Articles | Volume 16, issue 6
https://doi.org/10.5194/hess-16-1607-2012
https://doi.org/10.5194/hess-16-1607-2012
Research article
 | 
04 Jun 2012
Research article |  | 04 Jun 2012

Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks

N. Baghdadi, R. Cresson, M. El Hajj, R. Ludwig, and I. La Jeunesse

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Remote Sensing and GIS
The development of an operational system for estimating irrigation water use reveals socio-political dynamics in Ukraine
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024,https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024,https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators
Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, and Ludmila Monika Moskal
Hydrol. Earth Syst. Sci., 27, 3687–3699, https://doi.org/10.5194/hess-27-3687-2023,https://doi.org/10.5194/hess-27-3687-2023, 2023
Short summary
Technical note: NASAaccess – a tool for access, reformatting, and visualization of remotely sensed earth observation and climate data
Ibrahim Nourein Mohammed, Elkin Giovanni Romero Bustamante, John Dennis Bolten, and Everett James Nelson
Hydrol. Earth Syst. Sci., 27, 3621–3642, https://doi.org/10.5194/hess-27-3621-2023,https://doi.org/10.5194/hess-27-3621-2023, 2023
Short summary
Monitoring the combined effects of drought and salinity stress on crops using remote sensing in the Netherlands
Wen Wen, Joris Timmermans, Qi Chen, and Peter M. van Bodegom
Hydrol. Earth Syst. Sci., 26, 4537–4552, https://doi.org/10.5194/hess-26-4537-2022,https://doi.org/10.5194/hess-26-4537-2022, 2022
Short summary

Cited articles

Alvarez-Mozos, J., Casali, J., Gonzalez-Audicana, M., and Verhoest, N. E. C.: Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation, IEEE T. Geosci. Remote Se., 44, 913–924, 2006.
Alvarez-Mozos, J., Verhoest, N. E. C., Larranaga, A., Casali, J., and Gonzalez-Audicana, M.: Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations, Sensors, 9, 463–489, https://doi.org/10.3390/s90100463, 2009.
Atkinson, P. M. and Tatnall, A. R. L.: Neural networks in remote sensing: introduction, Int. J. Remote Se., 18, 699–709, 1997.
Baghdadi, N., Gaultier, S., and King, C.: Retrieving surface roughness and soil moisture from SAR data using neural networks, Can. J. Remote Sens., 28, 701–711, 2002a.
Baghdadi, N., King, C., Bourguignon, A., and Remond, A.: Potential of ERS and RADARSAT data for surface roughness monitoring over bare agricultural fields : application to catchments in Northern France, Int. J. {Remote Sens.,} 23, 3427–3442, 2002b.
Download