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Abstract 

Remote sensing has gained much attention for agronomic applications such as crop management or 

yield estimation. Crop phenotyping under field conditions has recently become another important 

application that requires specific needs: the considered remote-sensing method must be (1) as 

accurate as possible so that slight differences in phenotype can be detected and related to genotype, 

and (2) robust so that thousands of cultivars potentially quite different in terms of plant architecture 

can be characterized with a similar accuracy over different years and soil and weather conditions. In 

this study, the potential of nadir and off-nadir ground-based spectro-radiometric measurements to 

remotely sense five plant traits relevant for field phenotyping, namely, the leaf area index (LAI), leaf 

chlorophyll and nitrogen contents, and canopy chlorophyll and nitrogen contents, was evaluated over 

fourteen sugar beet (Beta vulgaris L.) cultivars, two years and three study sites. Among the diversity of 

existing remote-sensing methods, two popular approaches based on various selected Vegetation 

Indices (VI) and PROSAIL inversion were compared, especially in the perspective of using them for 

phenotyping applications. 

Overall, both approaches are promising to remotely estimate LAI and canopy chlorophyll content 

(𝑅𝑀𝑆𝐸 ≤ 10 %). In addition, VIs show a great potential to retrieve canopy nitrogen content (𝑅𝑀𝑆𝐸 =

10 %). On the other hand, the estimation of leaf-level quantities is less accurate, the best accuracy 

being obtained for leaf chlorophyll content estimation based on VIs (𝑅𝑀𝑆𝐸 = 17 %). As expected 
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when observing the relationship between leaf chlorophyll and nitrogen contents, poor correlations are 

found between VIs and mass-based or area-based leaf nitrogen content. Importantly, the estimation 

accuracy is strongly dependent on sun-sensor geometry, the structural and biochemical plant traits 

being generally better estimated based on nadir and off-nadir observations, respectively. 

Ultimately, a preliminary comparison tends to indicate that, providing that enough samples are 

included in the calibration set, (1) VIs provide slightly more accurate performances than PROSAIL 

inversion, (2) VIs and PROSAIL inversion do not show significant differences in robustness across the 

different cultivars and years. Even if more data are still necessary to draw definitive conclusions, the 

results obtained with VIs are promising in the perspective of high-throughput phenotyping using UAV-

embedded multispectral cameras, with which only a few wavebands are available.  

Keywords: Chlorophyll and nitrogen contents, Field phenotyping, Leaf area index, Multi-angular optical 

remote sensing, Sugar beet. 

1. Introduction 

Over the last few years, sugar beet (Beta vulgaris L.) has received much attention for either sugar or 

biofuel productions. It is a credible alternative to sugarcane and therefore, increasing the crop yield by 

creating new cultivars, e.g., requiring less nitrogen fertilization, or having a better light use efficiency, 

is currently investigated. However, cultivar selection requires a deep understanding of how the plant 

genetic makeup (genotype) relates to the observable plant traits (phenotypes), and how the genes 

express themselves in a given environment (Furbank and Tester, 2011). Significant advances in 

genomics and gene technology have been done in the past decades, thus making in-field high-

throughput phenotyping one of the major bottlenecks in plant breeding (Comar et al., 2012; Furbank 

and Tester, 2011; Montes et al., 2007). As phenotypes must be characterized over time, non-

destructive techniques have to be developed. In this context, using optical remote sensing has proven 

to be powerful to accurately estimate plant traits describing the canopy structure, e.g., plant height, 
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green fraction, leaf area index (LAI), and the leaf biochemistry, e.g., chlorophyll and nitrogen contents 

(Comar et al., 2012; Jay et al., 2015; Thorp et al., 2015). An accurate retrieval of such structural and 

biochemical parameters is critical for plant phenotyping. For example, chlorophyll content was 

recently suggested to be positively correlated to sugar beet yield, as an increase in chlorophyll content 

may result in a higher photosynthetic assimilation and a greater production of biomass (Loel et al., 

2014). Also, as nitrogen is one of the most important limiting key nutrients, it is essential to better 

understand how genotypes differ in the use of nitrogen sources so as to optimize nitrogen fertilization. 

Indeed, besides being harmful to the environment, an excessive fertilization leads to an 

overproduction of leaves, which does not increase significantly radiation interception. Furthermore, 

sugar accumulation is inversely related to nitrogen uptake (Werker et al., 1999). On the other hand, 

nitrogen deficiency affects leaf expansion (Milford et al., 1985), thus decreasing photosynthetic 

assimilation and crop yield. Therefore, a compromise has to be reached. To our knowledge, the 

potential of optical remote sensing for field phenotyping of sugar beet plant traits has not been 

explored yet, and is investigated in this study. 

Multi-angular optical observations offer a great potential to achieve the required accuracy for the 

remote sensing of structural and biochemical crop properties for field phenotyping. Indeed, the 

incoming radiation in the optical domain strongly interacts with vegetation through absorption and 

scattering processes both at the leaf scale (Jacquemoud and Baret 1990) and the canopy scale 

(Verhoef, 1984), the reflected radiation thus containing valuable information about the scene of 

interest. Furthermore, the use of several viewing configurations (independently or jointly) can 

potentially improve the retrieval accuracy when compared to using a single nadir observation (Dorigo 

2012; Duan et al. 2014; Hilker et al. 2011; Song et al. 2016; Yang et al. 2011) since the sun-sensor 

geometry may strongly affect the canopy reflectance sensitivity to the targeted parameter(s) 

(Jacquemoud et al. 2009). In fact, the anisotropy of canopy reflectance closely relates to the physical 

properties and geometrical arrangement of vegetation elements (Widlowski et al., 2004). Multi-

angular measurements thus provide complementary sources of information to characterize the 
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structure and biochemistry of crop canopies in a more robust and accurate way, especially if these 

canopies have a complex 3D structure and intermediate density (Dorigo, 2012). As a result, exploring 

the anisotropy of the reflectance of row-structured sugar beet canopies seems promising to obtain a 

high estimation accuracy as required for cultivar selection and other agronomic applications, e.g., crop 

management or yield prediction. 

Numerous methods have been developed to extract canopy properties from (mono- or multi-angular) 

remotely sensed spectral data (Baret and Buis 2008; Dorigo et al. 2007; Verrelst et al. 2015). Statistical 

approaches based on vegetation indices (VIs) are very popular due to their simplicity, robustness and 

accuracy in retrieving targeted variables. These VIs have been designed in such a way that features of 

interest are enhanced while undesired effects are minimized. The high spectral resolution provided by 

current sensors allows computing narrow-band VIs that can detect subtle changes in reflectance, e.g., 

the red-edge position that relates to both the LAI and leaf chlorophyll content (Cho and Skidmore 2006; 

Clevers and Kooistra 2012; Guyot and Baret 1988). These VIs can be used to estimate either structural 

properties such as LAI (Darvishzadeh et al., 2011; Haboudane et al., 2004) and green fraction (Comar 

et al., 2012), or biochemical properties such as leaf chlorophyll content (Zarco-Tejada et al. 2004) and 

leaf water content (Colombo et al., 2008). However, interactions between biochemical and structural 

canopy parameters (e.g., LAI and leaf chlorophyll content) may add some uncertainties in the retrieval, 

the measured signal not only depending on the leaf biochemistry but also on the amount of leaves 

within the sensor field of view (Baret et al. 2007; Colombo et al. 2008). Alternatively, canopy integrated 

biochemical parameters (obtained by multiplying the leaf biochemical content by the LAI) can 

generally be estimated more accurately (Clevers and Kooistra 2012; Colombo et al. 2008; Darvishzadeh 

et al. 2011; Jacquemoud et al. 1995), while still representing physically-sound quantities (Baret et al. 

2007). Interestingly, the correlation between chlorophyll and nitrogen contents makes it possible to 

use chlorophyll VIs for quantifying the nitrogen status of crops (Clevers and Gitelson 2013; Clevers and 

Kooistra 2012; Schlemmer et al. 2013). However, differences occur between different crops: while Xu 

et al. (2014), He, Song, et al. (2016) and He, Zhang, et al. (2016) have reported strong correlations 
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between VIs and leaf nitrogen content in winter wheat and barley, poor correlations were obtained by 

Li et al. (2016) in litchi orchards. This suggests that further studies are necessary to evaluate the 

potential of VI-based remote sensing to retrieve nitrogen content in sugar beet cultivars. 

The use of such statistically-based methods may, however, be not fully optimal for phenotyping 

applications, since the latter necessitates robust remote-sensing methods that can adapt to potentially 

strongly different plant architectures and characterize thousands of cultivars with a similar accuracy 

(the huge amount of tested cultivars obviating the possibility of including all of them in the calibration 

data set). Alternatively, inverting radiative transfer models may appear as a more robust approach to 

characterize different sugar beet canopies. These physically-based models simulate light propagation 

within the canopy as a function of leaf and soil properties, canopy structure and sun-sensor geometry. 

Whenever possible, model inversion allows for the retrieval of targeted variables based on iterative 

optimization, look-up tables, statistically-based methods or machine learning algorithms (Baret and 

Buis 2008), and provides a valuable physical understanding of interactions occurring between light and 

vegetation. PROSAIL (Baret et al. 1992; Jacquemoud et al. 2009) is one of the most widely used models, 

especially because it offers a good compromise between realism and simplicity (Verger et al., 2014) 

and because it is freely available to the community. PROSAIL simulates the canopy reflectance by 

combining the PROSPECT (Leaf Optical Properties Spectra) model of leaf optical properties 

(Jacquemoud and Baret 1990) and the SAIL (Scattering by Arbitrarily Inclined Leaves) canopy 

reflectance model (Verhoef 1984; Verhoef 1985). Importantly, SAIL has been designed for 

homogeneous canopies, so it is theoretically not well suited for modeling discontinuous crop rows. A 

number of studies have, however, shown that reasonable estimations of leaf and canopy chlorophyll 

contents and LAI could be achieved for such vegetation arrangements (Dorigo 2012; Duan et al. 2014; 

Jacquemoud et al. 1995). 

In this study, we compare two popular remote-sensing approaches, i.e., VIs and PROSAIL inversion, 

based on their abilities to remotely sense the LAI as well as the leaf and canopy chlorophyll contents 
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in sugar beet crops under field conditions. In addition, the potential of VIs for retrieving leaf and canopy 

nitrogen contents is investigated. Special attention is paid to the potential of the above two 

approaches in providing accurate and robust performances, as necessary for phenotyping applications. 

The considered spectral measurements are ground-based, which allows higher spatial and temporal 

resolutions as compared with satellite or aircraft measurements. A high revisit frequency is particularly 

attractive for agronomic and phenotyping applications because crop characterization may be required 

over a short critical period (Inoue et al., 2012). 

2. Materials and methods 

2.1. Field experiments 

 

Figure 1: Locations of the three study sites and soil compositions (loamy soils for sites 1 and 3, and chalky 

soil for site 2). Photographs illustrate some of the sugar beet canopies encountered in each site. 

Field experiments were conducted in France during the 2015 and 2016 growing seasons. Three study 

sites with different soil properties were considered (Fig. 1). The "La Selve" (49°35’N, 4°01’E, denoted 

site 1) and "Barenton" (49°37’N, 3°39’E, denoted site 3) sites were characterized by different loamy 

Author-produced version of the article published in Field Crops Research, 2017, N°210, p.33-46.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.fcr.2017.05.005



soils, whereas the "Vaucogne" site (48°31′N, 4°21′E, denoted site 2) was characterized by a chalky soil. 

Row spacing was 0.45 m for each experiment, and rows were oriented according to a 220° azimuth for 

sites 1 and 2 (with respect to the North direction), and to a 190° azimuth for site 3. The characteristics 

of field experiments are further detailed in Table 1. Each experiment was a randomized complete block 

design using a factorial arrangement of various nitrogen fertilizations and/or cultivars with 3 replicates. 

Overall, 8 levels of fertilization and 14 cultivars exhibiting differences in structure were considered 

(note that cultivars No. 4 to 12 were only considered on 07/08/2015). In total, our data set contained 

71 samples and thus encompassed a large variability due to differences in years, cultivars, nitrogen 

fertilizations, development stages and soil and weather conditions. 

Table 1: Characteristics of field experiments. Ɵs and φs are, respectively, the sun zenith and azimuth angles 

at the time of measurements. 

Date Site Ɵs (°) φs (°) Illumination 
Cultivar 

No. 

Number of 

samples 

Nitrogen rate 

(kg N/ha) 

06/23/2015 1 28 190 Partly cloudy 1-3 9 0, 130, 170 

06/24/2015 2 29 155 Clear 1-3 8 0, 70, 110 

06/30/2015 1 30 218 Clear 1-2 2 0 

07/08/2015 3 28 201 Cloudy 2, 4-12 10 80 

07/21/2015 1 35 137 Cloudy 1-2 3 0, 130 

08/04/2015 1 32 182 Partly cloudy 1-2 4 0, 130 

09/08/2015 1 44 200 Cloudy 1-3 5 0, 130, 170 

05/24/2016 3 30 199 Clear 2-3, 13-14 6 0, 100, 150 

06/06/2016 3 34 227 Cloudy 2-3, 13-14 6 0, 100, 150 

06/21/2016 3 32 137 Cloudy 2-3, 13-14 6 0, 100, 150 

07/05/2016 3 34 133 Clear 2-3, 13-14 6 0, 100, 150 

07/19/2016 3 49 107 Clear 2-3, 13-14 6 0, 100, 150 
 

 

2.2. Reflectance measurements 

Each sample represented a 0.45 m² row-structured subplot containing five successive sugar beet 

plants. Each subplot was considered for both reflectance and reference measurements. Spectral 
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measurements were carried out over the 350-2500 nm region using a FieldSpec 4 spectroradiometer 

(ASD Inc., Boulder, CO, USA), whose spectral sampling (resp., spectral resolution) was 1.4 nm (resp., 3 

nm) in the visible and near infrared range and 1.1 nm (resp., 10 nm) in the short-wave infrared range. 

The spectral data were collected around solar noon, with a sun zenith angle generally lower than 35°. 

The difference in azimuth between the solar and row directions ranged from 0 to 85°. The illumination  

 

Figure 2: Sun-sensor geometry for the three viewing configurations. Ɵs and Ɵv are, respectively, the sun and 

viewing zenith angles, while φs and φv are, respectively, the sun and viewing azimuth angles. 

conditions strongly differed between experiments, ranging from a clear blue sky to an overcast sky 

(Table 1). As represented in Fig. 2, for each sample, the reflected radiation was measured 1.50 m away 

from the middle plant of the subplot (in order to avoid edge effects) in nadir and off-nadir directions. 

For nadir measurements, the spectroradiometer fiber optic was hold manually, pointing vertically 

downward. The off-nadir measurements were performed by holding the fiber optic with a probe stand 

positioned such that the reflected radiation was measured at a 50° viewing zenith angle in both the 

backward and forward scattering directions (i.e., respectively, viewing azimuth angles of 0 and 180° 
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relatively to the sun azimuth angle). Note that in the following, the backward and forward 

configurations are denoted -50° and +50°, respectively. Taking a 50° viewing zenith angle ensured us 

to be far enough from the hot-spot for every spectral acquisition. For both nadir and off-nadir 

measurements, the pointing accuracy was assumed to be sufficient for not affecting the estimation 

results. The instrument field of view was 25°, resulting in a measured circular area of 67 cm diameter 

at nadir. Each radiance spectrum was obtained from the average of 50 readings, and converted into a 

hemispherical-conical reflectance factor (Schaepman-Strub et al. 2006) (subsequently referred to as 

reflectance) using a Spectralon® white reference panel. Finally, atmospheric absorption bands ranging 

from 1340 to 1500 nm, and from 1790 to 2100 nm were removed before further processing. 

2.3. Reference measurements 

After spectral acquisition, the leaf angle distribution was estimated based on leaf angle measurements 

(one for each plant, 180 in total). Leaf angle was retrieved applying basic trigonometry to the right-

angle triangle delimited by the leaf and its projection onto the soil surface. 

Subsequently, non-destructive measurements of leaf chlorophyll content (Cab, in [µg/cm²]) were 

performed over the five considered plants (six measurements per plant at different shoot levels so as 

to take into account for the Cab vertical profile in leaves of different age or different location in the 

canopy, i.e., thirty Cab measurements in total) using a Dualex scientific+TM (Force-A, Orsay, France). This 

leafclip enables transmittance-based Cab measurements characterized by an initial accuracy of around 

5 µg/cm² (Cerovic et al., 2012). As observed in previous studies (Cerovic et al., 2012; Jay et al., 2016), 

the Dualex tends to underestimate Cab for high content values in dicotyledons. Sensor readings were 

therefore converted to actual Cab values using the relationship proposed by Cerovic et al. (2012) for 

dicotyledons, thus achieving an estimated accuracy of around 4 µg/cm². The thirty Cab values were 

finally averaged so as to provide a single Cab value for each subplot. 

Two methods were used for LAI measurements. In 2015, each subplot was harvested to measure leaf 

area. Leaves were placed on blank sheets and flattened with a pane of glass. They were then scanned 
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and after extraction of leaf-related pixels by image processing, their area was estimated using the 

calibrated pixel size. The LAI was finally obtained by multiplying the leaf area averaged over the five 

plants by the plant density (from 10 to 12 plants per square meter for the three sites). In 2016, LAI was 

non-destructively measured based on hemispherical photographs acquired early in the morning (to 

minimize the influence of direct sunlight) with a digital camera positioned above the canopy. LAI was 

estimated from these photographs using the CAN-EYE freeware (http://www6.paca.inra.fr/can-eye/). 

Importantly, Cab and LAI were poorly correlated (𝑅2 = 0.14), thus preventing from obtaining spurious 

statistical relationships between VIs and Cab inherited from a more causal relationship between VIs and 

LAI. 

Leaves were then weighted and placed in a drying oven at 75°C for 48 h. Their dry mass was measured 

so as to retrieve the equivalent water thickness (Cw, in [cm]) and leaf mass per area (Cm, in [g/cm²]) 

according to 𝐶𝑤 =
𝐹𝑊−𝐷𝑊

𝐿𝐴
× 𝑑𝑤 and 𝐶𝑚 =

𝐷𝑊

𝐿𝐴
, where 𝐹𝑊 and 𝐷𝑊 are, respectively, the fresh and 

dry weights of leaves, 𝐿𝐴 is the leaf area, and 𝑑𝑤 = 1 g/cm3 is the water density. In addition, the dry 

mass per unit soil area (Wleaf, in [g/m²]) was calculated by multiplying the dry mass averaged over the 

five plants by the plant density. 

The average leaf nitrogen concentration (%Nleaf, in [%] of dry mass) of the whole subplot was measured 

using the Dumas method (Dumas, 1831). The leaf nitrogen content (Cn, in [µg/cm²]) was obtained by 

the ratio of %Nleaf to the specific leaf area (i.e., the ratio of leaf area to dry mass). The total canopy 

chlorophyll content (CCC) was approximated by the product of LAI and Cab as defined by Jacquemoud 

et al. (1995) and Baret et al. (2007) (note that this approximation neglects the chlorophyll contained 

in other elements than leaves such as stems), whereas the canopy nitrogen content (CNC) was given 

by the product of %Nleaf and Wleaf (Baret et al. 2007). 

Table 2: Statistics of leaf-level and canopy-level reference measurements. 

 Parameter Unit Min / Max Mean 
Standard 

deviation 
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Leaf level 

Leaf angle ° 24 / 80 55 11 

Cab µg/cm² 27.1 / 58.4 40.8 9.0 

Cw cm 0.0380 / 0.0816 0.0538 0.0094 

Cm g/cm² 0.0058 / 0.0118 0.0084 0.0015 

%Nleaf % 2.26 / 4.61 3.42 0.58 

Cn µg/cm² 202 / 381 280 43 

Canopy level 

LAI m²/m² 0.28 / 3.25 1.72 0.71 

Wleaf g/m² 19 / 289 144 65 

CCC g/m² 0.09 / 1.64 0.72 0.39 

CNC g/m² 0.77 / 9.54 4.83 2.33 
 

 

An overview of these reference measurements is shown in Table 2. Note that, for more clarity in 

notation, leaf chlorophyll and nitrogen contents were expressed in [µg/cm²] (micrograms per unit leaf 

area) whereas canopy chlorophyll and nitrogen contents were expressed in [g/m²] (grams per unit soil 

area). 

2.4. Remote-sensing methods 

2.4.1. Vegetation index based approach 

A number of chlorophyll or LAI VIs were selected from the literature based on their potential to retrieve 

LAI, leaf and canopy chlorophyll and nitrogen contents from canopy spectral measurements (Table 3). 

Simple ratios and normalized difference ratios have widely been used for Cab estimation at the leaf and 

canopy levels. These two-band indices consist in combining a band that is sensitive to both absorption 

by chlorophyll and scattering by leaf, and a normalization band that is only sensitive to scattering, e.g., 

a near-infrared (NIR) band (Blackburn, 2007). This enables absorption and scattering to be separated 

so as to capture mainly variations in Cab. The Normalized Difference Vegetation Index (NDVI) (Rouse et 

al., 1973) is an example of such VIs , and was tested in this study due to its popularity in the remote-

sensing and agronomic communities as a vegetation indicator. Still, it is known that bands located quite 

far from chlorophyll absorption peaks (e.g., in the green and red-edge domains) are to be preferred in 
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order to avoid saturation and maximize the sensitivity to Cab (Gitelson et al. 1996;  Gitelson and 

Merzlyak 1994; Sims and Gamon 2002). Two VIs based on simple ratios, i.e., 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 and 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 

(Gitelson et al. 2006; Gitelson et al. 2005; Gitelson et al. 2003) and two other normalized difference 

ratios, i.e., 𝑁𝐷550 (Gitelson et al., 1996) and 𝑁𝐷705 (Gitelson and Merzlyak, 1994) were therefore 

chosen in this study, as they were found to be accurate predictors of Cab at the leaf level (Gitelson et 

al., 2006, 2003, 1996; Gitelson and Merzlyak, 1994; Schlemmer et al., 2013) and canopy chlorophyll 

content at the canopy level (Clevers and Gitelson 2013; Clevers and Kooistra 2012; Gitelson et al. 2005; 

Schlemmer et al. 2013) in crops such as maize, soybean or potato. 

We also tested two VIs proposed by Wu et al. (2008) and derived from the Modified Chlorophyll 

Absorption Ratio Index (MCARI) (Daughtry et al., 2000). The first one is 𝑀𝐶𝐴𝑅𝐼[705,750], where bands 

670 and 800 nm in MCARI have been replaced by bands 705 and 750 nm so as to mitigate saturation 

occurring for high LAI and/or Cab values. Even if MCARI was originally designed for Cab estimation, 

several studies have shown that MCARI-derived VIs (including 𝑀𝐶𝐴𝑅𝐼[705,750] ) also hold a great 

potential for LAI prediction (Comar et al., 2012; Daughtry et al., 2000; Haboudane et al., 2004; Wu et 

al., 2008). The other VI modified by Wu et al. (2008) and selected in this study is 𝑀𝐶𝐴𝑅𝐼/

𝑂𝑆𝐴𝑉𝐼[705,750] that have been derived from MCARI/OSAVI (Daughtry et al., 2000), the OSAVI 

(Optimized Soil-Adjusted Vegetation Index) index (Rondeaux et al. 1996) being introduced to lessen 

the background influence for low LAI values. 

Off-nadir measurements are less affected by the soil influence than nadir measurements. It thus seems 

appropriate to use VIs that minimize the variations in leaf reflectance observed at this scale, e.g., those 

caused by leaf orientation and specular reflection. Ratios of reflectance difference such as the Modified 

Red-edge Ratio (𝑚𝑆𝑅) (Sims and Gamon, 2002) and MERIS Terrestrial Chlorophyll Index (𝑀𝑇𝐶𝐼) (Dash 

and Curran, 2004) decrease the two above influences, as such effects can, respectively, be 

approximated by multiplicative and additive perturbations under the bi-directional hypothesis in the 

visible domain (Jay et al., 2016). The 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 recently proposed by Jay et al. (2017) using millimeter- 
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to centimeter-scale imagery of sugar beet canopies was also included in this study because it has 

proven to offer a strong sensitivity to Cab when the soil influence is low. 

Finally, the Angular Insensitivity Vegetation Index (AIVI) recently developed by He, Song, et al. (2016) 

for leaf nitrogen content estimation in winter wheat was tested to see whether it was also obtaining 

strong correlations in sugar beet canopies. 

These eleven VIs were computed for the three viewing angles and compared based on their linear 

correlation (in terms of Pearson’s correlation coefficient, r) with Cab, LAI, CCC, %Nleaf, Cn and CNC. For 

the best cases, linear regressions were performed over the whole data set, and root mean square 

errors of prediction (RMSE) were estimated using leave-one-out cross-validation due to the relatively 

low number of samples. 

Table 3: Vegetation indices selected from the literature. 

Vegetation index Formulation References 

𝑁𝐷𝑉𝐼 
𝑅800 − 𝑅670

𝑅800 + 𝑅670
 Rouse et al. (1973) 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 
𝑅780

𝑅550
− 1 Gitelson et al. (2003, 2005, 2006) 

𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 
𝑅780

𝑅710
− 1 Gitelson et al. (2003, 2005, 2006) 

𝑁𝐷550 
𝑅750 − 𝑅550

𝑅750 + 𝑅550
 Gitelson et al. (1996) 

𝑁𝐷705 
𝑅750 − 𝑅705

𝑅750 + 𝑅705
 Gitelson and Merzlyak (1994) 

𝑀𝐶𝐴𝑅𝐼[705,750] [(𝑅750 − 𝑅705) − 0.2(𝑅750 − 𝑅550)](𝑅750 𝑅705⁄ ) Wu et al. (2008) 

𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] 
[(𝑅750 − 𝑅705) − 0.2(𝑅750 − 𝑅550)](𝑅750 𝑅705⁄ )

1.16 (𝑅750 − 𝑅705) (𝑅750 + 𝑅705 + 0.16)⁄
 Wu et al. (2008) 

𝑚𝑆𝑅 
𝑅750 − 𝑅445

𝑅705 − 𝑅445
 Sims and Gamon (2002) 

𝑀𝑇𝐶𝐼 
𝑅754 − 𝑅709

𝑅709 − 𝑅681
 Dash and Curran (2004) 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 
𝑅440 − 𝑅728

𝑅440 + 𝑅850
 Jay et al. (2017) 

𝐴𝐼𝑉𝐼 
𝑅445(𝑅720 + 𝑅735) − 𝑅573(𝑅720 − 𝑅735)

𝑅720(𝑅573 + 𝑅445)
 He, Song, et al. (2016) 

 

 

2.4.2. PROSAIL based approach 
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The Cab, LAI and CCC parameters were also estimated based on PROSAIL inversion (note that nitrogen 

contents could not be retrieved since leaf nitrogen content is not a PROSAIL input parameter). In this 

study, we implemented the PRO4SAIL model (available at http://teledetection.ipgp.jussieu.fr/prosail/) 

that combines PROSPECT 5b (Feret et al., 2008) and 4SAIL (Verhoef et al. 2007). PROSPECT 5b simulates 

the leaf directional hemispherical reflectance and transmittance from 400 to 2500 nm as a function of 

leaf biochemistry and internal structure. PROSPECT 5b parameters are the leaf structure parameter N 

(unitless), chlorophyll a+b content Cab (in [µg/cm²]), carotenoid content Ccx (in [µg/cm²]), brown 

pigment content Cbp (unitless), equivalent water thickness Cw (in [cm]) and leaf mass per area Cm (in 

[g/cm²]).  

4SAIL is a numerically robust and speed-optimized version of the SAIL model (Verhoef 1984; Verhoef 

1985), which has been modified to include the hot-spot effect (Kuusk 1991; Verhoef 1998). SAIL 

simulates the bidirectional reflectance (and other reflectance quantities derived from the bidirectional 

case) of a homogeneous vegetation canopy for a given sun-sensor geometry determined by the sun 

zenith angle (Ɵs, in °), the viewing zenith angle (Ɵv, in °) and the relative viewing azimuth angle (φsv=φv-

φs, in °). In 4SAIL, the canopy structure is described using the LAI (in [m²/m²]), the leaf inclination 

distribution function (unitless), the hot-spot parameter (unitless) and the soil brightness (unitless). In 

addition, the fraction of diffuse illumination (unitless) allows for considering the sky influence and was 

used to model the measured reflectance following the procedure proposed by François et al. (2002). 

PRO4SAIL (simply referred to as PROSAIL hereafter) was inverted for each viewing angle independently 

based on the widely used Look-Up Table (LUT) approach (Baret and Buis 2008; Darvishzadeh et al. 

2011; Dorigo 2012; Duan et al. 2014; Verger et al. 2014; Verrelst et al. 2015; Vohland et al. 2010). This 

consists in (1) generating a synthetic data set from multiple runs of the canopy reflectance model based 

on different sets of input variables, and (2) calculating the solution of the inverse problem based on 

the LUT entries whose simulated spectra are the closest to the measured one. This approach is widely 

used as compared to, e.g., numerical optimization or artificial neural networks, especially because of 
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its abilities to avoid local minima and to introduce constraints on the retrieved variables, its simplicity 

and its computational efficiency once the LUT has been built. Incidentally, note that numerical 

optimization was also tested but actually performed poorer than the LUT approach (not shown). 

Before the LUT generation, several model parameters were set to default values or values derived from 

prior or expert knowledge in order to reduce the ill-posedness of the inversion problem (Combal et al., 

2003). Cbp was set to zero since no senescent leaves were visible during the field experiments. As 

suggested by Jacquemoud et al. (1995) for sugar beet, the leaf inclination distribution function was 

assumed to be ellipsoidal and characterized by an Average Leaf Angle (ALA, in °), and the hot-spot 

parameter was set to 0.33. The soil was assumed to be Lambertian and, for each date, the soil 

brightness was fixed based on a soil reflectance spectrum acquired at nadir. As a result, only 7 unknown 

parameters (N, Cab, Ccx, Cw, Cm, LAI and ALA) were used to generate the LUT. 

For this purpose, uniform distributions were first used for every unknown parameter (no prior 

knowledge was thus introduced in model inversion). These distributions were bounded by the 

minimum and maximum values presented in Table 4 and determined according to the literature 

(Darvishzadeh et al. 2011; Dorigo 2012; Duan et al. 2014; Jacquemoud et al. 1995; Verger et al. 2014) 

and the reference measurements displayed in Table 2. 

Table 4: Variation ranges of the unknown PROSAIL parameters used for generating the LUT. 

Parameter N Cab Ccx Cw Cm LAI ALA 

Minimum value 1 20 5 0.03 0.002 0.1 10 

Maximum value 2 65 20 0.09 0.015 3.5 90 

 

 

A full orthogonal experimental design (Bacour et al., 2002; Verger et al., 2014) was used to 

conveniently combine these 7 parameters by (1) subdividing each variation range into 4 equidistant 

intervals (or classes), (2) sampling every combination of classes once (resulting in 47=16,384 

combinations), and (3) for each combination, randomly drawing every parameter value according to 
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its specific distribution (which is uniform in this case). This allows populating more evenly the whole 

parameter space while limiting the number of simulations. For each of the 16,384 combinations of 

input parameters, the canopy reflectance was simulated between 400 and 2500 nm with a 1 nm 

spectral sampling interval, and the resulting spectrum was subsampled according the spectral 

resolution of the spectroradiometer (Section 2.2). A LUT was generated for each date and sun-sensor 

geometry, setting Ɵs, Ɵv, φsv and the soil reflectance to their measured values. This resulted in 36 LUTs, 

corresponding to 12 dates and 3 sun-sensor geometries. 

In order to further decrease the problem ill-posednes and improve the estimation of targeted 

parameters (i.e., LAI and Cab) especially by limiting possible compensations between them (Baret and 

Buis, 2008), we also utilized prior knowledge on their distributions to generate a second set of 36 LUTs. 

For both parameters, we used Gaussian distributions with means and standard deviations obtained 

from reference measurements (Table 2), similarly to Verger et al. (2014). This allows each LUT to have 

more entries corresponding to the most frequently observed LAI and Cab values. In the following, model 

inversion using such Gaussian distributions is called constrained inversion, while model inversion using 

only uniform distributions is called unconstrained inversion. 

To find the solution to the inverse problem, the root mean square error between the measured and 

simulated canopy reflectance spectra was computed for the 𝑘th LUT entry according to 

𝑅𝑀𝑆𝐸𝜃𝑣,𝑘 = ∑ (𝑅𝜃𝑣
(𝜆) − �̂�𝜃𝑣,𝑘(𝜆))

2

𝜆

 (1) 

where 𝑅𝜃𝑣
(𝜆) and �̂�𝜃𝑣,𝑘(𝜆) are, respectively, the measured and simulated spectra at wavelength λ 

for the sun-sensor geometry denoted 𝜃𝑣 for the sake of simplicity. Following Darvishzadeh et al. (2011), 

the 10 LUT entries corresponding to the 10 smallest 𝑅𝑀𝑆𝐸𝜃𝑣,𝑘 values were considered as possible 

solutions and averaged so as to finally provide a unique solution to the inverse problem. 

In addition, PROSAIL was also inverted using the three viewing angles simultaneously. Indeed, when 

the canopy reflectance model reliably describes the reflectance anisotropy, using various observations 

Author-produced version of the article published in Field Crops Research, 2017, N°210, p.33-46.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.fcr.2017.05.005



of the same scene potentially allows for constraining the inversion problem and increasing the retrieval 

accuracy. In this case, Eq. 1 was summed over the three sun-sensor geometries, resulting in the 

following cost function (Dorigo, 2012): 

𝑅𝑀𝑆𝐸𝑘 = ∑ 𝑅𝑀𝑆𝐸𝜃𝑣,𝑘

𝜃𝑣

= ∑ [∑ (𝑅𝜃𝑣
(𝜆) − �̂�𝜃𝑣,𝑘(𝜆))

2

𝜆

]

𝜃𝑣

. (2) 

Similarly to mono-angular observations, the 10 best LUT entries were then averaged to provide the 

estimated parameters. 

2.4.3. Preliminary comparison of approaches for phenotyping applications 

Besides comparing the above two remote-sensing methods based on their abilities to estimate 

biochemical and structural properties of sugar beet crops, we also studied how these methods were 

performing over different cultivars and years in the perspective of phenotyping. For both approaches, 

the RMSE per cultivar and per year was therefore evaluated in order to detect possible varietal and 

year differences. Note that the comparison only included the variables that could be estimated with 

both approaches, i.e. Cab, LAI and CCC. In the case of VIs, each cultivar (resp., year) was considered 

once for validation using the model calibrated with the other cultivars (resp., the other year). This 

allowed us to assess whether a statistical model could be applied to unknown cultivars or other years 

with the same accuracy, as required for phenotyping applications. 

For both methods, variations in performance were quantified computing the weighted standard 

deviation of RMSE (denoted σ) over cultivars and years. Weighting factors were defined as the 

numbers of samples per cultivar (resp., per year) in order to take into account the strong discrepancies 

in the number of samples per cultivar (resp., per year). In such a preliminary study where the relatively 

low number of samples prevented us from drawing any definitive conclusion, the σ variable appears 

as a relevant indicator to compare the two approaches for phenotyping purpose. 

3. Results 
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3.1. Relationships between chlorophyll and nitrogen quantities 

 

Figure 3: Relationships between chlorophyll and nitrogen quantities at the leaf (a-b) and canopy (c) levels, and 

between LAI and biomass per unit area (d). Cultivars No. 1, 2, 3, 13 and 14 are in dark, orange, blue, green and 

magenta, resp., while cultivars No. 4 to 12 are in red. Crosses and circles refer to 2015 and 2016 experiments, 

resp. The coefficient of determination (R²) indicates the strength of each relationship. 

In Fig. 3, preliminary results are presented to show how the chlorophyll and nitrogen quantities 

introduced in Section 2.3 correlate in sugar beet crops. In Fig. 3.a, the leaf nitrogen concentration %Nleaf 

as measured using the reference method shows a very poor correlation (𝑅2 = 0.13) with the leaf 

chlorophyll content Cab measured using the Dualex leafclip. As shown in Fig. 3.b, the 

chlorophyll/nitrogen correlation increases when converting %Nleaf to leaf nitrogen content Cn, yielding 

a 𝑅2 of 0.28. This correlation is, however, markedly lower than that obtained between the canopy 

integrated quantities CNC and CCC (Fig. 3.c), i.e., 𝑅2 = 0.84. It is worth noting that the latter strong 
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correlation is not only due to the correlation between %Nleaf and Cab, but also (and primarily) to the 

correlation between LAI and biomass per unit soil area as shown in Fig. 3.d. 

3.2. Estimation performances obtained using vegetation indices 

Table 5: Pearson’s correlation coefficients (𝑟) obtained between vegetation indices and Cab, LAI and CCC. For 

each column, the best performing index is in bold. 

Vegetation index 
0° -50° +50° 

Cab LAI CCC Cab LAI CCC Cab LAI CCC 

𝑁𝐷𝑉𝐼 0.24 0.84 0.67 0.34 0.79 0.67 0.27 0.80 0.64 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 0.36 0.94 0.85 0.71 0.86 0.95 0.58 0.83 0.88 

𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 0.40 0.94 0.87 0.68 0.88 0.94 0.58 0.87 0.91 

𝑁𝐷550 0.35 0.92 0.79 0.60 0.86 0.86 0.51 0.86 0.83 

𝑁𝐷705 0.34 0.91 0.78 0.54 0.86 0.83 0.48 0.87 0.81 

𝑀𝐶𝐴𝑅𝐼[705,750] 0.45 0.94 0.90 0.63 0.89 0.93 0.58 0.93 0.95 

𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] 0.47 0.95 0.90 0.60 0.90 0.92 0.57 0.93 0.93 

𝑚𝑆𝑅 0.42 0.93 0.87 0.68 0.87 0.94 0.61 0.86 0.92 

𝑀𝑇𝐶𝐼 0.53 0.92 0.91 0.76 0.83 0.95 0.67 0.81 0.91 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 0.62 0.59 0.77 0.82 0.47 0.77 0.73 0.44 0.70 

𝐴𝐼𝑉𝐼 0.59 0.88 0.91 0.79 0.79 0.94 0.76 0.72 0.88 
 

 

In Table 5, we compare the linear correlations obtained between Cab, LAI and CCC, and the VIs 

presented in Table 3 and computed for the three viewing angles. At nadir, poor correlations (𝑟 ≤ 0.62) 

with Cab are obtained for all VIs. Conversely, LAI is strongly correlated (𝑟 ≥ 0.84) with every selected 

VI except 𝑚𝑁𝐷𝑏𝑙𝑢𝑒, the best correlation being obtained using the MCARI-based and simple ratio VIs 

(𝑟 ≥ 0.94). These strong relationships with LAI generally result in good correlations with CCC, except 

for 𝑁𝐷𝑉𝐼 and to a lesser extent 𝑚𝑁𝐷𝑏𝑙𝑢𝑒, the 𝑟 values being higher than 0.90 for MCARI-based VIs, 

𝑀𝑇𝐶𝐼 and 𝐴𝐼𝑉𝐼. As compared with nadir viewing, significantly stronger correlations with Cab (0.54 ≤

𝑟 ≤ 0.82) are obtained in the -50° configuration for all tested VIs except 𝑁𝐷𝑉𝐼, the best correlation 

being obtained with 𝑚𝑁𝐷𝑏𝑙𝑢𝑒. Despite a lower sensitivity to LAI, the increased sensitivity to Cab 

generally leads to stronger correlations with CCC. The best performances are obtained using 𝐶𝐼𝑔𝑟𝑒𝑒𝑛, 

Author-produced version of the article published in Field Crops Research, 2017, N°210, p.33-46.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.fcr.2017.05.005



𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 𝑚𝑆𝑅 and 𝑀𝑇𝐶𝐼 with 𝑟 ≥ 0.94. Correlations are generally lower at +50° than at -50°. 𝐴𝐼𝑉𝐼 

obtains the best correlation with Cab (𝑟 = 0.76), while the two MCARI-based VIs perform significantly 

better than other VIs in estimating LAI (𝑟 = 0.93). As a result, these two latter VIs also obtain the best 

correlations with CCC (𝑟 ≥ 0.93). 

Table 6: Pearson’s correlation coefficients (𝑟) obtained between vegetation indices and the three nitrogen 

quantities %Nleaf, Cn and CNC. For each column, the best performing index is in bold. 

Vegetation index 
0° -50° +50° 

%Nleaf Cn CNC %Nleaf Cn CNC %Nleaf Cn CNC 

𝑁𝐷𝑉𝐼 -0.16 0.23 0.77 -0.20 0.22 0.73 -0.22 0.18 0.72 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 0.11 0.35 0.90 0.23 0.48 0.88 0.24 0.42 0.84 

𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 0.13 0.36 0.90 0.19 0.46 0.89 0.22 0.43 0.88 

𝑁𝐷550 -0.09 0.30 0.86 0.00 0.37 0.84 -0.05 0.32 0.83 

𝑁𝐷705 -0.06 0.29 0.85 -0.03 0.34 0.83 -0.05 0.31 0.83 

𝑀𝐶𝐴𝑅𝐼[705,750] 0.12 0.39 0.91 0.11 0.46 0.89 0.12 0.49 0.93 

𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] 0.07 0.39 0.91 0.03 0.44 0.89 0.06 0.48 0.93 

𝑚𝑆𝑅 0.16 0.37 0.90 0.19 0.47 0.88 0.25 0.46 0.88 

𝑀𝑇𝐶𝐼 0.15 0.39 0.90 0.24 0.48 0.86 0.27 0.45 0.84 

𝑚𝑁𝐷𝑏𝑙𝑢𝑒 0.44 0.53 0.66 0.48 0.61 0.58 0.46 0.55 0.54 

𝐴𝐼𝑉𝐼 0.21 0.45 0.89 0.23 0.53 0.84 0.31 0.51 0.78 
 

 

Similarly, in Table 6, we compare the linear correlations obtained between %Nleaf, Cn and CNC, and the 

VIs presented in Table 3 and computed for the three viewing angles. On the one hand, poor 

relationships with leaf-level nitrogen quantities are obtained for the three viewing angles. VIs show no 

significant correlations with %Nleaf (𝑟 ≤ 0.48). Slightly better correlations are obtained with Cn, 

especially in the -50° configuration, the best performance being obtained using 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 with  

𝑟 = 0.61. On the other hand, significant relationships with canopy nitrogen content CNC are generally 

obtained. For nadir viewing, 𝐶𝐼𝑔𝑟𝑒𝑒𝑛, 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒, 𝑀𝐶𝐴𝑅𝐼[705,750],  

𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750], 𝑚𝑆𝑅, 𝑀𝑇𝐶𝐼 and 𝐴𝐼𝑉𝐼 perform similarly, 𝑀𝐶𝐴𝑅𝐼[705,750] and 𝑀𝐶𝐴𝑅𝐼/

𝑂𝑆𝐴𝑉𝐼[705,750] leading to the best correlations (𝑟 = 0.91). In the -50° configuration, the best 
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performing VIs are 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒, 𝑀𝐶𝐴𝑅𝐼[705,750] and 𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] (𝑟 = 0.89), while in 

the +50° configuration, 𝑀𝐶𝐴𝑅𝐼[705,750] and 𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] obtain significantly better 

correlations than other VIs (𝑟 = 0.93). 

 

Figure 4: Best prediction performances obtained for (a) Cab (𝑚𝑁𝐷𝑏𝑙𝑢𝑒 , -50°), (b) LAI (𝑀𝐶𝐴𝑅𝐼/

𝑂𝑆𝐴𝑉𝐼[705,750], 0°), (c) CCC (𝑀𝑇𝐶𝐼, -50°), (d) %Nleaf (𝑚𝑁𝐷𝑏𝑙𝑢𝑒 , -50°), (e) Cn (𝑚𝑁𝐷𝑏𝑙𝑢𝑒 , -50°), and (f) CNC 

(𝑀𝐶𝐴𝑅𝐼[705,750], +50°). Cultivars and years are represented in a similar fashion as in Fig. 3. The coefficient 

of determination (R²) and RMSEs are provided for each variable (relative RMSEs are indicated in parentheses). 

 

In Fig. 4, we show the best prediction performances obtained for Cab, LAI, CCC, %Nleaf, Cn and CNC, 

based on the results presented in Table 5 and Table 6. The different cultivars and years are clearly 

represented in order to notice any varietal and year effects, e.g., due to differences in canopy structure 

or nitrogen/chlorophyll relationship. The correlations observed in Table 5 and Table 6 between VIs and 

Cab, LAI, CCC and CNC result in accurate predictions for these four parameters, obtaining RMSEs of 

5.24 µg/cm² (17 % of Cab range), 0.23 m²/m² (8 %), 0.12 g/m² (8 %) and 0.86 g/m² (10 %), respectively. 
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The estimations of %Nleaf and Cn are less accurate, achieving RMSEs of 0.52 % (22 %) and 35 µg/cm² 

(19 %), respectively.   

3.3. Estimation performances obtained based on PROSAIL inversion 
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Figure 5: Estimation performances obtained based on unconstrained PROSAIL inversion for Cab (left-hand 

column), LAI (middle column) and CCC (right-hand column). Nadir observations are used for Figures (a-c), off-

nadir observations are used for Figures (d-f) (-50°) and (g-i) (+50°), and the three observations are used 

together for Figures (j-l). Cultivars and years are represented in a similar fashion as in Fig.3. The coefficient of 

determination (R²) and RMSEs are provided for each variable/angle (relative RMSEs are indicated in 

parentheses). 

 

In Fig. 5, we show the estimation results obtained with unconstrained PROSAIL inversion based on 

single-view (0°, -50° and +50° independently) and multiple-view (0°, -50° and +50° together) 

measurements. For nadir viewing (Fig. 5.a-c), Cab is poorly retrieved with a RMSE of 10.15 µg/cm² (32 % 

of Cab range). The LAI retrieval is more accurate (𝑅𝑀𝑆𝐸 = 0.39 m²/m², 13 %), thus leading to a more 

accurate CCC retrieval as well (𝑅𝑀𝑆𝐸 = 0.22 g/m², 14 %). Somewhat different observations are made 

in the two off-nadir configurations. At -50° (Fig. 5.d-f), Cab is better estimated as compared with nadir 

(𝑅𝑀𝑆𝐸 = 8.13 µg/cm², 26 %), while the LAI retrieval accuracy decreases (𝑅𝑀𝑆𝐸 = 0.60 m²/m², 20 %). 

The overall Cab underestimation (Fig. 5.d) somewhat compensates for LAI overestimation (Fig. 5.e), 

which leads to a high CCC retrieval accuracy (𝑅𝑀𝑆𝐸 = 0.16 g/m², 10 %). Cab and LAI are similarly 

retrieved at +50° as compared with -50° (Fig. 5.g-h), achieving RMSEs of 8.18 µg/cm² (26 %) and 

0.63 m²/m² (21 %), respectively. However, fewer compensations between Cab and LAI occur as 

compared with the backward scattering direction, thus leading to lower CCC estimation performances, 

i.e., 𝑅𝑀𝑆𝐸 = 0.25 g/m² (16 %) (Fig. 5.i). Using the three measurements simultaneously does not 

improve the above estimation results, respectively obtaining RMSEs of 8.93 µg/cm² (29 %), 0.72 m²/m² 

(24 %) and 0.24 g/m² (15 %) for Cab, LAI and CCC. 
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Figure 6: Estimation performances obtained based on constrained PROSAIL inversion for Cab (left-hand 

column), LAI (middle column) and CCC (right-hand column). Nadir observations are used for Figures (a-c), off-

nadir observations are used for Figures (d-f) (-50°) and (g-i) (+50°), and the three observations are used 

together for Figures (j-l). Cultivars and years are represented in a similar fashion as in Fig.3. The coefficient of 

Author-produced version of the article published in Field Crops Research, 2017, N°210, p.33-46.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.fcr.2017.05.005



determination (R²) and RMSEs are provided for each variable/angle (relative RMSEs are indicated in 

parentheses). 

 

Using prior knowledge on Cab and LAI distributions to constrain the LUT construction generally 

improves the estimation results (Fig. 6). For Cab and LAI, the RMSE decreases in every case, i.e., when 

using either single-view or multiple-view measurements. The best Cab retrieval performances are still 

achieved in the backward scattering direction (Fig. 6.d) with a RMSE of 7.17 µg/cm² (23 %), while LAI 

is still better estimated from nadir viewing (Fig. 6.b), i.e., 𝑅𝑀𝑆𝐸 = 0.30 m²/m², (10 %). The benefit of 

using prior knowledge on Cab and LAI is less evident for CCC. Indeed, constrained PROSAIL inversion 

only improves the CCC retrieval accuracy at 0° and +50°, the best performances obtained at -50° 

(𝑅𝑀𝑆𝐸 = 0.18 g/m², 12 %, Fig. 6.f) being slightly inferior to those obtained with unconstrained 

PROSAIL inversion (Fig. 5.f).  

3.4. Preliminary comparison of approaches for phenotyping applications 

In Fig. 7, we plot the RMSE of Cab, LAI and CCC estimations per cultivar and per year as obtained using 

VIs and PROSAIL in the best configurations (see Fig. 4, Fig. 5 and Fig. 6). As observed in Fig. 7.a, VIs 

show less varying Cab estimation performances across the fourteen cultivars than PROSAIL inversion 

(𝜎 = 1.34 µg/cm² for VIs and 𝜎 = 2.30 µg/cm² for model inversion). Both remote-sensing methods, 

however, lead to similarly varying performances for LAI and CCC, with 𝜎 being close to 0.065 m²/m² 

and 0.035 g/m², respectively (Fig. 7.b-c).  

As shown in Fig. 7.d-f, PROSAIL inversion shows remarkably stable performances across years for LAI 

(𝜎 ≤ 0.01 m²/m²), CCC (𝜎 = 0.02 g/m²) and, to a lesser extent, Cab (𝜎 = 1.65 µg/cm²). VIs also show 

stable performances for LAI (𝜎 = 0.01 m²/m²). However, the VI performances presented in Fig. 7.d 

and Fig. 7.f show that applying a statistical model calibrated either from 2015 data to 2016 data or 

from 2016 data to 2015 data results in more variable Cab (𝜎 = 3.03 µg/cm²) and CCC (𝜎 = 0.06 g/m²) 

estimation accuracies as compared to PROSAIL inversion.  
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While, in Sections 3.2 and 3.3, VIs appear to provide more accurate Cab, LAI and CCC retrievals than 

PROSAIL inversion, Fig. 7.d-f show that model inversion may, however, get closer to (e.g., for LAI) or 

even outperform (e.g., for Cab) VIs when VI performances are estimated using two independent 

calibration and test data sets (instead of leave-one-out cross-validation). In the case of Cab, the VI RMSE 

obtained with the 2016 model is even nearly twice as high as the RMSE obtained with PROSAIL 

inversion or the two-year model. 

 

Figure 7: Cab, LAI and CCC estimation performances obtained for each cultivar (a-c) and year (d-f) using VIs and 

PROSAIL inversion in the best configurations. For each parameter and method, σ is the RMSE weighted 

standard deviation for which the numbers of samples per cultivar or per year were used as weights. Dashed 

lines represent the best overall RMSE as provided in previous sections. 

 

4. Discussion 

Especially due to the variable proportion of soil that is seen by the sensor, nadir observations are found 

to be mainly sensitive to structural sugar beet plant traits while off-nadir observations are found to be 

more sensitive to leaf biochemistry. This is in agreement with observations made for wheat (Comar et 

al., 2012) and cotton crops (Dorigo 2012). At nadir, the potentials of 𝑀𝐶𝐴𝑅𝐼[705,750] and 

𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] as accurate and linear predictors of LAI agree well with the results of Wu et 

al. (2008) obtained with PROSAIL-simulated canopies. These two VIs also strongly correlate with LAI 

Author-produced version of the article published in Field Crops Research, 2017, N°210, p.33-46.
The original publication is available at http://www.sciencedirect.com 

Doi: 10.1016/j.fcr.2017.05.005



and CCC in the forward direction (+50°), where shadows are increased as compared to homogeneous 

canopies because of high vegetation clumping. These observations likely demonstrate the robustness 

of 𝑀𝐶𝐴𝑅𝐼[705,750] and 𝑀𝐶𝐴𝑅𝐼/𝑂𝑆𝐴𝑉𝐼[705,750] against canopy structure heterogeneity and 

shaded areas. In the backward direction (-50°), where the shadows are minimized and the soil 

influence is low, sugar beet canopies tend towards homogeneous and dense canopies. The better 

correlations obtained between chlorophyll VIs and Cab as compared with other viewing configurations 

are likely to be due to the high proportion of fully illuminated vegetated areas. Even if 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 was 

initially developed to estimate Cab from millimeter- to centimeter-scale imagery from which vegetation 

pixels could be extracted, these results show that it can also provide strong correlations at coarser 

spatial resolutions if the soil influence remains reasonable (e.g., in the case of dark loamy soil and/or 

off-nadir viewing). Unlike the other VIs tested, 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 appears to be poorly correlated with LAI and 

therefore CCC. As emphasized by Jay et al. (2017), this insensitivity to LAI variations is of tremendous 

importance as it tends to indicate that any correlation observed between 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 and Cab could not 

be caused by a correlation between LAI and Cab. Moreover, the generally high correlations obtained 

both for Cab and for LAI at -50° makes this sun-sensor geometry the most appropriate to remotely sense 

the canopy chlorophyll content. The potentials of 𝐶𝐼𝑔𝑟𝑒𝑒𝑛, 𝐶𝐼𝑟𝑒𝑑−𝑒𝑑𝑔𝑒 and 𝑀𝑇𝐶𝐼 are in agreement 

with previous studies conducted with nadir observations and different canopy structures (Clevers and 

Gitelson 2013; Clevers and Kooistra 2012; Schlemmer et al. 2013). Ultimately, as mentioned in Section 

2.4.1, the lower sensitivity of 𝑁𝐷𝑉𝐼 to Cab and LAI emphasizes the necessity of using spectral bands 

that are appropriate for the study case, especially in regard to canopy density and leaf biochemistry. 

It is worth noting that these wavebands could also be optimized for a given situation following the 

procedure implemented by Clevers and Gitelson (2013), Gitelson et al. (2003, 2006), and Schlemmer 

et al. (2013). 
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Unlike Cab and LAI (and therefore CCC) whose variations are directly captured by the selected VIs, the 

nitrogen content poorly affects the measured canopy reflectance because nitrogen absorption 

features (that are located in the SWIR domain) tend to be negligible as compared with those of water 

(Curran 1989; Jacquemoud et al. 1996), the water being present both in the atmosphere and in the 

leaves. Importantly, this is even more critical for sugar beet since leaves contain a lot of water as 

compared with other species (see Cw measurements in Table 2). For sugar beet crops, nitrogen 

quantities can therefore mainly be retrieved indirectly through their correlation with chlorophyll 

quantities and LAI. The results presented in Table 6 can thus be discussed using the relationships 

presented in Fig. 3 and Table 5. For leaf-level nitrogen quantities, the poor correlation between %Nleaf 

and Cab (Fig. 3.a) together with the difficulty in accurately estimating Cab from canopy reflectance 

(Table 5) result in poor correlations between VIs and %Nleaf. These results are similar to those obtained 

by Li et al. (2016), who also found that, for litchi orchards, %Nleaf could not be accurately predicted all 

along the growing season. However, the good correlations between VIs and %Nleaf obtained by He, 

Song, et al. (2016) and He, Zhang, et al. (2016) in the case of winter wheat canopies show that 

estimation of leaf nitrogen concentration from remote sensing is a complex problem whose solution 

(if any) cannot be generalized to every plant species. The low correlations observed between VIs and 

%Nleaf are actually partly due to the use of a mass-based unit to express the leaf nitrogen content, since 

the use of an area-based unit results in increased correlations both between VIs and Cn, and between 

Cn and Cab. Variations in leaf thickness are indeed taken into account in mass-based quantities while 

they are not in area-based quantities: such variations are likely to introduce unexpected variations in 

canopy reflectance that can hardly be detected from remote sensing. These correlations are, however, 

still low to ensure an accurate retrieval of nitrogen content in sugar beet crops. The leaf-level 

relationship between chlorophyll and nitrogen contents actually depends on development stages (as 

mentioned by Baret et al. (2007) and Schlemmer et al. (2013) for wheat and maize crops, resp.), soil 

and weather conditions or even years as observed with cross and circle symbols in Fig. 3.a-b. 

Alternatively, scaling up Cn and Cab to the canopy level makes it possible to take into account variations 
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in nitrogen dilution within the foliage (Baret et al. 2007; Fitzgerald et al. 2010), and to reach a 

significantly stronger correlation between CNC and CCC (Fig. 3.c). Consequently, the strong linear 

relationships between VIs and CCC (Table 5) leads to the strong correlations between VIs and CNC 

presented in Table 6. Finally, this study suggests that the accurate CNC retrieval is mainly due to the VI 

abilities in retrieving LAI and to the strong correlation between LAI and biomass (Fig. 3.d). This 

hypothesis is supported by the results obtained using 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 in the -50° configuration and 

𝑀𝐶𝐴𝑅𝐼[705,750] in the +50° configuration. If both VIs obtain the same correlation with CCC (𝑟 =

0.95), 𝐶𝐼𝑔𝑟𝑒𝑒𝑛 correlates better with Cab (𝑟 = 0.71 against 𝑟 = 0.58 for 𝑀𝐶𝐴𝑅𝐼[705,750]), while 

𝑀𝐶𝐴𝑅𝐼[705,750] correlates better with LAI (𝑟 = 0.93 against 𝑟 = 0.86 for 𝐶𝐼𝑔𝑟𝑒𝑒𝑛). The better 

correlation with CNC obtained using 𝑀𝐶𝐴𝑅𝐼[705,750] (𝑟 = 0.93 against 𝑟 = 0.88 for 𝐶𝐼𝑔𝑟𝑒𝑒𝑛) 

therefore tends to demonstrate that the accuracy of CNC retrieval primarily depends on that of LAI 

retrieval and LAI/biomass correlation. 

 

Overall, the results obtained using PROSAIL inversion confirm those obtained with VIs, i.e., the 

estimation accuracy depends on viewing configuration. Similarly to VIs, Cab and CCC are retrieved more 

accurately in the backward scattering direction, while LAI is better estimated from nadir viewing. Fig. 4,  

Fig. 5 and Fig. 6 tend to indicate that PROSAIL inversion provides slightly poorer overall Cab, LAI and 

CCC estimation performances than VIs, the RMSE increasing by about 30 % for LAI and CCC, and by 

45 % for Cab. This is partly due to the fact that the SAIL model has been designed for spatially 

homogeneous media and thus does not perfectly describe the reflectance anisotropy of row-

structured sugar beet  canopies  (Zhao et al., 2010). Such anisotropy mismodeling may explain (1) why 

the use of multiple-view measurements does not necessarily improve the retrievals of Cab, LAI and CCC, 

and (2) the compensations occurring between Cab and LAI (i.e., Cab underestimation compensates for 

LAI overestimation). These compensations are reduced when constraining the LUTs based on prior 

knowledge on Cab and LAI distributions, thus leading to better estimation performances for these two 
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parameters (Fig. 6). However, constraining the LUT in such way has no significant effect on CCC 

retrieval, since the latter quantity is here defined as the product LAI x Cab (i.e., Cab underestimation and 

LAI overestimation cancel each other out in the case of CCC estimation). 

A solution to further improve the performances of PROSAIL inversion may be to use canopy spectral 

measurements acquired at a greater distance from sugar beet canopies. The inclusion of several crops 

rows within the sensor field-of-view is expected to smooth the spatial heterogeneity, thus improving 

the model accuracy and the retrieval performances. Alternatively, more complex models could be used 

to represent the anisotropy of sugar beet canopy reflectance (Huemmrich, 2001; Zhao et al., 2010), 

but this increase in complexity makes the inversion more challenging (if not impossible) without 

sufficient prior knowledge on canopy structure (e.g., plant height, row spacing, row width, etc). In a 

phenotyping context where thousands of unknown cultivars have to be addressed, the use of such 

complex models may thus be difficult without ancillary measurements, e.g., provided by stereovision- 

or photogrammetry-based methods (Jay et al., 2015). 

 

The preliminary study presented in Fig. 6 tends to show that VIs provide both accurate and robust Cab, 

LAI and CCC estimation performances when tested across the fourteen sugar beet cultivars introduced 

in Section 2. This means that the differences between considered cultivars (e.g., in plant architecture) 

are not sufficient to significantly affect the VI performances. VIs must, however, be used with great 

care as illustrated, e.g., by the poor Cab estimation results obtained using 2015 and 2016 models 

(Fig. 6.d). Although these results may indicate a possible year effect, closer inspection of 2015 and 

2016 Cab distributions (see crosses and circles in Fig. 4.a) rather shows that these poor performances 

are due to differences in Cab range: Cab indeed ranged between 37.3 and 58.4 µg/cm² in 2015, and 

between 27.1 and 42.6 µg/cm² in 2016. This emphasizes the necessity of including enough samples for 

calibration so that the statistical model can be accurate over the whole range of possible values.  
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On the other hand, the performances obtained with PROSAIL inversion do not depend on a calibration 

set, and are generally at least as much stable as VI performances across different cultivars and years 

(note, however, that model inversion usually requires additional knowledge on the distributions of 

targeted parameters to achieve desirable performances). PROSAIL inversion only shows significantly 

more variable performances across different cultivars for Cab, which may be due to the strong 

sensitivity of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 to Cab variations and to the PROSAIL difficulties in effectively decoupling LAI and 

Cab. 

These results thus suggest that, providing that enough samples are used to calibrate the VI statistical 

model,  

- VIs offer slightly more accurate performances than PROSAIL inversion. These, however, need 

to be quantified more rigorously using two independent calibration and test data sets of 

sufficient size, since the leave-one-out cross-validation process used in this paper to estimate 

the RMSE is known to provide slightly over-optimistic performances. 

- Both remote-sensing methods offer similar robustness properties for LAI and CCC phenotyping 

in sugar beet crops. In the case of Cab, VIs tend to offer less variable estimation performances 

than PROSAIL inversion across the fourteen tested cultivars, but more samples are also 

required to draw definitive conclusions.  

5. Conclusions and perspectives 

This study investigates the potential of ground-based multi-angular optical remote sensing to retrieve 

structural (LAI) and biochemical (chlorophyll and nitrogen contents) sugar beet plant traits in a 

phenotyping context. A statistically-based method based on vegetation indices and a physically-based 

method based on PROSAIL inversion are tested and compared. For both approaches, we emphasize 

the importance of choosing an appropriate viewing configuration that maximizes the reflectance 

sensitivity to the targeted parameter. Nadir and oblique measurements are indeed more sensitive to 

canopy structure and leaf biochemistry, respectively, especially due to the variable proportions of soil 
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and vegetation that are seen by the sensor. Both VIs and PROSAIL inversion are promising to 

phenotype canopy-level quantities, i.e., LAI and CCC, in sugar beet crops (𝑅𝑀𝑆𝐸 ≤ 10 %). In addition, 

VIs enable an accurate retrieval of CNC (𝑅𝑀𝑆𝐸 = 10 %). Estimating leaf-level quantities, i.e., Cab, 

%Nleaf and Cn, is more difficult, even if the use of 𝑚𝑁𝐷𝑏𝑙𝑢𝑒 based on measurements acquired in the 

backward scattering direction shows interesting results, the RMSE ranging from 17 % for Cab to 22 % 

for %Nleaf. Although VI-based methods generally perform slightly better than PROSAIL inversion over 

the fourteen tested cultivars, an important question is whether the use of such statistically-based 

methods is fully relevant for phenotyping applications. The first results indicate that VIs may offer both 

accurate and robust estimation performances, providing that enough samples covering the whole 

range of possible values are included in the calibration set. However, more data, including cultivars 

with a potentially strongly different plant architecture or chlorophyll/nitrogen ratio, are still necessary 

to draw definitive conclusions. Indeed, given the close performances obtained with both remote-

sensing methods, PROSAIL inversion may perform better than VIs if the level of heterogeneity within 

all the cultivars to be phenotyped (i.e., in practice, thousands of cultivars) is very high. 

Our future works will therefore be dedicated to testing these methods over a larger number of cultivars 

(or even other similar plant species) in order to further assess their accuracy and robustness. The 

potential of UAV-embedded multispectral cameras will also be investigated in the perspective of high-

throughput phenotyping. As mentioned earlier, the observation of sugar beet canopies at a greater 

distance is likely to improve the PROSAIL inversion performances, which means that both methods 

should also be compared for such coarser spatial resolutions. Interestingly, digital cameras could also 

be embedded on UAVs so as to derive preliminary estimates of crop structure attributes (e.g., height, 

row spacing, row volume, etc) using stereovision- or photogrammetry-based methods. These 

estimates could then be included as known values during PROSAIL inversion in order to reduce the 

problem ill-posedness and increase the estimation accuracy. Note that PROSAIL inversion could also 

potentially be improved by using another inversion method (e.g., artificial neural networks), as this 

may have a substantial effect on the retrieval performances (Vohland et al., 2010). 
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Ultimately, further work is required to optimize the sun-sensor geometry with respect to the row 

orientation, especially in terms of azimuth angle. Instead of positioning the sensor as a function of sun 

position, it would be interesting to position it as a function of row orientation. In particular, an 

improved sensitivity to leaf biochemistry could be expected when positioning the sensor 

perpendicularly to the row, this direction maximizing the observed amount of leaves for row-

structured canopies (Baret et al. 2010; Comar et al. 2012). 
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