

# **CovSel: Variable selection for highly multivariate and multi-response calibration. Application to IR spectroscopy**

J.M. Roger, B. Palagos, D. Bertrand, E. Fernandez-Ahumada

### **To cite this version:**

J.M. Roger, B. Palagos, D. Bertrand, E. Fernandez-Ahumada. CovSel: Variable selection for highly multivariate and multi-response calibration. Application to IR spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2010, 106 (2), 27 p.  $10.1016/j.chemolab.2010.10.003$ . hal-00635415

## **HAL Id: hal-00635415 <https://hal.science/hal-00635415v1>**

Submitted on 25 Oct 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# CovSel: Variable selection for highly multivariate and multi-response alibration. Application to IR spectroscopy.

J.M. ROGER\*, B. PALAGOS\*, D. BERTRAND\*\* E. FERNANDEZ-AHUMADA\*

 $*$ Cemagref BP 5095 - 34033 Montpellier Cedex1 France  $*NRA$  BP  $71627 - 44316$  Nantes cedex 3 France

### Abstra
t

Variable selection is of major interest for NIR calibration, either as a feature selection or for the design of multi-wavelength devi
es. Some dedi
ated methods have been developed in chemometrics, but . Variable selection for NIR spectroscopy must face two problems: (1) the huge number of variables yields a very large solution space; (2) variables are highly orrelated, and if no spe
ial attention is paid the model built on the sele
tion may be . This arti
le presents a new method, CovSel, whi
h ta
kles these two problems by following this pro
edure: (1) Variable sele
tion step by step on the basis of their global covariance with all the responses; (2) Projection of the data orthogonally to the selected variable. CovSel was applied on three problems: the first one concerns a single response MIR calibration (Brix degree content in apricot), the second one concerns a multi-response NIR calibration (4 main constituents in corn)

Preprint submitted to Elsevier Science 29 October 2010

and the last application concerns the NIR discrimination of 3 wine grape varieties.

Key words: Variable selection, Orthogonal projection

### 1 Introdu
tion

Analytical chemistry and process monitoring involve more and more multivariate indire
t sensors, su
h as spe
trometers. For example, Near InfraRed (NIR) spe
trometry is a powerful analyti
al tool, in
reasingly used in industry  $([1],[2])$ . However these sensors require a calibration aiming at finding a relation between the measured spectra and the response to be estimated. A ommon pra
ti
e involves olle
ting a sample set with spe
tral and response value information. If the response values are quantitative (e.g. concentrations) the usual method of alibration onsists in a regression of the referen
e data on the spe
tral data. In the ase of a qualitative response (e.g. an origin), tools for dis
rimination are used. For both model types, lassi
al statisti
al methods are not efficient since the space carrying the useful information is much smaller than that of the spe
tra. Consequently a lassi
al solution onsists in using fa
torial methods. For quantitative responses, partial least squares regression  $(PLS)$  is the more commonly used method  $([3])$ . In the case of qualitative responses, a similar pro
edure an be applied on binary variables (indi
ator variables) indi
ating the belonging of an observation to a given qualitative group. PLS an then be applied on these indi
ator variables, making it possible to arry out a dis
riminant analysis based on latent variables (PLS-DA)  $(|4|)$ . Another solution involves choosing a restricted number of significant variables and then applying an ordinary least square (OLS) linear regression or a linear discriminant analysis (LDA). Moreover, numerous applications require the on
eption of simplied instruments where only few variables are used. This is the case of spectrometry devoted to agricultural applications where practical specifications often impose conceiving robust and cheap filter instruments. All these reasons make variable sele
tion an appropriate hemometri issue. Nevertheless, the nature of the data, i.e. NIR spectra, poses some parti
ular problems be
ause, on one side, variables are highly orrelated and on the other side, the searching space is huge (if  $p$  is the number of variables there are  $2^{p}$ -1 solutions). A supplementary problem occurs when a multi-response alibration is involved. The present paper addresses these problems.

There are numerous te
hniques of variable sele
tion. In the ontext of PLS regression, a review can be found in  $([5])$ . In the general domain of machine learning, the following taxonomy in three groups is commonly used  $([6])$ :

- With *filter* methods, variable selection is done independently of the model that eventually makes use of them. Filter methods use the intrinsi hara
teristi
s of the whole data set in order to sele
t some variables and/or eliminate others. This selection can be viewed as a pre-treatment of predictive variables. In the field of multivariate calibration, different filter criteria are used su
h as the absolute value of orrelation or ovarian
e between predictors and response  $([7])$ . The theory of information is also used for sele
ting the predi
tive variables that maximise the mutual information with the variable to be predicted. However this method is difficult to implement when multi-responses are involved. An application in chemometrics is found in  $([8])$ . The UVE method  $([9])$  allows variable elimination by comparing them with noisy artificial variables.
- *Wrapper* methods scan the space of possible selections and use the prediction model as a black box to test the relevancy of selections. This is

often evaluated by means of a simple or ross validation. Depending on the strategies to perform the scan, there exist different wrapper methods (see [10], for a review]. These are in most cases stochastic optimisation methods inspired by natural phenomena: Genetic algorithms  $([11])$  or simulated annealing  $(12)$ . These methods are not repeatable due to their random nature. Moreover, their omplex algorithms may pose a problem when the searching space is large and the relevancy of the selection is not easy to assess in the ase of multiple responses.

• *Embedded* methods accomplish the variable selection during the calibration process. The subset of selected variables, optimising the training criterion, can be constructed by successive additions (forward), elimination (backward) or a ombination of both approa
hes. Ba
kward methods are not well adapted to the high multivariate ases be
ause, at the beginning of the selection process, they take into account all the variables. Stepwise multiple linear regression (SMLR) ([13], pp 307-313) is one of the most popular examples of this kind of methods.

Successive Projection Algorithm (SPA, [14]) is a forward selection method that minimises colinearity between predictors by means of successive projections on interlinked sub-spa
es. At ea
h step, the sele
ted variable is the one showing the maximum proje
tion on the orthogonal sub-spa
e generated by the already selected variables. SPA is a hybrid between filter and embedded methods. This paper proposes a new method of variable selection called Cov-Sel (Covariance selection). It can be considered a hybrid method as SPA, from which it takes inspiration. CovSel is well adapted to multi-response calibration of spe
trometers and an be applied to the problem of dis
rimination onsidering indi
ator variables as responses.

### 2 Theory

This se
tion presents the theoreti
al aspe
ts of CovSel and emphasizes its similarity with the construction of latent variables in PLS. Implementations for regression and discrimination will be successively presented.

Upper case bold characters will be used for matrices, e.g.  $X$  will denote a matrix of n individuals (lines) by p variables (columns); lower case bold characters for column vectors, e.g. x will denote a simple individual (a spectrum); non-bold characters will be used for scalars, e.g. matrix elements  $x_{ij}$  or indices *i*.  $\mathbf{I}_n$  will denote the identity matrix of  $\mathbb{R}^n$ . If  $\mathbf{U}$  is a  $(n \times k)$  matrix of rank  $k,$   $\mathbf{P_U}$ will represent the matrix of the projector on **U** in  $\mathbb{R}^n$  :  $\mathbf{P_U} = \mathbf{U(U^TU)^{-1}U^T}$ and  $P_U^{\perp}$  the matrix of the projector orthogonal to  $U: P_U^{\perp} = I_n - P_U$ . The symbol  $s^i$  will denote a column vector containing null values, except the  $i^{th}$ , which is unitary:  $s_j^i = 0$  for  $i \neq j$  and  $s_i^i = 1$ .

Let **X** be a matrix of *n* objects described by *p* descriptors and **Y** a matrix of the same *n* objects described by *q* responses to be predicted. CovSel aims at classifying the  $k$  most useful variables of  $X$  in decreasing order of their interest. The pro
edure in
ludes two main steps: (i) sele
ting the most useful variable, (ii) projecting the data orthogonally to this selected variable. In the same way as the Gram-Schmidt decomposition  $(13)$ , p 277) or as the SPA selection, CovSel approximates the  $\mathbf X$  row space  $\mathbb R^n$  as a sum of complementary subspaces. The difference with SPA lies in that CovSel carries out the variable selection on the basis of their global covariance with all the responses.

CovSel method performs variable sele
tion by iterating the following two steps:

(1) Searching index  $I_1$  corresponding to the predictor *closest* to the responses, by:

$$
I_1 = \text{ArgMax}_i (\mathbf{x}_i^{\text{T}} \mathbf{Y} \mathbf{Y}^{\text{T}} \mathbf{x}_i)
$$
 (1)

 $(2)$  :

$$
\mathbf{X} \leftarrow \mathbf{P}_{\mathbf{x}_{I_1}}^{\perp} \mathbf{X}
$$
 (2)

$$
\mathbf{Y} \leftarrow \mathbf{P}_{\mathbf{x}_{I_1}}^{\perp} \mathbf{Y} \tag{3}
$$

This process is then repeated for  $I_2$ ,  $I_3$ ,  $\cdots$ ,  $I_k$ .

### 2.2 Interpretation

Equation 1 can be written as:

$$
I_1 = \text{ArgMax} \left( \text{diag} \left( \mathbf{X}^{\text{T}} \mathbf{Y} \mathbf{Y}^{\text{T}} \mathbf{X} \right) \right) \tag{4}
$$

Furthermore it can be demonstrated (Cf. annexes) that this equation is equivalent to:

$$
I_1 = \text{ArgMax}_{i} \left( \text{Max}_{\mathbf{v}, \mathbf{v}^2=1} \left( \text{cov} \left( \mathbf{x}_i, \mathbf{Y} \mathbf{v} \right)^2 \right) \right) \tag{5}
$$

Equation 4 is close to that of PLS where the first latent variable is given by the first eigenvector of:  $X^TYY^T X$  ([15]). Equation 5 reminds the general objective of PLS as it is expressed in the basic algorithms such as NIPALS ([3]). To reach this objective, PLS allows any linear combinations of the columns of X. CovSel aims at performing <sup>a</sup> similar optimisation, but by allowing only linear combinations of the columns of **X** in the form  $[0,0,\ldots,1,\ldots,0]$ , since its role is the sele
tion of variables. At last, as for the PLS algorithm, orthogonal projections accomplished by equations 2 and 3 ensure that variances of  $X$  and Y are captured in a cumulative way by every step of the algorithm. Therefore CovSel implements a PLS-like variable sele
tion, as shown in table 1.

### 2.3 Implementation

The implementation of CovSel differs according to the objective of the user. Three ases are addressed here:

- Data analysis: Running CovSel between **X** and **Y** without any modelling phase makes it possible to identify the variables of  $X$  which explain Y at the most. This analysis will exploit the evolution of the varian
es explained by the successive steps of CovSel.
- Regression: If Y consists in continuous responses, like concentrations, Cov-Sel could be used in a hierarchical process: (i) a first variable selection is made on the basis of all responses and (ii) this global selection is refined for each individual response in a second step.
- Discrimination: If Y contains the indicator variables, CovSel could use this multi-response for sele
ting variables prior to a LDA.

### 2.4 Evolution of variances explained by CovSel

In every iteration, during stages 4 and 5 as represented in table 1, the algorithm of CovSel erodes a part of the variance contained in **X** and **Y**. Let  $V_x(k)$  and  $V_u(k)$  be the sum of these variances, according to k, expressed in percentage of the whole variances of **X** and **Y**. Curves  $V_x$  and  $V_y$  as a function of the iteration step are ompulsorily in
reasing. Their shapes depend on the data configuration. If the rank of  $X$  is p and all variables of  $X$  are independent,  $V_x(k)$  evolves linearly up to 100% for  $k = p$ , as illustrated on the two graphs on the left of figure 1. If  $X$  variables are correlated, the shape is different. The covariance maximized by CovSel is a compromise between **X** variance, Y variance and their correlation. For two variables with the same correlation with  $Y$ , the one with the highest covariance will be chosen. Therefore curve  $V_x$  will show a convex shape, as illustrated on the two graphs of the right of figure 1. The shape of  $V_y$  thus depends on the relation between **X** and **Y**. If, on one extreme, Y variables are orthogonal to  $X$ , since the Y variance captured in every step is void,  $V_y$  is horizontal whereas  $V_x$  increases rapidly. On the other extreme, if the  $q$  variables of Y are completely determined by m variables of **X**,  $V_y$  adopts a regular growing behaviour to attain 100% for  $k = m$ . Between these extreme situations,  $V_y$  should present a first step of fast increase, corresponding to the most important variables to be selected and then a step of slow increase, as illustrated on the bottom graphs of figure 1.

### 2.5 Regression case

If there is no te
hni
al interest in redu
ing the number of sele
ted variables or if there is only one response, CovSel may be performed individually on ea
h column of Y, as in any classical selection method. However, CovSel addresses advantageously the other ases, where a unique ommon sele
tion must be found to multiple responses. Let's assume that  $k$  is the maximal desired number of variables. The omplete model building then relies on two steps:

- CovSel is first run on the centred **X** matrix and the autoscaled **Y** matrix, with a limit of k steps. This yields a selection  $\{I_1, I_2, \cdots, I_k\}$ .
- Secondly, CovSel is run between the submatrix  $[\mathbf{x}_{I_1}, \mathbf{x}_{I_2}, \cdots, \mathbf{x}_{I_k}]$  centred and the columns  $y_i$  of Y also centred, for  $i = 1, \dots, q$ .

This process gives q ordered choices of the same list of  $k$  variables, which can then be introduced stepwise in  $q$  classical mono-response OLS models. A cross validation of these  $q \times k$  models produces q curves of SEC and q curves of  $SECV$  which can guide the user to the choice of the best q selections. A set of  $q$  OLS models are then built between each of these selections of **X** and the corresponding column of  $Y$ .

#### $2.6$ Discrimination case

Let  $g$  be a vector of *n* integers indicating the belonging of each observation of the calibration set to a given qualitative group. A value  $g_i$  gives the number of the group in which the observation of index  $i$  is a priori classified. Let q be the number of different groups. From  $g$ , a matrix of indicators Y, dimensioned  $(n \times q)$  is constructed. In this matrix an element  $y_{ij}$  takes the value 1 if  $j = g_i$ , and 0 otherwise. A selection of  $k$  variables (sufficiently large number) is performed using CovSel between  $X$  and  $Y$ , both centred. For each step *i* in selection, a LDA is tested by cross-validation between the current selection  $\{I_1, I_2, \cdots, I_i\}$  and **g**. The classification procedure aims at finding the minimal Mahalanobis distan
e to the entre of lasses. Cross-validation results are expressed in terms of percentage of wrong classified samples. Two error curves are provided, one for calibration  $(SEC(j)_{j=1\cdots k})$  and the other one for cross-validation  $(SECV(j)_{j=1\cdots k})$  which can help the user to choose

the best sele
tion. A model of dis
rimination by LDA is then developed on this selection.

#### Material and methods 3

CovSel was applied on several experimental data sets. A first example with an unique response was used to ompare CovSel with a lassi
al SMLR. A se
ond one was used to illustrate the multi-response regression and the third one addressed the dis
rimination problem :

- Set Apricots: The X matrix consisted of 731 mid infrared spectra of apricots, acquired on  $p = 292$  variables (a complete description of the collection can be found in  $[16]$ . The Brix degree, evaluating the soluble solid content, was measured on each fruit and was taken as the y single response. Calibration and validation sets were randomly drawn 100 times, with a proportion of  $2/3$  and  $1/3$ , respectively. Each time, CovSel was applied on the calibration set with a number of variables  $k = 30$ . Then, 30 models were developed by OLS, introdu
ing one after the other the variables previously hosen by CovSel. In parallel, two lassi
al stepwise regressions (SMLR) were also performed with  $P < 0.1$  and  $P < 0.01$  as limits of probability for introducing the variables. All these models were then applied on the validation set, yielding 100 occurrences of 30 CovSel models and 100 occurrences of the two SMLR models. These occurrences were used to compute boxplots of the standard errors of validation (RMSEV) and of the norm of the models.
- Set Corn: The X data set, which can be found at http://software.eigenvector.com/Data/Corn, consisted of 80 near infrared spectra of corn samples. The wavelength range was 1100-2498 nm with a 2 nm step ( $p = 700$ )

wavelengths). The moisture, oil, protein and starch contents of the samples were taken as the  $\bf{Y}$  multi-response. A calibration and a validation set were randomly drawn in the proportion of  $2/3$  and  $1/3$ , respectively. CovSel was applied on the calibration set, with a predefined number of variables  $k = 15$ . According to the implementation described in 2.5, CovSel was run a second time for ea
h response to produ
e 4 sorting of the 15 sele
ted variables. Four series of 15 OLS regressions were then calculated, using the variables in the order previously obtained, and ross-validated on the alibration set, with a leave-one-out splitting. The optimal models were then hosen by studying the evolution of the *SECV*, for each response independently. The four models were then applied to the validation set.

• Set Wine grapes: CovSel was applied to discriminate 3 varieties of wine grapes, by means of Visible/very Near Infrared spe
trometry (310 - 1050 nm). The experimentation related to 3 varieties: *carignan* (crg), *grenache* blanc (grb) and grenache noir (grn). The  $X$  matrix contained 250 spectra measured on  $p = 256$  variables. According to the procedure described in 2.6, the  $q = 3$  class indicators were used as Y multi-response. The data set was cut randomly in two equal parts, each set containing 50 samples of  $crg$ , 50 samples of  $grb$  and 25 samples of  $grn$ . The selected variables as given by CovSel were then used as input of LDA. The observation of the leave-one-out ross-validation results allowed the determination of the optimal number of sele
ted variables. The dis
riminant model alibrated on this subset was applied on the test set. The results were expressed with a prediction error  $(PE(\%)$ , percentage of wrongly classified samples) and a onfusion matrix.

### 4 Results and dis
ussion

Figure 2 shows the results of the tests done on the apricot dataset. For each value of k between 1 and 30, a boxplot summarizes the distribution of the RMSEV obtained by CovSel in each of the 100 validation tests. The two boxplots on the right are devoted to SMLR results, with  $P < 0.1$  (left) and  $P < 0.01$  (right). The dispersion is very similar for all the values of k. The median value of RMSEV decreases rapidly from  $k = 1$  to  $k = 12$  and reaches a value close to the one of SMLR (about 0.75 Brix) and then decreases more slowly down to 0.7 Brix, for  $k = 20$ . The median values of the number of variables selected by the SMLR models was 13 and 28, respectively for  $P <$ 0.01 and  $P < 0.1$ . Figure 3 shows the evolution of the norm of the regression coefficients in the same way as previously. Contrarily to what was observed with RMSEV, the dispersion of these norms increases with  $k$ . The regularity of this increasing confirms the above conclusions about the insensitivity of CovSel to overfitting. Moreover, for a same value of the norm of the regression coefficients, CovSel generally gives smallest RMSEV than SMLR. Like PLS, Covsel indeed presents the advantage of maximizing the ovarian
e between X and Y rather than the correlation. The consequence of such maximization is that the variables showing high varian
es play a large role in the regression model, which is not compulsorily the case in SMLR. The norm of the SMLR models is mu
h more variable than those produ
ed by CovSel. This is probably due (i) to the variability of the number of variables hosen by the SMLR (ii) to the management of the variable colinearity, not explicitly performed in SMLR method. This advantage of CovSel is clearly illustrated by the figure 4, showing the selections produced by SMLR  $(P < 0.1)$  and by CovSel on the

whole data set. The variables sele
ted by CovSel are well spread on the whole spectrum and then obviously less correlated than those selected by SMLR.

Figure 5 illustrates the fun
tioning of CovSel, on the orn dataset, without any preprocessing. Each graph of this figure shows the quantity that is maximized by CovSel, i.e.  $\mathbf{x}_i^{\mathrm{T}} \mathbf{Y} \mathbf{Y}^{\mathrm{T}} \mathbf{x}_i$  as a function of the variable index *i*. The  $k = 8$ first steps of CovSel are represented here. Vertical dashed lines indicate the selected variables, located at the curve maximum. It is noticeable that each curve (except the first one) presents a wide depression around the variable that has been selected at the previous step. Two reasons can be put forward for that: (i) the orthogonal proje
tion arried out between two onse
utive steps (according to equations 2 and 3) removes the information which is correlated to the sele
ted variable, thus drasti
ally de
reases the varian
e of the neighboring variables in the further steps; (ii) the riterion used by CovSel is based on the ovarian
e, so impli
itely on the varian
e. This depression would not be observed if the orrelation was used in pla
e of the ovarian
e be
ause high orrelation an be observed even if the varian
e is low. It is also noti
eable that the curves of figure 5 look like peak-shaped spectra that are very different from one step to another. This clearly shows that the deflation achieved by the orthogonal proje
tions allows CovSel to deal with omplementary and structured information. Concerning steps 1, 3, 4 and 5, the position of the maximum is neat and unambiguous. Contrarily, in step 2, two high peaks  $(A \text{ and } B \text{ on the figure})$  appear. The highest one  $(B)$  is chosen and the two peaks totally disappear at the following step. That is explained by the high correlation  $(r = 0.9)$  existing between the two variables associated with these peaks. On
e one peak is sele
ted, all what is orrelated to it disappears by means of the orthogonal proje
tion. A ontrary situation an be observed in step 6. Three peaks  $(A, B \text{ and } C)$  can be observed here. The highest one  $(B)$ is sele
ted and, at step 7, the peaks A and C remain. This is due to the poor correlation existing between the variables of  $(A,B)$  and  $(B,C)$  ( $r = 0.2$  in both ases). Hen
e, the peaks A and C bring information that is omplementary to the one of peak B and are thus not affected by its selection. These two examples show that, if two peaks have similar height, the choice of one peak in pla
e of the other is not a riti
al point of the method. At last, one an also noti
e that in steps 3 and 5 extreme variables were sele
ted. This is probably due to the presen
e of a baseline, whi
h must appear in the regression model.

Figure 6 shows the evolution of the variance captured by CovSel. It is noticeable that the evolution of these varian
es omplies with the shape illustrated in figure 1, bottom right. This indicates that a model should exist between **X** and Y. The curves drawn on figure 7 report the evolution of the *SECV*s as a function of k for the four models (each SECV was divided by the standard deviation of the response, in order to produce comparable curves). Each curve corresponds to a re-ordering of the  $k = 15$  variables previously chosen at the first run of CovSel. The best model is the one addressing moisture, for which a  $SECV/\sigma$  of about 0.1 is reached for 11 variables. The other models reach a  $SECV/\sigma$  of about 0.4, with 13, 12 and 12 variables for oil, protein and star
h, respe
tively. Applying the orresponding models to the test set yielded the results reported in gure 8. Considering the predi
tions, the results are very satisfactory for moisture  $(R^2 > 0.99)$ , quite good for oil and protein  $(R^2 \simeq 0.90)$  and less good for starch  $(R^2 \simeq 0.88)$ . The same hierarchy can be observed for the performances of individual PLS regressions calculated on the whole spe
tra (not shown). Table 2 summarizes the wavelength sele
 tions for the 4 models and proposes some assignments. Globally, the sele
tion seems oherent with the spe
tro
opi knowledge. However, some wavelengths actually assigned to specific compounds are used for all the responses, like for example the water at 1940 nm or the oil at 2306 nm. This learly demonstrates that CovSel performs a ompromise among the responses. Some bands are not dire
tly assigned to hemi
al absorptions and are ertainly useful for geometrical features, like the baseline that is probably taken into account by the two extreme wavelengths.

Figure 9 reports the results concerning the wine grapes discrimination problem. It shows the evolution of the calibration and cross-validation errors of the linear dis
riminant model built with the variables sele
ted by CovSel, as a function of the number of steps  $(k)$ . Both errors decrease very rapidly from about 35% for  $k = 1$  to less than 5% for  $k = 5$ , and then more slowly, down to less than 2% for  $k = 8$ . The discriminant model built with 8 variables and applied to the test set yielded the errors reported in table 3. The performan
es are quite satisfa
tory, in omparison with the ones obtained with a PLS-DA model (not shown here, but published in [17]), which led to the same level of predi
tion error. This example shows the potential of CovSel to pro
ess variable sele
tion in the framework of dis
riminant problems.

### **Conclusion**

This paper proposes a new method (CovSel), dedicated to the problem of variable sele
tion for highly multivariate data related to single or multiple responses. CovSel onsists in an iterative pro
edure that looks like PLS-NIPALS algorithm. Thanks to the deflation operated at each step of the CovSel algorithm, it produces selections that can be relevantly used in classical multivariate modeling methods. The omparison of CovSel with stepwise multilinear regression in a mono-response case showed a better performance and a better stability for the proposed method. An appli
ation to a multi-response ase dealing with Near Infrared spe
trometry showed that CovSel performed well and that the variable selection was meaningful according to spectrocopy knowledge. A second application on wine variety discrimination from the spectra of berries showed that CovSel is also relevantly appli
able to dis
rimination problems.

### A
knowledgements

The authors are grateful to all assistan
e provided by Sylvie BUREAU from INRA "Sé
urité et Qualité des Produits d'Origine Végétale" INRA, Avignon (Fran
e)

### Referen
es

- [1] C. W. Huck, R. Maurer, G. K. Bonn, Quality control of liquid plant extracts in the phytopharma
euti
al industry in near infrared spe
tros
opy, in: A. M. C. Davis, R. Giangiacomo (Eds.), Near Infrared Spectroscopy : Proceedings of the 9th International Conference, NIR Publications, 2000, pp. 487-491.
- [2] G. Lachenal, Structural investigations and monitoring of polymerisation by nir spectroscopy, Journal of Near Infrared Spectroscopy 1-4 (1998) 299-306.
- [3] H. Martens, T. Naes, Multivariate Calibration, Wiley, New York, 1989.
- [4] M. Barker, W. Rayens, Partial least squares for discrimination., Journal of Chemometrics 17 (2002) 166-173.
- [5] P. C. JP. Gauchi, Comparaison of selection methods of explanatory variables in pls regression with application to manufacturing process data, Chemometrics and Intelligent Laboratory Systems 58 (2001) 171-193.
- [6] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research 3 (2003) 1157–1182.
- [7] D. Jouan-Rimbaud, B. Walczack, D. Massart, I. Last, K. Prebble, Comparison of multivariate methods based on latent ve
tors and methods based on wavelength selection for the analysis of near-infrared spectroscopic data, Analytica Chimica Acta 304 (1995) 285-295.
- [8] N. Benoudjit, D. François, M. Meurens, M. Verleysen, Spectrophotometric variable sele
tion by mutual information, Chemometri
s and Intelligent Laboratory Systems  $74$  (2004) 243-251.
- [9] V. Centner, D. luc Massart, O. E. Noord, S. de Jong, B. M. Vandeginste, C. Sterna, Elimination of uniformative variables for multivariate alibration, Anal. Chem. 68 (1996) 3851-3858.
- [10] R. Kohavi, G. H. John, Wrappers for feature subset selection, Artificial Intelligence 97 (1-2) (1997) 273-324.
- [11] R. Leardi, A. Lupiáñez, Genetic algorithms applied to feature selection in pls regression, Chemometri
s and Intelligent Laboratory Systems 41 (1998) 195207.
- [12] E. Llobetnext, O. Gualdrona, M. Vinaixaa, N. El-Barbrib, J. Brezmesa, X. Vilanovaa, B. Bouchikhib, R. Gomezc, J. Carrascoc, X. Correiga, Efficient feature selection for mass spectrometry based electronic nose applications selection, Chemometrics and Intelligent Laboratory Systems 85 (2007) 253-261.
- [13] N. R. Draper, H. Smith, Applied Regression Analysis, 3rd.ed, Wiley, New York, 1998.
- [14] M. C. U. Araujo, T. C. B. Saldanha, R. K. H. Galvao, T. Yoneyama, H. C. Chame, V. Visani, The successive projections algorithm for variable selection in spe
tros
opi multi
omponent analysis, Chemometri
s and Intelligent Laboratory Systems 57 (2) (2001)  $65-73$ .
- [15] A. Phatak, S. DeJong, The geometry of partial least squares, Journal of Chemometrics 11 (1997) 311-338.
- [16] S. Bureau, D. Ruiz, M. Reich, B. Gouble, D. Bertrand, J.-M. Audergon, C. M. Renard, Application of atr-ftir for a rapid and simultaneous determination of sugars and organic acids in apricot fruit, Food Chemistry 115  $(3)$   $(2009)$  1133 – 1140.
- [17] J. M. Roger, B. Palagos, S. Guillaume, V. Bellon-Maurel, Discriminating from highly multivariate data by fo
al eigen fun
tion dis
riminant analysis. application to nir spectra., Chemometrics and Intelligent Laboratory Systems  $79/1-2$  (2005) 31-41.
- [18] B. G. Osborne, T. Fearn, Near infrared spectroscopy in food analysis, John Wiley and Sons, N.Y., 1986.
- [19] P. C. Williams, K. Norris, Near infrared technology in the agricultural and food industries, American association of cereal chemistry Inc., St Paul - Minnesota, 1987.

### Appendix

### Proof of property 1 :

 $ArgMax \left( diag \left( \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X} \right) \right) = ArgMax_i \left( Max_{\mathbf{v},\mathbf{v}^2=1} \left( cov \left( \mathbf{x}_i, \mathbf{Y} \mathbf{v} \right)^2 \right) \right)$ 

• Proof 1 : Let  $m = \text{Max}_{\mathbf{v},\mathbf{v}^2=1} \left( \text{cov}(\mathbf{x}, \mathbf{Yv})^2 \right)$ 

Applying the Lagrange multipliers on  $F(\mathbf{v}) = \text{cov}(\mathbf{x}, \mathbf{Yv})^2$  yields :

$$
\frac{\partial}{\partial \mathbf{v}} \left( (\mathbf{x}^{\mathrm{T}} \mathbf{Y} \mathbf{v})^2 - \lambda (\mathbf{v}^2 - 1) \right) = 0
$$

$$
2 \mathbf{Y}^{\mathrm{T}} \mathbf{x} (\mathbf{x}^{\mathrm{T}} \mathbf{Y} \mathbf{v}) - 2\lambda \mathbf{v} = 0
$$

$$
(\mathbf{Y}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{Y}) \mathbf{v} = \lambda \mathbf{v}
$$

$$
(\mathbf{Y}^{\mathrm{T}} \mathbf{x}) (\mathbf{Y}^{\mathrm{T}} \mathbf{x})^{\mathrm{T}} \mathbf{v} = \lambda \mathbf{v}
$$

Then, m is the largest eigenvalue of the q-square matrix  $(Y^{T}x)(Y^{T}x)^{T}$ .

• Proof 2 : Let  $\bf{u}$  be a non nul vector. The matrix  $\bf{uu}^T$  has only one non nul eigenvalue  $\lambda = \mathbf{u}^{\mathrm{T}} \mathbf{u}$ 

We have :  $\text{rank}(\mathbf{u}\mathbf{u}^T) = 1$ , then  $\mathbf{u}\mathbf{u}^T$  has only one non nul eigenvalue.

Moreover, the tra
e of a matrix equals the sum of its eigenvalues. Then, we have :

$$
\lambda = \text{trace}(\mathbf{u}\mathbf{u}^{\mathsf{T}})
$$

$$
\lambda = \sum_{i} u_i^2 = \mathbf{u}^{\mathsf{T}} \mathbf{u}
$$

• Finally, combining proof 1 and 2, with  $\mathbf{u} = \mathbf{Y}^T \mathbf{x}$ , yields :

$$
\mathbf{x}^{\mathrm{T}}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\mathbf{x}=\mathrm{Max}_{\mathbf{v},\mathbf{v}^2=1}\left(\mathrm{cov}\left(\mathbf{x},\mathbf{Y}\mathbf{v}\right)^2\right)
$$

And onsequently :

$$
ArgMax \left( diag \left( \mathbf{X}^{\mathsf{T}} \mathbf{Y} \mathbf{Y}^{\mathsf{T}} \mathbf{X} \right) \right) = ArgMax_i \left( Max_{\mathbf{v},\mathbf{v}^2=1} \left( cov \left( \mathbf{x}_i, \mathbf{Y} \mathbf{v} \right)^2 \right) \right)
$$

### Table 1

Analogy between PLS and CovSelmethod.



### Table 2

 $\lambda$  (nm) moisture oil protein starch assignement 1100  $\times$   $\times$   $\times$   $\times$   $\times$  baseline 1190  $\times \times \times$  oil ([18]) 1306  $\times$   $\times$  $1428$   $\times$   $\times$   $\times$  starch ([19])  $1500$   $\times$  NH ([18])  $1592$   $\times$   $\times$   $\times$   $\times$ 1718  $\times \times \times \times \times \times$  oil ([19]) 1886  $\times$   $\times$   $\times$   $\times$ 1940  $\times$   $\times$   $\times$   $\times$   $\times$  water 2106  $\times$   $\times$   $\times$  starch ([18], [19]) 2204  $\times$   $\times$   $\times$   $\times$ 2250 × × × star
h ([18℄) 2306  $\times \times \times \times \times \times$  oil ([19]) 2388  $\times$   $\times$ 2498  $\times \times \times \times \times \times \times \times$  baseline

Corn: Summary of the sele
ted wavelengths for the 4 models.

### Table 3

Wine grapes: onfusion matrix of the model built with 8 variables and applied to the test set.





Fig. 1. Typi
al urves of the evolution of varian
e explained by CovSel applied to simulated data.  $\bf{X}$  is made up of 100 lines and 20 columns;  $\bf{Y}$  is made up of 100 lines and <sup>3</sup> olumns. Left: X variables are independent. Right: X variables are dependent. Top: no relationship between  $X$  and  $Y$ . Bottom: Y is built by a linear combination of 10 variables de  $\boldsymbol{\mathrm{X}}$  and noise addition.



Fig. 2. Apricot: Evolution of the RMSEV distribution according to the dimension of the model based on CovSel selection  $(k = 1 \cdots 30)$  and RMSEV distribution of SLMR models ( $p < 0.1$  and  $p < 0.01$ ). Each boxplot represents the distribution for the 100 trials



Fig. 3. Apricot: Evolution of the distribution of the model norm according to the dimension of the model based on CovSel selection  $(k = 1 \cdots 30)$  and distribution of the SLMR model norm  $(p < 0.1$  and  $p < 0.01$ ). Each boxplot represents the distribution for the 100 trials



Fig. 4. Apricot: Selections performed by SMLR, p<0.1 (top) and by CovSel (bottom) on the whole data set, superimposed to the mean spectrum.



Fig. 5. Illustration of CovSel fun
tioning on the Corn dataset.



Fig. 6. Corn: Evolution of the cumulated sum of square (explained variance) as a function of the number of variables introduced by the covsel procedure



Fig. 7. Corn: Evolution of the SECV according to the number of CovSel steps.



Fig. 8. Corn: Prediction of moisture, oil, protein and starch contents.



Fig. 9. Wine grapes: evolution of calibration and cross-validation errors of the linear discriminant model, as a function of the number of CovSel steps.