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Abstract

The aim of this study was to investigate the effects of a linear filter on the
regularity of a given stochastic process in terms of the fractal dimension.
This general approach, described in a continuous time domain, is new and
is characterized by its simplicity. The framework of this problem is general
since it emerges when a fractal process undertakes a transformation, as is
the case in denoising or measurement processes.
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1. INTRODUCTION AND DEFINITION

1.1. Introduction

Fractal processes are processes whose ubiquity spans innumerable fields.
In contrast to the well-known family of ARMA processes, these intrinsically
scale-invariant processes, also known as 1/f processes, are characterized by
long-term correlation structure. Moreover, these fractal signals are continu-
ous and underivable signals presenting deterministic or statistical self affini-
ties [27], [29]. Invariants such as the fractal dimension D, the Hurst exponent
H or the Hölder exponent h are often evaluated to characterize such irregular
signals. Stochastic signals can be continuous and not differentiable, present-
ing strong irregularities.

Our study was performed in the context of analysis and synthesis of fractal
signals where fractal and stochastic signals can be related through fractional
differentiation [16] or filtering [26]. Others have studied 1/f noise in elec-
tronic devices [3, 4, 18], roughness and texture of surfaces [12, 24, 36, 17] and
biomedical signals and images [34, 22, 31, 20].

Issues dealing with filtering and fractal signals have previously been ad-
dressed in three ways: the denoising of fractal signals corrupted by an addi-
tive noise [23, 35, 8, 6, 7], the filtering of fractal signals by a measurement
system [28, 12, 31, 22, 36, 17, 20] and the synthesis of fractal signals from
stochastic processes [33, 26, 10, 19, 14].

In the synthesis of 1/fβ noise, the framework which predominated for
many years was naturally the spectral domain [3, 18, 26, 33]. The relation-
ships between the spectral and irregularity properties of the process appeared
later in reports by Berry [1] who demonstrated the link between the slope
β of the spectrum and the fractal dimension D = (5 − β)/2 for a fBm.
The spectral estimator consisted of evaluating the slope −β in a log-log plot
(Power/frequency), and then applying the previously introduced Berry equa-
tion. Although much used in the past, due to its simple formulation (for a
continuous or a discrete framework), this spectral estimator is less often used
today. The main reasons for its obsolescence are its poor performance and
to the need for setting the spectral bandwidth of interest when the power
spectral density presents several slopes.

The approaches based on maximum likelihood [23, 35, 7] and the es-
timators based on multi-scale analysis [10, 35, 5, 15] were mainly used in
denoising of fractal signals (or images). Because the likelihood function was
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a non-linear function according to D, it was not possible to obtain an explicit
formula and only a numerical computation was possible.

For the approaches based on wavelet analysis, they were mainly focused
on estimation of the slope of variance β = 2H + 1 of the wavelet coefficients
dj in the log-log plot. This estimator was very interesting since it could easily
be extended to the study of multi-fractal processes.

When the fractal signals (mono or multidimensional) are accessible only
by measurement, as is the case for example when measuring surface roughness
[12, 36, 17] or image texture [31, 22, 20], the measurement or acquisition
systems act like a linear filter. Quantification of the impact of such linear
filtering on the regularity of the processes studied is thus necessary. For
these applications, the most commonly used fractal dimension estimators
have been based on the box counting method (for example see [34]), the
spectral slope (for example see [11]) and length measurement [2].

There is not, to our knowledge, a simple framework which directly shows
the link between the filter characteristics and the regularity property of such
filtered signals through explicit relationships. We therefore investigated the
impact of linear filtering on irregularity for a given stochastic process in terms
of the fractal dimension.

The novelty of our approach is based on an explicit formulation, in con-
tinuous time, linking the spectral properties of a given filter and the fractal
properties of a given process. Our approach shows the relationship between
the fractal dimensions at the input and the output of a filter. Due to its
simple formulation and the good performance of its estimator, we focused
on the fractal dimension formulation through the length measurement. The
only a priori knowledge required to use our approach is the probability den-
sity of the input process and the correlation coefficient of the filter. Our
approach is original since the issue has never been previously addressed in
denoising, synthesis or measuring processes of fractal signals. Our study is
complementary to other studies based mostly on a discrete formulation. The
general framework and the simplicity of our formulation are its main assets.

Before explaining the details of our approach, we summarize the defini-
tions used related to the length measurement of fractal stochastic processes.

1.2. Definition

The Euclidian length of a deterministic signal x(t) for a limited duration
T can be defined as follows:
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L0 = Tλ, (1)

where

λ =
1

T

∫ T/2

−T/2

λ(t)dt, (2)

is the arithmetic mean of the elementary length and where

λ(t) =

√√√√1 +

(
dx(t)

dt

)2

. (3)

On the hypothesis that x(t) is homogeneous to Volt, then λ is homogeneous
to Volt per second. The elementary length λ can be rewritten according to
the Pythagorean theorem as:

λ(t) = lim
τ→0

1

τ

√
τ 2 +∆(t, τ)2, (4)

where the increment ∆(t, τ) is written in a symmetric form as:

∆(t, τ) = x(t + τ/2)− x(t− τ/2). (5)

Finally, the signal length is written:

Lx = lim
τ→0

∫ T/2

−T/2

1

τ

√
τ 2 +∆(t, τ)2dt. (6)

Note that we had already used such a definition for deterministic signals (see
[13]). Unlike deterministic signals, which are almost always derivable and
have a finite length, stochastic signals do not follow the laws of Euclidian
geometry. Stochastic signals cannot be described by continuous mathemati-
cal curves and their irregularities are still present even when examined with
higher and higher resolutions. This leads to the paradoxical conclusion that
the lengths of such signals are not finite. To overcome the fact that (as
fractal signals) stochastic signals do not have a finite length, Richardson [32]
assumed that the length Lx of a fractal signal depends on the resolution at
which it is measured, i.e. the gauge λ of the measurement. To overcome this
indetermination for λ → 0, Richardson proposed measuring the curve length
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for each value λ, ∀ λ > 0. Mandelbrot demonstrated that measuring Lx(λ)
as a function of λ was one way to determine the fractal dimension:

Lx(λ) = Kxλ
1−Dx , (7)

where Dx is the fractal dimension and Kx is a constant.
Length definition becomes a function of λ and is written like equation

(1):

Lx(λ) = Tλ(τ), (8)

where

λ(τ) =
1

T

∫ T/2

−T/2

λ(t, τ)dt, (9)

and where the elementary length is λ(t, τ) = 1

τ

√
τ 2 +∆(t, τ)2. The corre-

sponding length estimator of equation (8) illustrated in Fig.2 is:

L̂x(kTs) =
1

kTs

N−k∑

n=1

√
(kTs)2 +∆(n, kTs)2, (10)

where Ts is the sampling period and N is the number of elementary lengths
between [−T/2, T/2].

The definition of equation (8) extends easily to stationary and ergodic
stochastic signals by replacing the arithmetic mean by the mathematical
expectation E[.]. The definition then becomes:

Lx(λ) = TE[λ], (11)

where λ = 1

τ

√
τ 2 +∆2. Finally, the definition becomes:

Lx(τ) =
T

τ
E
[√

τ 2 +∆2

]
. (12)

The calculation of the mathematical expectation of equation (12) does not
lead to an analytical formulation, and only a numerical resolution is possi-
ble. In order to present an analytical formulation, we propose using another
definition based on that proposed by Burlaga and Klein [2]:

Lx(τ) =
T

τ
E
[
|∆|
]
. (13)
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This definition supposes that τ << ∆, which is often true, particularly for a
high sampling frequency. However, if this is not the case, an amplitude gain
can be applied. A discussion of the sense of such a definition is reported in
[21].

The length estimator that we finally used which corresponded to a discrete
version of equation (13) was:

Lx(k) =
N−k∑

n=1

|∆(n, k)|.

The performance of such estimator in its average version, known as the
Burlaga and Klein [2] estimator LBK(k), was excellent and outperformed the
spectral estimators and the maximum likelihood estimators (see [11]). How-
ever, the performance was similar to that obtained with estimators based
on wavelet analysis (see [11]). Note that Flandrin [10] demonstrated the
link between length measurement LBK(k) and variance of the wavelet coeffi-

cient dj(k): E[LBK(2
j−1)] = 23−5j/2

√
2

π

√
var(dj(k)). Though this estimator,

which is based on wavelet analysis, gave an excellent performance, it did not
lead to a simple formulation in a continuous framework. The strong point
of this estimator based on wavelet analysis was its adaptability to study
multi-fractal processes.

The paper is organized as follows. Section 2 presents the approach in
detail, setting out the notion of length ratio of colored processes, then stat-
ing the link between the length ratio and the fractal dimension of colored
processes. Section 3 presents several examples of filters and the simulation
results are discussed. Finally we propose a conclusion and some future ap-
plications.

2. LENGTHRATIO AND FRACTALDIMENSIONOF FILTERED

STOCHASTIC SIGNALS

The method that we propose is new and was investigated in a general
stochastic framework with an explicit formulation in continuous time. This
approach requires some a priori information such as the probability density
of the input process and the correlation function of the filter.

In a linear system where the impulse response is h(t), the input signal
x(t) and the output signal y(t), and the length Lx(τ) of the input signal, can
be evaluated by:
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Lx(τ) =
T

τ
E
[
|x1 − x2|

]
, (14)

where x1 = x(t1 + τ/2), x2 = x(t2 − τ/2) ∀t1, t2 and where

E
[
|x1 − x2|

]
=

∫ ∫
|x1 − x2|px1,x2(x1, x2)dx1dx2. (15)

px1,x2(x1, x2) is the joint probability density.

2.1. Filtered Gaussian noise

In the special case where x1 and x2 are two random Gaussian variables,
the joint probability density px1,x2(x1, x2) is written:

px1,x2(x1, x2) =
(1− ρ2x)

−1/2

2πσ1σ2

e
−1

2(1−ρ
2
x)

(

x
2
1

σ
2
1
+

x
2
2

σ
2
2
− 2ρxx1x2

σ1σ2

)

, (16)

where σ2
1 and σ2

2 are the variances of the two random variables x1 and x2, re-
spectively. ρx is the correlation coefficient defined by ρx = E[x1x2]/E[x2

1]E[x2
2].

The probability density of the increment ∆ = x2 − x1 is written:

p∆(∆) =

∫ +∞

−∞
px1x2(x1, x1 +∆)dx1. (17)

After calculation, the probability density of the increment is reduced to a
normal law N(0, σ′2):

p∆(∆) =
1√
2πσ′

e
−∆2

2σ′2 , (18)

with σ′ =
√
σ2
1 + σ2

2 − 2ρxσ1σ2. x1 and x2 belong to the same signal x(t),

then σ1 = σ2 = σx and the standard deviation σ′ is simplified, σ′ = σx

√
2(1− ρx).

The mathematical expectation of the increment becomes:

E
[
|∆|
]
= 2

∫ +∞

0

∆p∆(∆)d∆ =

√
2

π
σ′, (19)

and finally:

Lx(τ) =
2√
π

Tσx

τ

√
1− ρx(τ). (20)
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Similarly the length of the output signal y(t) is written:

Ly(τ) =
2√
π

Tσy

τ

√
1− ρy(τ). (21)

Note that for a white noise (ρx = 0), the length of the input signal x(t) is
written:

Lx(τ) =
Tσx

τ
γ, (22)

where the factor γ is equal to 2/
√
π for a Gaussian noise and the factor γ

is equal to 2√
3
for a noise uniformly distributed between [−a/2, a/2] with a

standard deviation σx = a/
√
12. The factor γ (and hence the length) seems

to reveal the statistic nature of the white noise.
In order to establish a link between the impulse response or the correlation

function of the filter ρy(τ) and the fractal dimension Dy of the filtered signal
y(t), it should be remembered that in the case of fractal signals, the length
Ly of the output signal is related to the fractal dimension Dy as follows (see
also equation (7) for the input):

Ly(τ) = Kyτ
1−Dy , (23)

where Ky is a constant. Consequently, the fractal dimension Dy of the signal
y(t) can be defined as follows:

Dy = 1− lim
τ→0

log
(
Ly(τ)

)

log(τ)
. (24)

Similarly:

Dx = 1− lim
τ→0

log
(
Lx(τ)

)

log(τ)
. (25)

By using equations (20), (25) and (21),(24) the equations become:

Dy = 2− lim
τ→0

1

2

log
(
1− ρy(τ)

)

log(τ)
, (26)

Dx = 2− lim
τ→0

1

2

log
(
1− ρx(τ)

)

log(τ)
. (27)
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For unidimensional signal, the fractal dimension of signals x(t) and y(t) was
the topological dimension of the space minus a term related to the inner
correlation of x(t) and y(t).

In order to simply qualify the influence of linear filters, we propose eval-
uating a new parameter, i.e. the length ratio Ω between the input and the
output of the linear system:

Ω(τ) =
Ly(τ)

Lx(τ)
. (28)

By using equations (20) and (21), equation (28) becomes:

Ω(τ) =
σy

σx

√
1− ρy(τ)

1− ρx(τ)
. (29)

Furthermore, the following function Λ(τ) is defined:

Λ(τ) = lim
τ→0

log
(
Ω(τ)

)

log(τ)
. (30)

Λ(τ) is an important parameter since it quantifies the filtering impact in
terms of reduction irregularity. By using equations (7), (23) and (28), it is
easy to show that:

Λ = Dx −Dy. (31)

In this case Dy is defined by:

Dy = Dx − lim
τ→0

log
(
Ω(τ)

)

log(τ)
. (32)

When the input signal is a Gaussian noise and when the system is linear,
by using equations (29) and (32), this becomes:

Dy = Dx − lim
τ→0

(
1

2

log(1− ρy(τ))

log(τ)

)
+ lim

τ→0

(
1

2

log
(
1− ρx(τ)

)

log(τ)

)
. (33)

The fractal dimension of the filtered signal is then equal to the fractal di-
mension of the signal before filtering minus a term related to the filter plus
a term explaining the inner correlation of the input signal x(t).

Before testing different types of filter, we present the filtered fractional
Brownian motion.
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2.2. Filtered fractional Brownian motion

Let’s consider the fractional Brownian motion (fBm) [25] as being in the
input of the filter. This self similar process which generalizes the Brownian
motion or the Wiener process is composed of stationary and independent
increments. These increments follow a Gaussian law1: x1−x2 ≈ N(0, 2τ 2Hx)
where Hx is the Hurst exponent. Note that an average power spectrum
density of fBm can be defined in the frequency domain [9] and it turns out
that it is proportional to 1/fα with α = 2Hx + 1. By using equation (14) to
equation (20), we show that:

Lx(τ) =
2√
π
TτHx−1. (34)

Note that we recognize the factor 2/
√
π which underlines the Gaussian nature

of the process. By using equations (7-25), it becomes:

Dx = 2−Hx, (35)

where

Hx = 1 + lim
τ→0

log
(
Lx(τ)

)

log(τ)
. (36)

Note thatHy has the same definition as Hx. As for equation (33), it becomes:

Hy = Hx − lim
τ→0



1

2

log
(
1− ρy(τ)

)

log(τ)


 . (37)

Similarly, the Hurst exponent Hy of the filter output is the Hurst exponent
Hx before filtering minus a term related to the inner filter properties.

2.3. Impact of the correlation coefficient

From definitions (33) and (37), it becomes obvious that the asymptotic
behavior of the correlation coefficient when τ → 0 is a key point in the esti-
mation of fractal dimension. Indeed, by exciting filters by a white Gaussian

1Note that the increments follow a Gaussian law written as follows: x1 − x2 ≈
N(0, τ2Hx). However, in order to make a direct link between equations in this subsec-
tion and equations in subsection 2.1, we voluntary modified this formula by doubling the
variance and this modification does not modify the definition of fBm.
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noise, all correlation coefficients ρy(τ) whose Taylor expansion satisfies the
equation:

lim
τ→0

ρy(τ) ≈ 1− kτn, (38)

where k is a known constant and where n ∈ R and 0 ≤ n ≤ 2, involve a
fractal dimension and a Hurst exponent described as follows:

{
Dy = Dx − n

2
;

Hy = Hx +
n
2
;

(39)

where Dx = 2 and Hx = 0 for ρx = 0. Note that for 2 ≥ Dy ≥ 1, n satisfies
0 ≤ n ≤ 2. Moreover, by using definition (33) and equation (38) for ρx = 0,
it becomes:

Dy = 2− lim
τ→0

1

2

log(kτn)

log(τ)
= 2− n

2
, (40)

and n = 4 − 2Dy. Without making out an exhaustive list, we propose the
following correlation coefficients (or a combination) satisfying equation (38)
for τ > 0:

• ρy(τ) = α+ (1−α)cos(kτn/2). For α = 0.5 and for n = 2 we recognize
the Hanning function;

• ρy(τ) = (1− kτn). For n = 1 we recognize the triangle function;

• ρy(τ) = e−kτn . For n = 2 we recognize the Gaussian function and for
n = 1 we recognize the Lorentzian function.

3. EXAMPLES

3.1. Lorentzian filters

The impulse response h(t) of a Lorentzian filter is defined by:

h(t) = ωce
−ωctcos(ω0t)u(t), (41)

where u(t) is the Heaviside function, ωc the cut-off pulsation and ω0 the
central pulsation of the filter. This linear system of impulse response h(t)
is excited by a Gaussian white noise. For linear filters, the crosscorrelation
function of the output signal is written:
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Ry(τ) = Rh(τ) ∗Rx(τ), (42)

where ∗ is the convolution operator. Note that the process coming from this
type of filter is also known as being the ”first order Markov process”. For
the Lorentzian filter the correlation function is Rh(τ) =

ωc

4
e−ωc|τ |cos(ω0τ), the

correlation function of the input signal is Rx(τ) = σ2
xδ(τ), and the correlation

function of the output signal reduces to Ry(τ) = σ2
ye

−ωc|τ |cos(ω0τ), where
σy = σx

√
ωc/2. The correlation coefficient defined by ρy(τ) = Ry(τ)/Ry(0),

is reported in Table I for τ > 0.
As already mentioned, the length of the white Gaussian noise is ∀ τ > 0:

Lx(τ) =
2Tσx√
πτ

, (43)

since the correlation coefficient is ρx = 0, ∀τ > 0. The length of the output
signal is ∀ τ > 0:

Ly(τ) =
2Tσy√
πτ

√
1− e−ωcτcos(ω0τ). (44)

The length ratio ∀ τ > 0 is written as follows:

Ω(τ) = G
√

1− e−ωcτ cos(ω0τ), (45)

where the gain G is written G = σy/σx.
In order to test different kinds of Lorentzian filter, four filters were con-

sidered: a wide band filter, a narrow band filter, a base band filter and an
all pass filter. The correlation coefficients and length ratios for these dif-
ferent kinds of filter are summarized in Table I. We verified that for these
different kinds of filter, the parameter Ω/G was related to the intrinsic filter
parameters, ωc and ω0.

When the input is a white Gaussian noise, the fractal dimension Dy of
the output is:

Dy = 2− lim
τ→0

(
1

2

log(1− e−ωcτcos(ω0τ))

log(τ)

)
. (46)

• For a base band filter ω0 → 0 and for τ → 0, ωcτ << 1:

Dy = 2− 1

2
=

3

2
, (47)
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with
lim
τ→0

(1− e−ωcτ ) ≈ ωcτ,

• For a narrow band filter ωc → 0 and for τ → 0, ω0τ << 1:

Dy = 2− 1 = 1, (48)

with
lim
τ→0

(
1− cos(ω0τ)

)
≈ ω2

0τ
2/2.

The output signal is a sinusoid, i.e. a continuous signal whose fractal
dimension is the same as a line. Note that for a Gaussian correlation
coefficient ρy(τ) = e−ωcτ2 , the fractal dimension is also Dy = 1 since
limτ→0(1− e−ωcτ2) ≈ ωcτ

2.

• For an all pass filter:

Dy = 2− lim
τ→0

(
1

2

log(1)

log(τ)

)
= 2− 0 = 2.

The output signal is a white noise, i.e. an irregular signal which fills
all the space.

When the input is a fractional Brownian motion, the Hurst exponent of
the output signal is:

• for a base band filter ω0 → 0 and for τ → 0, ωcτ << 1:

Hy = Hx + lim
τ→0

(
1

2

log(ωcτ)

log(τ)

)
.

By imposing Hx = 0.3 (high irregularity), the Hurst exponent of the
output is: Hy = 0.3+0.5 = 0.8. This confirms the fact that the greater
the filtering the greater the regularity.;

• for a narrow band filter ωc → 0 and for τ → 0, ω0τ << 1:

Hy = Hx + lim
τ→0

(
1

2

log(ω2
0τ

2/2)

log(τ)

)
.

By imposing Hx = 0.3 (high irregularity), the Hurst exponent of the
output is: Hy = 0.3+1 = 1.3. As 0 ≤ Hy ≤ 1, this means that Hy = 1.
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3.2. Simulations
As an illustration, Figs.3 and 4 show the length ratios for the four types of

Lorentzian filter. Time series of 10000 samples are simulated with a sampling
frequency of 10000 Hz for different values of the cut-off frequency fc =
{1, 10, 100, 1000, 5000} Hz and for different values of the central frequency
of the filter f0 = {1, 10} Hz. The minimum and maximum values of the
gauge are τmin = 10−4s and τmax = 0.5s. The sampling frequency is thus an
important setting parameter since it fixes the minimum resolution.

Fig. 3 shows that for a cut-off frequency fc = 5000 Hz and a central
frequency f0 = 1 Hz (similar to an all pass filter), the length ratio Ω of such
a signal has a slope equal to zero, involving a fractal dimension Dy = 2. The
output signal is a white Gaussian noise which entirely fills the space. Note
that for a white noise, we verified that Ω(τmin)/G ≈ 1. When the cut-off
frequency was reduced to fc = 1 Hz and f0 = 1 Hz (low pass filter), the
slope for the length ratio was 1/2 for a gauge lower than the cut-off gauge
τ < τc = 1/ωc, involving a fractal dimension Dy = 3/2.The output signal was
a standard Brownian motion characterized by its Hurst exponent H = 1/2.
Beyond the cut-off gauge, the slope was equal to zero.

Fig. 4 shows that for a central frequency f0 = 100 Hz and for a cut-off
frequency fc = 10 Hz, oscillations where the position of its first minimum
corresponds to τ = 1/f0 appear in Ω. For a gauge less than the cut-off
gauge τc = 1/ωc, the fractal dimension is between 1.5 and 1 for a narrow
band filter and between 2 and 1.5 for a wide band filter. When the cut-off
frequency tends towards zero, the fractal dimension tends to 1, thus involving
the presence of a sinusoidal signal. When the cut-off frequency tends towards
infinity (whatever the central frequency) then the fractal dimension tends to
2, involving the presence of a white noise.

By using an impulse response of the form h(t) = e−ωcτn with
0 ≤ n ≤ 1, time series of 5000 samples are simulated with a sampling fre-
quency of 10000 Hz and a cut-off frequency fc = 1 Hz. The input signal is
a white Gaussian noise N(0, 1). The minimum and maximum values of the
gauge are τmin = 10−4s and τmax = 0.5s. Simulation results are depicted in
figure 5. Figure 5a shows synthesized fractal signals: the higher the order n,
the greater the regularity of the time series. Figure 5b shows the length ratio
Ω/G with respect to the gauge τ : the higher the order n, the higher the slope
and the lower the fractal dimension. For n = 0, the corresponding filter is an
all pass filter, the output signal is a white Gaussian noise and the correspond-
ing fractal dimension is Dy = 2. For n = 1, the corresponding filter is a base
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band filter, the output signal is a Brownian motion and the corresponding
fractal dimension is Dy = 1.5 (Hy = 0.5). For 0 ≤ n ≤ 1 the corresponding
fractal dimensions of the output filter are between 2 ≥ Dy ≥ 1.5.

4. DISCUSSION & CONCLUSION

We propose here a simple explicit formulation of the filtering effect on
the regularity of a given stochastic process in a general framework and in a
continuous time context. The simulations studied validated the theoretical
calculus but also permitted extraction of the filter characteristics such as
cut-off frequency and central frequency.

Though limited to mono-fractal processes, this approach is interesting
since it requires only commonly used a priori knowledge such as the prob-
ability law of the process and the spectral characteristic of the filter. The
need for a priori information such as the probability density and the corre-
lation coefficient of the filter constitute both an advantage and a drawback.
It is an advantage since they provide a simple formulation, but it is also a
disadvantage since the study presented here was limited to this information.
Another drawback is that our approach is currently limited to mono-fractal
processes. The next step will be to extend our framework to the study of
multi-fractal processes.
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Table I
Correlation coefficients and length ratios ∀ τ > 0.

Filters h(t) ρy(τ) Ω(τ)/G

Wide band ωce
−ωctcos(ω0t)u(t) e−ωcτcos(ω0τ)

√
1− e−ωcτcos(ω0τ)

Narrow band cos(ω0t)u(t) cos(ω0τ)
∣∣∣sin ω0τ

2

∣∣∣
√
2

Base band ωce
−ωctu(t) e−ωcτ

√
1− e−ωcτ

All pass δ(t) 0 1

where ρx = 0 ∀ τ > 0 and where the gain is G = σy/σx.
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Figure 1: Low pass filtering increases the regularity of the fractal signal. a) Fractal signal
(H = 0.5). b) Filtered fractal signal.
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Figure 2: Principle of length measurement of a stochastic signal.
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