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Unitary Triangularization of a Nonsymmetric Matrix*

ALSTON 8. HOUSEHOLDER 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 

A method for the inversion of a nonsymmetric matrix, due to J. W. Givens, has 
been in use at Oak Ridge National Laboratory and has proved to be highly stable 
numerically but to require a rather large number of arithmetic operations, n
cluding a total of n(n - 1)/2 square roots. Strictly, the method achieves the 
triangularization of the matrix, after which any standard method may be em
ployed for inverting the triangle. The triangular form is brought about by means 
of a sequence of n(n - 1)/2 plane rotations, whose product is an orthogonal 
matrix. Each rotation requires the extraction of a square root. The advantage in 
using the method lies in the fact that an orthogonal matrix is perfectly con
ditioned. Hence the condition of the matrix cannot deteriorate through suc
cessive transformations. In fact, if ope deines the condition number of a matrix 
A to be [1] 

y(A) = II A 11 11 A-'ll, 
where the norm is the spectral norm, then for any orthogonal matrix W, y(W) = 1
and the condition of any matrix is preserved under multiplication by an orthog
onal matrix: 

y(WA) = y(A). 
To look at the matter another way, if 

TVA R, 

where R is an upper triangle, then 

ATA = ATWTWA = RTR,

so that R is precisely the triangle one would obtain from the application of the 
Choleski square-root method to the positive definite matrix A 1'A. It is, in fact, 
the matri.x to which von K eumanu and Goldstine [2] are led in their study of 
Gaussian elimination as apphed to a positive deinite matrix. To obtain the 
precise triangle that would result from Gaussian elimination with A r A, one has 
only to remove as a factor the diagonal of R: 

R = DU, 

where U has a unit diagonal. 
The purpose of the present note is to point out that the same result can be 

obtained with fewer arithmetic operations, and, in particular, for inverting a 
square matrix of order n, at most 2(n - 1) square roots are required, instead of 
n(n- 1)/2. For n > 4, this is a saving of (n - 4)(n- 1)/4 square roots. 
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It is as easy to discuss the general complex case, and the method is based upon 
the almost self-evident 

LEMMA. For any vector a " 0, and any unit vector v, a unit vector u exists such 
that 

(I - 2uu*)a = II a II v, 

where II a II represents the Euclidean norm: I! a 112 = a*a. The computation requires 
two square roots and a single reciprocation. 

The proof exhibits the computation. Let 

" = !I a :1 > o.

This represents one of the necessary square roots. It is required that 

a - 2(u*a)u = av. 

Let 

" = 2u*a . 

Then 

JU =a- av, 

/ = 2a(a - v*a), 

which accounts for the other square root. Clearly 

a - u*a � 0, 

(1) 

(2) 

(3) 

(4) 

since a is the Euclidean length of a, and v*a the projection of a upon the unit 
vector v. Hence a and . are both real and can be taken non-negative. If a = v*a, 
then the lemma is veriied with u = 0; otherwise take . > 0 deined by (4), and 
one veriies easily that u deined by (3) is efective. The single reciprocation 

. . -1 necessary ts m ' • 

�ow let a be the first column of . and take v = e1 , the irst column of the 
identity. Application of the lemma provides a unitary matrix 

U, = I - 2u1u1*

such that the first column of U1. is null except in the irst element. The result is 
equivalent to the application of n - 1 plane rotations, with one slight dfference, 
that 

det (I - 2uu*) = -1, 

whence this transformation reverses the orientation of the coniguration. One 
continues fer suppressing the irst row and irst column of the transformed 
matrix. After n - 1 steps, at most, the matrix . is triangularized: 

U = u._,U•-• ... U,' UA. = R. 

Evidently 

det .1 ( -1)"-1 det R.
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An interesting byproduct of the reduction is a simple proof of the theorem of 

Hadamard, that 

n 

I detA I �I lla,ll, 
1 

where a, is the tth column of A. This results from the fact that the Euclidean 
norm is preserved under multiplication by a unitary matrix, and that each 
diagonal element of R is the norm of the projection of that column upon a certain 
subspace. 

It is evident that when the reduction is applied to a matrix 11 of n columns 
and N > n rows, there results again an upper triangle of non-null elements, and a 
trapewid of zeros, the triangle representing the factori,ation of the normal 
matrix A* A required for a least squares solution. 

Returning to the case of a square matrix, if the vectors u, are stored as gen
erated and applied to the successive columns of the matrix, there are required the 
n - 1 reciprocations, 2(n - 1) square roots, and 

(n - 1)(2n2 + 5n + 9)j;3 = 2n3/3 

multiplications for the formation of R. In this count it is assumed that one forms 
a, . -I, u, and then each n*at and uu,*a� , i > 1. 

. f R . (n + 2) I . 1· . 1 "f R-1 • I . 1· d b InversiOn o rcqmres 3 mu ttp tcatwns; anc 1 1s mu t1p te y 

the U, in reverse order, then 

(n - 1)(4n2 + 7n + 12)/i 

multiplications are required. Altogether. for the formation of A-1, the number 
of multiplications is 

(:3n3 + 4n2 + in - 10)/2 = :3n3/2, 

as compared with approximtttely 5n3 /2 multiplications required if one were to 
form (A* A*. 

Ky Fan has pointed out that half the square roots and all the reciprocations 
are evaded in the tri,wgularization proper if one forms 

p.2l - 2(p.u)(p.u)*.

Instead of R, a scalar multiple of R is formed in this way. This is feasible for 
loating-point computations, but probably not for fixed point. 

If the matrix 

A = (a1 , a,, · · · , an) 

is scaled at the outset so that ll a, II � 1 for every �, then all elements remain 
within range throughout the triangularization, since a unitary transformation 
leaves the Euclidean norm invariant. Hence no scaliug problems arise in the 
actual triangularization. Moreover, when R-1 is formed, if this is similarly 
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scaled no further scaling is required in multiplying by the matrices U; to form 
A -r. Only n forming R-1 itself may intermediate scaling be required. 

The unitary matri.: employed here is obviously suggested by a somewhat more 
general one previouly used [1]. A similar form is used by Steenrod [3] for theor
etical purposes. 
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