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CovSel: Variable seletion for highlymultivariate and multi-response alibration.Appliation to IR spetrosopy.J.M. ROGER*, B. PALAGOS*, D. BERTRAND** E.FERNANDEZ-AHUMADA**Cemagref BP 5095 - 34033 Montpellier Cedex1 Frane**INRA BP 71627 - 44316 Nantes edex 3 Frane
AbstratVariable seletion is of major interest for NIR alibration, either as a feature seletionor for the design of multi-wavelength devies. Some dediated methods have beendeveloped in hemometris, but . Variable seletion for NIR spetrosopy must faetwo problems: (1) the huge number of variables yields a very large solution spae;(2) variables are highly orrelated, and if no speial attention is paid the model builton the seletion may be . This artile presents a new method, CovSel, whih taklesthese two problems by following this proedure: (1) Variable seletion step by step onthe basis of their global ovariane with all the responses; (2) Projetion of the dataorthogonally to the seleted variable. CovSel was applied on three problems: the �rstone onerns a single response MIR alibration (Brix degree ontent in apriot), theseond one onerns a multi-response NIR alibration (4 main onstituents in orn)Preprint submitted to Elsevier Siene 29 Otober 2010



and the last appliation onerns the NIR disrimination of 3 wine grape varieties.Key words: Variable seletion, Orthogonal projetion
1 IntrodutionAnalytial hemistry and proess monitoring involve more and more multi-variate indiret sensors, suh as spetrometers. For example, Near InfraRed(NIR) spetrometry is a powerful analytial tool, inreasingly used in indus-try ([1℄,[2℄). However these sensors require a alibration aiming at �nding arelation between the measured spetra and the response to be estimated. Aommon pratie involves olleting a sample set with spetral and responsevalue information. If the response values are quantitative (e.g. onentrations)the usual method of alibration onsists in a regression of the referene dataon the spetral data. In the ase of a qualitative response (e.g. an origin), toolsfor disrimination are used. For both model types, lassial statistial methodsare not e�ient sine the spae arrying the useful information is muh smallerthan that of the spetra. Consequently a lassial solution onsists in usingfatorial methods. For quantitative responses, partial least squares regression(PLS) is the more ommonly used method ([3℄). In the ase of qualitativeresponses, a similar proedure an be applied on binary variables (indiatorvariables) indiating the belonging of an observation to a given qualitativegroup. PLS an then be applied on these indiator variables, making it possi-ble to arry out a disriminant analysis based on latent variables (PLS-DA)([4℄). Another solution involves hoosing a restrited number of signi�ant vari-ables and then applying an ordinary least square (OLS) linear regression or alinear disriminant analysis (LDA). Moreover, numerous appliations require2



the oneption of simpli�ed instruments where only few variables are used.This is the ase of spetrometry devoted to agriultural appliations wherepratial spei�ations often impose oneiving robust and heap �lter instru-ments. All these reasons make variable seletion an appropriate hemometriissue. Nevertheless, the nature of the data, i.e. NIR spetra, poses some par-tiular problems beause, on one side, variables are highly orrelated and onthe other side, the searhing spae is huge (if p is the number of variables thereare 2p-1 solutions). A supplementary problem ours when a multi-responsealibration is involved. The present paper addresses these problems.There are numerous tehniques of variable seletion. In the ontext of PLSregression, a review an be found in ([5℄). In the general domain of mahinelearning, the following taxonomy in three groups is ommonly used ([6℄):
• With �lter methods, variable seletion is done independently of the modelthat eventually makes use of them. Filter methods use the intrinsi har-ateristis of the whole data set in order to selet some variables and/oreliminate others. This seletion an be viewed as a pre-treatment of predi-tive variables. In the �eld of multivariate alibration, di�erent �lter riteriaare used suh as the absolute value of orrelation or ovariane betweenpreditors and response ([7℄). The theory of information is also used for se-leting the preditive variables that maximise the mutual information withthe variable to be predited. However this method is di�ult to implementwhen multi-responses are involved. An appliation in hemometris is foundin ([8℄). The UVE method ([9℄) allows variable elimination by omparingthem with noisy arti�ial variables.
• Wrapper methods san the spae of possible seletions and use the pre-dition model as a blak box to test the relevany of seletions. This is3



often evaluated by means of a simple or ross validation. Depending on thestrategies to perform the san, there exist di�erent wrapper methods (see[10℄, for a review). These are in most ases stohasti optimisation meth-ods inspired by natural phenomena: Geneti algorithms ([11℄) or simulatedannealing ([12℄). These methods are not repeatable due to their randomnature. Moreover, their omplex algorithms may pose a problem when thesearhing spae is large and the relevany of the seletion is not easy toassess in the ase of multiple responses.
• Embedded methods aomplish the variable seletion during the alibrationproess. The subset of seleted variables, optimising the training riterion,an be onstruted by suessive additions (forward), elimination (bak-ward) or a ombination of both approahes. Bakward methods are notwell adapted to the high multivariate ases beause, at the beginning of theseletion proess, they take into aount all the variables. Stepwise multi-ple linear regression (SMLR) ([13℄, pp 307-313) is one of the most popularexamples of this kind of methods.Suessive Projetion Algorithm (SPA, [14℄) is a forward seletion methodthat minimises olinearity between preditors by means of suessive proje-tions on interlinked sub-spaes. At eah step, the seleted variable is the oneshowing the maximum projetion on the orthogonal sub-spae generated bythe already seleted variables. SPA is a hybrid between �lter and embeddedmethods. This paper proposes a new method of variable seletion alled Cov-Sel (Covariane seletion). It an be onsidered a hybrid method as SPA, fromwhih it takes inspiration. CovSel is well adapted to multi-response alibra-tion of spetrometers and an be applied to the problem of disriminationonsidering indiator variables as responses.4



2 Theory
This setion presents the theoretial aspets of CovSel and emphasizes itssimilarity with the onstrution of latent variables in PLS. Implementationsfor regression and disrimination will be suessively presented.
Upper ase bold haraters will be used for matries, e.g. X will denote amatrix of n individuals (lines) by p variables (olumns); lower ase bold har-aters for olumn vetors, e.g. x will denote a simple individual (a spetrum);non-bold haraters will be used for salars, e.g. matrix elements xij or indies
i. In will denote the identity matrix of Rn. IfU is a (n×k)matrix of rank k, PUwill represent the matrix of the projetor on U in R

n : PU = U(UTU)−1UTand P⊥

U
the matrix of the projetor orthogonal to U : P⊥

U
= In − PU. Thesymbol si will denote a olumn vetor ontaining null values, exept the ith,whih is unitary: sij = 0 for i 6= j and sii = 1.

Let X be a matrix of n objets desribed by p desriptors and Y a matrixof the same n objets desribed by q responses to be predited. CovSel aimsat lassifying the k most useful variables of X in dereasing order of theirinterest. The proedure inludes two main steps: (i) seleting the most usefulvariable, (ii) projeting the data orthogonally to this seleted variable. Inthe same way as the Gram-Shmidt deomposition ([13℄, p 277) or as the SPAseletion, CovSel approximates theX row spae Rn as a sum of omplementarysubspaes. The di�erene with SPA lies in that CovSel arries out the variableseletion on the basis of their global ovariane with all the responses.5



2.1 AlgorithmCovSel method performs variable seletion by iterating the following two steps:(1) Searhing index I1 orresponding to the preditor losest to the responses,by:
I1 = ArgMaxi (xTi YYTxi) (1)(2) :

X← P⊥

xI1
X (2)

Y ← P⊥

xI1
Y (3)This proess is then repeated for I2, I3, · · · , Ik.2.2 InterpretationEquation 1 an be written as:

I1 = ArgMax (diag (XTYYTX)) (4)Furthermore it an be demonstrated (Cf. annexes) that this equation is equiv-alent to:
I1 = ArgMaxi (Maxv,v2=1

(ov (xi,Yv)2
)) (5)Equation 4 is lose to that of PLS where the �rst latent variable is givenby the �rst eigenvetor of: XTYYTX ([15℄). Equation 5 reminds the generalobjetive of PLS as it is expressed in the basi algorithms suh as NIPALS ([3℄).To reah this objetive, PLS allows any linear ombinations of the olumnsof X. CovSel aims at performing a similar optimisation, but by allowing only6



linear ombinations of the olumns of X in the form [0,0,...,1,...0℄, sine itsrole is the seletion of variables. At last, as for the PLS algorithm, orthogonalprojetions aomplished by equations 2 and 3 ensure that varianes of X and
Y are aptured in a umulative way by every step of the algorithm. ThereforeCovSel implements a PLS-like variable seletion, as shown in table 1.2.3 ImplementationThe implementation of CovSel di�ers aording to the objetive of the user.Three ases are addressed here:
• Data analysis: Running CovSel between X and Y without any modellingphase makes it possible to identify the variables of X whih explain Y atthe most. This analysis will exploit the evolution of the varianes explainedby the suessive steps of CovSel.
• Regression: IfY onsists in ontinuous responses, like onentrations, Cov-Sel ould be used in a hierarhial proess: (i) a �rst variable seletion ismade on the basis of all responses and (ii) this global seletion is re�ned foreah individual response in a seond step.
• Disrimination: If Y ontains the indiator variables, CovSel ould usethis multi-response for seleting variables prior to a LDA.2.4 Evolution of varianes explained by CovSelIn every iteration, during stages 4 and 5 as represented in table 1, the algorithmof CovSel erodes a part of the variane ontained in X and Y. Let Vx(k) and
Vy(k) be the sum of these varianes, aording to k, expressed in perentage7



of the whole varianes of X and Y. Curves Vx and Vy as a funtion of theiteration step are ompulsorily inreasing. Their shapes depend on the dataon�guration. If the rank of X is p and all variables of X are independent,
Vx(k) evolves linearly up to 100% for k = p, as illustrated on the two graphson the left of �gure 1. If X variables are orrelated, the shape is di�erent.The ovariane maximized by CovSel is a ompromise between X variane,
Y variane and their orrelation. For two variables with the same orrelationwith Y, the one with the highest ovariane will be hosen. Therefore urve
Vx will show a onvex shape, as illustrated on the two graphs of the right of�gure 1. The shape of Vy thus depends on the relation between X and Y.If, on one extreme, Y variables are orthogonal to X, sine the Y varianeaptured in every step is void, Vy is horizontal whereas Vx inreases rapidly.On the other extreme, if the q variables of Y are ompletely determined by
m variables of X, Vy adopts a regular growing behaviour to attain 100% for
k = m. Between these extreme situations, Vy should present a �rst step of fastinrease, orresponding to the most important variables to be seleted andthen a step of slow inrease, as illustrated on the bottom graphs of �gure 1.
2.5 Regression aseIf there is no tehnial interest in reduing the number of seleted variables orif there is only one response, CovSel may be performed individually on eaholumn of Y, as in any lassial seletion method. However, CovSel addressesadvantageously the other ases, where a unique ommon seletion must befound to multiple responses. Let's assume that k is the maximal desired num-ber of variables. The omplete model building then relies on two steps:8



• CovSel is �rst run on the entred X matrix and the autosaled Y matrix,with a limit of k steps. This yields a seletion {I1, I2, · · · , Ik}.
• Seondly, CovSel is run between the submatrix [xI1 ,xI2, · · · ,xIk ] entredand the olumns yi of Y also entred, for i = 1, · · · , q.This proess gives q ordered hoies of the same list of k variables, whih anthen be introdued stepwise in q lassial mono-response OLS models. A rossvalidation of these q x k models produes q urves of SEC and q urves of
SECV whih an guide the user to the hoie of the best q seletions. A setof q OLS models are then built between eah of these seletions of X and theorresponding olumn of Y.2.6 Disrimination aseLet g be a vetor of n integers indiating the belonging of eah observationof the alibration set to a given qualitative group. A value gi gives the num-ber of the group in whih the observation of index i is a priori lassi�ed.Let q be the number of di�erent groups. From g, a matrix of indiators Y,dimensioned (n × q) is onstruted. In this matrix an element yij takes thevalue 1 if j = gi, and 0 otherwise. A seletion of k variables (su�iently largenumber) is performed using CovSel between X and Y, both entred. For eahstep i in seletion, a LDA is tested by ross-validation between the urrentseletion {I1, I2, · · · , Ii} and g. The lassi�ation proedure aims at �ndingthe minimal Mahalanobis distane to the entre of lasses. Cross-validationresults are expressed in terms of perentage of wrong lassi�ed samples. Twoerror urves are provided, one for alibration (SEC(j)j=1···k) and the otherone for ross-validation (SECV (j)j=1···k) whih an help the user to hoose9



the best seletion. A model of disrimination by LDA is then developed onthis seletion.3 Material and methodsCovSel was applied on several experimental data sets. A �rst example withan unique response was used to ompare CovSel with a lassial SMLR. Aseond one was used to illustrate the multi-response regression and the thirdone addressed the disrimination problem :
• Set Apriots: The X matrix onsisted of 731 mid infrared spetra of apri-ots, aquired on p = 292 variables (a omplete desription of the olletionan be found in [16℄). The Brix degree, evaluating the soluble solid ontent,was measured on eah fruit and was taken as the y single response. Calibra-tion and validation sets were randomly drawn 100 times, with a proportionof 2/3 and 1/3, respetively. Eah time, CovSel was applied on the alibra-tion set with a number of variables k = 30. Then, 30 models were developedby OLS, introduing one after the other the variables previously hosenby CovSel. In parallel, two lassial stepwise regressions (SMLR) were alsoperformed with P < 0.1 and P < 0.01 as limits of probability for introdu-ing the variables. All these models were then applied on the validation set,yielding 100 ourrenes of 30 CovSel models and 100 ourrenes of thetwo SMLR models. These ourrenes were used to ompute boxplots of thestandard errors of validation (RMSEV) and of the norm of the models.
• Set Corn: The X data set, whih an be found at http://software.eigen-vetor.om/Data/Corn, onsisted of 80 near infrared spetra of orn sam-ples. The wavelength range was 1100-2498 nm with a 2 nm step (p = 70010



wavelengths). The moisture, oil, protein and starh ontents of the sampleswere taken as the Y multi-response. A alibration and a validation set wererandomly drawn in the proportion of 2/3 and 1/3, respetively. CovSel wasapplied on the alibration set, with a prede�ned number of variables k = 15.Aording to the implementation desribed in 2.5, CovSel was run a seondtime for eah response to produe 4 sorting of the 15 seleted variables. Fourseries of 15 OLS regressions were then alulated, using the variables in theorder previously obtained, and ross-validated on the alibration set, witha leave-one-out splitting. The optimal models were then hosen by study-ing the evolution of the SECV , for eah response independently. The fourmodels were then applied to the validation set.
• Set Wine grapes: CovSel was applied to disriminate 3 varieties of winegrapes, by means of Visible/very Near Infrared spetrometry (310 - 1050nm). The experimentation related to 3 varieties: arignan (rg), grenaheblan (grb) and grenahe noir (grn). The X matrix ontained 250 spetrameasured on p = 256 variables. Aording to the proedure desribed in2.6, the q = 3 lass indiators were used as Y multi-response. The dataset was ut randomly in two equal parts, eah set ontaining 50 samplesof crg, 50 samples of grb and 25 samples of grn. The seleted variablesas given by CovSel were then used as input of LDA. The observation ofthe leave-one-out ross-validation results allowed the determination of theoptimal number of seleted variables. The disriminant model alibrated onthis subset was applied on the test set. The results were expressed with apredition error (PE(%), perentage of wrongly lassi�ed samples) and aonfusion matrix.
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4 Results and disussion
Figure 2 shows the results of the tests done on the apriot dataset. For eahvalue of k between 1 and 30, a boxplot summarizes the distribution of theRMSEV obtained by CovSel in eah of the 100 validation tests. The twoboxplots on the right are devoted to SMLR results, with P < 0.1 (left) and
P < 0.01 (right). The dispersion is very similar for all the values of k. Themedian value of RMSEV dereases rapidly from k = 1 to k = 12 and reahesa value lose to the one of SMLR (about 0.75 Brix) and then dereases moreslowly down to 0.7 Brix, for k = 20. The median values of the number ofvariables seleted by the SMLR models was 13 and 28, respetively for P <

0.01 and P < 0.1. Figure 3 shows the evolution of the norm of the regressionoe�ients in the same way as previously. Contrarily to what was observedwith RMSEV, the dispersion of these norms inreases with k. The regularityof this inreasing on�rms the above onlusions about the insensitivity ofCovSel to over�tting. Moreover, for a same value of the norm of the regressionoe�ients, CovSel generally gives smallest RMSEV than SMLR. Like PLS,Covsel indeed presents the advantage of maximizing the ovariane between
X and Y rather than the orrelation. The onsequene of suh maximizationis that the variables showing high varianes play a large role in the regressionmodel, whih is not ompulsorily the ase in SMLR. The norm of the SMLRmodels is muh more variable than those produed by CovSel. This is probablydue (i) to the variability of the number of variables hosen by the SMLR (ii)to the management of the variable olinearity, not expliitly performed inSMLR method. This advantage of CovSel is learly illustrated by the �gure4, showing the seletions produed by SMLR (P < 0.1) and by CovSel on the12



whole data set. The variables seleted by CovSel are well spread on the wholespetrum and then obviously less orrelated than those seleted by SMLR.Figure 5 illustrates the funtioning of CovSel, on the orn dataset, without anypreproessing. Eah graph of this �gure shows the quantity that is maximizedby CovSel, i.e. xTi YYTxi as a funtion of the variable index i. The k = 8�rst steps of CovSel are represented here. Vertial dashed lines indiate theseleted variables, loated at the urve maximum. It is notieable that eahurve (exept the �rst one) presents a wide depression around the variable thathas been seleted at the previous step. Two reasons an be put forward forthat: (i) the orthogonal projetion arried out between two onseutive steps(aording to equations 2 and 3) removes the information whih is orrelated tothe seleted variable, thus drastially dereases the variane of the neighboringvariables in the further steps; (ii) the riterion used by CovSel is based onthe ovariane, so impliitely on the variane. This depression would not beobserved if the orrelation was used in plae of the ovariane beause highorrelation an be observed even if the variane is low. It is also notieablethat the urves of �gure 5 look like peak-shaped spetra that are very di�erentfrom one step to another. This learly shows that the de�ation ahieved bythe orthogonal projetions allows CovSel to deal with omplementary andstrutured information. Conerning steps 1, 3, 4 and 5, the position of themaximum is neat and unambiguous. Contrarily, in step 2, two high peaks(A and B on the �gure) appear. The highest one (B) is hosen and the twopeaks totally disappear at the following step. That is explained by the highorrelation (r = 0.9) existing between the two variables assoiated with thesepeaks. One one peak is seleted, all what is orrelated to it disappears bymeans of the orthogonal projetion. A ontrary situation an be observed in13



step 6. Three peaks (A, B and C) an be observed here. The highest one (B)is seleted and, at step 7, the peaks A and C remain. This is due to the poororrelation existing between the variables of (A,B) and (B,C) (r = 0.2 in bothases). Hene, the peaks A and C bring information that is omplementaryto the one of peak B and are thus not a�eted by its seletion. These twoexamples show that, if two peaks have similar height, the hoie of one peakin plae of the other is not a ritial point of the method. At last, one an alsonotie that in steps 3 and 5 extreme variables were seleted. This is probablydue to the presene of a baseline, whih must appear in the regression model.Figure 6 shows the evolution of the variane aptured by CovSel. It is notie-able that the evolution of these varianes omplies with the shape illustratedin �gure 1, bottom right. This indiates that a model should exist between
X and Y. The urves drawn on �gure 7 report the evolution of the SECV sas a funtion of k for the four models (eah SECV was divided by the stan-dard deviation of the response, in order to produe omparable urves). Eahurve orresponds to a re-ordering of the k = 15 variables previously hosenat the �rst run of CovSel. The best model is the one addressing moisture, forwhih a SECV/σ of about 0.1 is reahed for 11 variables. The other modelsreah a SECV/σ of about 0.4, with 13, 12 and 12 variables for oil, proteinand starh, respetively. Applying the orresponding models to the test setyielded the results reported in �gure 8. Considering the preditions, the re-sults are very satisfatory for moisture (R2 > 0.99), quite good for oil andprotein (R2 ≃ 0.90) and less good for starh (R2 ≃ 0.88). The same hierarhyan be observed for the performanes of individual PLS regressions alulatedon the whole spetra (not shown). Table 2 summarizes the wavelength sele-tions for the 4 models and proposes some assignments. Globally, the seletion14



seems oherent with the spetroopi knowledge. However, some wavelengthsatually assigned to spei� ompounds are used for all the responses, like forexample the water at 1940 nm or the oil at 2306 nm. This learly demon-strates that CovSel performs a ompromise among the responses. Some bandsare not diretly assigned to hemial absorptions and are ertainly useful forgeometrial features, like the baseline that is probably taken into aount bythe two extreme wavelengths.Figure 9 reports the results onerning the wine grapes disrimination prob-lem. It shows the evolution of the alibration and ross-validation errors ofthe linear disriminant model built with the variables seleted by CovSel, asa funtion of the number of steps (k). Both errors derease very rapidly fromabout 35% for k = 1 to less than 5% for k = 5, and then more slowly, downto less than 2% for k = 8. The disriminant model built with 8 variables andapplied to the test set yielded the errors reported in table 3. The performanesare quite satisfatory, in omparison with the ones obtained with a PLS-DAmodel (not shown here, but published in [17℄), whih led to the same levelof predition error. This example shows the potential of CovSel to proessvariable seletion in the framework of disriminant problems.ConlusionThis paper proposes a new method (CovSel), dediated to the problem ofvariable seletion for highly multivariate data related to single or multiple re-sponses. CovSel onsists in an iterative proedure that looks like PLS-NIPALSalgorithm. Thanks to the de�ation operated at eah step of the CovSel algo-rithm, it produes seletions that an be relevantly used in lassial multivari-15
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AppendixProof of property 1 :ArgMax (diag (XTYYTX)) = ArgMaxi (Maxv,v2=1

(ov (xi,Yv)2
))

• Proof 1 : Let m = Maxv,v2=1

(ov (x,Yv)2
)Applying the Lagrange multipliers on F (v) = ov (x,Yv)2 yields :

∂

∂v

(
(xTYv)2 − λ

(
v2 − 1

))
= 0

2YTx (xTYv)− 2λv = 0

(YTxxTY)v = λv

(YTx)(YTx)Tv = λvThen, m is the largest eigenvalue of the q−square matrix (YTx)(YTx)T.
• Proof 2 : Let u be a non nul vetor. The matrix uuT has only one non nuleigenvalue λ = uTuWe have : rank(uuT) = 1, then uuT has only one non nul eigenvalue.Moreover, the trae of a matrix equals the sum of its eigenvalues. Then,we have :

λ = trae(uuT)
λ =

∑

i

u2
i = uTu

• Finally, ombining proof 1 and 2, with u = YTx, yields :
xTYYTx = Maxv,v2=1

(ov (x,Yv)2
)And onsequently :ArgMax (diag (XTYYTX)) = ArgMaxi (Maxv,v2=1

(ov (xi,Yv)2
))
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Table 1Analogy between PLS and CovSelmethod.PLS CovSel1 j = 1 j = 12 uj=ArgMax
u
(Maxv(ov(Xu,Yv)2))

u
2,v2=1

Ij=ArgMaxm(Maxv(ov(Xs
m,Yv)2)

v
2=1

)3 z = Xuj z = Xs
Ij = xIj4 X← P

⊥
z X X← P

⊥
z X5 Y ← P

⊥
z Y Y ← P

⊥
z Y6 j ← j + 1 ; goto 2 j ← j + 1 ; goto 2
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Table 2Corn: Summary of the seleted wavelengths for the 4 models.
λ (nm) moisture oil protein starh assignement1100 × × × × baseline1190 × × oil ([18℄)1306 × ×1428 × × × starh ([19℄)1500 × NH ([18℄)1592 × × × ×1718 × × × × oil ([19℄)1886 × × × ×1940 × × × × water2106 × × × starh ([18℄, [19℄)2204 × × × ×2250 × × × starh ([18℄)2306 × × × × oil ([19℄)2388 × ×2498 × × × × baseline
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Table 3Wine grapes: onfusion matrix of the model built with 8 variables and applied tothe test set.
Ŷ

T
Y rg grb grnrg 43 - -grb 4 46 -grn 3 4 25PE = 8.8 %
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