advantage that they can collect a wealth of detailed information about a program
and its execution. Unfortunately, collecting a lot of information comes with a price;
it incurs a significant performance penalty. Thus, detailed but costly monitoring is
typically reserved for malware analysis, while detection systems, which are deployed
on end-user machines, resort to fast but imprecise techniques [144]. As a result,
current anti-virus products show poor detection rates [43].

A suitable technique to model the host-based activity of a program is a behavior
graph. This approach has been successfully used in the past [44, 98, 69] and we
also apply this technique. Recently, Fredrikson et al. introduced an approach to
use graph mining on behavior graphs in order to distinguish between malicious
and benign programs [69]. Compared to their work, we have another high-level
goal: we want to learn which network connections are related to C&C traffic in an
automated way. Thus we do not only focus on host-level activities, but also take
the network-level view into account and correlate both. From a technical point of
view, we perform a more fine-grained analysis by applying taint analysis instead of
the coarse-grained analysis performed by [69].

Botswat [139] analyzes how bots process network data by analyzing system
calls and performing taint analysis. The system matches the observed behavior
against a set of 18 manually generated behavior patterns. From a technical point of
view, Botswat uses library-call-level taint analysis and, thus, might miss certain

116

5.3 SYSTEM OVERVIEW

dependencies. In contrast, the data flow analysis support of Jackstraws enables
a more fine grained analysis of information flow dependency among system calls.

5.2.2 Network-Based Detection

To complement host-based systems and to provide an additional layer for defense-
in-depth, researchers proposed network-based detection techniques [76, 74, 77, 164,
78, 162]. Network-based approaches have the advantage that they can cover a
large number of hosts without requiring these hosts to install any software. This
makes deployment easier and incurs no performance penalty for end users. On
the downside, network-based techniques have a more limited view (they can only
examine network traffic and encryption makes detection challenging), and they do
not work for malicious code that does not produce any network traffic (which is
rarely the case for modern malware).

Initially, network-based detectors focused on the artifacts produced by worms
that spread autonomously through the Internet. Researchers proposed techniques
to automatically generate payload-based signatures that match the exploits that
worms use to compromise remote hosts [99, 135, 95, 112, 102]. With the advent
of botnets, malware authors changed their modus operandi. In fact, bots rarely
propagate by scanning for and exploiting vulnerable machines; instead, they are
distributed through drive-by download exploits [123], spam emails [89], or file shar-
ing networks [92]. However, bots do need to communicate with a command and
control infrastructure. The reason is that bots need to receive commands and up-
dates from their controller, and also upload stolen data and status information. As
a result, researchers shifted their efforts to developing ways that can detect and
disrupt malicious traffic between bots and their C&C infrastructure. In particu-
lar, researchers proposed approaches to identify (and subsequently block) the IP
addresses and domains that host C&C infrastructures [140], techniques to generate
payload signatures that match C&C connections [76, 74, 162], and anomaly-based
systems to correlate network flows that exhibit a behavior characteristic of C&C
traffic [78, 164, 77]. In a paper related to ours, Perdisci et al. studied how net-
work traces of malware can be clustered to identify families of bots that perform
similar C&C communication [121]. The clustering results can be used to generate
signatures, but their approach does not take into account that bots generate benign
traffic or can even deliberately inject noise [120, 66, 65, 8]. Our work is orthogonal
to this approach since we can precisely identify connections related to C&C traffic.

5.3 System Overview

Our system monitors the execution of a malware program in a dynamic malware
analysis environment (such as Anubis [85], BitBlaze [137], CWSandbox [156], or

117

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

Ether [51]). The goal is to identify those network connections that are used for
C&C communication. To this end, we record the activities (in our case, system
calls) on the host that are related to data that is sent over and received through
each network connection. These activities are modeled as behavior graphs, which are
graphs that capture system call invocations and data flows between system calls.
In our setting, one graph is associated with each connection. As the next step,
all behavior graphs that are created during the execution of a malware sample are
matched against templates that represent different types of C&C communication.
When a graph matches a template sufficiently closely, the corresponding connection
is reported as C&C channel.

In the following paragraphs, we first discuss behavior graphs. We then provide
an overview of the necessary steps to generate the C&C templates.

5.3.1 Behavior Graphs

A behavior graph G is a graph where nodes represent system calls. A directed
edge e is introduced from node x to node y when the system call associated with y
uses as argument some output that is produced by system call x. That is, an edge
represents a data dependency between system calls x and y. Behavior graphs have
been introduced in previous work as a suitable mechanism to model the host-based
activity of (malware) programs [44, 98, 69]. The reason is that system calls capture
the interactions of a program with its environment (e.g., the operating system or the
network), and data flows represent a natural dependence and ordered relationship
between two system calls where the output of one call is directly used as the input
to the other one.

Nodes that are related to network system calls of the corresponding network
connection of the graph (e.g., connect, send, recv) are connected by edges with a
next label that represent the chronological order in which they occurred. If the
tainting system indicates an information flow between the arguments of a network
node and a system call, a corresponding node and edge is added to the graph. The
edge is labeled accordingly with the argument names.

Figure 5.1 shows an example of a behavior graph. This graph captures the host-
based activity of a bot that reads the Windows serial number (ID) from the registry
and sends it to its command and control server. Frequently, bots collect a wealth
of information about the infected, local system, and they send this information to
their C&C servers. The graph shows the system calls that are invoked to open and
read the Windows ID key from the registry. Then, the key is sent over a network
connection (that was previously opened with connect). An answer is finally received
from the server (recv node).

The network nodes correspond to connect, send, and receive events of the
underlying connection. In the above example, one can thus see that the product ID

118

5.3 SYSTEM OVERVIEW

connect

port: 80
related

send

related

 next

recv

related

 next

NtQueryValueKey

Valuename: ProductId

 arg: buf=KeyValueInformation

NtOpenKey

Keyname: HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion

 arg: KeyHandle=KeyHandle

NtOpenKey

Keyname: \REGISTRY\MACHINE

 arg: ObjectAttributes=KeyHandle

GET /bot/doit.php?v=3&id=ec32632b-29981-349-398...

Figure 5.1: Example of behavior graph that shows information leakage. Under-
neath, the network log shows that the Windows ID was leaked via the
GET parameter id.

119

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

of the system is read from the registry. Nodes can contain additional labels that
further describe the nature of the event, such as the key names in the example.

Please note that our system only includes information in the behavior graphs that
is related to the specific network connection. This is in contrast to related word [69]
in which the authors generate complete dependency graphs of the execution run of
a given sample.

While behavior graphs are not novel per se, we use them in a different context to
solve a novel problem. In previous work, behavior graphs were used to distinguish
between malicious and benign program executions. In this work, we link behavior
graphs to network traffic and combine these two views. That is, we use these graphs
to identify command and control communication amidst all connections that are
produced by a malware sample.

5.3.2 C&C Template Generation

As mentioned previously, the behavior graphs that are produced by our dynamic
malware analysis system are matched against a set of C&C templates. C&C tem-
plates share many similarities with behavior graphs. In particular, nodes n carry
information about system call names and arguments encoded as labels ln, and edges
e represent data dependencies where the type of flow is encoded as labels le. The
main difference to behavior graphs is that the nodes of templates are divided into
two classes; core and optional nodes. Core nodes capture the necessary parts of a
malicious activity, while optional nodes are only sometimes present. Each C&C tem-
plate represents a certain type of command and control activity and the generation
of templates is separated into four subsequent steps.

In the first step, we run malware executables in our dynamic malware analysis
environment, and extract the behavior graphs for their network connections. These
connections can be benign or related to C&C traffic. Jackstraws requires that
some of these connections are labeled as either malicious or benign (for training).
In our current system, we apply a set of signatures to all connections to find (i)
known C&C communication and (ii) traffic that is known to be unrelated to C&C.
Note that we have signatures that explicitly identify benign connections as such.
The signatures were manually constructed, and they were given to us by a network
security company. By matching the signatures against the network traffic, we find
a set of behavior graphs that are associated with known C&C connections (called
malicious graph set) and a set of behavior graphs associated with non-C&C traffic
(called benign graph set). These sets serve as the basis for the subsequent steps.

The second step uses the malicious and the benign graph sets as inputs and
performs graph mining. The goal of this step is to identify subgraphs within the
behavior graphs that appear frequently in connections labeled as malicious. This
suggests that this sort of behavior is common among various C&C connections.

120

5.4 SYSTEM DETAILS

As a third step, we cluster the graphs previously mined. The goal of this step is
to group together graphs that correspond to a similar type of C&C activity. That
is, when we have observed different instances of one particular behavior, we combine
the corresponding graphs into one cluster.

In the fourth step, Jackstraws produces a single C&C template for each cluster.
The goal of a template is to capture the common core of the graphs in a cluster; with
the assumption that this common core represents the key activities for a particular
behavior.

At the end of these steps, we have extracted templates that match the core of
the program activities for different types of commands, taking into account optional
operations that are frequently (but not always) present. This allows us to match
variants of C&C traffic that might be different (to a certain degree) from the exact
graphs that we used to generate the C&C templates.

5.4 System Details

In this section, we provide an overview of the actual implementation of Jackstraws
and explain the different analysis steps in greater details.

5.4.1 Analysis Environment

We use the dynamic malware analysis environment Anubis [85] as the basis for our
implementation, and implemented several extensions according to our needs. Note
that the general approach and the concepts outlined in this paper are independent
of the actual analysis environment; we could have also used BitBlaze, Ether, or any
other dynamic malware analysis environment.

As discussed in Section 5.3, behavior graphs are used to capture and represent
the host-based activity that malware performs. To create such behavior graphs, we
execute a malware sample and record the system calls that this sample invokes. In
addition, we identify dependencies between different events of the execution by mak-
ing use of dynamic taint analysis [129], a technique that allows us to assess whether
a register or memory value depends on the output of a certain operation. Anubis al-
ready comes with tainting propagation support. By default, all output arguments of
system calls from the native Windows API (e.g., NtCreateFile, NtCreateProcess,
etc.) are marked with a unique taint label. Anubis then propagates the taint infor-
mation while the monitored system processes tainted data. Anubis also monitors if
previously tainted data is used as an input argument for another system call.

Taint propagation is achieved by extending each relevant instruction translation
from x86 into Qemu micro code. If we assume that an instruction takes two input
operands i1 and i2, produces a result r and either i1 or i2 have an attached taint
label, then r will have the same attached taint label. If both input arguments have

121

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

distinct taint labels, then one of them is picked. For performance reasons, every
byte can only have a single label. We have not encountered major negative effects
due to this simplification.

As previously mentioned, Anubis monitors the native Windows API, which re-
sides in the library file ntdll.dll and constitutes the last step of a typical API
call under Windows (before control is passed to the kernel). The advantage of
only monitoring the last step of an API call lies in the inherent abstraction from
the vast number of official Windows API functions. However, not all Windows
API function invocations result in a call to the kernel. Notable examples include
functions that return specific information about the operating system, underlying
hardware, or time zone information (for example, GetVersionEx, GetSystemInfo,
and GetSystemTime). These functions are relevant because bots often use them to
collect system information that is then leaked to the C&C server. To capture this
information, we extended the set of monitored functions to include Windows API
calls that can be used to gather system information.

Native API calls by adding certain functions that are especially relevant to infor-
mation leakage, since not all of the API functions Windows provides are processed
by the Native API due to performance reasons. These functions reside in the first
layer of Windows API libraries and must be monitored explicitly. Increasing the
number of monitored system calls also results in more fine-granular and hence more
meaningful results.

While Anubis propagates taint information for data in memory, it does not track
taint information on the file system. In other words, if tainted data is written to
a file and subsequently read back into memory, the original taint labels are not
restored. This shortcoming turned out to be a significant drawback in our settings:
For example, bots frequently download data from the C&C, decode it in memory,
write this data to a file, and later execute it. Without taint tracking through the
file system, we cannot identify the dependency between the data that is downloaded
and the file that is later executed. Another example is the use of configuration data:
Many malware samples retrieve configuration settings from their C&C servers, such
as URLs that should be monitored for sensitive data or address lists for spam
purposes. Such configuration data is often written to a dedicated file before it
is loaded and used later. Restoring the original taint labels when files are read
ensures that the subsequent bot activity is linked to the initial network connection
and improves the completeness of the behavior graphs.

Finally, we improved the network logging abilities of Anubis by hooking directly
into the Winsock API calls rather than considering only the abstract interface
(NtDeviceIOControlFile) at the native system call level. This allows us to conve-
niently reconstruct the network flows, since send and receive operations are readily
visible at the higher-level APIs.

122

5.4 SYSTEM DETAILS

5.4.2 Behavior Graph Generation

When the sample and all of its child processes have terminated, or after a fixed
timeout (currently set to 4 minutes), Jackstraws saves all monitored system calls,
network-related data, and tainting information into a log file. Unlike previous work
that used behavior graphs for distinguishing between malicious and legitimate pro-
grams, we use these graphs to determine the purpose of network connections (and
to detect C&C traffic). Thus, we are not interested in the entire activity of the mal-
ware program. Instead, we only focus on actions related to network traffic. To this
end, we first identify all send and receive operations that operate on a successfully-
established network connection. In this work, we focus only on TCP traffic, and
a connection is considered successful when the three-way handshake has completed
and at least one byte of user data was exchanged. All system calls that are related
to a single network connection are added to the behavior graph for this connection.
That is, for each network connection that a sample makes, we obtain one behavior
graph which captures the host-based activities related to this connection.

For each send operation, we check whether the sent data is tainted. If so, we add
the corresponding system call that produced this data to the behavior graph and
connect both nodes with an edge. Likewise, for each receive operation, we taint the
received data and check if it is later used as input to a system call. If so, we also
add this system call to the graph and connect the nodes.

For each system call that is added to the graph in this fashion, we also check back-
ward dependencies (that is, whether the system call has tainted input arguments).
If this is the case, we continue to add the system call(s) that are responsible for this
data. This process is repeated recursively as long as there are system calls left that
have tainted input arguments that are unaccounted for. That is, for every node that
is added to our behavior graph, we will also add all parent nodes that produce data
that this node consumes. For example, if received data is written to a local file,
we will add the corresponding NtWriteFile system call to the graph. This write
system call will use as one of its arguments a file handle. This file handle is likely
tainted, because it was produced by a previous invocation of NtCreateFile. Thus,
we also add the node that corresponds to this create system call and connect the two
nodes with an edge. On the other hand, forward dependencies are not recursively
followed to avoid an explosion of the graph size.

Graph Labeling

Nodes and edges that are inserted into the behavior graph are augmented with
additional labels that capture more information about the nature of the system
calls and the dependencies between nodes. For edges, the label stores either the
names of the input or the output arguments of the system calls that are connected

123

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

NtCreateFile

FileHandle: &364
DesiredAccess: 1074790528

ObjectAttributes: {ObjectName:"\\??\\C:\\NetworkData.bin"}
IoStatusBlock: 0x9e96e90

AllocationSize: NULL
FileAttributes: 128

ShareAccess: 0
CreateDisposition: 5
CreateOptions: 96

EaBuffer: NULL
EaLength: 0
mode: create

_functionResult: 0

→
NtCreateFile

DesiredAccess: FileReadAttributes
Filename: \??\C:\NetworkData.bin

Attributes: AttributeNormal
ShareAccess

CreateDisposition: FileSupersede

Figure 5.2: Raw behavior graph system call node on the left and its filtered version
on the right.

by a data dependency. For nodes, the label stores the system call name and some
additional information that depends on the specific type of call.

In the raw version of the behavior graphs generated by Anubis, the node labels
contain all system call parameters and their values. Figure 5.2 shows an example
of a raw NtCreateFile system call node on the left. The problem with storing this
plethora of information is that it might influence the subsequent machine learning in
a negative way by providing a large bunch of irrelevant information. Therefore, we
generalize labels in an additional step by filtering out redundant information that
is meaningless for the rest of our system anyway. To do so, we created a manually
crafted list of filter expressions that rule out this kind of information. Note that we
only need to provide these filter rules for Windows Native API system calls since
our system works on this layer. It is thus not necessary to reason about creating
filter rules for the various other API layers that are built on top of the Native API.
We also use this step to replace numeric parameter constants with more readable
strings. The right node in Figure 5.2 shows how a filtered node looks like in case of
an NtCreateFile system call.

Simplifying Behavior Graphs

One problem we faced during the behavior graph generation was that certain graphs
grew very large (in terms of number of nodes), but the extra nodes only carried
duplicate information. For example, consider a bot that downloads an executable
file. When this file is large, the data will not be read from the network connection
by a single recv call. Instead, the receive system call might be invoked many times.
This heavily depends on the implementation of the bot. In fact, we have observed
samples that read network data one byte at a time. Since every system call results

124

5.4 SYSTEM DETAILS

in a node being added to the behavior graph, this can increase the number of nodes
significantly. Furthermore, since our system eventually aims at producing generic
behavior graph templates that catch the abstract behavior and not implementation
details, it makes sense to abstract away from such peculiarities.

To reduce the number of (essentially duplicate) nodes in the graph, we introduce
a post-processing step that collapses certain nodes. The purpose of this step is to
combine multiple nodes sharing the same label and dependencies. More precisely,
for each pair of nodes with an identical label in the behavior graph, we check whether

1. the two nodes share the same set of parent nodes, or

2. the sets of parents and children of one node are subsets of the other, or

3. one node is the only parent of the other.

If this is the case, we use so-called parallel collapsing which means we collapse
these nodes into a single node and add a special tag IsMultiple to the label. Ad-
ditional incoming and outgoing edges of the aggregated nodes are merged into the
new node. The process is repeated until no more collapsing is possible. As an
example, consider the case where a write file operation stores data that was previ-
ously read from the network by multiple receive calls. In this case, the write system
call node will have many identical parent nodes (the receive operations), which all
contribute to the buffer that is written. In the post-processing step, these nodes
are all merged into a single system call. A beneficial side-effect of node collapsing is
that this does not only reduce the number of nodes, but also provides some level of
abstraction from the concrete implementation of the malware code and the number
of times identical functions are called (as part of a loop, for example). Figure 5.3
shows an example of node collapsing in which multiple NtWriteFile system calls
are collapsed to one node.

The second collapsing technique is called sequence collapsing in which we check
whether there are multiple subsequent receive or send nodes in the behavior graph
which share common labels and edges with identical labels to the same nodes. If
that is the case, this sequence of nodes is collapsed and a special label with the
name IsSequence is added to the collapsed node. Figure 5.4 shows an example of
sequence collapsing.

Filesystem Tainting

We extended the Anubis tainting system to take into account special cases that
occur during the behavior graph generation. Specifically, one special case we are
interested in is when a monitored bot receives binary data from the Internet (such
as an update), stores it on the local hard disk, and then proceeds to execute it.
Therefore, the received binary data from the network is tainted and written using

125

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

re
cv

re
la

te
d

N
tW

rite
File

 a
rg

: B
u

ff
e
r=

b
u

f

N
tW

rite
File

 a
rg

: B
u

ff
e
r=

b
u

f

N
tW

rite
File

 a
rg

: B
u

ff
e
r=

b
u

f

N
tC

re
a
te

File

isS
y
ste

m
D

ire
cto

ry
isE

xe
cu

ta
b
le

D
e
sire

d
A

cce
ss: File

R
e
a
d
A

ttrib
u

te
s

A
ttrib

u
te

s: A
ttrib

u
te

N
o
rm

a
l

C
re

a
te

D
isp

o
sitio

n
: File

S
u

p
e
rse

d
e

 a
rg

: File
H

a
n

d
le

=
File

H
a
n

d
le

 a

rg
: File

H
a
n

d
le

=
File

H
a
n

d
le

 a

rg
: File

H
a
n

d
le

=
File

H
a
n

d
le

re
cv

re
la

te
d

N
tW

rite
File

IsP
a
ra

lle
l

 a
rg

: B
u

ff
e
r=

b
u

f
 IsP

a
ra

lle
l

N
tC

re
a
te

File

isS
y
ste

m
D

ire
cto

ry
isE

xe
cu

ta
b
le

D
e
sire

d
A

cce
ss: File

R
e
a
d
A

ttrib
u

te
s

A
ttrib

u
te

s: A
ttrib

u
te

N
o
rm

a
l

C
re

a
te

D
isp

o
sitio

n
: File

S
u

p
e
rse

d
e

 a
rg

: File
H

a
n

d
le

=
File

H
a
n

d
le

Figure 5.3: Example of a subgraph before (left) and after (right) parallel system
call node collapsing.

126

5.4 SYSTEM DETAILS

so
cke

t

a
f: 2

ty
p
e
: 1

p
ro

to
co

l: 6
re

la
te

d

co
n

n
e
ct

p
o
rt: 8

0
re

la
te

d
#

ip
: 9

4
.2

3
.3

9
.1

2
4

#
srcP

o
rt: 1

0
2

7

 a
rg

: s=
re

tv
a
l

 n
e
x
t

se
n

d

re
la

te
d

 a
rg

: s=
re

tv
a
l

re
cv

re
la

te
d

 a
rg

: s=
re

tv
a
l

 n
e
x
t

se
n

d

re
la

te
d

 n
e
x
t

se
n

d

re
la

te
d

 n
e
x
t

 n
e
x
t

N
tQ

u
e
ry

V
a
lu

e
K
e
y

V
a
lu

e
n

a
m

e
: C

o
m

m
o
n

File
sD

ir

 a
rg

: b
u

f=
K
e
y
V

a
lu

e
In

fo
rm

a
tio

n

 a
rg

: b
u

f=
K
e
y
V

a
lu

e
In

fo
rm

a
tio

n

 a
rg

: b
u

f=
K
e
y
V

a
lu

e
In

fo
rm

a
tio

n

N
tO

p
e
n

K
e
y

K
e
y
n

a
m

e
: H

K
L
M

\S
o
ftw

a
re

\M
icro

so
ft\W

in
d
o
w

s\C
u

rre
n

tV
e
rsio

n

 a
rg

: K
e
y
H

a
n

d
le

=
K
e
y
H

a
n

d
le

so
cke

t

a
f: 2

ty
p
e
: 1

p
ro

to
co

l: 6
re

la
te

d

co
n

n
e
ct

p
o
rt: 8

0
re

la
te

d
#

ip
: 9

4
.2

3
.3

9
.1

2
4

#
srcP

o
rt: 1

0
2

7

 a
rg

: s=
re

tv
a
l

 n
e
x
t

se
n

d

IsS
e
q
u

e
n

ce
re

la
te

d

 a
rg

: s=
re

tv
a
l

re
cv

re
la

te
d

 a
rg

: s=
re

tv
a
l

 n

e
x
t

 n
e
x
t

N
tQ

u
e
ry

V
a
lu

e
K
e
y

V
a
lu

e
n

a
m

e
: C

o
m

m
o
n

File
sD

ir

 a
rg

: b
u

f=
K
e
y
V

a
lu

e
In

fo
rm

a
tio

n

N
tO

p
e
n

K
e
y

K
e
y
n

a
m

e
: H

K
L
M

\S
o
ftw

a
re

\M
icro

so
ft\W

in
d
o
w

s\C
u

rre
n

tV
e
rsio

n

 a
rg

: K
e
y
H

a
n

d
le

=
K
e
y
H

a
n

d
le

Figure 5.4: Example of a subgraph before (left) and after (right) sequence collaps-
ing.

127

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

NtWriteFile and subsequently a NtCreateProcess system call occurs. However,
it may happen that we do not see a connection between the received data and the
process creation in the behavior graph because no create process call occurs within
the graph since the arguments of the system call are hardcoded and not tainted. We
solve this issue by extending the tainting system of Anubis to file operations. That
is, whenever tainted data is written to a file, we store corresponding taint labels in a
hashmap. When the system later reads from the same file, we propagate the saved
taint labels into the read buffers. Taint labels thus remain intact over file write
and read operations. This also allows us to detect whether the system executes a
file which contains tainted network data. If this is the case, we introduce a special
process node in the behavior graph and connect the corresponding receive nodes to
it.

Summary

The output of the two previous steps is one behavior graph for each network con-
nection that a malware sample makes. Behavior graphs can be used in two ways:
First, we can match behavior graphs, produced by running unknown malware sam-
ples, against a set of C&C templates that characterize malicious activity. When
a template matches, the corresponding network connection can be labeled as com-
mand and control.

The second use of behavior graphs is for C&C template generation. For this
process, we assume that we know some connections that are malicious and some
that are benign. We can then extract the subgraphs from the behavior graphs
that are related to known malicious C&C connections and subgraphs that represent
benign activity. These two sets of malicious and benign graphs form the input for
the template generation process that is described in the following three sections.

5.4.3 Graph Mining, Graph Clustering, and Templating

We confine ourselves to a brief summary of the machine learning algorithms that
are employed in the further steps since these results are not part of the thesis. The
interested reader can find more details in the Jackstraws paper [87].

The first task is to perform graph mining on the collected malicious behavior
graphs. Figure 5.5 illustrates the individual steps that occur in the mining phase.
At first, frequent subgraphs in the entire set of behavior graphs are detected using
frequent subgraph mining. The resulting set of subgraphs is the maximized if certain
conditions are met, i.e., mined subgraphs that are themselves subgraphs of other
mined subgraphs are typically discarded. In the last step of the graph mining, the
resulting maximal subgraphs are compared against benign behavior graphs using
subgraph isomorphism to rule out subgraphs that match benign connections.

128

5.5 EVALUATION

Figure 5.5: Abstract overview of the mining process.

The graph mining step produces various different malicious subgraphs. However,
many of these graphs are redundant as they described identical behavior. Jack-
straws thus applies graph clustering to identify subgraphs with distinct behaviors
out of the large body of mined subgraphs. To achieve this goal, similarity between
mined subgraphs is measured by means of the maximum common subgraph and
clusters are constructed using bisection clustering. All subgraphs are initially put
into the same cluster and the algorithm then divides this cluster until the similarity
in each split cluster surpasses a fixed threshold.

The resulting clusters are then used to build the eventual C&C graph templates.
Therefore, the weighted minimal common subgraph of all graphs in the same cluster
is generated, i.e., the minimal graph in which contains all the cluster’s graphs. The
algorithm further distinguishes between core and optional nodes. Core nodes and
edges are present in all subgraphs of the cluster and the remaining other nodes and
edges are marked as optional. Figure 5.6 summarizes the clustering and template
generation process.

The resulting templates are matched against behavior graphs using graph iso-
morphism. The matching algorithm requires all core nodes to be present in the
behavior graphs. Further, a score value is computed that depends on the fraction
of additionally matching optional nodes.

5.5 Evaluation

Experiments were performed to evaluate Jackstraws both from a quantitative and
qualitative perspective. This section describes the evaluation details and results.

129

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

Figure 5.6: Abstract overview of the clustering and generalization processes.

5.5.1 Evaluation Datasets

For the evaluation, our system analyzed a total of 37,572 malware samples. The
samples were provided to us by a network security company, who obtained the
binaries from recent submission to a public malware analysis sandbox. Moreover,
we were only given samples that showed some kind of network activity when run
in the sandbox. We were also provided with a set of 385 signatures specifically
for known C&C traffic, as well as 162 signatures that characterize known, benign
traffic. The company also uses signatures for benign traffic to be able to quickly
discard harmless connections that bots frequently make.

To make sure that our sample set covers a wide variety of different malware
families, we labeled the entire set with six different anti-virus engines: Kaspersky,
F-Secure, BitDefender, McAfee, NOD32, and F-Prot. Using several sources for
labeling allows us reduce the possible limitations of a single engine. For every mal-
ware sample, each engine returns a label (unless the samples is considered benign)
from which we extract the malware family substring. For instance, if one anti-virus
engine classifies a sample as Win32.Koobface.AZ, then Koobface is extracted as the
family name. The family that is returned by a majority of the engines is used to
label a sample. In case the engines do not agree (and there is no majority for a label,
we go through the output of the AV tools in the order that they were mentioned
previously and pick the first, non-benign result.

Overall, we identified 745 different malware families for the entire set. The most
prevalent families were Generic (3756), EgroupDial (2009), Hotbar (1913), Palevo
(1556), and Virut (1539). 4,096 samples remained without label. Note that Generic
is not a precise label; many different kinds of malware can be classified as such by
AV engines. In summary, the results indicate that our sample set has no significant
bias towards a certain malware family. As expected, it covers a rich and diverse set

130

5.5 EVALUATION

of malware, currently active in the wild.

In a first step, we executed all samples in Jackstraws. Each sample was exe-
cuted for four minutes, which allows a sample to initialize and perform its normal
operations. This timeout is typically enough to establish several network connec-
tions and send/receive data via them. The execution of the 37,572 samples produced
150,030 network connections, each associated with a behavior graph. From these
graphs, we removed 19,395 connections in which the server responded with an error
(e.g., an HTTP request with a 404 “Not Found” response). Thus, we used a total
of 130,635 graphs produced by a total of 33,572 samples for the evaluation.

In the next step, we applied our signatures to the network connections. This
resulted in 16,535 connections that were labeled as malicious (known C&C traffic,
12.7%) and 16,082 connections that were identified as benign (12.3%). The mali-
cious connections were produced by 9,108 samples, while the benign connections
correspond to 7,031 samples. The remaining 98,018 connections (75.0%) are un-
known. The large fraction of unknown connections is an indicator that it is very
difficult to develop a comprehensive set of signatures that cover the majority of bot-
related C&C traffic. In particular, there was at least one unclassified connection
for 31,671 samples. Note that the numbers of samples that produced malicious, be-
nign, and unknown traffic add up to more than the total number of samples. This
is because some samples produced both malicious and benign connections. This
underlines that it is difficult to pick the important C&C connections among bot
traffic.

Of course, not all of the 385 malicious signatures produced matches. In fact, we
observed only hits from 78 C&C signatures, and they were not evenly distributed.
A closer examination revealed that the signature that matched the most number
of network connections is related to Palevo (4,583 matches), followed by Ramnit
(3,896 matches) and Koobface (2,690 matches).

5.5.2 Template Generation

In order to increase the overall quality of the malicious and benign test mining
graphs, a pre-filtering step was done. Therefore, behavior graphs that contained
only network-related system calls or generally too few nodes were ruled out. This
resulted in a final mining set of 10,801 malicious and 12,367 benign behavior graphs.

Both sets were then further split into a training set and a test set. To this end, we
randomly picked a number of graphs for the training set, while the remaining ones
were set aside as a test set. More precisely, for the malicious graphs, we kept 6,539
graphs (60.5%) for training and put 4,262 graphs (39.5%) into the test set. For
the benign graphs, we kept 8,267 graphs (66.8%) for training and put 4,100 graphs
(33.2%) into the test set. We used these malicious and benign training sets as input
for our template generation algorithm. This resulted in 417 C&C templates that

131

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

Jackstraws produced. The average number of nodes in a template was 11, where
6 nodes were part of the core and 5 were optional.

5.5.3 Detection Accuracy

In the next step, we wanted to assess whether the generated templates can accurately
detect activity related to command and control traffic without matching benign
connections. To this end, we ran two experiments. First, we evaluated the templates
on the graphs in the test set (which correspond to known C&C connections). Then,
we applied the templates to graphs associated with unknown connections. This
allows us to determine whether the extracted C&C templates are generic enough to
allow detection of previously-unknown C&C traffic (for which no signature exists).

Experiment 1: Known C&C connections

For the first experiment, we made use of the test set that was previously set aside.
More precisely, we applied our 417 templates to the behavior graphs in the test set.
This test set contained 4,262 connections that matched C&C signatures and 8,267
benign connections.

Our results show that Jackstraws is able to successfully detect 3,476 of the 4,262
malicious connections (81.6%) as command and control traffic. Interestingly, the
test set also contained malware families that were absent from the malicious training
set. 51.7% of the malicious connections coming from these families were successfully
detected, accounting for 0.4% of all detections. While the detection accuracy is high,
we explored false negatives (i.e., missed detections) in more detail. Overall, we found
three reasons why certain connections were not correctly identified:

First, in about half of the cases, detection failed because the bot did not complete
its malicious action after it received data from the C&C server. Incomplete behavior
graphs can be due to a timeout of the dynamic analysis environment, or an invalid
configuration of the host to execute the received command properly.

Second, the test set contained a significant number of Adware samples. The
behavior graphs extracted from these samples are very similar to benign graphs;
after all, Adware is in a grey area different from malicious bots. Thus, all graphs
potentially covering these samples are removed at the end of the mining process,
when compared to the benign training sets.

The third reason for missed detections is malicious connections that are only seen
a few times (possibly only in the test set). According to the AV labels, our data
set covers 745 families (and an additional 4,096 samples that could not be labeled).
Thus, certain families are rare in the data set. When a specific graph is only present
a few times (or not at all) in the training set, it is possible that all of its subgraphs
are below the mining threshold. In this case, we do not have a template that covers

132

5.5 EVALUATION

this activity.

Jackstraws also reported 7 benign graphs as malicious out of 4,100 connections
in the benign test set: a false positive rate of 0.2%. Upon closer examination, these
false positives correspond to large graphs where some Internet caching activity is
observed. These graphs accidentally triggered four weaker templates with few core
and many optional nodes.

Overall, our results demonstrate that the host-based activity learned from a set
of known C&C connections is successful in detecting other C&C connections that
were produced by a same set of malware families, but also in detecting five related
families that were only present in the test set. In a sense, this shows that C&C
templates have a similar detection capability as manually-generated, network-based
signatures.

Experiment 2: Unknown connections

For the next experiment, we decided to apply our templates to the graphs that
correspond to unknown network traffic. This should demonstrate the ability of
Jackstraws to detect novel C&C connections within protocols not covered by any
network-level signature.

When applying our templates to the 98,018 unknown connections, we found 9,464
matches (9.7%). We manually examined these connections in more detail to deter-
mine whether the detection results are meaningful. The analysis showed that our
approach is promising; the vast majority of connections that we analyzed had clear
indications of C&C activity. With the help of the anti-virus labels, we could identify
193 malware families which were not covered by the network signatures. The most
prevalent new families were Hotbar (1984), Pakes (871), Kazy (107), and LdPinch
(67). Furthermore, we detected several new variants of known bots that we did not
detect previously because their network fingerprint had changed and, thus, none
of our signatures matched. Nevertheless, Jackstraws was able to identify these
connections due to matched templates. In addition, the manual analysis showed a
low number of false positives. In fact, we only found 27 false positives out of the
9,464 matches, all of them being HTTP connections.

When comparing the number of our matches with the total number of unknown
connections, the results may appear low at first glance. However, not all connec-
tions in the unknown set are malicious. In fact, 10,524 connections (10.7%) do not
result in any relevant host-activity at all (the graphs only contain network-related
system calls such as send or connect). For another 13,676 graphs (14.0%), the re-
mote server did not send any data. For more than 7,360 HTTP connections (7.5%),
the server responded with status code 302, meaning that the requested content had
moved. In this case, we probably cannot see any interesting behavior to match.
In a few hundred cases, we also observed that the timeout of Jackstraws inter-

133

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

rupted the analysis too early (e.g., the connection downloaded a large file). In these
cases, we usually miss some of the interesting behavior. Thus, almost 30 thousand
unknown connections can be immediately discarded as non-C&C traffic.

Furthermore, the detection results of 9,464 new C&C connections for Jack-
straws need to be compared with the total number of 16,535 connections that
the entire signature set was able to detect. Our generalized templates were able
to detect almost 60% more connections than hundreds of hand-crafted signatures.
Note that our C&C templates do not inspect network traffic at all. Thus, they can,
by construction, detect C&C connections regardless of whether the malware uses
encryption or not, something not possible with network signatures.

5.5.4 Template Quality

The previous section has shown that our C&C templates are successful in identifying
host-based activity related to both known and novel network connections. We also
manually examined several templates in more detail to determine whether they
capture activity that a human analyst would consider malicious.

Jackstraws was able to extract different kinds of templates. More precisely, out
of the 417 templates, more than a hundred templates represent different forms of
information leakage. The leaked information is originally collected from dedicated
registry keys or from specific system calls (e.g., computer name, Windows version
and identifier, Internet Explorer version, current system time, volume ID of the
hard disk, or processor information). About fifty templates represent executable
file downloads or updates of existing files. Additional templates include process
execution: downloaded data that is injected into a process and then executed. Five
templates also represent complete download and execute commands. The remaining
templates cover various other malicious activities, including registry modifications
ensuring that the sample is started on certain events (e.g., replacing the default
executable file handler for Windows Explorer) and for hiding malware activity (e.g.,
clearing the MUICache).

We also found 20 “weak” templates (out of 417). These templates contain a
small number of nodes and do not seem related to any obvious malicious activity.
However, these templates did not trigger any false positive in the benign test set.
This indicates that they still exhibit enough discriminative power with regards to
our malicious and benign graph sets.

5.5.5 Template Examples

We manually examined C&C templates to determine whether they capture activity
that a human analyst would consider malicious. We now present two examples that
were automatically generated by Jackstraws.

134

5.5 EVALUATION

network: send

systemcall: NtQueryValueKey

Valuename: ComputerName

 arg: buf=KeyValueInformation

systemcall: NtOpenKey

Keyname: hklm\system\currentcontrolset\control\computername\activecomputername

#Keyname: HKLM\System\CurrentControlSet\Control\ComputerName\ActiveComputerName

 arg: KeyHandle=KeyHandle

systemcall: NtOpenKey

Keyname: hklm\system\currentcontrolset\control\computername

#Keyname: \Registry\Machine\System\CurrentControlSet\Control\ComputerName

 arg: ObjectAttributes=KeyHandle

network: connect

port: *

 Socket=Socket

Figure 5.7: Template that describes leaking of sensitive data. Darker nodes con-
stitute the template core, whereas lighter ones are optional.

135

CHAPTER 5: BEHAVIOR-GRAPH-BASED C&C DETECTION FOR
PROPRIETARY OPERATING SYSTEMS

systemcall: recv

network: connect

port: 443

#ip=193.23.126.55
#ip=94.75.255.138

 arg: ip=buf

systemcall: NtCreateFile

Filename: inProgramDirectory\isExecutable
DesiredAccess: FileReadAttributes

Attributes: AttributeNormal
CreateDisposition: FileSupersede

#Filename=\??\C:\Program Files\temp\ldr.exe

 arg: ObjectAttributes=buf

systemcall: NtCreateFile

Filename: inProgramDirectory\isExecutable
DesiredAccess: FileReadAttributes | FileWriteAttributes

Attributes: AttributeNormal
CreateDisposition: FileSupersede

#Filename=\??\C:\Program Files\temp\ldr.exe

 arg: ObjectAttributes=buf

network: recv

Collapse: isMultiple

 arg: Socket=Socket

systemcall: NtAllocateVirtualMemory

*: *

 arg: ObjectAttributes=RegionSize

systemcall: NtDeviceIoControlFile

*: *

 arg: InputBuffer=buf

systemcall: NtWriteFile

*: *

 arg: Buffer=buf
 arg: Length=buf

systemcall: NtSetInformationFile

Collapse: isMultiple

 arg: FileInformation=buf

process: start

 arg: buf=buf

 arg: FileHandle=FileHandle

 arg: FileHandle=FileHandle

Figure 5.8: Template that describes the download and execute functionality of a
bot: an executable file is created, its content is downloaded from the
network, decoded, written to disk, its information is modified before
being executed. In the NtCreateFile node, the file name ldr.exe is
only mentioned as a comment. Comments help a human analyst when
looking at a template, but they are ignored by the matching.

136

5.6 CONCLUSION AND FUTURE WORK

Figure 5.7 shows a template we extracted from bots that use a proprietary, binary
protocol for communicating with the C&C server. The behavior corresponds to some
kind of information leakage: the samples query the registry for the computer name
and send this information via the network to a server. We consider this a malicious
activity, which is often used by bots to generate a unique identifier for an infected
machine. In the network traffic itself this activity cannot be easily identified, since
the samples use their own protocol.

As another example, consider the template shown in Figure 5.8. This template
corresponds to the download & execute behavior, i.e., data is downloaded from the
network, written to disk, and then executed. The template describes this specific
behavior in a generic way.

5.6 Conclusion and Future Work

In this chapter, we have presented behavior graphs as a new improved way to
model network connection that allow distinguishing malicious C&C bot connections
from benign connections. Therefore, we combined network-level with host-level
information to introduce semantic coherences between system call and data flows
between their parameters. This allowed us to overcome the weaknesses of approaches
that rely either on host-based or on network-based only models. We implemented
our approach using the Anubis analysis system for proprietary Windows operating
systems. With the help of machine learning techniques, it is possible to use these
behavior graphs by mining, clustering, and generically creating templates that allow
detecting malicious C&C connections in an abstract way.

An interesting topic for future work is to compare Jackstraws’s results against
manually created behavior graph templates for C&C connections. We are interested
to see whether this allows us to achieve even better detection rates and lower false
positives.

137

6
Conclusion

In this thesis, we presented several approaches to analyze and retrofit proprietary
software systems. We therefore concerned ourselves with four subtopics in this field.
We show how to extract algorithms from proprietary software and how to overcome
various unique challenges that emerge when it comes to retrofitting system with
improved security measures.

The first contribution is the disclosure of the secret satellite telephony GMR-1
algorithm. We presented a generic strategy to identify the unknown encryption
algorithms within a satphone firmware. We then used this approach to reverse
engineer the searched-for algorithms, which were later proven to be vulnerable to
attacks already mounted against the related GSM mobile telephony standard. The
results of our work confirm our initial thesis that communication systems should
not rely on the security by obscurity principle regarding cryptographic algorithms.

In the next chapter, we showed that the assumptions of current kernelspace ASLR
implementations are insufficient and can be undermined by a local attacker using
side channel timing attacks. We therefore extracted the proprietary kernelspace
implementation of Windows and developed three independent attacks that allow an
attacker to reconstruct (parts of) the kernelspace layout, which in turn gives her
the possibility to mount arbitrary ROP attacks. We also presented a mitigation
approach by retrofitting the Windows exception handler to render these kinds of
attacks impossible.

We also presented the design and implementation of the runtime components of
the MoCFI tool that provides CFI for smartphones running the proprietary iOS
operating system to thwart the exploitation of software vulnerabilities in apps. We
showed how to tackle various challenges that emerge due to the lack of source code
information of the protected applications. Furthermore, we presented PSiOS, an
extension of the original CFI framework that allows to specify individual policy
rules to restrict the access to sensitive data sources by arbitrary applications. The
evaluation of both systems shows that our tools are applicable to a large variety of

139

List of Acronyms

popular applications and the runtime overhead remains within reasonable bounds.
Finally, we described a new approach to model malicious C&C connections from

bots in the form of behavior graphs. Behavior graphs overcome the inherent weak-
nesses of previous similar systems which confine themselves to either network- or
host-based approaches and thus produce high false positive rates or high false neg-
ative. We combine both worlds and show how behavior graphs can be generated
for the Windows operating system by monitoring the proprietary native API. The
behavior graph generation was embedded into the Jackstraws framework which is
able to generate general templates on the basis of these graphs using machine learn-
ing techniques. The evaluation shows that behavior graphs are an effective model
and that they allows to successfully distinguish malicious from benign connections.

140

List of Acronyms

ASLR Address Space Layout Randomization . 4

AST abstract syntax tree . 76

BB basic block . 79

CFG control flow graph . 5

CFI control flow integrity . iii

CISC complex instruction set computer . 15

CPD change point detection . 63

CSE code signing enforcement . 82

DDoS distributed denial of service . 113

DEP Data Execution Prevention . 88

DSP digital signal processor . 4

EM execution monitoring . 85

ETSI European Telecommunications Standards Institute . 10

GMR-1 GEO Mobile Radio Interface

GSM Global System for Mobile Communications . 9

JIT just in time . 82

LOC lines of code. .93

MMU memory management unit . 16

MoCFI Mobile CFI . 5

PSiOS Privacy and Security for iOS devices

RISC reduced instruction set computer . 15

ROP return-oriented programming . 4

141

List of Figures

SFI software fault isolation . 87

SSP Stack Smashing Protector . 82

SoC system on a chip . 23

TLB translation lookaside buffer . 16

142

List of Figures

2.1 Layout of a geostationary orbit telephone network [88]. 13

2.2 Inmarsat spotbeam coverage map [73]. 14

2.3 Schematic overview on the authentication and encryption facilities of
GMR satellite-to-device (and vice versa) connections. 14

2.4 The GSM-A5/2 cipher [25]. 18

2.5 Functional overview of the OMAP5910 Platform [145]. 24

2.6 Global memory map of the ARM core of an OMAP5910 board [145]. 25

2.7 Global memory map of the DSP core of an OMAP5910 board [145]. 26

2.8 Illustration of the two-level ARM MMU virtual address translation
process [23]. 27

2.9 The GMR-A5-1 cipher. 35

3.1 ASLR for Windows kernel region (not proportional). Slot and load
order (either (1) or (2)) are chosen randomly. 44

3.2 Two example driver regions randomized using Windows kernel ASLR. 44

3.3 Address to cache index and tag mapping. 46

3.4 Address resolution for regular and large pages on PAE systems. . . . 47

3.5 Intel i7 memory hierarchy plus clock latency for the relevant stages
(based on [90, 101]). 48

3.6 Results for the reconstruction of the undocumented Sandybridge hash
function. 58

3.7 Correlation of different memory addresses. 59

3.8 Cache probing results for Intel i7-870 (Bloomfield). 60

3.9 Example of double page fault measurements for an Intel i7-950 (Lyn-
nfield) CPU. 62

3.10 Zoomed-in view around 0xa0000000 (Intel i7-950 (Lynnfield) CPU). 62

3.11 Double page fault measurements on Intel i7-870 (Bloomfield) processor. 64

3.12 Zoomed-in view of Figure 3.11. 64

143

List of Tables

3.13 Pseudo code of our CPD reconstruction algorithm. 65
3.14 Example of an allocation signature. 67
3.15 Extract of cache preloading measurements. 70

4.1 Schematic overview of control flow attacks. 80
4.2 Design of the MoCFI framework. 91
4.3 Flow chart of the trampoline decision process. 98
4.4 Trampoline templates. 100
4.5 Summary and examples of all trampoline types. 102
4.6 Gensystek Lite Benchmarks. 107
4.7 Schematic design of PSiOS. 111

5.1 Example of behavior graph that shows information leakage. Under-
neath, the network log shows that the Windows ID was leaked via
the GET parameter id. 119

5.2 Raw behavior graph system call node on the left and its filtered
version on the right. 124

5.3 Example of a subgraph before (left) and after (right) parallel system
call node collapsing. 126

5.4 Example of a subgraph before (left) and after (right) sequence col-
lapsing. 127

5.5 Abstract overview of the mining process. 129
5.6 Abstract overview of the clustering and generalization processes. . . 130
5.7 Template that describes leaking of sensitive data. Darker nodes con-

stitute the template core, whereas lighter ones are optional. 135
5.8 Template that describes the download and execute functionality of a

bot: an executable file is created, its content is downloaded from the
network, decoded, written to disk, its information is modified before
being executed. In the NtCreateFile node, the file name ldr.exe is
only mentioned as a comment. Comments help a human analyst
when looking at a template, but they are ignored by the matching. . 136

144

List of Tables

2.1 Functions rated by percentage of relevant arithmetic and logical in-
structions. 34

3.1 Summary of timing side channel attacks against kernel space ASLR
on Windows. 55

3.2 Results for double page fault timings. 66
3.3 Evaluation of allocation signature matching. 67

4.1 Tested iOS applications and occurrences of specific check sites. . . . 105
4.2 Quicksort measurements. 107

145

List of Listings

2.1 An excerpt of the ARM MMU initialization code in the Thuraya
SO-2510 firmware. 28

2.2 Reverse engineered high-level C representation of dsp fwload a. . . 31
2.3 Reverse engineered high-level C representation of dsp fwload b. . . 32
2.4 Disassembly and corresponding high-level C representation of one

DSP LFSR clock routine. 35

147

Bibliography

[1] J. Aas. Understanding the Linux 2.6.8.1 CPU Scheduler. http://joshaas.

net/linux/linux_cpu_scheduler.pdf, 2005.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity:
Principles, Implementations, and Applications. In ACM Conference on Com-
puter and Communications Security (CCS), 2005.

[3] M. Abadi, M. Budiu, U. Erlingsson, G. C. Necula, and M. Vrable. XFI:
Software Guards for System Address Spaces. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

[4] W. A.-K. Abu-Sufah. Improving the Performance of Virtual Memory Com-
puters. PhD thesis, University of Illinois at Urbana-Champaign, 1979.

[5] O. Aciiçmez. Yet another MicroArchitectural Attack: exploiting I-Cache. In
ACM Workshop on Computer Security Architecture (CSAW), 2007.

[6] O. Aciiçmez, W. Schindler, and Çetin Kaya Koç. Improving Brumley and
Boneh timing attack on unprotected SSL implementations. In ACM Confer-
ence on Computer and Communications Security (CCS), 2005.

[7] O. Aciiçmez, B. B. Brumley, and P. Grabher. New Results on Instruction
Cache Attacks. In Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES), 2010.

[8] S. Adair. Pushdo DDoS’ing or Blending In? http://www.shadowserver.

org/wiki/pmwiki.php/Calendar/20100129, January 2010.

[9] P. Akritidis. Cling: A Memory Allocator to Mitigate Dangling Pointers. In
USENIX Security Symposium, 2010.

149

http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://joshaas.net/linux/linux_cpu_scheduler.pdf
http://www.shadowserver.org/wiki/pmwiki.php/Calendar/20100129
http://www.shadowserver.org/wiki/pmwiki.php/Calendar/20100129

BIBLIOGRAPHY

[10] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers. In
Proceedings of the 19th USENIX conference on Security, USENIX Security’10.
USENIX Association, 2010.

[11] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds Checking: An
Efficient and Backwards-Compatible Defense against Out-of-Bounds Errors.
In USENIX Security Symposium, 2009.

[12] Aleph One. Smashing the Stack for Fun and Profit. Phrack Magazine, 49(14),
1996.

[13] Anonymous. Once upon a free(). Phrack Magazine, 57(9), 2001.

[14] Apple. The App Sandbox. http://developer.apple.com/library/ios/

#documentation/Miscellaneous/Reference/EntitlementKeyReference/

Chapters/EnablingAppSandbox.html, 2013.

[15] Apple. App Review Guidelines. https://developer.apple.com/appstore/
guidelines.html, 2013.

[16] Apple. Max OS X Source Code. http://www.opensource.apple.com/, 2013.

[17] Apple Inc. Objective-C Runtime Programming Guide. http://developer.

apple.com/library/mac/documentation/Cocoa/Conceptual/

ObjCRuntimeGuide/ObjCRuntimeGuide.pdf, 2009.

[18] Apple Inc. Manual Page of dyld - the dynamic link editor.
http://developer.apple.com/library/mac/#documentation/Darwin/

Reference/ManPages/man1/dyld.1.html, 2011.

[19] Apple Inc. Manual Page of mmap - allocate memory, or map files or devices into
memory. http://developer.apple.com/library/mac/#documentation/

Darwin/Reference/ManPages/man2/mmap.2.html, 2011.

[20] Apple Inc. Entitlement key reference. http://developer.apple.

com/library/mac/#documentation/Miscellaneous/Reference/

EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//

apple_ref/doc/uid/TP40011195-CH4-SW1, 2011.

[21] Apple Inc. Designing for App Sandbox. http://developer.

apple.com/library/mac/#documentation/Security/Conceptual/

AppSandboxDesignGuide/DesigningYourSandbox/DesigningYourSandbox.

html, 2013.

150

http://developer.apple.com/library/ios/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html
https://developer.apple.com/appstore/guidelines.html
https://developer.apple.com/appstore/guidelines.html
http://www.opensource.apple.com/
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/
ObjCRuntimeGuide/ObjCRuntimeGuide.pdf
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/dyld.1.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/dyld.1.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/mmap.2.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/mmap.2.html
http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/EnablingAppSandbox.html#//apple_ref/doc/uid/TP40011195-CH4-SW1
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/DesigningYourSandbox/DesigningYourSandbox.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/DesigningYourSandbox/DesigningYourSandbox.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/DesigningYourSandbox/DesigningYourSandbox.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/DesigningYourSandbox/DesigningYourSandbox.html

BIBLIOGRAPHY

[22] ARM Limited. Procedure Call Standard for the ARM Architec-
ture. http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/

IHI0042D_aapcs.pdf, 2009.

[23] ARM Limited. ARM Architecture Reference Manual, 2010. http:

//infocenter.arm.com/help/topic/com.arm.doc.set.architecture/

index.html.

[24] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic
optimization system. In Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, 2000.

[25] E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-Only Cryptanalysis
of GSM encrypted communication. In International Crytology Conference
(CRYPTO), pages 600–616, 2003.

[26] E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-Only Cryptanalysis
of GSM Encrypted Communication. Journal of Cryptology, 21, March 2008.

[27] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: Theory and
Application. Prentice-Hall, 1993.

[28] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with poly-
mer. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, 2005.

[29] Benedikt Driessen, Ralf Hund, Carsten Willems, Christof Paar and Thorsten
Holz. An analysis of the GMR-1 and GMR-2 standards, 2012. http://gmr.

crypto.rub.de.

[30] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: An Efficient
Approach to Combat a Broad Range of Memory Error Exploits. In USENIX
Security Symposium, 2003.

[31] A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis of A5/1
on a PC. In Fast Software Encryption (FSE), 2000.

[32] blexim. Basic Integer Overflows. Phrack Magazine, 60(10), 2002.

[33] A. Bogdanov, T. Eisenbarth, and A. Rupp. A Hardware-Assisted Realtime
Attack on A5/2 Without Precomputations. In Cryptographic Hardware and
Embedded Systems (CHES), 2007.

[34] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev. Address Space Random-
ization for Mobile Devices. In ACM Conference on Wireless Network Security
(WiSec), 2011.

151

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.architecture/index.html
http://gmr.crypto.rub.de
http://gmr.crypto.rub.de

BIBLIOGRAPHY

[35] J. Bonneau and I. Mironov. Cache-Collision Timing Attacks Against AES. In
Cryptographic Hardware and Embedded Systems (CHES), 2006.

[36] M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation
of the GSM A5/1 and A5/2 “voice privacy” encryption algorithms, 1999.
Originally published at http://www.scard.org, mirror at http://cryptome.

org/gsm-a512.htm.

[37] D. Brumley and D. Boneh. Remote Timing Attacks are Practical. In USENIX
Security Symposium, 2003.

[38] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher: Enabling
Active Botnet Infiltration using Automatic Protocol Reverse-Engineering. In
ACM Conference on Computer and Communications Security (CCS), 2009.

[39] Charles Miller and Dion Blazakis and Dino Dai Zovi and Stefan Esser and
Vincenzo Iozzo and Ralf-Phillipp Weinmann. iOS Hacker’s Handbook, page
211. John Wiley & Sons, Inc., 2012.

[40] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-Channel Leaks in Web
Applications: A Reality Today, a Challenge Tomorrow. In IEEE Symposium
on Security and Privacy, 2010.

[41] T. Chiueh and F.-H. Hsu. RAD: A Compile-Time Solution to Buffer Over-
flow Attacks. In International Conference on Distributed Computing Systems
(ICDCS), 2001.

[42] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical Study
of Operating Systems Errors. In ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[43] M. Christodorescu and S. Jha. Testing Malware Detectors. In ACM Int.
Symp. on Software Testing & Analysis (ISSTA), 2004.

[44] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of mali-
cious behavior. In Meeting of the European Software Engineering Conf. & the
SIGSOFT Symp. Foundations of Software Engineering, 2007.

[45] M. Conover. w00w00 on Heap Overflows, 1999.

[46] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup: Under-
standing, Detecting, and Disrupting Botnets. In USENIX Workshop Steps to
Reducing Unwanted Traffic on the Internet Workshop (SRUTI), 2005.

152

http://cryptome.org/gsm-a512.htm
http://cryptome.org/gsm-a512.htm

BIBLIOGRAPHY

[47] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. In USENIX Security
Symposium, 1998.

[48] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointguardTM: Protecting
Pointers From Buffer Overflow Vulnerabilities. In USENIX Security Sympo-
sium, 2003.

[49] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures. In
Annual Computer Security Applications Conf. (ACSAC), 2007.

[50] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi. Mocfi: A framework to mitigate control-
flow attacks on smartphones. In 19th Annual Network & Distributed System
Security Symposium (NDSS), Feb. 2012.

[51] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether: Malware Analysis
Via Hardware Virtualization Extensions. In ACM Conf. Computer & Com-
munications Security (CCS), 2008.

[52] B. Driessen, R. Hund, C. Willems, C. Paar, and T. Holz. Don’t Trust Satellite
Phones: A Security Analysis of Two Satphone Standards. In IEEE Symposium
on Security and Privacy, pages 128–142. IEEE Computer Society, 2012.

[53] J. Duart. Objective-C helper script. https://github.com/zynamics/

objc-helper-plugin-ida, 2010.

[54] T. Durden. Bypassing PaX ASLR Protection. Phrack Magazine, 59(9), 2002.

[55] A. Edwards, A. Srivastava, and H. Vo. Vulcan Binary Transformation in
a Distributed Environment. Technical Report MSR-TR-2001-50, Microsoft
Research, 2001.

[56] A. Edwards, H. Vo, A. Srivastava, and A. Srivastava. Vulcan binary transfor-
mation in a distributed environment. Technical report, Microsoft Research,
2001.

[57] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy
Leaks in iOS Applications. In Symposium on Network and Distributed System
Security (NDSS), 2011.

[58] M. Engelberth, F. C. Freiling, J. Göbel, C. Gorecki, T. Holz, R. Hund,
P. Trinius, and C. Willems. Das Internet-Malware-Analyse-System (InMAS).
Datenschutz und Datensicherheit, 35:247–252, 2011.

153

https://github.com/zynamics/objc-helper-plugin-ida
https://github.com/zynamics/objc-helper-plugin-ida

BIBLIOGRAPHY

[59] U. Erlingsson and F. B. Schneider. Sasi enforcement of security policies: a
retrospective. In Proceedings of the 1999 workshop on New security paradigms,
NSPW ’99, pages 87–95. ACM, 2000.

[60] ETSI. ETSI TS 101 376-3-2 V1.1.1 (2001-03); GEO-Mobile Radio Interface
Specifications; Part 3: Network specifications; Sub-part 2: Network Architec-
ture; GMR-1 03.002, 2001.

[61] ETSI. ETSI TS 101 376-3-9 V1.1.1 (2001-03); GEO-Mobile Radio Interface
Specifications; Part 3: Network specifications; Sub-part 9: Security related
Network Functions; GMR-1 03.020, 2001.

[62] A. Eustace and A. Srivastava. ATOM: a flexible interface for building high
performance program analysis tools. In Proceedings of the USENIX 1995
Technical Conference Proceedings. USENIX Association, 1995.

[63] D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE
Security and Privacy, 1999.

[64] E. W. Felten and M. A. Schneider. Timing Attacks on Web Privacy. In ACM
Conference on Computer and Communications Security (CCS), 2000.

[65] P. Fogla and W. Lee. Evading Network Anomaly Detection Systems: Formal
Reasoning and Practical Techniques. In ACM Conf. Computer & Communi-
cations Security (CCS), 2006.

[66] P. Fogla, M. I. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic
Blending Attacks. In Usenix Security Symp., 2006.

[67] S. Forrest, S. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of Self for
Unix Processes. In IEEE Symp. Security & Privacy, 1996.

[68] M. Frantzen and M. Shuey. StackGhost: Hardware Facilitated Stack Protec-
tion. In USENIX Security Symposium, 2001.

[69] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing
near-optimal malware specifications from suspicious behaviors. In IEEE Symp.
Security & Privacy, 2010.

[70] F. C. Freiling, T. Holz, and G. Wicherski. Botnet Tracking: Exploring a
Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks.
In European Symp. Research in Computer Security (ESORICS), 2005.

[71] gera. Advances in Format String Exploitation. Phrack Magazine, 59(12),
2002. URL http://www.phrack.com/issues.html?issue=59&id=7.

154

http://www.phrack.com/issues.html?issue=59&id=7

BIBLIOGRAPHY

[72] Giuffrida, Cristiano and Kuijsten, Anton and Tanenbaum, Andrew S. En-
hanced Operating System Security Through Efficient and Fine-grained Ad-
dress Space Randomization. In Proceedings of the 21st USENIX conference
on Security symposium, Security’12. USENIX Association, 2012.

[73] GlobalCom. Inmarsat Isatphone Pro World Wide Coverage Map, 2012. http:
//www.globalcomsatphone.com/support9.html.

[74] J. Goebel and T. Holz. Rishi: Identify Bot Contaminated Hosts by IRC
Nickname Evaluation. In USENIX Workshop Hot Topics in Understanding
Botnets (HotBots), 2007.

[75] F. Gröbert, C. Willems, and T. Holz. Automated Identification of Crypto-
graphic Primitives in Binary Programs. In Symposium on Recent Advances
in Intrusion Detection (RAID), 2011.

[76] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: Detect-
ing Malware Infection Through IDS-Driven Dialog Correlation. In USENIX
Security Symp., 2006.

[77] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-Independent Botnet Detection.
In USENIX Security Symp., 2008.

[78] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic. In Symp. Network & Distributed System
Security (NDSS), 2008.

[79] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games – Bringing Access-
Based Cache Attacks on AES to Practice. In IEEE Symposium on Security
and Privacy, 2011.

[80] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the
Droids you’re looking for: Retrofitting Android to protect data from imperious
applications. In ACM Conference on Computer and Communications Security
(CCS). ACM, 2011.

[81] R. Hund, T. Holz, and F. C. Freiling. Return-Oriented Rootkits: Bypassing
Kernel Code Integrity Protection Mechanisms. In USENIX Security Sympo-
sium, 2009.

[82] R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel Attacks
Against Kernel Space ASLR. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013.

155

http://www.globalcomsatphone.com/support9.html
http://www.globalcomsatphone.com/support9.html

BIBLIOGRAPHY

[83] Intel. TLBs, Paging-Structure Caches, and Their Invalida-
tion. http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html, 2012.

[84] Intel Corporation. Intel: 64 and IA-32 Architectures Software Developer’s
Manual, 2007. http://www.intel.com/products/processor/manuals/

index.htm.

[85] International Secure Systems Lab. Anubis: Analyzing Unknown Binaries.
http://anubis.iseclab.org, 2011.

[86] Invisible Things Lab. From Slides to Silicon in 3
Years! http://theinvisiblethings.blogspot.de/2011/06/

from-slides-to-silicon-in-3-years.html, 2011.

[87] G. Jacob, R. Hund, C. Kruegel, and T. Holz. JACKSTRAWS: Picking Com-
mand and Control Connections from Bot Traffic. In USENIX Security Sym-
posium. USENIX Association, 2011.

[88] Jim Geovedi and Raoul Chiesa. Hacking a Bird in the Sky. In HITBSecConf,
Amsterdam, 2011.

[89] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy. Studying
Spamming Botnets Using Botlab. In USENIX Symp. Networked Systems De-
sign & Implementation (NSDI), 2009.

[90] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach, page 118. Elsevier, Inc., 2012.

[91] M. Jurczyk. Windows Security Hardening Through Kernel Address Protec-
tion. http://j00ru.vexillium.org/?p=1038, 2011.

[92] A. Kalafut, A. Acharya, and M. Gupta. A Study of Malware in Peer-to-Peer
Networks. In ACM SIGCOMM Conf. Internet Measurement, 2006.

[93] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard: Lightweight
Kernel Protection Against return-to-user Attacks. In USENIX Security Sym-
posium, 2012.

[94] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address Space Layout
Permutation (ASLP): Towards Fine-Grained Randomization of Commodity
Software. In Annual Computer Security Applications Conference (ACSAC),
2006.

[95] H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm
Signature Detection. In USENIX Security Symp., 2004.

156

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://anubis.iseclab.org
http://theinvisiblethings.blogspot.de/2011/06/from-slides-to-silicon-in-3-years.html
http://theinvisiblethings.blogspot.de/2011/06/from-slides-to-silicon-in-3-years.html
http://j00ru.vexillium.org/?p=1038

BIBLIOGRAPHY

[96] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure Execution via
Program Shepherding. In USENIX Security Symposium, 2002.

[97] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In International Crytology Conference (CRYPTO),
1996.

[98] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang. Effective and Efficient Malware Detection at the End Host. In
USENIX Security Symp., 2009.

[99] C. Kreibich and J. Crowcroft. Honeycomb: Creating Intrusion Detection
Signatures Using Honeypots. ACM SIGCOMM Computer Communication
Review, 34(1), 2004.

[100] W. Lee, S. J. Stolfo, and K. W. Mok. A Data Mining Framework for Building
Intrusion Detection Models. In IEEE Symp. Security & Privacy, 1999.

[101] D. Levinthal. Performance Analysis Guide for Intel Core i7 Processor and
Intel Xeon 5500 processors. http://software.intel.com/sites/products/
collateral/hpc/vtune/performance_analysis_guide.pdf, 2012.

[102] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez. Hamsa: Fast Signature
Generation for Zero-day PolymorphicWorms with Provable Attack Resilience.
In IEEE Symp. Security & Privacy, 2006.

[103] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program anal-
ysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation,
PLDI ’05, 2005.

[104] G. Maral and M. Bousquet. Satellite Communications Systems: Systems,
Techniques and Technology. John Wiley & Sons, 5 edition, 2009.

[105] D. Matolak, A. Noerpel, R. Goodings, D. Staay, and J. Baldasano. Recent
progress in deployment and standardization of geostationary mobile satellite
systems. In Military Communications Conference (MILCOM), 2002.

[106] Microsoft. Data Execution Prevention (DEP). http://support.microsoft.
com/kb/875352/EN-US/, 2006.

[107] Microsoft. Description of Performance Options in Windows. http://

support.microsoft.com/kb/259025/en-us, 2007.

157

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/259025/en-us
http://support.microsoft.com/kb/259025/en-us

BIBLIOGRAPHY

[108] Microsoft. The /SAFESEH compiler flag. http://msdn.microsoft.com/

en-us/library/9a89h429%28v=vs.80%29.aspx, 2011.

[109] K. Mowery, S. Keelveedhi, and H. Shacham. Are AES x86 Cache Timing At-
tacks Still Feasible? In ACM Cloud Computing Security Workshop (CCSW),
2012.

[110] N. Seriot. SpyPhone. https://github.com/nst/SpyPhone, 2011.

[111] M. Nauman, S. Khan, and X. Zhang. Apex: Extending Android permis-
sion model and enforcement with user-defined runtime constraints. In ACM
Symposium on Information, Computer and Communications Security (ASI-
ACCS), 2010.

[112] J. Newsom, B. Karp, and D. Song. Polygraph: Automatically Generating
Signatures for Polymorphic Worms. In IEEE Symp. Security & Privacy, 2005.

[113] Noé Lutz. Towards Revealing Attackers’ Intent by Automatically Decrypting
Network Traffic. Master’s thesis, ETH Zürich, July 2008.

[114] OsmocomGMR. Thuraya SO-2510, 2013. URL http://gmr.osmocom.org/

trac/wiki/Thuraya_SO2510.

[115] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D.
Keromytis. Retrofitting security in cots software with binary rewriting. In
SEC, IFIP Advances in Information and Communication Technology, 2011.

[116] PaX Team. http://pax.grsecurity.net/.

[117] PaX Team. Address Space Layout Randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt, 2003.

[118] S. Peisert, M. Bishop, S. Karin, and K. Marzullo. Analysis of Computer
Intrusions Using Sequences of Function Calls. IEEE Trans. Dependable Secur.
Comput., 4(2), 2007.

[119] C. Percival. Cache Missing for Fun and Profit. http://www.daemonology.

net/hyperthreading-considered-harmful/, 2005.

[120] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. I. Sharif. Misleading worm
signature generators using deliberate noise injection. In IEEE Symp. Security
& Privacy, 2006.

[121] R. Perdisci, W. Lee, and N. Feamster. Behavioral Clustering of HTTP-
based Malware and Signature Generation Using Malicious Network Traces. In
USENIX Symp. Networked Systems Design & Implementation (NSDI), 2010.

158

http://msdn.microsoft.com/en-us/library/9a89h429%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/9a89h429%28v=vs.80%29.aspx
https://github.com/nst/SpyPhone
http://gmr.osmocom.org/trac/wiki/Thuraya_SO2510
http://gmr.osmocom.org/trac/wiki/Thuraya_SO2510
http://pax.grsecurity.net/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/

BIBLIOGRAPHY

[122] S. Petrovic and A. Fuster-Sabater. Cryptanalysis of the A5/2 Algorithm.
Technical report, Information Security Institute Serrano, 2000. http://

eprint.iacr.org/2000/052.

[123] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All Your
iFRAMEs Point to Us. In USENIX Security Symp., 2008.

[124] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted Approach to
Understanding the Botnet Phenomenon. In Internet Measurement Conference
(IMC), 2006.

[125] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In ACM
Conference on Computer and Communications Security (CCS), 2009.

[126] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad,
and B. Chen. Instrumentation and optimization of Win32/intel executables
using Etch. In Proceedings of the USENIX Windows NT Workshop on The
USENIX Windows NT Workshop 1997. USENIX Association, 1997.

[127] M. Russinovich. Inside the Windows Vista Kernel: Part 3. http://technet.
microsoft.com/en-us/magazine/2007.04.vistakernel.aspx, 2007.

[128] F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
pages 30–50, 2000.

[129] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask). In IEEE Symp. Security & Privacy, 2010.

[130] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made
easy. In USENIX Security Symposium, 2011.

[131] M. J. Schwartz. iOS Social Apps Leak Contact Data.
http://www.informationweek.com/news/security/privacy/232600490,
2012.

[132] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. PLTO: A Link-Time
Optimizer for the Intel IA-32 Architecture. In In Proceedings of the 2001
Workshop on Binary Translation (WBT-2001, 2001.

[133] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In ACM Conference on Computer and
Communications Security (CCS), 2007.

159

http://eprint.iacr.org/2000/052
http://eprint.iacr.org/2000/052
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://technet.microsoft.com/en-us/magazine/2007.04.vistakernel.aspx
http://www.informationweek.com/news/security/privacy/232600490

BIBLIOGRAPHY

[134] H. Shacham, M. Page, B. Paff, E. jin Goh, N. Modadugu, and D. Boneh. On
the Effectiveness of Address-Space Randomization. In ACM Conference on
Computer and Communications Security (CCS), 2004.

[135] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Finger-
printing. In USENIX Symp. Operating Systems Design & Implementation
(OSDI), 2004.

[136] Solar Designer. ”return-to-libc” attack. Bugtraq, 1997.

[137] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A New Approach to
Computer Security via Binary Analysis. In Int. Conf. Information Systems
Security (ICISS), 2008.

[138] D. X. Song, D. Wagner, and X. Tian. Timing Analysis of Keystrokes and
Timing Attacks on SSH. In USENIX Security Symposium, 2001.

[139] E. Stinson and J. C. Mitchell. Characterizing Bots’ Remote Control Behavior.
In Conf. Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2007.

[140] B. Stone-Gross, A. Moser, C. Kruegel, and E. Kirda. FIRE: FInding Rogue
nEtworks. In Annual Computer Security Applications Conf. (ACSAC), 2009.

[141] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Wal-
ter. Breaking the Memory Secrecy Assumption. In European Workshop on
System Security (EuroSec), 2009.

[142] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability of
Commodity Operating Systems. ACM Trans. Comput. Syst., 23(1), 2005.

[143] Symantec. W32.Stuxnet Dossier. http://www.symantec.com/connect/

blogs/w32stuxnet-dossier, 2010.

[144] P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley,
2005.

[145] Texas Instruments. The OMAP 5910 Platform, 2012. URL http://www.ti.

com/product/omap5910.

[146] Texas Instruments. System Initialization for the OMAP5910 Device, 2012.
URL http://www.ti.com/product/omap5910.

[147] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptol., 23(2), Jan. 2010.

160

http://www.symantec.com/connect/blogs/w32stuxnet-dossier
http://www.symantec.com/connect/blogs/w32stuxnet-dossier
http://www.ti.com/product/omap5910
http://www.ti.com/product/omap5910
http://www.ti.com/product/omap5910

BIBLIOGRAPHY

[148] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere. DIA-
BLO: a reliable, retargetable and extensible link-time rewriting framework. In
IEEE International Symposium on Signal Processing and Information Tech-
nology (ISSPIT), Volumes 1 and 2, 2005.

[149] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient Software-
based Fault Isolation. ACM SIGOPS Operating Systems Review, 27(5), 1993.

[150] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to Provide Life-
time Hypervisor Control-Flow Integrity. In IEEE Symposium on Security and
Privacy, 2010.

[151] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. ReFormat: Automatic
Reverse Engineering of Encrypted Messages. In European Symposium on Re-
search in Computer Security (ESORICS), 2009.

[152] M. Weiss, B. Heinz, and F. Stumpf. A cache timing attack on aes in virtu-
alization environments. In Financial Cryptography and Data Security (FC),
2012.

[153] H. Welte. Anatomy of contemporary GSM cellphone hardware, 2010. URL
http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf.

[154] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz. Psios: Bring
your own privacy & security to ios devices. In 8th ACM Symposium on In-
formation, Computer and Communications Security (ASIACCS 2013), May
2013.

[155] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose. Phonotactic
Reconstruction of Encrypted VoIP Conversations: Hookt on Fon-iks. In IEEE
Symposium on Security and Privacy, 2011.

[156] C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards Automated
Dynamic Binary Analysis. IEEE Security & Privacy, 5(2), 2007.

[157] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan. Down
to the bare metal: using processor features for binary analysis. In ACSAC,
pages 189–198, 2012.

[158] C. Willems, R. Hund, and T. Holz. CXPInspector: Hypervisor-Based,
Hardware-Assisted System Monitoring. Technical Report TR-HGI-2012-002,
Ruhr-University Bochum, 2012.

[159] S. Winwood and M. Chakravarty. Secure Untrusted Binaries – Provably! In
3rd international workshop on formal aspects in security and trust, 2006.

161

http://laforge.gnumonks.org/papers/gsm_phone-anatomy-latest.pdf

BIBLIOGRAPHY

[160] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson. Spot Me
if You Can: Uncovering Spoken Phrases in Encrypted VoIP Conversations. In
IEEE Symposium on Security and Privacy, 2008.

[161] D. Wright. Reaching out to remote and rural areas: Mobile satellite services
and the role of Inmarsat. Telecommunications Policy, 19(2):105 – 116, 1995.

[162] P. Wurzinger, L. Bilge, T. Holz, J. Göbel, C. Kruegel, and E. Kirda. Automat-
ically generating models for botnet detection. In European Symp. Research in
Computer Security (ESORICS), 2009.

[163] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime Randomization
for Security. In Symposium on Reliable Distributed Systems (SRDS), 2003.

[164] T.-F. Yen and M. K. Reiter. Traffic Aggregation for Malware Detection.
In Conf. Detection of Intrusions and Malware, & Vulnerability Assessment
(DIMVA), 2008.

[165] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency
detection in the cloud via side-channel analysis. In IEEE Symposium on
Security and Privacy, 2011.

[166] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side Channels
and Their Use to Extract Private Keys. In ACM Conference on Computer
and Communications Security (CCS), 2012.

[167] D. D. Zovi. Apple iOS Security Evaluation: Vulnerability Analysis and Data
Encryption. In Black Hat USA, 2011.

162

	Introduction
	Motivation
	Topic and Contributions
	Outline
	Publications

	Security Analysis of a Proprietary Satphone System
	Introduction
	Contributions
	Outline

	Technical Background
	Satellite Telecommunication Systems
	Satellite Telephone Architecture
	ARM Architecture
	TMS320C55X DSP Architecture
	GSM-A5/2

	Related Work
	General Approach
	Assumptions
	Approach

	Reverse Engineering the Encryption Algorithms
	Hardware Architecture
	Firmware Extraction
	Virtual Memory Reconstruction
	DSP Initialization
	Crypto Code Identification
	Cipher and Weaknesses

	Conclusion and Future Work

	Practical Timing Side Channel Attacks Against Kernel Space ASLR
	Introduction
	Contributions

	Technical Background
	Address Space Layout Randomization
	Memory Hierarchy

	Related Work
	Timing Side Channel Attacks
	Attacker Model
	General Approach
	Handling Noise

	Implementation and Results
	First Attack: Cache Probing
	Second Attack: Double Page Fault
	Third Attack: Address Translation Cache Preloading

	Mitigation Approaches
	Conclusion and Future Work

	Providing Control Flow Integrity for Proprietary Mobile Devices
	Introduction
	Contributions
	Outline

	Technical Background
	Control Flow Integrity
	ARM Architecture
	Apple iOS
	Objective-C

	Related Work
	Framework Design
	Technical Challenges
	General Framework Design

	Implementation Details
	Load Time Initialization
	CFI Enforcement
	Trampolines
	Dispatching Through Exception Handling
	Examples

	Discussion and Limitations
	Evaluation
	Qualitative Tests
	Performance Tests

	Enhancing Privacy Through Policy Enforcement
	Technical Background
	Design and Implementation
	Evaluation

	Conclusion and Future Work

	Behavior-Graph-Based C&C Detection for Proprietary Operating Systems
	Introduction
	Contributions
	Outline

	Related Work
	Host-Based Detection
	Network-Based Detection

	System Overview
	Behavior Graphs
	C&C Template Generation

	System Details
	Analysis Environment
	Behavior Graph Generation
	Graph Mining, Graph Clustering, and Templating

	Evaluation
	Evaluation Datasets
	Template Generation
	Detection Accuracy
	Template Quality
	Template Examples

	Conclusion and Future Work

	Conclusion
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

