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Abstract 

Drought indices are statistical tools used for monitoring the departure from normal 

conditions of water availability. Recently, the multivariate nature of droughts has been 

addressed through composite indices, capable of including different factors contributing to the 

occurrence of a drought. However, some issues (like the auto-correlation or the proper 

definition of the multivariate index) are still open and need to be addressed to make these 

indices applicable in the current practice. Here, a composite agro-meteorological drought index 

(AMDI-SA) has been introduced, accounting for meteorological and agricultural droughts, 
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considering specifically seasonality and auto-correlation. AMDI-SA combines, through the 

copula concept and the Kendall function, two drought indices (namely Multivariate 

Standardized Precipitation Index (MSPI) and the Multivariate Standardized Soil moisture 

Index (MSSI)) in a statistically consistent (normal-distributed) drought indicator. 

Nonparametric distributions have been used for the variables of interest and the calculation of 

MSPI and MSSI, while parametric and nonparametric (empirical) copulas to build AMDI-SA. 

A pre-whitening procedure has been applied to MSPI and MSSI to remove the autocorrelation. 

An application to Urmia lake basin in Iran has been presented, drought indices compared, and 

investigated their spatial variability. Results showed that MSPI and MSSI are able to justify 

72% and 89% of the variability throughout the year. AMDI-SA reflects the combined effect of 

soil moisture and precipitation, and has a behavior in between whitened MSPI and MSSI. In 

addition, having no memory and being composite index, the AMDI-SA is able to clearly detect 

the temporal variability of recorded droughts to a greater extent than MSPI and MSSI indices. 

 

1. Introduction 

Droughts are extreme hydrological events and representative of natural hazards, which 

impose serious challenges to ecosystems and human societies. Droughts may affect a wide 

variety of sectors such as agriculture or hydroelectric power generation, with diverse 

geographical and temporal extent. Droughts have multiple aspects and may be classified into 

four main types: meteorological, agricultural, hydrological and socioeconomic droughts 

(Dracup et al., 1980; Heim, 2002). Meteorological droughts are related to the deficiency of 

precipitation over an extended period of time, from which other types of drought originate. 

Agricultural droughts relate to insufficient water to meet the need of crop production, or plant 

growth (Heim, 2002). 
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Drought indices are useful tools to detect, monitor, and evaluate drought events (Zargar et 

al., 2011). Several indices have been developed for drought monitoring (Mishra and Singh, 

2010). Among these, Standardized Precipitation Index (SPI) is one of the most commonly used, 

applied to local, regional, and global scale studies. SPI is widely used, primarily for its 

simplicity, standardized nature, and flexibility of use across different time scales (e.g., 1-, 6-, 

12-month). On the other hand, SPI has potential limitations. The assumption of one suitable 

probability distribution function for precipitation data could be inconsistent under different 

window sizes and could not account for seasonal variability. Moreover, the selection of one 

single time scale could be too simplistic or misleading in practical applications to water 

resource managers, decision-makers, and users. Using a novel approach, Bazrafshan et al. 

(2014) proposed the Multivariate Standardized Precipitation Index (MSPI) using the 1st 

principal component of SPI aggregates at different time windows. They showed the superiority 

of MSPI, when the appropriate time window for a drought study had not been identified in 

advance. 

However, drought analyses based on a single variable may not be sufficient because 

drought phenomena have complex dynamics involving multiple variables (e.g., precipitation, 

runoff, and soil moisture) (Hao and AghaKouchak, 2013). Moreover, a single drought index 

may not be sufficient to describe all aspects of drought onset, persistence and termination (see 

e.g., Dracup, 1980; Kao and Govindaraju, 2010; Hao and Singh, 2015; Waseem et al., 2015; 

Hao et al., 2016). For example, indices which are used to monitor meteorological droughts 

usually capture the drought onset earlier (Behrangi et al., 2015), while soil moisture index 

describes the drought persistence more reliably (Entekhabi et al., 1996; Heim, 2002). The 

characterization of droughts with a composite perspective is to go over the inadequacy of 

drought characterization using a single variable. This can be done by developing drought 

indices combining multiple hydrological variables, or drought indices (Hao and Singh, 2015). 
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Recently, several composite drought indices have been developed combining different drought 

indicators to improve drought characterizations from multiple aspects (e.g. Waseem et al., 

2015; Rajsekhar et al., 2014; Azmi et al., 2015). 

Hao and AghaKouchak (2013, 2014), using theoretical and empirical copula functions, 

presented parametric and non-parametric versions of the Multivariate Standardized Drought 

Index (MSDI), respectively. MSDI is an agro-meteorological drought index based on the 

bivariate distribution of SPI and SSI (standardized soil moisture index). To obtain MSDI, the 

joint cumulative probability is transformed with the inverse CDF of a standard normal 

distribution. However, it is important to note that since the joint cumulative probability is not 

uniformly distributed on [0,1], the transformation will not result in normally-distributed index. 

In addition, copula function, to be applied, needs input data to be time-independent, which does 

not hold for SPI and SSI in general. 

The objective of the present paper is to develop a composite agro-meteorological drought 

index, properly defined, copula-based, addressing seasonality and auto-correlation issues. 

Furthermore, the proposed framework could be used to assimilate two or more standardized 

drought indices, into a single drought index that may be useful for comprehensive decision-

making. 

 

2. Methods 

In section 2.1, SPI and SSI indices have been briefly recalled. To avoid lack of information 

in drought monitoring, and include all within-year variations, SPI and SSI are computed at 

twelve time windows, from 1 to 12 months. In section 2.2,  the modified SPI (SPI𝑚) and the 

modified SSI (SSI𝑚), subgrouped by the ending month m, have been considered to account the 

seasonality of the variables. In section 2.3, SPI𝑤
𝑚  at 12 time windows (w=1,...,12 months) 

combined, through the principal component analysis, in the multivariate standardized 
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precipitation index, MSPI. Similarly, it has been done for SSI𝑤
𝑚 in the multivariate standardized 

soil moisture index, MSSI. These indices are standardized (subtracting the mean and dividing 

by the standard deviation) to remove the seasonality. In section 2.4, the autocorrelation within 

MSPI and MSSI time series has been removed through a whitening procedure, building 

whitened series indicated by MSPIwh and MSSIwh, respectively. In section 2.5, a new agro-

meteorological drought index, denominated AMDI-SA, has been introduced combining 

together MSPIwh and MSSIwh using the concept of copula and the Kendall function. In section 

2.6, an interpretation of the proposed index has been presented. 

 

2.1 SPI and SSI indices 

The most common drought index is the Standardized Precipitation Index (SPI), introduced 

by McKee et al. (1993). SPI is calculated with reference to different time scales, and can assess 

drought severity. As it is a standardized index, the frequency of extreme drought events at 

different locations and time scales are consistent and comparable. Let Xw and FXw(x) denote 

the accumulated precipitation at time scale w and its corresponding probability distribution 

function, respectively. FXw(x) is transformed into the standard normal precipitation index (SPI) 

at time scale w as: 

SPIw=Φ-1(FXw(x)), where Φ-1 is the inverse of the standard normal distribution. 

Sometimes it is hard to discriminate among canonical forms of FXw(x), or they may not 

provide a good fit to the data (Soláková et al. 2014; Lall et al., 2016). On the other hand, using 

different distribution functions could lead to different tail behavior and thus inconsistencies in 

characteristics of extremes across space (Farahmand and AghaKouchak, 2015). Therefore, a 

nonparametric approach is used to obtain the probability values of Xw. The Gringorten plotting 

position is used to calculate the cumulated frequency of non-zero values, Fi=(i−0.44)/(n+0.12), 

where n denotes the sample size of non-zero values, and i refers to the rank of the non-zero 
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observation x(i), ordered from the smallest to the largest. Since there are zero values of 

precipitation data, the frequency of zeros has to be added to the plotting position of non-zero 

values to estimate FXw. The method of handling zeros proposed by Stagge et al. (2015) is used, 

which is superior to using the relative frequency for the probability of zero values. Thus, FXw(x) 

is calculated as: 

FX𝑤
(𝑥) = {

𝑛0

𝑛tot+1
+ (1 −

𝑛0

𝑛tot+1
)

(𝑖 −0.44)

(𝑛+0.12)
,                     for  𝑥 = 𝑥(𝑖)

𝑛0+1

2(𝑛tot+1)
,                                                         for  𝑥 = 0

    (1) 

where n0 is the number of zero values, and ntot=n+n0. 

The standardized soil moisture index (SSI) (e.g., AghaKouchak, 2014) can be defined in 

a similar way to SPI. Here, SSI has been derived from soil moisture data averaged up to 100 

cm depth. 

However, SSI, like SPI, has two weaknesses: 

1) The index does not take into account the seasonal variability within the annual regime. In 

other words, it fits all data (whether it has been observed in wet or dry season) to the same 

probability distribution. 

2) Increasing the temporal window (w), it increases the temporal overlap between two 

successive values of the index, introducing more auto-correlation to the time series of the index, 

and bias in the probability distribution fitting.  

2.2 Modified SPI and SSI indices 

Kao and Govindaraju (2010) proposed the following modification in the calculation of SPI to 

account for the seasonal variability of data. The aggregated precipitation Xw, at a given time 

window w, is grouped according to the ending month m (m=1 means January, ..., m=12 

December). Thus, the series {Xw} is subdivided into 12 smaller subseries corresponding to 12 

months of the year, {Xw
m}. Xw

m(y) is the aggregated precipitation over the time window w, 

having m as the ending month and relative to the year y. Thus, X1
10(y) is the value of the year 
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y, with a window size 1 having October as ending month, while X5
10(y) is the value of the year 

y, with a window size 5 from May to October. In doing so, observations in each set {Xw
m} will 

not have overlapping information, when w≤12, and reduce the auto-correlation among the 

samples {Xw
m}. In addition, observations in each set {Xw

m} are subject to the same seasonal 

effect, and hence, the seasonal variation is accounted for, properly (Kao and Govindaraju, 

2010). Then for each of the 12 variables Xw
m, the empirical frequency gives an estimation of 

the probability distribution, FXw
m(x), and the modified index SPI𝑤

𝑚 = Φ−1 (FX𝑤
𝑚(𝑥))  is 

obtained. Similarly, it is possible to calculate the modified index SSI𝑤
𝑚. 

2.3 MSPI and MSSI indices 

MSPI, recently developed by Bazrafshan et al. (2014), applies the multivariate technique 

of Principal Component Analysis (PCA) to a set of SPIs referred to different values of w. This 

technique is applied to SPI𝑤
𝑚 and SSI𝑤

𝑚. 

Suppose that observations are stored in O, a vector of K variables with covariance matrix 

Cv. The Principal Component Analysis (PCA) is a linear combination of K variables: PC𝑖 =

𝐸𝑖
T𝑂 = ∑ 𝑒𝑘𝑖

𝐾
𝑘=1 𝑂𝑘 with k=1,...,K, where PCi is the ith principal component, 𝐸𝑖

𝑇  is the ith 

eigenvector of Cv sorted in descending order of corresponding eigen values and eki is the kth 

element of the ith eigenvector of Cv. These components are: firstly, extracted in such a way 

that the first one (PC1) justifies the greatest percentage of variance of K original variables 

mutually uncorrelated; secondly, this linear combination is mutually uncorrelated the 

components can be at most as many as the original variables; and thirdly, the components are 

extracted in such a way that the first one (PC1) justifies the greatest percentage of variance of 

K original variables (Wilks, 2011). The PCA can be useful if the correlation among the original 

variables is high. 

Here, the PCA technique was applied to each of two sets of variables SPI𝑤
𝑚 and SSI𝑤

𝑚 with 

w=1,...,12 months. However, it can be applied to any arbitrary set and may include other time 
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scales depending on the research needs. Thus, the first component of SPI𝑤
𝑚 is indicated as P1

𝑚 

and is equal to 

P1
𝑚 = ∑ 𝑒𝑝𝑤1SPI𝑤

𝑚12
𝑤=1          (2) 

where 𝑒𝑝𝑤1 is the wth element of the first eigenvector of covariance matrix of SPIs. Similarly, 

the first component of SSI𝑤
𝑚 is indicated as S1

𝑚 and equal to 

S1
𝑚 = ∑ 𝑒𝑠𝑤1SSI𝑤

𝑚12
𝑤=1            (3) 

where 𝑒𝑠𝑤1 is the wth element of the first eigenvector of covariance matrix of SSIs. P1
𝑚 and 

S1
𝑚are characterized by seasonality and are not comparable among different months or places. 

Therefore, normalized variables P̂1  and Ŝ1  are introduced, respectively for P1
𝑚and S1

𝑚, 

subtracting the mean and dividing by the standard deviation: 

MSPI =
P1

𝑚−𝜇
𝑃1

𝑚

𝜎𝑃1
𝑚

≈
P1

𝑚

𝜎𝑃1
𝑚

         (4) 

MSSI =
S1

𝑚−𝜇
𝑆1

𝑚

𝜎𝑆1
𝑚

≈
S1

𝑚

𝜎𝑆1
𝑚

         (5) 

where 𝜇𝑃1
𝑚 and 𝜎𝑃1

𝑚 are respectively the mean and standard deviation of P1
𝑚, while 𝜇𝑆1

𝑚  and 

𝜎𝑆1
𝑚  of S1

𝑚. 𝜇𝑃1
𝑚 and 𝜇𝑆1

𝑚  are close to zero, and so can be ignored in the numerator of Eq.s (4-

5) (Keyantash and Dracup, 2004). 

MSPI and MSSI are normally distributed with zero mean and unit variance. These indices 

summarize several information avoiding problems connected to the selection of the appropriate 

time scales of SPI and SSI. Similar to SPI or SSI, negative values of MSPI or MSSI indicate 

drought conditions, while positive values to wet conditions. Normal conditions are associated 

to values of MSPI or MSSI close to zero, see Table 1. 

2.4 Whitening MSPI and MSSI 

Since MSPI or MSSI are auto-correlated and input variables of copula function must be 

free of auto-correlation (statistically “white”), the temporal dependence has been filtered out. 

A classical whitening procedure (Box and Jenkins, 1970) has been applied to MSPI and MSSI, 



 

9 
 

assuming that these can be described by autoregressive moving-average (ARMA) models. 

Whitened residuals of MSPI and MSSI are indicated as MSPIwh and MSSIwh. Details about 

ARMA models can be found in Box and Jenkins (1970) and Hipel and McLeod (1996). The 

Ljung–Box test has been used to assess the absence of auto-correlation in MSPIwh and MSSIwh 

time series, at a significance level of 0.05 (Ljung and Box, 1978; Hipel and McLeod, 1996). 

(Wang et al., 2012). 

2.5 Composite Drought Index AMDI-SA 

To have a comprehensive description of droughts, a drought index has been considered 

combining whitened residuals MSPIwh and MSSIwh together within the copula framework. With 

reference to the bivariate case, the copula C(u,v) is a cumulative distribution function of 

uniform marginals in the unitary interval, u,v[0,1] (Joe, 1997; Salvadori et al., 2007; Nelsen, 

2013). Thanks to the Sklar’s theorem (Sklar, 1959), the joint cumulative distribution function 

of MSPI𝑤ℎ and MSSI𝑤ℎ, FMSPI𝑤ℎ,MSSI𝑤ℎ, can be written in terms of copula as: 

FMSSI𝑤ℎ,MSPI𝑤ℎ(𝑝,𝑠) = C (FMSPI𝑤ℎ(𝑝),FMSSI𝑤ℎ(𝑠))      (6) 

where FMSPI𝑤ℎ and FMSSI𝑤ℎ are the marginals and C is the copula. 

The Kendall distribution function (KC(t)), also called Kendall’s measure, is the probability 

measure of the set {(FMSPI𝑤ℎ, FMSSI𝑤ℎ)∈[0,1]2: C(FMSPI𝑤ℎ, FMSSI𝑤ℎ)⩽t}, with t [0,1]. It is 

defined as: 

KC(t)=Pr[C(FMSPI𝑤ℎ,FMSSI𝑤ℎ)⩽t]         (7) 

where KC(t) is a univariate probability distribution. For some copula families, like 

Archimedean ones, KC(t) has an analytical form; and for others, like elliptical copulas, it has 

not a closed-form, and thus, it is calculated numerically. For more details on the Kendall 

distribution function, see Nelsen et al. (2003); Salvadori et al. (2007); Salvadori and De 

Michele (2010). Every copula C(𝑢,𝑣) satisfies the relation W C M on [0,1]2, with W 

(counter-monotonicity copula) and M (co-monotonicity copula), also referred as the upper and 
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lower Frechet-Hoeffding bounds. In particular, the co-monotonicity copula describes the case 

of perfect positive dependence, and is given by M(u,v)=min{u,v}. The relation W CM is 

written in terms of Kendall distribution function as t = KM(t) KC(t)  KW(t) = 1, representing 

the bounds of the Kendall function (Nelsen et al., 2003). 

In the next, five copula families are considered: Gaussian, Student’s t, Frank, Gumbel and 

Clayton. For the last three families, the Kendall distribution function is explicitly given. For 

others, empirical Kendall function has been used. 

The Maximum Likelihood method is used for the estimation of the copula parameter, and 

the Akaike Information Criterion (AIC) used to rank the copulas and select the best one, 

provided that it well describes the empirical copula. To check the adequacy of parametric 

copula with the empirical one, the bivariate Kolmogorov-Smirnov goodness-of-fit test has been 

used. The empirical process ℂ𝑛 = √𝑛(C𝑛 − C𝜃𝑛
)  has been considered, where C n is the 

empirical copula with sample size n, and C𝜃n
is the parametric copula estimated from a sample 

of size n. The statistic of the Kolmogorov-Smirnov test (T𝑛
(C)

), defined as supremum of ℂ𝑛, has 

been used as measure of adequacy. If T𝑛
(C)

is smaller than the critical value associated to 5% 

significance level, the best-fitted parametric copula is used (Genest et al., 2009). 

AMDI-SA is defined as the inverse normal transformation of KC(t): 

AMDI-SA = Φ-1(KC(t))                                (8) 

The Kendall distribution function, different to the copula C, is a uniform variable in [0,1], 

thus allowing a proper definition of the drought index, i.e., a normal distributed variable. 

AMDI-SA is a multivariate composite drought index, correctly defined, which accounts 

seasonality and auto-correlation. It can be compared across regions with markedly different 

climates. Like any other standard indices, e.g. SPI, AMDI-SA can explain drought 

characteristics. It should be noted that AMDI-SA, similar to univariate SPI and SSI, provides 

probability of occurrence, and thus, it can be used for risk analysis as well. 



 

11 
 

In this study, 11 classes for drought severity classification are used for AMDI-SA, MSPI, 

MSSI, MSPI𝑤ℎ and MSSI𝑤ℎ. The classification is according to US drought monitor (USDM) 

program’s objective criteria (Svoboda et al., 2002). Drought classes are described in Table 1. 

A drought event occurs any time when the index reaches a severity less than or equal to -0.5. 

The event ends when the index becomes more than this cut-off value. Each drought event has 

a duration defined by its beginning and ending. 

Since the drought index in Eq.(8) is based on KC, in cases where the theoretical KC is 

significantly different from the empirical one, according to the univariate Kolmogorov-

Smirnov test with 5% significance level, Least Squares method has been applied between the 

empirical and theoretical KC function to re-estimate the parameter of the copula, and select the 

one with the smallest value of the maximum difference. The Kolmogorov-Smirnov test has 

been used to check the goodness-of-fit. If this test is not passed, then the empirical KC is used 

in Eq.(8). 

2.6 Interpretation of AMDI-SA 

Without loss of generality, the threshold level for drought severity is assumed to be AMDI-

SA=-0.5 corresponding to KC(t) = 0.3 (the 30th percentile). Fig. 1 illustrates the isoline of 

Kc=0.3 and its corresponding drought domain, i.e., all the points located under this isoline, in 

FMSPI𝑤ℎ−FMSSI𝑤ℎ plane. Also included, are the empirical copula isoline C(u,v) = 0.3 and the 

L-shaped isoline of the co-monotonicity copula M(u,v) = min{u,v} = 0.3. The co-monotonicity 

copula is considered, since it represents the riskiest dependence structure. Namely, it has a 

conservative approach which identifies critical condition if at least one of its components is in 

a critical situation. 

In Fig.1, the L-shaped isoline of the co-monotonicity copula is placed under the copula 

isoline and above the KC isoline. Regardless of the choice of copula, this is true due to W  C 

M and t=KM(t)  KC(t). 
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What does it mean in terms of drought index? If the copula isoline is used to identify the 

drought domain (as done in Hao and AghaKouchak, 2013 with MSDI), then are considered 

droughts also conditions where both the two variables (MSPIwh and MSSIwh) do not indicate 

drought (i.e., points located between the copula isoline and L-shaped isoline of the co-

monotonicity copula). This criterion seems to overestimate the drought conditions. If the co-

monotonicity copula is used to identify the drought domain, then drought condition in one 

variable means drought condition of the (multivariate) index. Again this criterion seems too 

precautionary in identifying the drought conditions. If the KC isoline is used to identify the 

drought domain (as proposed here), the drought condition in one variable (e.g., precipitation 

through MSPIwh) does not imply drought condition of the (multivariate) index. In other words, 

the drought severity detected by the multivariate index is in between the severity of the input 

indices. The difference between the drought domain associated to the co-monotonicity copula 

isoline and the one with the KC isoline, is represented by the two light-grey areas. Notice that 

there is a region (Z in Fig.1), within which the KC isoline does not indicate the drought even if 

both variables are in drought conditions. This could represent a weakness of choosing the KC 

isoline. However, this area is extremely small and thus can be easily neglected. In conclusion, 

the drought condition identified by the AMDI-SA (KC isoline) seems more prudent in 

identifying drought conditions with respect to the use of copula isolines. 

 

3. Study Area 

Urmia lake basin is an endorheic basin, located between 37°4′ to 38°17′ latitude and 45°13′ 

to 46° longitude in northwestern Iran (Fig. 2). Three provinces share the Lake Urmia basin: 

East Azerbaijan (19000 km2), West Azerbaijan (21500 km2), and Kurdistan (5000 km2) 

(Yekom, 2005). Major use of water is for the agriculture sector, which is mainly supported by 

dryland farming with low efficiency (Hesami and Amini, 2016). The climate of Urmia lake 
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basin is harsh and continental, affected mainly by the mountains surrounding the lake (Ghaheri 

and Baghal-Vayjooee,1999). Considerable seasonal fluctuations in air temperature occur in this 

semi-arid region. The temperature in the region ranges between 0 and 23°C in winter and up 

to 39°C in summer (IRIMO, 2009). The annual average precipitation is about 500 mm falling 

mostly between November and April, while summer months are typically dry.  

Monthly precipitation data for the basin are available at daily 0.25° × 0.25° resolution 

from PERSIANN-CDRdataset (Ashouri et al., 2015). It is retrieved for the period of 1983–

2010. The accuracy of PERSIANN precipitation data for Iran and Urmia lake basin has been 

assessed by Moazami et al., 2013; Bodagh-Jamli, 2015; Ghajarnia et al., 2015; Katiraie-

Boroujerdy et al., 2013. 

Soil moisture data are derived using ERA-Interim-Land surface fluxes and near-surface 

meteorology to force the land surface model HTESSEL for the period 1983–2010 (Balsamo et 

al. 2015). It is considered that most of the vegetation roots are within the first 3 layers of soil 

in HTESSEL model (0-7cm, 7-28cm and 28-100cm). The weighted average of the water 

content over these three layers has been calculated to obtain a single value for soil moisture for 

each 0.25° × 0.25° pixel. To investigate the spatial distribution of droughts, 79 pixels covering 

the basin (not only the lake) are considered and processed. 

4. Results 

It is necessary to assess the stationarity of timeseries before any other analysis (Adeloye 

and Montaseri, 2002). Non-parametric Mann–Kendall procedure (Hamed, 2014) was used to 

test the presence of trends in MSPIwh and MSSIwh time series using a significance level of 0.05. 

The results of the test indicated the absence of trends for all the data points of Urmia lake basin. 

The Ljung–Box test (Wang et al., 2012) has been used to assess the presence of autocorrelation 

within MSPIwh and MSSIwh time series at a significance level of 0.05. The test statistic was 
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placed always in region of acceptance for all data points within Urmia lake basin, indicative of 

no statistically significant autocorrelation. 

In this study, MSPI and MSSI calculation is based on the scores of the first Principal 

Component (PC1) of the 12 modified variables for selected time windows (w=1,2,…,12) 

representing seasonal variations throughout the year. To show the variability justified by the 

first principal component (PC1), the scree plots of the modified SPI/SSI variables have been 

illustrated for the whole basin as an average in Fig. 3.  

To show the statistical dependence between MSPIwh and MSSIwh, the scatter plot of the 

couples, at point A in Fig. 2, is given in Fig. 4. Soil moisture conditions respond to precipitation 

anomalies on a relatively short time lag or even no significant lag. The Kendall’s tau association 

measure between MSPIwh and MSSIwh for the whole basin is in the range of 0.18-0.36. The 

positive association depicted by positive values of Kendall’s tau in the basin may be due to the 

direct impact of precipitation on soil moisture in the basin. 

Input variables of copula function needs to be statistically white. To assess the 

effectiveness of the adopted whitening procedure, values of the auto-correlation coefficient of 

monthly MSPI, MSSI, MSPIwh and MSSIwh time series at point B (in Fig. 2) for lags 1-24 are 

given in Fig. 5. 

AMDI-SA reflects the combined effect of soil moisture and precipitation. Fig. 6 reports 

the time series of MSPI, MSSI (upper panel), and MSPIwh and MSSIwh (lower panel) along 

with AMDI-SA at point B in Fig. 2. For brevity, only values for the period 1998-2002 are 

presented, corresponding to a significant drop of agricultural production. As shown in the 

figure, AMDI-SA mostly lie between MSPIwh and MSSIwh. 

In Fig. 7, spatial patterns of drought using MSPI, MSSI, MSPIwh, MSSIwh and AMDI-SA 

are given for March 1999, during which a drought period occurred over the basin. MSSI and 

MSPI generally show more severe drought condition in northern part of the basin, while 
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AMDI-SA shows more severe drought condition in the southeast of the basin. However, values 

of whitened series of MSSI and MSPI show the same spatial pattern as AMDI-SA. 

Worthwhile to mention that sample points (A, B and C) in Fig. 2 are selected randomly to 

cover the whole basin, close to the lake and in mountainous area. The same result can also be 

achieved by reporting any other data points in the basin. 

5. Discussion 

According to Fig. 3, the justified variabilities in the modified SPI and modified SSI by the 

first principal component (PC1) are 72% and 89%, respectively. Such high values show 

capability of PCA technique to integrate the great part of within-year variability existing in 

modified SPI and modified SSI time series into one series. Since soil moisture shows less 

variability than precipitation, PC1 is able to justify greater percentage of variability of modified 

SSI throughout the year. 

As shown in Fig. 5, the auto-correlation in MSSI is greater than MSPI for all lags. This 

may be due to relatively stronger memory of soil moisture. However, in whitened MSPI and 

MSSI series, the auto-correlation is not significant indicating the effectiveness of the adopted 

ARMA whitening procedure. 

According to Fig. 6, since AMDI-SA reflects the combined effect of soil moisture and 

precipitation, it mostly lies between MSPIwh and MSSIwh. In contrast to MSPIwh, MSSIwh and 

AMDI-SA, MSPI and MSSI are auto-correlated time series and cannot capture rapid changes 

in wetness condition. As showed in Fig. 7, drought severity class detected by AMDI-SA is less 

severe than both or one of input indices, MSPIwh and MSSIwh. Moreover, severe drought 

detections of MSPI and MSSI may be the effect of auto-correlation. 

As stated before, in case of significant difference between empirical and theoretical values 

of the Kendall distribution function, empirical values have been used to calculate AMDI-SA. 

An example of such case occurs at point C (in Fig. 2). First, a Gumbel copula is selected due 
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to its lowest value of Akaike Information Criterion (AIC). However, since there is a significant 

difference between theoretical and empirical values of KC, a Least Squares fitting on KC 

function has been done for copulas with closed-form of KC. In Fig. 8, there is the comparison 

between theoretical and empirical KC, and the Least Squares estimates are indicated with the 

"LS" suffix. Since, neither the LS estimates are close enough to the empirical Kendall function, 

empirical values are used to calculate AMDI-SA. 

According to AIC, Gumbel and Gaussian copulas are the selected families, in 41 (52%) 

and 38 (48%) cases, respectively. In 9 cases, where the Gumbel family was selected, the 

theoretical Kendall function was not close enough to the empirical one. Finally, in 32 cases the 

Gumbel copula, in 38 cases the Gaussian model, and in 9 cases the empirical copula have been 

selected (Fig. 9). 

The Gumbel copula, compared to the Gaussian copula, has more probability concentrated 

in the tails, especially in the right one, i.e. higher values of one variable is more likely to be 

followed by higher than normal values of the other. The ability of Gumbel copula to justify the 

dependence between MSPIwh and MSSIwh may imply saturated condition of soil moisture for 

months with upper-normal precipitation. In other words, for upper-normal precipitation 

condition, soil moisture will not be depleted, rapidly. It may be due to poor vegetation cover in 

these locations. 

6. Conclusions 

A single distribution function may not fit the global precipitation/soil moisture data and 

hence, the original parametric SPI/SSI may not be applicable. In this study, the proposed 

approach does not require the assumption of a parametric distribution function for describing 

drought-related variables. It is also worth pointing out that unlike parametric indices, the 

suggested nonparametric framework does not require parameter estimation and goodness-of-

fit evaluation. However, due to the use of a nonparametric framework to derive SPI/SSI, the 
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proposed methodology requires long-term observations to derive the joint distribution of 

precipitation and soil moisture, and a short record of observations could lead to biases in the 

indices values. On the other hand, given that satellite-based hydro-climate data records are 

emerging, the authors expect that, in the near future, more research will be devoted to 

investigating spatial patterns of climate extremes using space-borne observations specially soil 

moisture data. 

Drought mitigation and response plans often rely on different indicator variables and 

drought triggers. No single index can represent all aspects of drought so it is best to use a multi-

index approach for operational drought monitoring. However, many drought indicators are not 

directly statistically comparable (Steinemann and Cavalcanti, 2006). Moreover, limited 

statistical models are currently available for linking or merging different drought-related 

variables into one composite map. 

AMDI-SA, a multivariate composite agro-meteorological drought index, is suggested, 

which joints together two drought indices, namely Multivariate Standardized Precipitation 

Index and the Multivariate Standardized Soil moisture Index through the copula concept and 

the Kendall function.  

The properties of AMDI-SA can be summarized as follows: (a) AMDI-SA is a properly 

defined normal-distributed drought index gaining information from both precipitation and soil 

moisture; (b) using appropriate whitening procedure and normalization, AMDI-SA accounts 

for auto-correlation and seasonality; (c) Due to its probabilistic nature, it can be used for 

drought risk assessment tool and aid to decision-makers in drought mitigation and response 

plans. (d) Typically, precipitation detects the drought earlier and soil moisture better describes 

the persistence events (Farahmand et al., 2015). AMDI-SA generally captures the drought onset 

similar to the precipitation and drought persistence similar to the soil moisture, combines the 

properties of both. Though, soil moisture levels may remain high even long after precipitation. 
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However, since it uses whitened time series of MSPI and MSSI, shows even more quick 

reflection to drought onset and more fluctuation than both MSPI and MSSI. 

The proposed framework for creating AMDI-SA is rather general, and other indices can 

be integrated together to form such a composite drought index which could be considered a 

strength of the approach. Such a methodology can potentially improve drought monitoring if 

each of the selected drought-related variables can capture certain aspects of droughts. Efforts 

are underway to extend the AMDI-SA concept by integrating more drought indicators such as 

evapotranspiration. The distinct advantages of the AMDI-SA include its assessment of drought 

from the aggregate perspective of meteorological and agricultural water shortages, and its 

direct mathematical formulation, which can be rapidly applied to new observational data in a 

straightforward manner. 

It seems that AMDI-SA is not meant to replace the currently available indices. Rather, it 

uses additional information that can potentially improve drought modeling. Finally, it should 

be noted that the best choice for a set of drought indicators to be combined may vary, depending 

on the problem at hand. 
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Table 1. Drought classification for normal distributed indices, according to U.S. Drought 

Monitor (USDM) classification for drought severity. 

 

 

Figure 1. Example to describe the properties of AMDI-SA. 

Figure 2. Urmia lake basin in the northwest of Iran and discretization in some pixels 

(displayed as circles on the left). Results of this study reported in the randomly selected 

sample points A, B and C in the basin. 

Figure 3. Scree plots of the SPI and SSI time series for the time scales set of 1–12 months. 

Figure 4. Scatter plot showing pairs of MSPI𝑤ℎ
 and MSSI𝑤ℎ

  data (for point A in Fig. 2) with 

Kendall’s tau= 0.26. 

Figure 5. Influence of the whitening process on auto-correlation; auto-correlation versus 

different time lags of (a) MSPI and MSPI𝑤ℎ
, (b) MSSI and MSSI𝑤ℎ

. 

Figure 6. (a) MSPI and MSSI, (b) MSPI𝑤ℎ
 and MSSI𝑤ℎ

 in comparison with AMDI-SA during 

1998-2002 for a grid cell in Urmia lake basin (for point B in Fig. 2). 

Figure 7. Spatial variation of drought severity classes based on MSPI, MSSI, MSPI𝑤ℎ
, MSSI𝑤ℎ

 

and AMDI-SA for each pixel of Urmia lake basin in March 1999. 

Figure 8. Different Kendall distribution functions (KC) for a grid cell in Urmia lake basin (for 

point C in Fig. 2). t stands for the level of probability. 

Figure 9. Selected copula families to model the dependence between MSPI𝑤ℎ
 and MSSI𝑤ℎ

 for 

each pixel of Urmia lake basin. 

 

Category Description Index Value 

D4 Exceptional drought ≤-2.0 

D3 Extreme drought (-2.0, -1.6] 

D2 Severe drought (-1.6, -1.3] 

D1 Moderate drought (-1.3, -0.8] 

D0 Abnormally dry (-0.8, -0.5] 

N Normal (-0.5, 0.5) 

W0 Abnormally wet [0.5, 0.8) 

W1 Moderately wet [0.8, 1.3) 

W2 Severely wet [1.3, 1.6) 

W3 Extremely wet [1.6, 2.0) 

W4 Exceptionally wet ≥2.0 


