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Abstract — This is a short presentation to the capability of the freefem++ software, in section 1, we
recall most of the characteristics of the software, In section 2, we recall how to to build a weak form
form of an partial differential equation (PDE) from the strong form of the PDE. In three last sections,
we present different problem, tools to illustrated the software. First we do mesh adaptation problem in
two and three dimension,, secondly, we solve numerically a Phase change with Natural Convection,
and the finally to show the HPC possibility we show a Schwarz Domain Decomposition problem on
parallel computer.
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1. Introduction

This paper intends to give a small presentation of the software FreeFem++ .
A partial differential equation is a relation between a function of several vari-

ables and its (partial) derivatives. Many problems in physics, engineering, mathem-
atics and even banking are modeled by one or several partial differential equations.

FreeFem++ is a software to solve these equations numerically in dimensions
two or three. As its name implies, it is a free software based on the Finite Ele-
ment Method; it is not a package, it is an integrated product with its own high
level programming language; it runs on most UNIX, WINDOWS and MacOs
computers. Moreover FreeFem++ is highly adaptive. Many phenomena involve
several coupled systems, for example: fluid-structure interactions, Lorentz forces
for aluminum casting and ocean-atmosphere coupling. Multiphysics problems re-
quire different finite element approximations or different polynomial degrees, pos-
sibly on different meshes. Some algorithms like Schwarz’ domain decomposition
method also require data interpolation on multiple meshes within one program.
FreeFem++ can handle these difficulties, i.e. arbitrary finite element spaces on
arbitrary unstructured and adapted meshes.
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The characteristics of FreeFem++ are:

• Problem description (real or complex valued) by their variational formula-
tions, with access to the internal vectors and matrices if needed.

• Multi-variables, multi-equations, bi-dimensional and three-dimensional static
or time dependent, linear or nonlinear coupled systems; however the user is
required to describe the iterative procedures which reduce the problem to a
set of linear problems.

• Easy geometric input by analytic description of boundaries by pieces; how-
ever this part is not a CAD system; for instance when two boundaries inter-
sect, the user must specify the intersection points.

• Automatic mesh generator, based on the Delaunay-Voronoi algorithm; the
inner point density is proportional to the density of points on the boundaries
[17].

• Metric-based anisotropic mesh adaptation. The metric can be computed auto-
matically from the Hessian of any FreeFem++ function [20].

• High level user friendly typed input language with an algebra of analytic or
finite element functions.

• Multiple finite element meshes within one application with automatic inter-
polation of data on different meshes and possible storage of the interpolation
matrices.

• A large variety of triangular finite elements : linear, quadratic Lagrangian
elements and more, discontinuous P1 and Raviart-Thomas elements, elements
of a non-scalar type, the mini-element,. . . but no quadrangles.

• Tools to define discontinuous Galerkin finite element formulations P0, P1dc,
P2dc and keywords: jump, mean, intalledges.

• A large variety of linear direct and iterative solvers (LU, Cholesky, Crout,
CG, GMRES, UMFPACK [13], MUMPS [2], SuperLU, ...) and eigenvalue
and eigenvector solvers (ARPARK) [24],and Optimatiztion tools like Ipopt
[33]

• Near optimal execution speed (compared with compiled C++ implementa-
tions programmed directly).

• Online graphics, generation of ,.txt,.eps,.gnu, mesh files for fur-
ther manipulations of input and output data.

• Many examples and tutorials: elliptic, parabolic and hyperbolic problems,
Navier-Stokes flows, elasticity, Fluid structure interactions, Schwarz’s do-
main decomposition method, eigenvalue problem, residual error indicator, ...
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• A parallel version using mpi

2. Weak formulation

For the first example consider a Poisson problem on a Domain Ω with a partition of
the boundary ∂Ω in Γ2,Γe: Find u such that:

−∆u = 1 in Ω, u = 2 on Γ2,
∂u
∂~n

= 0 on Γe (2.1)

Denote Vg = {v ∈ H1(Ω)/v|Γ2 = g}, and the weak form of the equation is obtained
by multiplying by v and integrating by parts (2.1). The variational formulation is:
find u ∈V2(Ω) , such that

∀v ∈V0(Ω),
∫

Ω

∇u.∇v =
∫

Ω

1v+
∫

Γ

∂u
∂n

v, (2.2)

Note that due to ∂u
∂~n = 0 on Γ2 and v = 0 the term

∫
Γ

∂u
∂n v disappears on Γ2. Finally

the finite method simply replaces Vg with a finite element space, such as

Vgh = {vh ∈C0(Ω̄) : ∀K ∈Th,vh|K ∈ P1 and vh|Γ2 = 0}

in the case of linear elements; for full detail see [10,21].
Below, we give an example of an elaborate mesh for a 3d fish and the Poisson

problem; the FreeFem++ code is below and the results are on Figures 1&2

load "msh3" load "medit" load "tetgen"
mesh3 Ths("Y5177_Fish_cut.mesh"); // read skin fish mesh ..
real hh = 10; // the final mesh size
real[int] domaine = [0,0,0,1,hhˆ3/6.];
mesh3 Th=tetg(Ths,switch="pqaAYY",regionlist=domaine);
fespace Xh(Th,P2);
real x0=-200,y0=0,z0=0;
func ball = sqrt((x-x0)ˆ2+(y-y0)ˆ2+(z-z0)ˆ2) <30;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
Xh p,q;
solve laplace(p,q,solver=CG) =

int3d(Th)( ball*p*q+Grad(p)’*Grad(q) )
- int3d(Th) ( 1*q) ;

plot(p,fill=1,wait=1,value=0,nbiso=50); // see figure 1

The skin mesh of the 3d fish come from the url∗. And the graphics solution of the
problem is 2d and 3d is display figure 2 and 1 respectively.

∗http://www-roc.inria.fr/gamma/download/counter.php?dir=FISH/
&get_obj=Y5177_Fish_cut.mesh&acces=Y5177_Fish

http://www-roc.inria.fr/gamma/download/counter.php?dir=FISH/&get_obj=Y5177_Fish_cut.mesh&acces=Y5177_Fish
http://www-roc.inria.fr/gamma/download/counter.php?dir=FISH/&get_obj=Y5177_Fish_cut.mesh&acces=Y5177_Fish
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Figure 1. 3d Poisson solution iso-surface Figure 2. 2d Poisson solution iso-value

3. Mesh adaptation

In FreeFem++ a lot of adaptation tools are implemented; this corresponding to the
work of many people [20,17,26,25,32,19,29,9,6].

All these tools are based a Delaunay-Voronoi algorithm with a distance (or Met-
ric) between two points q1,q2 given by

√
t(q1−q2)M (q1−q2) where the matrix

M is symmetric positive definite matrix field defined on the mesh Th. Consequently
the length `M of a curve γ for ]0,1[∈ Rd with respect to M is

`M =
∫ 1

0

√
tγ ′(t)M (γ(t))γ ′(t)dt (3.1)

The computation of M can be implicit of explicit; the tools to compute M , in
isotropic cases are scalar fields h which represent the local mesh size such that
M = 1

h2 Id , where Id is the identity matrix.
The idea is to build a meshes with edges of equal length with respect of M , i.e.

the length with respect to M of all the mesh edges should be closed to one so as
to get an equi-repartion of the error close to err in norm L∞. So for P1 continuous
finites elements, The metric can be defined by:

`M =
1

err
|∂ 2

h uh| (3.2)

where |∂ 2
h uh|=

√
(∂ 2

h uh)2 and ∂ 2
h u is an approximation of the Hessian matrix of

uh. FreeFem++ does it automatically by default with adaptmesh function (2d) ,
MetricPk (2d) , or with mshmet (2d) .

An example of L∞ error mesh adaptation with metric for the Poisson problem in
an L-shape domain Ω =]0,1[2\[1/2,1[2. Find u ∈ H1(Ω) such that

−∆u = (x− y) in Ω,
∂u
∂nnn

= 0 on ∂Ω;
∫

Ω

u = 0 (3.3)
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we add do a small stabilization term εu to remove the constraint
∫

Ω
u, so the weak

form is : Find uε ∈ H1(Ω) such that

∀v ∈ H1(Ω),
∫

Ω

uεv+ εuεv−
∫

Ω

(x− y)v = 0 (3.4)

You can easily prove that ||uε − u||H1 < εC, the discretization with P1 Lagrange
finite element and ε = 10−10, is:

int[int] lab=[1,1,1,1];
mesh Th = square(6,6,label=lab);
Th=trunc(Th,x<0.5 | y<0.5, label=1);
fespace Vh(Th,P1);
Vh u,v;
real error=0.01;
problem Poisson(u,v,solver=CG,eps=1.0e-6) =

int2d(Th,qforder=2)( u*v*1.0e-10+ dx(u)*dx(v) + dy(u)*
dy(v))

+ int2d(Th,qforder=2)( (x-y)*v);
for (int i=0;i< 4;i++)
{

Poisson;
plot(u,wait=1);
Th=adaptmesh(Th,u,err=error);
plot(Th,wait=1);
u=u;// reinterpolation of u on new mesh Th.
error = error/2;

} ;

The final mesh adaption and associated solution will be show in figure 3 and 4

Figure 3. Mesh Figure 4. Solution

With the MetricPk plugin of J-M Mirebeau we can build a metric in R2 for
the lagrangian triangular continuous approximation of degree k, Pk, with respect
to the norm W r,p with r = 0 or 1; the output is an adapted mesh with Nt element
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with a metric which can be optimal or sub optimal; the lost of optimality is due
to constraint on acute angle in triangulation in case of r = 1. ( see [27,26] or J-M
Mirebeau these details) :

load "MetricPk"
real Nt = 1000, r = 1, k =3, p=1; // def of the parameter..
mesh Th=square(20,20,[2*x-1,2*y-1]);
func f = xˆ2*y + yˆ3 + tanh(5*(-2*x + sin(5*y)));
fespace Metric(Th,[P1,P1,P1]);
Metric [m11,m12,m22];
for(int i=0; i<5; i++){

plot(Th,wait=true);// see figure 6 and 5
[m11,m12,m22]=[0,0,0];// resize metric array
m11[]=MetricPk(Th,f, kDeg=k,rDeg=r,pExp=p, mass=Nt

/Z,
TriangulationType=0);// 0 sub optimal

// 1 Optimal (=>no acute angle)
Th = adaptmesh(Th,m11,m12,m22,IsMetric=true); }

Figure 5. Optimal metric in norm W 1,1 for 103

triangle but it is wrong mesh because the acute
constraint is miss

Figure 6. Sub Optimal but not acute constraint
for 103 triangle

In 3d we can use meshmet a plugin by J. Morice for the mshmet library of
P. Frey [16]. To compute an isotropic adapted metric on can use tetgen, another
plugin documented in [30]. The following listing is a full test of this idea.

load "msh3" load "tetgen" load "mshmet" load "medit"
int n = 6;
int[int] l1=[1,1,1,1],l01=[0,1],l11=[1,1];
// label numbering for boundary condition
mesh3 Th3=buildlayers(square(n,n,region=0,label=l1),

n, zbound=[0,1], labelmid=l11, labelup = l01,
labeldown = l01);

Th3 = trunc(Th3,(x<0.5) | (y < 0.5) | (z < 0.5),
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label=1);// remove the ]0.5,1[3 cube
//end of build initial mesh
fespace Vh(Th3,P1);
Vh u,v,usol;
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
solve Poisson(u,v,solver=CG) = int3d(Th3)( 1e-6*u*v + Grad(u

)’*Grad(v) )
-int3d(Th3)( (z-y/2-x/2)*v ) ;

real errm=1e-2;// level of error
for(int ii=0; ii<5; ii++) {

Vh h ; h[]=mshmet(Th3,u,normalization=1,aniso=0,nbregul
=1,

hmin=1e-3,hmax=0.3,err=errm);
errm*= 0.6;// change the level of error
Th3=tetgreconstruction(Th3,switch="raAQ",sizeofvolume=h*

h*h/6.);
Poisson;
plot(u,wait=1,nbiso=15); } // see figure 8

medit("U3",Th3,u); // see figure 7

Figure 7. Three 3d adapted mesh

Figure 8. iso surface

Finally, tools like splitmesh (only in 2d) can also be used; it splits triangle
uniformly into sub triangles. In 3d the plugin mmg3d-v4 moves 3d meshes or build
3d anisotropic meshes inside each element (see [15]).
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4. Phase change with Natural Convection

This example illustrates the coupling of natural convection modeled by the Boussinesq
approximation and liquid to solid phase change in Ω =]0,1[2, No slip condition
for the fluid are applied at the boundary and adiabatic condition on upper and
lower boundary and given temperature ϑr (resp ϑl) at the right and left boundar-
ies. The starting point of the problem is Brainstorming session (part I) of the third
FreeFem++ days in december , 2012, this is almost the Orange Problem is describe
in web page†, we present the validation part with paper [35].

The main interest of this example is to show the capability of FreeFem++
to solve complex problem with different kind of non-linearity. You can find other
complex example in [5,7,23,1,8,12,11] for example, (Thank To. I. Danalia to the
help in the modelization),

So the full model is: find uuu = (u1,u2), the velocity field, p the pressure field and
ϑ the temperature flied in domain Ω such that

uuu given in Ωs
∂tuuu+(uuu∇)uuu+∇.µ∇uuu+∇p =−cT eee2 in Ω f

∇.uuu = 0 in Ω f
∂tϑ +(uuu∇)ϑ +∇.kT ∇ϑ = ∂tS(T ) in Ω

(4.1)

Where Ω f is the fluid domain and the solid domain is Ωs = Ω \Ω f . The enthalpy
of the change of phase is given by the function S; µ is the relative viscosity, kT the
thermal diffusivity.

In Ω f = {x ∈Ω;ϑ > ϑ f }, with ϑm the melting temperature the solid has melt.
We modeled, the solid phase as a fluid with huge viscosity, so :

µ =

{
ϑ < ϑ f ∼ 106

ϑ > ϑm ∼ 1
Re

,

This removes movement in the solid phase, and here Re is the Reynolds number of
the liquid phase.

The Stefan enthalpy Sc with defined by Sc(ϑ) = H(ϑ)/Sth where Sthe is the
stefan number, and H is the Heaviside function ( 0, if (ϑ < 0) ,1 else). with use the
following smooth the enthalpy:

S(ϑ) =
tanh(50(ϑ −ϑm)))

2Ste
.

We apply a fixed point algorithm for the phase change part (the domain Ω f
is fixed at each iteration) and a full no-linear Euler implicit scheme with a fixed
domain for the rest. We use a Newton method to solve the non-linearity.

†http://www.ljll.math.upmc.fr/˜hecht/ftp/ff++days/2011/
Orange-problem.pdf

http://www.ljll.math.upmc.fr/~hecht/ftp/ff++days/2011/Orange-problem.pdf
http://www.ljll.math.upmc.fr/~hecht/ftp/ff++days/2011/Orange-problem.pdf


FreeFem++ 9

Remark, if we don’t make mesh adaptation the Newton method do not con-
verge, and if we use explicit method this diverge too, and finally if we implicit the
dependance in Ωs the method also diverge. This is a really difficult problem.

The finite element space to approximate u1,u2, p,ϑ is defined by

fespace Wh(Th,[P2,P2,P1,P1]);

We do mesh adaptation a each time step, with the following code:

Ph ph = S(T), pph=S(Tp);
Th= adaptmesh(Th,T,Tp,ph,pph,[u1,u2],err=errh,

hmax=hmax,hmin=hmax/100,ratio = 1.2);

This mean, we adapt with all variable plus the 2 melting phase a time n+ 1 and n
and we smooth the metric with a ratio of 1.2 to account for the movement of the
melting front.

The Newton loop and the fixed point are implemented as follows

real err=1e100,errp ;
for(int kk=0;kk<2;++kk) // 2 step of fixe point on Ωs
{ nu = nuT; // recompute the viscosity in Ωs,Ω f
for(int niter=0;niter<20; ++ niter) // newton loop
{ BoussinesqNL;

err = u1w[].linfty;
cout << niter << " err NL " << err <<endl;
u1[] -= u1w[];
if(err < tolNewton) break; }// convergence ..

}

The linearized problem is

problem BoussinesqNL([u1w,u2w,pw,Tw],[v1,v2,q,TT])
= int2d(Th) (

[u1w,u2w,Tw]’*[v1,v2,TT]*cdt
+ UgradV(u1,u2,u1w,u2w,Tw)’ * [v1,v2,TT]
+ UgradV(u1w,u2w,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1w,u2w)’*Grad(v1,v2)) * nu
+ ( Grad(u1,u2)’*Grad(v1,v2)) * dnu* Tw
+ cmT*Tw*v2
+ grad(Tw)’*grad(TT)*kT
- div(u1w,u2w)*q -div(v1,v2)*pw - eps*pw*q
+ dS(T)*Tw*TT*cdt
)

- int2d(Th)(
[u1,u2,T]’*[v1,v2,TT]*cdt
+ UgradV(u1,u2,u1,u2,T)’ * [v1,v2,TT]
+ ( Grad(u1,u2)’*Grad(v1,v2)) * nu
+ cmT*T*v2
+ grad(T)’*grad(TT)*kT
- div(u1,u2)*q -div(v1,v2)*p
- eps*p*q // stabilisation term
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+ S(T)*TT*cdt
- [u1p,u2p,Tp]’ *[v1,v2,TT]*cdt
- S(Tp)*cdt*TT
)

+ on(1,2,3,4, u1w=0,u2w=0) + on(2,Tw=0) + on(4,Tw=0) ;

The parameters of the computation are taken from [35] case 2. ϑm = 0, Re = 1,
Ste = 0.045,Pr = 56.2,Ra = 3.271O5,ϑl = 1,ϑr =−0.1 so in this case cmT = cT =
−Ra/Pr , kT = kT = 1/Pr, eps = 10−6, time step δ t = 10−1, cdt = 1/δ t, and with a
good agreement this is figure 6 of [35] at time t = 80; see in figures 9 and 10

Figure 9. Iso-value of the temperature at time t=
80 of problem (4.1)

Figure 10. Velocity at time 80 of problem (4.1)

5. A Schwarz Domain Decomposition Example in Parallel

The following is an explanation of the scripts DDM-Schwarz-*.edp of the distri-
bution. This is Schwarz domain decomposition in parallel with a complexity almost
independent of the number of process (with a coarse grid preconditioner), thanks to
F. Nataf for the all the discution to implementation of this algorithm (see [28] for
the theory).

To solve the following Poisson problem
on domain Ω with boundary Γ in L2(Ω) :

−∆u = f , in Ω, and u = g on Γ,

where f and g are two given functions of L2(Ω) and of H
1
2 (Γ),
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Let (πi)i=1,..,Np be a regular partition of unity of Ω, i.e.:

πi ∈ C 0(Ω) : πi > 0 and
Np

∑
i=1

πi = 1.

Denote Ωi the sub domain which is the support of πi function and also denote Γi the
boundary of Ωi. The parallel Schwarz method is as follows.

Let `= 0 be the iterator and u0 an initial guest respecting the boundary condition
(i.e. u0

|Γ = g):

∀i = 1..,Np : −∆u`i = f , in Ωi, and u`i = u` on Γi \Γ, u`i = g on Γi∩Γ (5.1)

u`+1 = ∑
Np
i=1 πiu`i (5.2)

After discretization with the Lagrange finite element method, with a compatible
mesh Thi for Ωi, there exists a global mesh Th such that Thi is included in Th. Re-
mark We avoid using finite element spaces associated to the full domain Ω because
it is too expensive.

Now let us look at this academic example:

−∆u = 1, in Ω =]0,1[3; u = 0, on ∂Ω. (5.3)

In the following test we use a GMRES version preconditioned by the Schwarz
algorithm (Ps) and with a coarse grid solver (Pc) on a coarse mesh. To build a new
preconditioner P from two preconditioner Pc and Ps we use the following approx-
imation 0∼ I−AP−1 = (I−AP−1

c )(I−AP−1
s ) and after a simple calculus we have

P−1 = P−1
c +P−1

s −P−1
c AP−1

s .

6. Conclusion

FreeFem++ is a continuously evolving software because it is easy to add new tools,
finite elements. We have try to illustrate this with three example. In the future we
expect to include more tools for try dimensional mesh anisotropic meshes adaptive,
automatic different ion by operator overloding, seamless integration of parallel tools
to free the user off low level programming.

Acknowledgements Thanks to O. Pironneau for the fruitful discussion and the
initialization for the freefem storie, to K. Ohtsuka to the help the writing of the docu-
mentation, to A Le Hyaric for the integrated version FreeFem++-cs, to J. Morice,
and S. Auliac for the development respectively of the three dimensional meshes, and
the optimization toolbox, and finaly to E. Chacòn Vera for the freefem++ wiki‡.

‡http://www.um.es/freefem/ff++/pmwiki.php

http://www.um.es/freefem/ff++/pmwiki.php
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