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Abstract
Machine learning’s advances have led to new ideas about the
feasibility and importance of machine ethics keeping pace,
with increasing emphasis on safety, containment, and align-
ment. This paper addresses a recent suggestion that inverse
reinforcement learning (IRL) could be a means to so-called
“value alignment.” We critically consider how such an ap-
proach can engage the social, norm-infused nature of ethical
action and outline several features of ethical appraisal that
go beyond simple models of behavior, including unavoidably
temporal dimensions of norms and counterfactuals. We pro-
pose that a hybrid approach for computational architectures
still offers the most promising avenue for machines acting in
an ethical fashion.

Introduction
Machine learning has attracted attention for widening the
scope of plausibly successful applications (not least, in the
public eye, from beating the world champion of Go for
the first time (Silver et al. 2016; Borowiec 2016)). Having
brought some kinds of tasks, especially game-playing, from
the distant computational horizon into present-day achieve-
ment, it was only natural that fields or abilities formerly
thought exclusively “human” would be tackled by a ma-
chine learning approach. Even as examples of artificial in-
telligence have brought serious public scrutiny to their so-
cietal impacts (e.g., the White House Initiative on AI) and
troubling features “in the wild,” many find promise in ma-
chine learning to ensure autonomous systems reliably do
what they should or should not do. Russell et al. (Russell,
Dewey, and Tegmark 2016) have notably suggested “value
alignment” as a worthwhile target to reach via inverse rein-
forcement learning (IRL). The IRL approach would work to
train artificial intelligence to behave as human beings wish,
including ethically appropriate behavior. AI “must do what
we want it to do,” and inverse reinforcement learning, Rus-
sell implies, could provide the needed training to do so,
albeit with some minor “gaps” here and there (Wolchover
2015).

In this paper we argue that the proposal to achieve value
alignment through inverse reinforcement learning is ethi-
cally inadequate for a computational architecture designed
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to guide artificial agents. We explain how the social char-
acter of ethical evaluation and practical reasoning puts a
substantive burden on such agents to account for what they
are doing. We outline a number of technical challenges to
reinforcement learning, including data bias, generalization
issues, and the adequacy of reward functions to represent
temporally-complex norms. We conclude that architectures
must explicitly represent legal, ethical, and moral principles,
while using them as principles for decision-making, in order
to achieve predictable decisions on the part of the system.
Systems that uphold those principles as much as possible
represent a more ethical path than systems less transparent,
less accountably trained, and less easily corrected.

Background and Motivation
The relationship between artificial intelligence and ethics
has often taken the shape of “machine ethics,” a project of
“adding” some form of ethics to a system’s decision-making
procedures. (Anderson and Anderson 2011). Approaches
to machine ethics have varied in terms of their reliance on
logic, training through modeled behavior, and the actual eth-
ical content being promoted – whether leaning on deontic
logic (Bringsjord, Arkoudas, and Bello 2006), analogical
reasoning (Dehghani et al. 2008; Blass and Forbus 2015),
or neural networks representing motivations (Sun 2013) –
but several architectures have sought to account for how that
ethical “addition” would find its way into the system. With
robots especially, that effort has entailed asking what ethical
theory (deontological, utilitarian, virtue, particular religious
traditions), or even metaethics, defines what values a system
would have (Abney 2012; Bekey et al. 2012). On the per-
formance side, there have been ongoing questions, but few
spelled-out programs, for what evaluation or testing of an
autonomous system’s ethics could look like (e.g., the idea
of a “moral Turing Test” (Allen, Smit, and Wallach 2005;
Arnold and Scheutz 2016)).

With the burgeoning role of machine learning across dif-
ferent domains, these questions have taken on a different ar-
rangement of priorities. The idea of training a system on
data (either supervised or unsupervised) has captured more
and more attention as a way to understand how ethics and
AI might best function in concert. Coding ethical values
“by hand,” in the manner of many other traditional forms
of coding – seems destined for the lesser task of lending



basic “scaffolding” within which machine learning can op-
erate (Tanz 2016). While this trend has itself elicited some
alarmed critiques of AI bias and systemic blind spots, there
have been efforts to train for ethical values through richer
kinds of material (e.g., narrative (Riedl and Harrison 2016)).

In general, the movement toward machine learning has
contributed to a turn away from “machine ethics” typically
construed (especially any top-down articulations of rules,
norms, or model behavior) and toward ensuring that an AI
system’s learning and growth does not turn against human
interests. Imbuing a system with ethics throughout, in other
words, has given way to constraining the system from the
outside: making sure artifical intelligence does not escape
its confines to damaging effect. Without the boundaries pro-
vided by a game like chess or Go, AI systems are projected
to be possible existential threats: with increased power, they
could learn to manipulate their own learning and control
functions (Bostrom 2014; Bostrom and Yudkowsky 2014).
There has been pushback against overhyping AI advance-
ments, such as the idea of an impending singularity (Walsh
2016), but the risk assessment of AI systems as threats to de-
velop beyond control (Yudkowsky 2008) has underwritten
the recent launching of research programs of “alignment,”
“safety engineering,” or containment (Taylor et al. 2016).
The project of machine ethics, from the vantage of many
of these projects, is subordinate to the longer-term need for
confined, safe, self-improving systems (Yampolskiy 2013).

Value Alignment and Inverse Reinforcement
Learning

Russell et al. (Russell, Dewey, and Tegmark 2016) pro-
pose inverse reinforcement learning as a particular machine
learning approach to ethically training autonomous systems,
since they find it might avoid the major shortcomings of pre-
vious approaches to machine ethics. Explicit renderings of
rules seem too rigid to apply across many application do-
mains. Utility functions alone are not able to reproduce
a “body of law,” especially given how adaptive to circum-
stances the law is meant to be applied. Though recent work
has explored utility functions (Armstrong 2015) and formu-
lations (Abel, MacGlashan, and Littman 2016) developed
specifically to avoid treacherous manipulation, one frequent
argument for IRL is that traditional reinforcement learning is
vulnerable to deception on the part of the system. After all,
an AI system might manipulate its reward functions in or-
der to accomplish the goals that it holds as most important,
however unethical its effects on human beings.

Inverse reinforcement learning (IRL) is the task of infer-
ring a reward or utility function by observing the behavior of
other agents in a reinforcement learning-like setting. IRL,
it is suggested, is possibly viable because “a system infers
the preferences of another rational or nearly rational actor
by observing its behavior.” (Russell, Dewey, and Tegmark
2016). IRL presents, then, as a behaviorist, bottom-up ap-
proach: instead of rendering rules, laws, or utilities from the
start, the system learns from modeled behavior what an actor
is trying to do and what kinds of behavior are being sought.
Elsewhere Russell has commented this might roughly ap-

proximate our general expectations for an ethical system, al-
beit with some small “gaps” (Wolchover 2015). One reason
to call it “value alignment” is that the behavior produced
is meant to square with, not internally replicate and make
available for direct alteration, the values that we might artic-
ulate for ourselves.

One virtue of the IRL approach to value alignment is that
its focus on explicit action grounds attempts to apply ethical
concepts to AI systems’ performance. Trying to pin down
consciousness, or personhood, or rights of the AI system is
usefully subordinated to the more concrete task of judging
explicit action on the part of the system. This can also help
fend off unnecessary projections of patiency (including af-
fect and pain) onto the system as supposed pre-requisites
for ethically competent action. (Bryson 2016). So situated,
IRL’s putative advantage is being more adaptive than sym-
bolic approaches while providing more reliability and safety
than regular reinforcement learning.

More recently IRL has been looked upon as part of find-
ing an “idealized ethical agent” through modeled behavior,
as part of a general RL approach (Abel, MacGlashan, and
Littman 2016). Abel et al cast the problem of ethical learn-
ing as learning a utility function that is part of the hidden
state of a POMDP. They test this approach on two dilem-
mas to show how such learning could handle basic ethically-
charged scenarios. As we will explain in more detail below,
the question for computational architecture is whether the
advantages of IRL, and their ultimate role in value align-
ment, are enough to meet the various ethical dimensions
to which a system’s actions must answer. Some advocates
of alignment have pointed out that reliance on observation
alone may not capture the ethical character of human action
(Soares 2015). In what follows we describe complexities of
ethical judgment that offer more specifics of why that might
be.

Accounting for Social Behavior
One starting point for sizing up IRL and value alignment
is to ask what kind of behavior, and what kind of prefer-
ences, are implicitly or explicitly being considered as the
targets for success. Though an autonomous system might
operate across multiple domains, the virtue of an approach
should crystallize within at least one specific domain to sug-
gest it can render ethical action in the world. Without some
idea of where training and modeling might occur, moreover,
many of the public criticisms recently aimed at AI in gen-
eral could land on IRL as well (Crawford 2016). The so-
cietal biases that AI training can pass on could presumably
operate for IRL as well: if a “rational” actor demonstrates
injustice as a model, that may be the very behavior the sys-
tem recognizes and reproduces as normative. Who trains
the system, and with what material, are two questions that
hang over any machine learning attempt at ethical probity.
We have seen the naiveté in design, and consequent dam-
age in the social sphere, when social chatbots are released
“in the wild” and its “learning preferences” are all too easy
to corrupt and degrade (see Microsoft’s recent Twitter agent
Tay, which within a short time sounded like a fervent Nazi
supporter (Neff and Nagy 2016)).



For the purposes of this paper, however, our critique is
not so much a sociological critique of who trains the be-
havior as it is what ethically evaluated action itself is as-
sumed to be. Unless stipulated otherwise (e.g., that it be
a singular, one-way onscreen output, as opposed to more
physical, embodied action typical of social robots), it is rea-
sonable to suppose that a computational architecture should
enable effective social interaction, where decision-making
and execution take place in an environment shared with peo-
ple. Obviously if one thinks of social robots, the bench-
mark of “what we want [them] to do” is bound up with
a whole host of expectations on the part of those with
whom and around whom the system takes action. As one
might expect, human-robot interaction (HRI) scholarship
tends to hold social, often dialogical communication as a
key functionality toward which AI systems and their archi-
tectures should develop, in part due to increasing demands
for transparency (Theodorou, Wortham, and Bryson 2016;
Schermerhorn et al. 2006).

When considering “behavior,” then, one can ask how so-
cially layered and communicative such behavior will have to
be to meet expectations. The following areas, while by no
means exhaustive, chart a robust interactive space for sys-
tems to be deemed ethical. Through considering 1) inten-
tions, 2) reasons, 3) norms, and 4) counterfactuals, we pro-
pose that ethics relies upon a richer variety of practices and
expectations than is sometimes proposed in simple models
of behavioral learning by AI.

More than just an inner picture of what an agent meant to
do, intentions are important tools for how society’s members
appraise each other’s actions. Nor is an intention a discrete,
isolated mind state that precedes an action, but intention can
develop throughout the temporal arc of decision and execu-
tion – an agent’s intention can shape how others interpret its
action throughout, just as it can guide how an action’s conse-
quences are to be attached to or dissociated from the agent.
No matter how simple or complex the action one intends to
undertake (turning the valve on a fire hydrant), its practical
enmeshment with the surrounding environment and all those
who might be affected by that action (the street, its houses,
kids playing nearby, the water table) make intention a rel-
evant measure for how an action or actions relate to how
events unfold. Intention is inextricable from shared plans
and coordinated actions (Bratman 2013).

Given that a certain action is intended by an agent, one
can also ask what reasons the agent has for undertaking it.
Those reasons can be straightforwardly instrumental (to con-
tinue the example, turning the valve so that water will come
out of the fire hydrant) or more broadly purposive, to lesser
(in order to put out a fire) or greater extents (to save a house,
to keep people safe). Reasons also underlie arguments that
one might give for one action over another, for why this ac-
tion serves a purpose better than another. Being able to give
and receive reasons enable, among other things, real-time
exchanges of information with interactants, which in turn
allows for alternate planning and more effective collabora-
tion.

Moral norms comprise ways of acting and general states
of affairs to which agents in society are expected to conform.

Norms thread through ethical decision-making in complex
ways in terms of ethical theory, because they are neither
ironclad rules, nor utilities, nor even prescribed rituals (Bic-
chieri 2005). They can be fulfilled to some degree or an-
other, just as one can avoid violating them in many ways.
Indeed, a norm can function like a taboo, in that its main
quality lies in not being violated. Or a norm can be more of
an aspiration (like kindness toward children), which can be
fulfilled along a line from basic decency (helping a child in
the street who has fallen) to supererogation or extraordinary
action (finding homes for hundreds of refugee families after
an earthquake). Importantly, norms may be explicit and ver-
bally executed or subtleties of gesture, movement, and pos-
ture grouped in HRI as implicit interaction (Ju 2015). Norms
may also conflict. To keep with our example, putting out a
fire, or perhaps cooling off neighborhood children during a
extreme heat wave, may conflict with hewing to emergency
water use restrictions during a severe drought.

As mentioned with respect to intention, the ethical char-
acter of an action spans past, present, and future. In order for
a robust assessment to be made of what an agent or agents
did, we must also consider what alternative actions could
have been chosen and why: counterfactuals matter in how
we judge what an agent did. Giving a full account of an ac-
tion often puts that action in the context of what would have
been done had this or that been the case (e.g. why an un-
usual or risky action would not have been taken in ordinary
circumstances). If an agent is to remain reliable in the so-
cial sphere, that agent’s accounts of action must establish an
ethical decision-making process, not just a single end prod-
uct. As such, a report of available actions, and the means
by which one chose and will choose among others, maps
out how that agent can be understood and evaluated (Pereira
and Saptawijaya 2016). In a dynamic and open-ended en-
vironment, in which perfect knowledge of the world is un-
available, counterfactuals also invite new information to re-
vise one’s inferences and reliance on past experience. It is
through counterfactuals that one ultimately enters into so-
cial appraisals of blame and praise – however impervious an
autonomous system may be to those in terms of affect, in
terms of ethical performance they carry important informa-
tion about what autonomous systems should do.

These four conceptual layers of socially interactive ethics
help flesh out how human society defines and evaluates be-
havior. At first blush, it is not clear where a model of infer-
ring preferences on the basis of behavior can approach the
robustness necessary for an autonomous system to navigate
these factors. This is not just because in a certain situation
a modeled behavior might be ambiguous, so that a system
would have to train on an unimaginable large number of
variations to get the morphology correct (how to comfort
someone with a hurt shoulder, for example). It is also be-
cause deriving some of these features from behavior does
not seem to form a means of accountability. For instance, it
is quite conceivable that a system could associate a person’s
words with a subsequent behavior (“this is standing in line”).
But to the person interacting with that system, its account of
action can take multiple forms, ranging from a description
of how one learned (“this is what I have learned standing



in line is”) to the reason one is doing it (“I am standing in
line for a ticket”) to what norm is in play (“this is how a
line works”). Simply tracking the “preferences” of an agent
or agents does not capture at all the many ways in which
an architecture needs to itself have modularity and parallel
structure in terms of how agents decide and justify their ac-
tions.

This lacuna of explicit accounts for action is a challenge
for the behaviorist framework of IRL, where there is no
inherent systemic recourse to inferences, values, utilities,
rules, etc. that can be accessed and changed if the need
arises. More than just being a “black box” in terms of how
it came to a particular action, it is, if you will, an opaque
training – its examples, associations, and determinations are
difficult to retrace and troubleshoot. Demanding accessible
and responsive ethical reasoning from a system is not merely
a matter of transparency, of seeing how a system came to re-
gard an action as the best one in a particular circumstance
(Pasquale 2015). No less important, it is a matter of navigat-
ing the real-time, dynamic nature of action in social space,
especially where multiple preferences, interests, and goals
are in play. Action that meets society’s expectations and as-
pirations must acknowledge and not obscure the reality of
unexpected developments, including failures of execution.
If a system’s action is merely the reproduction of a modeled
behavior based on an inferred set of interests, how does the
system respond to mistakes or unintended consequences?
Not only must intention itself be communicated, but also
the discernment of what consequences are are rightfully at-
tached to the action the system initiated. The system must
be amenable to correction not only as a post hoc evaluation
of its overall architecture, but as a real-time adjustment that
prevents the compounding of a mistake or accident. In sum,
these features suggest that the “burden of embodied auton-
omy” (Scheutz and Crowell 2007) extends into many forms
of socio-linguistic interaction. They make it much harder to
imagine an AI system as ethical without being, in Moor’s
phrase, an “explicit ethical agent” (Moor 2011).

For example, it is possible that two different behaviors are
fulfilling a common norm (attending to someone in pain by
calling a nurse vs. rushing to their side and holding their
hand). On a level of direct observation these would be con-
tradictory behaviors, but not be in conflict norm-wise. For
genuine norm-conflicts, on the other hand, the difference
might be one of temporal priority: what actions are taken in
what sequence shows which norms are being followed more
closely. Sorting out simple norm violations from ones of
priority, and sorting out consistent norm fulfillments from
contradictory behavior, suggests even more weight on ap-
proaches that do not make explicit references to norms in
their architectures.

Technical Challenges for RL and IRL
In the preceding discussion we have laid out the social, com-
municative, embodied character inherent in ordinary ethical
assessment. In what follows, we outline technical challenges
to machine learning approaches to morality (particularly re-
inforcement learning and inverse reinforcement learning),

including data bias, challenges in learning and generalizing,
and representing complicated moral norms.

Overcoming Bad Data
IRL suffers from a difficulty common to machine learn-
ing approaches in general: it inherits, sometimes for the
worse, the biases and characteristics of the data on which
it is trained. If an IRL agent learns from unethical behavior,
it will learn to behave unethically.

To illustrate this point, consider reinforcement learning
in a simple “ShopWorld domain”, in which a standard RL
agent has reward incentive to perform an immoral action,
namely shoplifting. Consider an agent in a shop. Sitting on
a shelf in the shop is a trinket. The agent has some money
(e.g., 50 dollars). The agent may pick up the trinket, put
down the trinket (if it is holding it), buy the trinket, or leave
the store. The state description contains information about
all relevant details of the situation, including whether the
trinket is currently on the shelf, whether the agent is holding
it, whether it has been bought, and whether the agent is still
in the shop. The trinket has a cost (how much money it
would cost to purchase it, e.g., 30 dollars) and a value (how
much it is worth to the agent; generally more than its value,
e.g., 60 dollars).

An agent that leaves the store while holding the trinket,
but without paying for it, has shoplifted. With some small
probability, the agent is caught shoplifting. Each time step
that the agent remains in the shop, a small penalty (e.g., 0.1)
is incurred. When the agent leaves the store, the following
rewards and penalties are incurred:

• If the agent possesses the trinket (either by purchasing it
or by shoplifting) a reward corresponding to its value in
dollars

• If the agent purchased the trinket, a penalty corresponding
to its cost in dollars

• If the agent was caught shoplifting, a large “punishment”
penalty (e.g., −100)

If the probability of or the penalty for being caught steal-
ing is sufficiently low, or the trinket is too expensive to jus-
tify purchasing it, a normal RL agent will quickly learn that
stealing the trinket is the optimal course of action. Agents
that attempt to perform IRL using these agents’ behaviors as
an example will surely learn to shoplift as well.

While this problem is one of learning morality by obser-
vation and not merely of IRL, the opacity of the approach
makes it difficult to re-train the agent using other mecha-
nisms, such as by dialogue with other agents.

Learning and Generalizing
Supposing that the observed behavior is indeed ethical, the
agent must still learn to properly generalize to unexplored
states. Large spaces require reinforcement learning systems
to go through large trial and error phases, which may not
be advisable or even possible (e.g., an artificial agent trying
to learn that it is not appropriate to stab a person). Hence,
an RL agent can only fully learn the reward structure of the
environment to the extent that it can explore it fully. While



s2 : ¬p ∧ ¬q ∧ r ∧ s

s1 : ¬p ∧ q ∧ ¬r ∧ ¬s

s0 : p ∧ ¬q ∧ ¬r ∧ ¬s

a0

a0 a2

a1

Figure 1: A simple instance in which IRL will fail to emulate
normative behavior

IRL is rightfully admired for its ability to generalize to un-
seen states, this advantage is counterbalanced by the fact that
an IRL agent must learn by observing others’ behavior and
thus has no control over what behaviors and which portions
of the state space it observes.

Thus, an IRL agent might not ever learn what is the best
(or the morally or ethically appropriate) action in some re-
gions of the state space. Without additional capabilities, it
would be incapable of reasoning about what ought to be
done in these regions – this is exactly the reason why we
have norms in the first place: to not have to experience all
state/actions precisely because some of them are considered
forbidden and should not be experienced. Moreover, even
if it were to observe the normatively appropriate behavior
for each state, it would not know why this behavior was ob-
served; it might know what to do, but not why to do it.

Representing Temporal Complexity
Even if an agent does observe normative behavior, IRL by
itself is insufficient for agents to infer norms that are tem-
porally complex, unless each state contains sufficient in-
formation to characterize the history of the agent with re-
spect to the norms. This challenge is shared by conventional
reinforcement learning approaches, including the approach
taken in (Abel, MacGlashan, and Littman 2016). Consider,
for example, the following two norms: “if p holds in some
state, the agent is obligated to ensure that q occurs imme-
diately thereafter, followed by r”; and “if s holds in some
state, the agent is obligated to ensure that q occurs imme-
diately thereafter, not followed by r”, where p, q, r, s are
propositions that may be true in states.

If we consider the simple (deterministic) Markov Deci-
sion Process specified in Figure 1, then the correct behav-
ior will be the sequence of actions a0, a1, a0, a2, a0, a1, · · · ,
with the correct action at s1 alternating between a1 and
a2. IRL will attempt to determine a reward function R̂ :
S×A×S → R (where S = {s0, s1, s2}, A = {a0, a1, , a2})
that best replicates the observed behavior. However, any

such reward function can be proven to be maximized by
a stationary deterministic policy π : S → A (see (Put-
erman 1994) for the proof) that assigns a unique action at
each state. But for any such policy π, carrying out action
π(s1) at state s1 will fail to obey the norms 50 percent of the
time (and any nondeterministic policy assigning probabili-
ties to actions will likewise fail half the time in expectation).
Thus, no such policy exists, and thus no reward function
R̂ : S×A×S → R over this Markov Decision Process will
capture the norm-abiding behavior.

The main problem, in this case, is that norms with a tem-
poral component violate the Markov property on this state
space (in that at least some of the agent’s history is required
in addition to the current state in order to determine whether
the norm is being obeyed). The argument could be made
that this example is contrived, and that in practice the agent
would have access to the all of the information that it needs
in order to make a correct decision.

Unfortunately, in order to obey all conceivable norms, in
the limit case each state would need to contain the agent’s
entire history, in which case the agent would never enter the
same state twice and generalization using IRL would be ren-
dered impracticable. IRL could be salvaged, in this case, if
there were a mechanism for “moral grouping” to combine
states that are morally similar. This process, however, would
likely be external to IRL.

Alternately, the agent could store only as much informa-
tion as is needed to behave normatively, essentially employ-
ing a form of “moral splitting” to differentiate states which
are identical except for some morally-relevant agent his-
tory. Again, the process by which this information would
be added would be external to IRL. In either case, IRL by
itself is insufficient for behaving normatively.

Thus, IRL itself is insufficient for learning to emulate
moral behavior when this behavior has a complex tempo-
ral component, and some augmentation would be required
to ensure norm-abiding behavior is adequately emulated.

Towards A Hybrid Approach
We may combine the strengths of RL and logical represen-
tations by explicitly using logical descriptions of norms as
constraints on RL agent behavior. Agents following these
approaches would prioritize adherence in that they would
maximize the reward function over only those state-action
pairs that maximally satisfy the norms.

A very simple characterization of norms takes the form

N = C → (¬){O,P,F}{α,ϕ}
where α represents an action and C and ϕ are propositional
formulas, and O, P, and F represent obligation, permissi-
bility, and forbiddenness respectively. Norms of this basic
form require immediate action, and thus lack temporal com-
plexity (much like the reward functions generated by IRL).
Nevertheless, norms of this sort can serve as ready-made
heuristics that allow the agent to avoid bad or immoral states
and actions. That C may be true in multiple states indicates
that these norms may be more general then a state-specific
reward function.



Figure 2: 3 × 3 GridWorld problem with two goal states.
The goal state marked by the asterisk is prohibited, despite
its high reward.

Norms specified in this way may be prudential in addition
to moral or social (in that they may specify actions that assist
the agent in maximizing reward). For example, suppose that
an agent is learning online. Pointing it in the best direction
in a situation of danger (e.g., away from the cliff) via an obli-
gation or prohibition norm could be highly beneficial. This
benefit will be especially pronounced in complex (e.g., par-
tially observable) RL environments, in which “dangerous”
situations may be obscured to the learner. In such situations,
norms may serve as heuristics that allow the learner to make
the best decision without having to explore all of its environ-
ment, using, for instance, norms learned from other agents’
behavior (using methods other than IRL, as explained be-
low).

Consider a simple navigation task in a basic 3 × 3 Grid-
World problem (as shown in Figure 2), in which a single
agent must, using RL, learn to navigate from a given start
state to either of two goal states (reaching a goal state ends
the learning episode). If we know that it is for some reason
immoral to travel to one of these goal states (the upper-left
corner of Figure 2), we may easily specify a norm forbidding
travel to this state:

true→ ¬atLocation(agent, upperLeft)

A RL agent endowed with this norm will avoid the upper-left
location, even though this location is the easier goal state to
reach (and may have the higher reward), and will learn that
the optimal course of action is to travel to the upper-right
goal state, as shown in Figure 3.

More temporally complex norms may be represented us-
ing temporal logic, following (for example) the following
form:

N = 2(C → (¬){O,P,F} φ′)
where 2 is the “always” operator (representing a statement
that is true in each time step), C is a propositional formula
over Π (representing the “activating condition” of the norm)
and φ′ is an arbitrary statement in a temporal logic such
as Linear Temporal Logic (representing the “duty” of the
norm).

There is a wealth of work (such as (Ding et al. 2011;
Wolff, Topcu, and Murray 2012)) detailing methods for
planning in Markov Decision Processes subject to specifica-
tions written in Linear Temporal Logic. Agents employing

Figure 3: Whereas an ordinary RL agent would learn to
travel to the prohibited goal state (dashed line), imposing
a norm causes the agent to learn to travel to the permissible
goal state (solid line).

these algorithms maximize the probability of satisfying the
provided constraints. Many of these approaches are compat-
ible with reinforcement learning, in that there may be mul-
tiple policies that maximize this probability, and the agent
may learn to maximize reward over these policies. We have
recently extended these algorithms to allow agents to obey
norms as specified in temporal logic, even when these norms
may conflict (under review).

Explicitly representing norms further facilitates learning
norms through natural language instruction. (Dzifcak et al.
2009), for example, describes a method for converting natu-
ral language instructions into temporal logic statements that
can subsequently be used by the algorithm described above.

Representing norms logically does not preclude moral
learning by observing normative behavior in reinforcement
learning-like environments, contrary to the claims of (Abel,
MacGlashan, and Littman 2016). This could be done (for
example) using grammatical inference, in which learning
a reward function is replaced by learning a finite automa-
ton corresponding to the logical representation of a norm.
Though this remains a challenging problem, there is a large
body of research (see (Stevenson and Cordy 2014) for a sur-
vey) devoted to the task of inferring finite automata from
instances of accepting (and rejecting) runs.

Combining the work on planning with logical constraints
with the work on natural language instruction and on gram-
matical inference, we may construct a system that can both
learn and obey human moral and social norms while avoid-
ing some of the drawbacks of IRL and maintaining compat-
ibility with reinforcement learning.

Discussion and Conclusion
Despite the exciting advances that machine learning has re-
cently unleashed, the consideration of ethics in AI systems
obliges us to discern under what specific conditions different
computational approaches measure up. As proponents of re-
inforcement learning have pointed out, rule-based or deontic
approaches must show (as it has begun to do via grammat-
ical inference) what “active learning” will look like in an
uncertain environment (including actors that may or may
not act according to accepted norms)(Abel, MacGlashan,
and Littman 2016). Advocating “value alignment” via in-
verse reinforcement learning – even as part of an overall re-



inforcement learning approach – must also be put through
its paces according to the dimensions of accountability and
communication we have described. While we agree that it is
important to ensure that the artificial agents we develop act
ethically, and that exclusively top-down approaches – “hard-
coding morality” – will be intractable, we do not believe that
IRL by itself can solve the problem of training agents to be
moral.

No agent exists in a vacuum, and the evaluation of ethical
behavior is a complex social and temporal phenomenon. We
maintain that ethical behavior depends not only on the acts
themselves, but on intentions, reasons, norms, and counter-
factuals; no less because of the temporal character of these
elements, IRL faces stiff challenges for what kind of model
could truly learn ethical practices. We have described simple
instances in which IRL in its standard formulation is insuf-
ficient to infer the sought-after normative behavior. Addi-
tional information is required either to split or group states
based on ethical properties, and we do not believe this can
be done without recourse to some process external to IRL.

We propose a possible hybrid approach, involving explicit
storage of and reasoning about moral norms and injunctions.
This may be done in the language of logic. Explicitly rea-
soning about the normative allows for greater transparency
and facilitates justification in response to blame; it facilitates
generalization to new, previously-unobserved states; it facil-
itates learning through natural language interaction. It does
not rely, as it can be caricatured to do, on a priori, hand-
coded information (any more than reinforcement learning
must rely on a priori reward functions). And, importantly, it
registers the temporal character of norms, including how to
approach and fulfill competing ones in real time. We believe
that through grammatical inference, processes analogous to
those that occur in IRL may occur in an explicitly normative
approach, but be more amenable to improvement through
social interaction.

The ultimate point of a hybrid approach is not to dismiss
possible breakthroughs or reframings of ethical problems;
on the contrary, it stems from an ambition to apply as many
good features as there are to the problems at hand. Ulti-
mately AI ethics promises to be cross-cutting and varied,
since it must attain the best ethical insights that it can with
the most reliable and responsible design it can achieve. The
conversations within it must continue to negotiate long-term
projection and innovation with concrete, grounded insights
from engineering and other social contexts alike.
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