

Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta

Alexandre Bouvet, Thuy Le Toan

▶ To cite this version:

Alexandre Bouvet, Thuy Le Toan. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 2011, 115 (4), pp.1090-1101. 10.1016/j.rse.2010.12.014 . hal-00563142

HAL Id: hal-00563142 https://hal.science/hal-00563142v1

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	USE OF ENVISAT/ASAR WIDE-SWATH DATA
2	FOR TIMELY RICE FIELDS MAPPING IN THE MEKONG RIVER DELTA
3	
4	Alexandre Bouvet ⁽¹⁾ , Thuy Le Toan ⁽¹⁾
5	
6	(1) Centre d'Etudes Spatiales de la Biosphère (CESBIO)
7	18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France
8	Email: Alexandre.Bouvet@gmail.com
9	

10 Abstract:

11 Because of the importance of rice for the global food security and because of the role of 12 inundated paddy fields in greenhouse gases emissions, monitoring the rice production world-13 wide has become a challenging issue for the coming years. Local rice mapping methods have 14 been developed previously in many studies by using the temporal change of the backscatter from 15 C-band synthetic aperture radar (SAR) co-polarized data. The studies indicated in particular the 16 need of a high observation frequency. In the past, the operational use of these methods has been 17 limited by the small coverage and the poor acquisition frequency of the available data (ERS-1/2, 18 Radarsat-1). In this paper, the method is adapted for the first time to map rice at large scale, by 19 using wide-swath images of the Advanced SAR (ASAR) instrument onboard ENVISAT. To 20 increase the observation frequency, data from different satellite tracks are combined. The 21 detection of rice fields is achieved by exploiting the high backscatter increase at the beginning of 22 the growing cycle, which allows the production of rice maps early in the season (in the first 50 23 days). The method is tested in the Mekong delta in Vietnam. The mapping results are compared

to existing rice maps in the An Giang province, with a good agreement (higher than 81%). The rice planted areas are retrieved from the maps and successfully validated with the official statistics available at each province ($R^2=0.92$). These results show that the method is useful for large scale early mapping of rice areas, using current and future C band wide-swath SAR data.

28

29 I. INTRODUCTION

30

31 Rice is the staple food for more than half of humanity. Global rice production has increased 32 continuously in the last half-century, since the Green Revolution. In the same period, the use of 33 chemical inputs, the introduction of modern high-yielding varieties with short growing cycles, 34 and the increased access to machinery and irrigation systems have led to a linear growth of the 35 crop yields (+0.05ton/ha/year) according to the FAO (Food and Agriculture Organization of the 36 United Nations 2009) as well as to an increase of the number of crops per year. This higher 37 cropping intensity (from single to double or triple crop) together with the conversion of non-38 arable land to arable land have resulted in a drastic increase of rice harvested areas in the 60s 39 and 70s (+1.4Mha/year) which slowed down in the 80s and 90s (+0.46Mha/year) and has tended 40 to stabilize over the last ten years as a result of approaching the limits of land use and of 41 cropping intensity, however with a large inter-annual variability due to climatic conditions and 42 socio-economic factors. As both the increase in yield and in planted areas will be facing 43 limitations in the next decades, it is unlikely that rice production can keep increasing at the same 44 rate. Meanwhile, world population, and therefore demand for food, has increased linearly over 45 the last fifty years (+80M/year), and is projected to keep growing until around 2050 up to 9 46 billion inhabitants (United Nations Department of Economic and Social Affairs, Population 47 Division 2004). This conjuncture is prone to create tensions in food markets that could lead to 48 world food price crises - as in April 2008 when the price of rice has more than doubled in only 49 seven months - and eventually to famines. In this context of price instability and threatened food 50 security, tools to monitor rice production in real-time are highly needed by governments, traders 51 and decision makers.

52 Moreover, rice agriculture is strongly involved in various environmental aspects, from water 53 management to climate change due to the high emissions of methane. For this reason, a longer-54 term inter-annual monitoring is also required in order to study the impact of the changes in rice 55 areas and in cultural practices that are likely to occur in the next years to face the economic and 56 environmental context.

57 Satellite remote sensing data offer a unique possibility to provide frequent and regional to 58 global-scale observations of the Earth over a long period (the lifespan of a satellite is around 10 59 years, and satellites are launched regularly to provide continuity in the data).

60

61 Optical sensors are seriously limited by frequent cloud cover in tropical and sub-tropical areas 62 where rice is grown in majority. A study combining agricultural census data and a large dataset 63 of Landsat TM imagery allowed producing maps of the distribution of rice agriculture in China 64 at a 0.5° spatial resolution (Frolking et al. 2002). However, to achieve the coverage of such a 65 large area with high-resolution (30m) optical images, a consequent amount of data (520 scenes) 66 had to be collected over a period of two years, which makes the method unsuitable for the 67 production of timely statistics or yearly results. Because of the need of a high temporal 68 observation frequency to get enough cloud-free images, a frequent global coverage can be 69 ensured only through the use of medium resolution (around 250m-1km) sensors, such as the

70 MODerate resolution Imaging Spectrometer (MODIS), VEGETATION, or the MEdium 71 Resolution Imaging Spectroradiometer (MERIS). The joint analysis of time-series of vegetation 72 and water indices derived from these sensors, such as the Normalized Difference Vegetation 73 Index (NDVI), the Enhanced Vegetation Index (EVI), or the Normalized Difference Water 74 Index (NDWI), also known as the Land Surface Water Index (LSWI), exhibits a specific 75 temporal behaviour during flooding of rice paddies and transplanting of rice plants. This feature 76 has been exploited to map the spatial distribution of rice agriculture at large scales in China 77 using VEGETATION (Xiao et al. 2002a; Xiao et al. 2002b) and MODIS (Xiao et al. 2005), and 78 in South and South-East Asia using MODIS (Xiao et al. 2006). Although these methods have 79 produced very valuable outputs, none of them allows the retrieval of planted areas without the 80 use of ancillary data. Indeed, because of the large number of mixed pixels at such spatial 81 resolutions, the fractional cover of rice in each pixel classified as rice had to be estimated 82 through the use of high-resolution Landsat TM imagery (Xiao et al. 2002b; Xiao et al. 2005). 83 Also, in (Xiao et al. 2006), the cropping intensity had to be derived from national agricultural 84 statistics datasets, and the rice distribution in the Mekong River Delta was not properly reported 85 according to the authors, probably because the flood pattern misleads the rice detection 86 algorithm. The spatio-temporal distribution of rice phenology in the Mekong River Delta has 87 been accurately estimated by an harmonic analysis of EVI time profiles from MODIS 88 (Sakamoto et al. 2006). However, this method is not able to discriminate rice from other crops or 89 vegetation types, and a prior identification of rice fields - e.g. by existing databases - is therefore 90 needed.

Radar imaging systems, contrarily to optical sensors, have an all-weather capacity. The radar
data are also well adapted to distinguish rice from other land cover types because of the specific

93 response of the radar backscattering of inundated vegetation. The interaction between a radar 94 electromagnetic wave and vegetation involves mainly three mechanisms: the volume scattering, 95 the scattering from the ground attenuated by the vegetation canopy, and the multiple scattering 96 between the volume and the ground. The last term brings a negligible contribution compared to 97 the two others in the usual case of vegetation growing over non-flooded soils. However, in the 98 case of flooded fields such as rice paddies, this term becomes dominant when the plants develop 99 because of the double-bounce between the plant stems (which are the dominant scatterers in the 100 volume) and the water surface. This has been demonstrated by theoretical models for the case of 101 C-band co-polarized (HH or VV) backscatter at 23° incidence angle (Le Toan et al. 1997; Wang 102 et al. 2005). This volume-ground interaction (double-bounce) is responsible for the first of the 103 two main properties of the rice backscatter: the backscattering intensity at polarizations HH and 104 VV show a significant increase during the vegetative phase, right after the low values of the 105 flooding stage, and then decrease slightly during the reproductive phase until harvest. This 106 backscatter increase in rice fields was generally observed from ERS, RADARSAT-1 or ASAR 107 to be superior to 8 dB, and sometimes much more (Chakraborty et al. 2005; Chen et al. 2007; 108 Kurosu et al. 1995; Shao et al. 2001). Scatterometer measurements on an experimental paddy 109 field in Japan have shown that this high backscatter increase is observed not only at C-band but 110 also at X-band and L-band (Inoue et al. 2002). For L-band however, other studies demonstrated 111 that in the case of mechanically planted fields, this increase is smaller (3-4 dB) except in specific 112 configurations of the plant rows (orientation and spacing) where resonant scattering leads to 113 extreme backscatter increases of more than 20 dB (Rosenqvist 1999). This dependence on the 114 plant row configuration limits the usefulness of L-band data for operational applications at wide-115 scale.

The vertical structure of the rice plants is responsible for the second property of the rice backscatter: the vertically polarized wave is more attenuated than the horizontally polarized wave, and for that reason the ratio of the HH and VV backscatter intensities is higher than that of most other land cover classes, reaching values around 6-7dB according to a joint analysis of ERS and RADARSAT-1 data (Le Toan et al. 1997; Ribbes and Le Toan 1999) and to the modelling of C-band HH and VV (Le Toan et al. 1997; Wang et al. 2005). The same is observed at X-band (Le Toan et al. 1989).

123 The rice fields mapping methods based on SAR data that have been developed so far mainly rely 124 on these two properties of rice fields. The first property (high backscatter increase during rice 125 growing season) has been exploited in classification algorithms using the temporal change of co-126 polarized backscatter as a classification feature, mostly at C-band, in various Asian countries 127 (Chen and McNairn 2006; Le Toan et al. 1997; Liew et al. 1998; Ribbes and Le Toan 1999). 128 The second property (high HH/VV polarization ratio) has led to the development of methods 129 using this polarization ratio as a classification feature, at C-band in Vietnam (Bouvet et al. 2009) 130 and at X-band in Spain (Lopez-Sanchez et al. 2010). All these rice mapping schemes have 131 proven effective but have been applied only at local scales, with high resolution (less than 50 m) 132 data. The use of these methods and data to map rice on larger areas (regional to continental 133 scales) would require the acquisition and processing of a dissuasive amount of high resolution 134 data. The existence of wide-swath sensors in current (ASAR, RADARSAT-2, PALSAR) or 135 future (Sentinel-1, RISAT-1) systems opens the way to the adaptation of these methods to 136 medium-resolution (50-100m) data for the mapping of rice areas at large scale. However, no 137 satellite wide-swath data with dual-polarization HH and VV capability is available so far, so 138 only the methods based on backscatter temporal change can be considered.

The present study aims at developing an operational method for the early assessment of rice planted areas using medium-resolution wide-swath single-polarization SAR imagery, by exploiting the outstanding temporal behaviour of rice backscattering. Because of the limitations of L-band in mechanically planted fields and because of the absence of wide-swath sensors operating at X-band, we choose to use C-band data. Section II describes the test site and the data used in the study. The mapping method is developed in Section III. Section IV presents the mapping results and their validation.

146

147 **II. SITE AND DATA**

148

149 **A. Site description**

150 The study site is the Mekong Delta, the major rice-producing area in Vietnam. It produces more 151 than half of the rice in Vietnam, thus accounting for around 3% of the world production.

152 The Mekong Delta is a region constituted by 13 provinces in the southern tip of the country, 153 covering around 40000 km² (275km from North to South, 260km from West to East), where the 154 Mekong River approaches and empties into the South China sea through a network of nine main 155 distributaries. The topography is very flat, with most of the land below 5m. Figure 1 presents the 156 locations and names of the 13 provinces and the topography of the area from the Shuttle Radar 157 Topography Mission (SRTM) Digital Elevation Model (DEM). The climate is tropical (8.5°N-158 11°N in latitude), with the wet season starting in May and lasting until October-November, and 159 the dry season from December to April. Seasonal floods occur in a large part of the area, starting 160 in August in the upper Delta, then spreading to the lower Delta, peaking in September-October 161 and lasting until the beginning of December. The floods bring large amounts of silt that 162 contribute to the fertilization of the soil. The land is dedicated mostly to agriculture (63%), 163 aquaculture (17.7%) and forestry (8.9%) (General Statistics Office of Vietnam 2006), with the 164 agricultural land comprising predominantly rice paddies (76%), as well as orchards, sugarcane 165 and annual crops (General Statistics Office of Vietnam 2009). The delta is therefore a rural, but 166 very densely populated area, with 17.7 million inhabitants.

167

168

169 Figure 1. Map of the 13 provinces in the Mekong River Delta and topography from SRTM.

170

The rice cultivation pattern is quite complex. Originally, floating rice paddies were cultivated and, being dependent on rainfall and seasonal floods, only one crop of rice was harvested every year, during the wet season. However, in the last decades, the introduction of modern varieties, with higher yields and a shorter growth cycle, and technical components such as chemical 175 fertilizers, pesticides, machinery and low-lift pumps together with the development of canal
176 networks have led to the intensification of paddy agriculture, allowing to grow two or sometimes
177 three crops of rice per year (Tanaka 1995).

178 The land can be divided roughly into two ecological types: inland areas and coastal areas. Inland 179 areas are covered with a dense irrigation network and benefit from a fertile soil thanks to the 180 sediments brought by the floods, which allow double or triple-cropping of rice. They are formed by inland provinces: An Giang, Đồng Tháp, Cần Thơ, Hậu Giang, Vĩnh Long, the western part 181 182 of Tiền Giang, and Long An. Coastal areas are prone to salt intrusion in the dry season which 183 limits the soil fertility. The major cropping patterns are therefore single rice with shrimp farming 184 or double rice. This concerns part or all of the coastal provinces: Kiên Giang, Cà Mau, Bac Liêu, 185 Sóc Trăng, Trà Vinh and Bến Tre.

186

In inland areas, one crop of rice is grown during the dry season. This "Winter-Spring" rice (locally called "Đông Xuân") is planted in November-December and harvested between February and April. In the wet season, farmers grow one or two crops of rice. The "Summer-Autumn" crop (locally named "Hè Thu") is planted in April-early June and harvested in Julyearly August. When the fields are protected from seasonal floods (dykes have been built after the 2000 record floods), a second wet-season crop is grown. This "Autumn-Winter" rice (locally named "Thu Đông") is transplanted in August and harvested in November-December.

In coastal areas where saline intrusion limit the number of rice crops per year, one Summer-Autumn rice is grown and a second crop in the "Main wet season" (locally called "Mùa"), which is planted from July to August and harvested from November to February, i.e. with a variable calendar between early, medium and late fields.

198 Table 1 sums up the information related to these seasons. Rice seasons are numbered according

199 to their order of occurrence in the civil year.

200

Season		Vietnamese	Planting	Harvest	
number	English name	name	date	date	Distribution
1	Winter-Spring	Đông Xuân	Nov-Dec	Feb-Apr	inland
2	Summer-Autumn	Hè Thu	Apr-Jun	Jul-Aug	inland and coastal
3 a	Autumn-Winter	Thu Đông	Aug	Nov-Dec	inland
3b	Main wet season	Mùa	Jul-Aug	Nov-Feb	coastal

201 Table 1. Rice agricultural seasons in the Mekong Delta River

202

203

B. Statistical data

The mapping methods developed in this paper will be validated through the comparison of the planted areas retrieved from the remote sensing methods to the planted areas reported in the official national statistical data.

The statistical system in Vietnam is centralized. Statistical data are collected first at the commune level, and then aggregated at the district, province and finally country level by the corresponding statistics offices. For obvious practical reasons, most of the agricultural statistics are based on sampling at the district level, rather than on an exhaustive census. For the specific case of rice planted areas, a three-stage sampling is applied in each district, at the commune, village, and farming household levels. For the retained communes, enumerators report to the District Statistics Offices the rice planted areas in the fields owned by the selected farming households in the selected villages. The collected data are then forwarded to the Province Statistics Offices, and finally the General Statistics Office (GSO) (Food and Agriculture Organization of the United Nations 2002). Around 100000 farming households in the whole country are involved in the rice area sampling, out of a total of more than 9 million households that grow paddy (Food and Agriculture Organization of the United Nations 2002). This hierarchical acquisition scheme is very time- and resource-consuming. Moreover, its accuracy is intrinsically limited by the errors consecutive to the sampling.

222

The General Statistics Office publishes annual agricultural statistics for each of the 58 provinces and 5 centrally-controlled municipalities in Vietnam. For paddy rice agriculture, these statistics comprise planted area, production and yield. The different crops of rice are gathered into three categories: Spring (labelled as "Đông Xuân" in the Vietnamese database), Autumn ("Hè Thu") and Winter ("Mùa") seasons. The figures for each of these three seasons in 2007 for every province of the Mekong River Delta are presented in Table 2.

Table 2. Planted area of rice by province for the three rice seasons in 2007 from national
statistics

	Planted area in 2007 (ha)					
	Spring	Autumn	Winter			
Long An	234300	178800	15400			
Tiền Giang	83400	163400	0			
Bến Tre	20700	24200	34800			
Trà Vinh	49700	81100	93200			
Vĩnh Long	68500	89800	0			

Đồng Tháp	208400	238700	0
An Giang	230600	282700	7300
Kiên Giang	265300	266500	51200
Cần Thơ	92100	115800	0
Hậu Giang	79000	110300	0
Sóc Trăng	140700	158900	25900
Bạc Liêu	33900	53300	62600
Cà Mau	0	36000	87100
Total	1506600	1799500	377500

232

233

The correspondence between these three categories (Spring, Autumn, and Winter) and the agricultural seasons presented in the previous sub-section (Winter-Spring, Summer-Autumn, Autumn-Winter, and Main wet season) is not straightforward, and has to be discussed. The diversity of harvesting time and the differences in rice cropping patterns from the North to the South of Vietnam tend to make such a countrywide categorization irrelevant.

239

240 Figure 2 shows the proportion of each of the Spring, Autumn and Winter crops that are planted 241 in each province in 2007 according to the statistics. The inland provinces grow mostly Spring 242 and Autumn crops, with no or very few Winter crop, which seems paradoxical at first sight as 243 triple-cropping is practised in these regions. The planted area for Autumn rice is higher than for 244 Spring rice in the statistics, while in reality, the Winter-Spring and Summer-Autumn planted 245 areas are similar, with the Autumn-Winter coming as an optional third crop in a small number of 246 fields. Therefore, it can be assumed that in the inland provinces, the Spring statistical category 247 accounts for the Winter-Spring crop, and the Autumn category for the sum of the Summer248 Autumn and Autumn-Winter crops. Reversely, the coastal provinces grow the three kinds of rice 249 (except Cà Mau with no Spring rice), while the dominant patterns are single and double-250 cropping, with marginal areas growing irrigated triple-rice, especially in Soc Trang. It can then 251 be inferred that, in the coastal provinces, the Spring category represents the Winter-Spring rice, 252 the Autumn category corresponds to the Summer-Autumn rice and the Winter category gathers 253 the main wet season (Mua) from the double-rice pattern and the Autumn-Winter season from the 254 triple-rice pattern. Therefore, it seems that the three rice seasons described in the statistics do not 255 cover the same categories in the coastal provinces and in the inland provinces. Table 3 gives a 256 synthetic view of the supposed correspondence between these seasons from the statistical 257 database and the agricultural seasons from Table 1.

258

Figure 2. Proportion of Spring, Autumn and Winter rice planted in each province in 2007.

261	Table 3.	Correspondence	between	seasons	from	the	statistical	database	and	agricultı	ıral
262	seasons.										

English	Vietnamese	Correspondence with agricultural seasons			
name	name	Inland provinces	Coastal provinces		
Spring	Đông Xuân	1	(1)		
Autumn	Hè Thu	2 + 3a	2		
Winter	Mùa	(3b)	(3a) + 3b		

263

264

265 C. ASAR APP rice seasons map for An Giang province data

266 In a previous work (Bouvet et al. 2009), maps of the rice planted areas have been produced at a 267 spatial resolution of 30m for the three rice seasons in 2007 in the province of An Giang. These 268 maps have been obtained by applying a 3dB threshold on the polarization ratio HH/VV on a 269 time-series of ASAR Alternating Polarization Precision image (APP) data at incidence IS2 270 (19.2°-26.7°). The results have been validated using a land-use Geographic Information System 271 (GIS) database covering one district, leading to a pixel-based accuracy of 89.9%. Moreover the 272 estimated rice area in the Winter-Spring season for the whole province (229694 ha) has been 273 compared to the preliminary statistics from the GSO (224273 ha), with a 2.4% difference 274 between the two figures.

These maps will be used complementarily to the statistical data for further validation of the newmethods presented in this paper.

277

279 **D. ASAR WSM data**

The ASAR instrument is a C-band SAR instrument (5.6cm wavelength) onboard the European satellite ENVISAT, which was launched in 2002, with multiple resolution, incidence, and polarization ability. Among the five operating modes of ASAR (Image Mode, Alternating Polarization, Wide Swath Mode, Wave Mode and Global Monitoring), only the Wide Swath Mode, using the ScanSAR technique, offers a wide enough swath (around 400km) with a spatial resolution adapted to accurate regional monitoring (around 150m, with a pixel spacing of 75m). The incidence angle in each image ranges from 17° to 42°.

Extensive time-series of Wide Swath mode Medium resolution (WSM) data have been acquired during the year 2007 over the Mekong Delta, with polarization HH, in order to monitor rice agriculture by means of methods based on the backscatter temporal change.

290 Studies on the assessment of classification methods based on temporal change (Bouvet et al. 291 2010) and previous studies using RADARSAT (Ribbes and Le Toan 1999) have emphasized the 292 necessity of a high temporal observation frequency (e.g. around every ten days) to achieve 293 acceptable classification accuracy. The time lapse between repeat-pass orbits of ENVISAT is 35 294 days. In order to increase the observation frequency, data from three different satellite tracks 295 have been ordered: tracks 32 and 304 in descending pass and track 412 in ascending pass. Each 296 of the three tracks covers the delta entirely, as can be seen in Fig. 3. The other tracks that would 297 have covered the whole area have been left for the acquisition of Alternating Polarization data.

299

Figure 3. Colour-composite image of three WSM data from the three acquired tracks, with ascending tracks 32 and 304 in red and green respectively, and descending track 412 in blue. The frames of the three tracks are presented in the corresponding colours.

The data acquisition sequence is the following: track 304, track 412, track 32 in intervals of respectively 7 and 9 days, followed by the next sequence 19 days later. Therefore, in this threetrack configuration, the biggest time-lapse between two consecutive observations is 19 days, with a mean acquisition interval of 11.7 days. The improvement is thus significant compared to the single track acquisition frequency of one image every 35 days.

309 Table 4 lists the available dates for the three tracks. Track 412 is the most complete, with all the

310 2007 satellite passes successfully acquired. The last acquisition for track 304 is missing, and the

311 dataset for track 32 is incomplete, with only 6 acquisitions.

312

313 Table 4. List of available dates in each track. Hyphens (-) indicate missing acquisitions.

304	412	32
9 January	16 January	-
13 February	20 February	1 March
20 March	27 March	5 April
24 April	1 May	10 May
29 May	5 June	14 June
3 July	10 July	19 July
7 August	14 August	-
11 September	18 September	-
16 October	23 October	1 November
-	27 November	-

314

The acquisition dates of the three tracks are plotted in Fig. 4 together with the agricultural seasons of the rice calendar described in II.A

318

Figure 4. Rice calendar in the Mekong delta and dates of the available ASAR WSM data. For each rice crop, dashed lines represent the periods during which the beginning and the end of the crop can take place (spatial and interannual variability).

322

323 The conditions under which observations from different looking angles can be used together are324 discussed in the next section.

The pre-processing of the WSM data is done with the Gamma GEO software (Gamma Remote Sensing, Switzerland) and consists in the calibration of the SAR data and its geocoding with the elevation data from the DEM of SRTM at 3 arcseconds, and projected to lat/lon coordinates at the resolution of SRTM, corresponding to around 92m per pixel in latitude and longitude.

- 329
- 330
- 331
- 332
- 333

334 III. MAPPING METHOD

335

336 A. Rationale

337 The principle of this rice mapping method is to detect rice areas through the increase of their co-338 polarized backscatter intensity between two repeat-pass acquisitions when the first acquisition 339 occurs at the flooding stage, i.e. when the backscatter is low because of the specular reflection 340 over water, and the second acquisition occurs when the rice plants have started to grow, i.e. 341 when the double-bounce provides high backscatter. Other classes are expected to remain 342 relatively stable in comparison. The method has already proven effective at 23° incidence and 343 HH or VV polarizations in past studies. The innovative aspect relies here in the use of multi-344 track acquisitions to increase the observation frequency and in the use of wide-swath data to 345 ensure a regional coverage. For each pixel, the local incidence angle is different for the three tracks, and within one image, the incidence angles varies from 17° in the near range to 42° in the 346 347 far range. The conditions under which such heterogeneous data can be used together have to be 348 examined so as to develop a classification method that is invariant to the temporal and spatial 349 variation in the incidence angle. The scatterometer measurements presented in (Inoue et al. 2002) and already mentioned in the introduction have been conducted at 25°, 35°, 45° and 55° 350 351 incidence. This study has shown that the value of C-band HH backscatter changes with the 352 incidence for a given phenological stage. A classification feature based on the value of the 353 backscattering intensity is thus unsuitable for the case of wide-swath data from different tracks. 354 For example, the detection of flooded fields by applying a threshold on the HH images to 355 identify the low backscatter areas would not be relevant because the threshold would have to 356 change with the local incidence angle within an image and between tracks. However, the 357 backscatter increase from flooding and transplanting to heading exceeds 9dB under any 358 incidence angle. A classification feature based on a measurement of the temporal increase of 359 backscatter between two consecutive acquisitions within a single track would therefore be 360 efficient to map rice regardless of the track and regardless of the location of the pixel in the 361 image. The temporal change is preferably measured by the ratio of intensities between two dates 362 (i.e. the difference in dB) rather than by the difference of intensities, the latter producing larger 363 classification errors in regions with a high backscatter than in regions with a low backscatter, 364 contrarily to the former for which the classification error is independent on the backscatter 365 intensity (Rignot and van Zyl 1993). Multi-track and multi-temporal classification features based 366 on the combination of temporal intensity ratios will therefore be developed in this paper for the 367 detection of rice fields.

368

369 **B. Algorithm description**

Computing the ratio of two SAR intensity images enhances the incertitude due to speckle. It is therefore necessary to reduce the speckle noise before producing ratio images. In this study, the backscatter images have been spatially filtered using an enhanced Lee filter (Lopes et al. 1990) implemented in the ENVI software (ITT Visual Information Solutions), with a 5×5 window size. The initial number of looks of the data is 3 in azimuth and 7 in range. The equivalent number of looks, defined as mean²/variance, is calculated to be around 12 in the geocoded WSM images, and around 150 in the filtered images.

Figure 5 is a synoptic view of the different steps involved in the mapping algorithm, which willbe described in the following sub-sections.

Figure 5. Synoptic view of the mapping algorithm.

381

380

Out of the twenty-five WSM images available in 2007, temporal change (TC) images are created by computing the ratio between two spatially filtered backscatter intensity images acquired within a track and separated by one satellite repeat pass (35 days): TC=HH_{d+35}/HH_d. These TC images compose a multi-track dataset of twenty-one images: eight from track 304, nine from track 412, and four from track 32.

387 The mapping algorithm consists in applying a threshold on these TC images in order to detect 388 the rice fields that are flooded at the corresponding dates, characterized by their post-flooding 389 backscatter increase. To detect all the rice areas planted during one season, one single TC image 390 may however not be enough, because of shifts in the planting calendar, even within a province. 391 The rice maps retrieved from the TC images must therefore be aggregated to produce seasonal 392 maps. This is equivalent to applying the threshold directly on a seasonal temporal change (STC) 393 classification feature, made up by taking the maximum value of the TC images among the dates 394 corresponding to each season. The next sub-sections discuss how the threshold should be 395 chosen, and how the dates corresponding to each season and each province can be selected. The 396 study will be conducted for Season 2 and Season 3 only, as the complete mapping of Season 1 397 (Winter-Spring) would require data from the end of 2006.

398

399 C. Defining the value of the classification threshold

400 Under the assumption of gamma distributed SAR intensities and uncorrelated images, a 401 theoretical expression of the optimal classification threshold t_{opt} can be found for the two-class 402 problem - a rice class and a non-rice class - when the classification feature is a single TC image 403 (Bouvet et al. 2010):

04
$$t_{opt} = \sqrt{TC_{nr}TC_{r}} \cdot \frac{\sqrt{\frac{TC_{r}}{TC_{nr}}} \left(\frac{p(nr)}{p(r)}\right)^{\frac{1}{2L}} - 1}{\sqrt{\frac{TC_{r}}{TC_{nr}}} - \left(\frac{p(nr)}{p(r)}\right)^{\frac{1}{2L}}}$$
(1)

4

405 where nr and r denote respectively the non-rice and the rice classes, and p(nr) and p(r) denote the 406 a priori probabilities of the non-rice class and of the rice class, i.e. the percentage cover of non-407 rice and rice in the landscape. TCnr and TCr represent the mean temporal change <HH_{d+35}>/<HH_d> of the non-rice and the rice classes (TC_r>TC_{nr}), and L is the number of looks 408 409 of the images (or the equivalent number of looks in case of filtered images). Ground-truth 410 information is required to assess the values of p(nr), p(r), TC_{nr} and TC_r, and consequently the 411 threshold t_{opt} to use in the classification. It is shown that the class parameters TC_{nr} or TC_r are 412 linked by a simple relationship to TC_{max,rr} and TC_{max,r}, which are the values where the 413 probability density functions (pdf) of TC for the corresponding class is the highest, e.g. for the 414 non-rice class:

415
$$TC_{nr} = \frac{L+1}{L-1}TC_{\max,nr}$$
(2)

416 and likewise for the rice class.

417 For the case of STC images, equations (1) and (2) do not apply strictly because the pdf of STC is different from the pdf of TC. However, as the pdf of STC cannot be expressed theoretically and 418 419 is not expected to differ much from that of TC, equations (1) and (2) will be used on the STC. 420 In the present study, the rice maps retrieved in (Bouvet et al. 2009) from the APP dataset can be 421 used as ground truth over the An Giang province to calculate p(nr), p(r), and to plot the 422 histograms of STC for the rice and the non-rice classes, for Season 2 (Summer-Autumn) and 423 Season 3 (Autumn-Winter), in order to estimate STC_{max,nr} and STC_{max,r}. The proportion of rice 424 p(r) calculated in the APP maps is 62.7% for Season 2 and 20.6% for Season 3. The normalized 425 histograms of these seasonal classification features are plotted in Fig. 6 for the two considered 426 classes, based on the pixels identified as rice or non-rice in the maps derived from APP, which 427 have been spatially degraded and projected to the geocoded WSM data. These normalized 428 histograms estimate the pdf of STC for the two classes. The STC_{max} parameters are assessed for 429 each class by identifying the STC value where the histogram is maximal, and the STC_r and 430 STC_{nr} class parameters are retrieved using equation (2). The values corresponding to the optimal 431 classification threshold topt for Summer-Autumn and Autumn-Winter are then found from (1) to 432 be respectively 4.49dB and 4.53dB.

Figure 6. Histograms of the STC classification features for Season 2 (left) and Season 3 (right),
for the rice class (red) and the non-rice class (blue). Vertical dashed black lines represent the
theoretical optimal classification threshold t_{opt} retrieved from the histograms.

438

434

439 In most applications, no such extensive ground truth data is available. Quite commonly, the 440 location of a few sample areas of rice and non-rice are known and allow an approximate 441 estimation of STC_{nr} and STC_{r} . The class proportions, p(nr) and p(r), remain however generally 442 unknown and have to be assumed to be equal to 0.5, which leads to a simplified expression of the optimal threshold: $t_{opt} = \sqrt{STC_{nr}STC_r}$. In less favourable cases when no ground 443 444 information is available at all, like here in the other provinces of the Mekong delta, the 445 theoretical value of the optimal classification threshold cannot be retrieved. In that case, the only option is to use values from literature. Previous studies have suggested a threshold of 3dB (Le 446 447 Toan et al. 1997; Liew et al. 1998; Ribbes and Le Toan 1999), which can be used as a baseline 448 algorithm. This value is significantly lower than the values around 4.5 dB found for An Giang. 449 Figure 7 presents the pixel-based classification accuracy for the An Giang province, calculated from the APP-derived maps, as a function of the retained classification threshold, with a particular focus on the true optimal threshold, leading to the maximal accuracy, and on the 3dB threshold. The figure indicates that, for this dataset, a relatively wide range of threshold values -roughly between 3dB and 5dB in Summer-Autumn, and between 3dB and 7dB in Autumn-Winter - lead to similarly high pixel-based accuracies. In particular, the use of the baseline algorithm (3dB threshold) leads to only slightly suboptimal results, with an additional error of about 2% compared to the optimal accuracy. It was therefore chosen to use the 3dB threshold for the mapping of rice areas over the whole Mekong delta.

Figure 7. Classification accuracy as a function of the retained classification threshold for season
 2 (left) and season 3 (right) in An Giang province. The true optimal threshold t_{opt}, leading to the
 maximal accuracy, is calculated and plotted in dashed line, and the baseline 3dB threshold and
 corresponding accuracy are plotted in full bold line.

467 **D. Creating STC images**

Because of the lack of WSM images in the end of 2006, the first crop in 2007 - the Winter-Spring crop – cannot be mapped exhaustively. The study therefore focuses on the other rice seasons. One STC image is created for Season 2 (the Summer-Autumn crop) and another one for Season 3 (i.e. both the main wet season and the Autumn-Winter season because of their simultaneity).

473 In some areas with homogeneous cropping patterns, the simple knowledge of agricultural 474 calendars should be sufficient to select the TC images to be used for the production of the STC 475 images. For the case of the Mekong River Delta however, the variety of cropping patterns and 476 calendars between provinces has to be accounted for. Figure 8 shows intermediate rice maps 477 obtained by considering groups of up to three TC images acquired during a short period of time 478 and belonging to different tracks. The groups are composed of one TC image from track 412 479 together with the preceding TC image from track 304 (seven days before) and the following TC 480 image from track 32 (nine days later) when available, which corresponds to the lines in Table 4. 481 Pixels in white (values above the 3dB threshold for at least one of the TC images in the group) 482 therefore represent the paddy fields that are at the flooding stage around the indicated date. This 483 reflects well the complexity of the cropping patterns in the region, as at each date, flooded fields 484 are present somewhere in the delta. This enhances the need of a precise selection of the TC 485 images at the province level for the production of STC images.

Figure 8. Rice maps derived from nine groups of up to three TC images. Pixels in white represent the pixels with a TC value above the 3 dB threshold for at least one image in the group, and pixels in black with a TC value below the threshold for all the images in the group.

492 In this study, we chose to use time-series of NDVI as ancillary data to select the TC images. The 493 VGT-S10 products of the VEGETATION-2 instrument on-board SPOT-5 have been used. They 494 consist in 10-day syntheses of the four spectral bands of the instrument at a spatial resolution of 495 1km. The NDVI, which is the normalized difference of the near infrared and red reflectances, is 496 a proxy for the chlorophyll content within one pixel, and therefore for the live green vegetation. 497 The 36 VGT-S10 products of the year 2007 covering the Mekong Delta were downloaded and 498 processed to produce NDVI time-series. A cloud-removal filter inspired on the Best Index Slope 499 Extraction (BISE) algorithm (Viovy et al. 1992) was applied on the NDVI time-series. The dates 500 of local crop calendars are estimated by a visual interpretation of the vegetation cycles depicted 501 in the NDVI time-series at selected pure pixels among each province. A sufficient number of 502 pixels should be chosen to represent the cropping pattern diversity in each province (i.e. mainly 503 double and triple cropping) and the variety in each cropping pattern (from early to late crops).

504

505

506 IV. RESULTS AND DISCUSSION

507

508 A. Mapping results

A 3dB threshold is applied on the two STC images that have been created by keeping the maximum value of the TC images selected within each province for Season 2 and Season 3. The isolated rice pixels or the very small patches detected as rice (less than 40 pixels) are removed from the rice class because they are likely to be errors due to remaining speckle.

513 Figure 9 shows the rice maps obtained in the whole Mekong delta. The map depicts the areas 514 where rice is grown in Season 2 only in green, in Season 3 only in red, in both seasons in

515 yellow, and the areas where no rice is detected in black. As Season 1 is missing, it is reasonable 516 to assume that in inland provinces, the green areas actually correspond to double-rice patterns 517 and the yellow areas to triple-rice patterns. This map exhibits cropping patterns that are very 518 similar to those presented by (Sakamoto et al. 2006), which include coarser resolution rice maps 519 of 2002 and 2003 derived from MODIS and a land-use map of 2002 provided by the Sub-520 National Institute for Agricultural Planning and Projection of Vietnam. In particular, in An 521 Giang province, the WSM map illustrates the well-known expansion of triple-rice (labeled as 522 "both seasons" in this case) between 2002-2003 and 2007.

523 Table 5 lists the rice areas for both seasons calculated from these rice maps.

Figure 9. Rice map derived from the STC images for Season 2 and Season 3.

530 Table 5. Planted area of rice by province (in ha) for Season 2 and Season 3 retrieved from

531 the WSM data

	Season 2	Season 3
Long An	123461	23817
Tiền Giang	64666	39444
Bến Tre	24531	8981
Trà Vinh	81179	54896
Vĩnh Long	66903	25465
Đồng Tháp	203720	32927
An Giang	263321	78725
Kiên Giang	257890	20120
Cần Thơ	73293	21586
Hậu Giang	56078	36819
Sóc Trăng	155938	28954
Bạc Liêu	67470	26635
Cà Mau	40155	795

532

533 **B. Validation**

534 A visual comparison of the rice maps in An Giang is presented in Figure 10 between the new 535 rice maps derived from WSM and the rice maps derived from APP data in a previous study. 536 Although the classification features in the two SAR methods are based on different physical 537 mechanisms, the results compare very well to each other, which demonstrates the robustness of 538 both methods for the identification of rice fields. The pixel-based accuracy, which corresponds 539 to the percentage of pixels that are classified in the same category (rice or non-rice) by the two 540 methods, is equal to 81.3% and 89.5% for Season 2 and Season 3 respectively. When 541 considering the joint mapping results at the two seasons, four classes are distinguished: no rice,

542 rice in Season 2 only, rice in Season 3 only, and rice in both seasons, similarly to the larger map 543 in Fig. 9. The normalized confusion matrix for the four classes, with the APP map considered as 544 reference data and the WSM map as classification data, is given in Table 6. Each cell in the table 545 contains the percentage of pixels in the scene that are classified in the class defined by its 546 column and by its line in the APP and WSM maps respectively. The overall classification 547 accuracy is therefore equal to the sum of the figures in the diagonal: 75.8%. Most of the 548 classification error is commission error, i.e. pixels classified as non-rice in the APP map are 549 classified as rice in the WSM map (mostly Season 2 and both seasons). Two sources of 550 commission are identified from Fig.10: a) a small part of the rivers are detected as rice by the 551 method based on WSM because the backscattering of water can change with wind conditions, 552 and b) with its coarser spatial resolution, the WSM map is not able to discriminate fine features 553 such as roads and channels between fields. As rivers, roads and channels do not change from 554 year to year, both causes of commission error can be tackled by masking these areas through the 555 use of a GIS land cover database for example.

556

559 Figure 10. Rice maps derived from the WSM dataset (left) and APP dataset (right) in An Giang

- 560 for Season 2 and Season 3 in 2007 (same legend as Figure 9).
- 561

558

562 **Table 6. Confusion matrix between classes derived from APP and WSM.**

			WSM					
		no rice	season 2	season 3	both seasons			
	no rice	19,57%	11,36%	1,51%	4,48%	36,92%		
APP	season 2	1,69%	39,45%	0,12%	1,23%	42,49%		
	season 3	0,09%	0,09%	0,03%	0,32%	0,52%		
	both seasons	0,34%	2,69%	0,33%	16,71%	20,07%		
		21,69%	53,58%	1,98%	22,74%			

563

The ability of the new mapping method to retrieve planted areas can be tested against the statistical data given by GSO. As suggested in Table 3, the planted areas given for the Autumn category in the statistics has to be compared to the sum of the planted areas retrieved by WSM for Season 2 and Season 3 in the inland provinces, and to the planted areas retrieved for Season 2 in the coastal provinces. The corresponding figures are plotted in Fig. 11. The two datasets show a very good agreement ($R^2=0.92$) with a root mean square error of 26000 ha per province.

Figure 11. Retrieved rice planted areas per province (in ha) for season 2 (coastal provinces) and the sum of Season 2 and Season 3 (inland provinces) vs. statistical rice planted areas in Autumn. The blue line represents the linear regression between the two datasets.

C. Discussion

As can be seen from Fig. 11, the area estimation is excellent in coastal provinces and a bit less good in inland provinces. One possible reason for this difference could be that the assumption that the Autumn category from the statistical database contains Season 2 and Season 3 in inland provinces is not totally valid. There might be differences between inland provinces in the definition of seasons by the General Statistics Office. This must not however hide the fact that true sources of error exist. Some sources of error can lead to an overestimation (up to 59000ha in An Giang) or an underestimation (up to 59000ha in Tiền Giang) of the rice planted areas. These sources include the effect of mixed pixels, commission errors (non-rice areas classified as rice) and omission errors (rice areas classified as non-rice).

587 Several types of land use can exhibit a high backscatter increase under certain conditions, thus 588 generating commission errors. These cases can generally be easily discarded by a more detailed 589 analysis of the available SAR time-series. For example, in the Mekong River Delta, a rapid 590 increase in backscatter can happen locally when the seasonal flood recedes, or over permanent 591 water areas (lakes, rivers) because of the wind, resulting in an erroneous detection of rice. The 592 seasonal flood should be relatively easily spotted by detecting low backscatter values during 593 several consecutive repeat-pass acquisitions. Permanent water areas on the other hand can be 594 masked out by applying a threshold on the mean backscatter within a SAR time-series. In the 595 rice growing regions where another major crop is grown (e.g. wheat), confusion could also occur 596 when one image is acquired before harvest and the next one after harvest, which could result in a 597 backscatter increase. But in most cases these crops are not grown simultaneously to rice so the 598 confusion can be avoided by selecting the relevant acquisition dates.

599 The effect of mixed pixels is more important and is directly related to the spatial resolution of 600 the imagery data. In the study area, the agricultural landscape is composed of large surfaces of 601 rice fields separated by smaller non-rice elements such as roads, irrigation channels, dwellings, 602 or vegetable patches, especially in the irrigated areas in the inland provinces. Consequently, 603 many pixels classified as rice actually contain a small proportion of non-rice surface. The

reverse is not true, so mixed pixels globally lead to an overestimation of rice planted areas. This
overestimation is more important at coarser resolutions, and has already been illustrated in Fig.
10 for the An Giang province.

The area overestimation due to mixed pixels should also be present in other provinces, but it is not observed in Fig.11. It can be supposed that this overestimation may be at least partially compensated by other error sources that lead to area underestimation, i.e. omission errors. This can happen when SAR data are missing during the few days when the fields are flooded. This is most likely to have happened here for Season 3, when no data could be acquired in track 032.

612 For the extreme case of Tien Giang, another factor may be involved. The NDVI time-series of 613 three representative selected pixels in the province are plotted in Fig. 12, after smoothing with a 614 central moving average. They all describe a triple-cropping pattern. The green and blue profiles 615 are typical of the well-known Winter-Spring/Summer-Autumn/Autumn-Winter pattern. In the 616 contrary, the red profile differs from this planting scheme, with a peculiar "Spring-Summer" 617 crop (locally named "Xuân Hè") inserted between the Winter-Spring and Summer-Autumn 618 seasons, and no Autumn-Winter crop as the area is reached by the seasonal floods in October-619 November. This Winter-Spring/Spring-Summer/Summer-Autumn pattern is reported in (Tanaka 620 1995), only in Tiền Giang province. This minor pattern may be badly detected in the STC 621 images designed for Season 2 and Season 3, and the attribution of each of its three crops to the 622 statistical categories (Spring, Autumn, Winter) is unknown. These two effects combined can 623 explain part of the discrepancies between the WSM and statistical figures in Tien Giang.

datasets. The effect of the spatial and temporal variation of the incidence angle within the dataset is tackled by using exclusively temporal change images, which are intensity ratio images of two consecutive acquisitions in the same track. This allows increasing significantly the observation frequency and the size of the mapped areas compared to the former methods using single-track narrow-swath datasets. The study has been conducted in the Mekong River Delta, where rice fields have been mapped over the whole delta for two crops in 2007 (Season 2 and Season 3), using ASAR WSM data. Comparison with a rice map of An Giang province produced with finer-resolution data has shown that the rice detection is very effective with the new methods.

643 Regarding area estimation, an excellent correlation has been obtained when comparing the 644 planted areas retrieved from the rice maps to the planted areas reported in the official statistics. 645 However, this positive result is likely to be due partly to error compensation between 646 overestimation and underestimation sources. As such, the operational use of this method for an 647 accurate area estimation of rice fields should be considered only within an integrated scheme 648 involving other data sources. In well-monitored areas where detailed GIS-based land cover maps 649 are available, which is increasingly common, the method can be applied to the sole pixels known 650 to be agricultural areas in order to reduce commission errors and limit the effect of mixed pixels. 651 In that case, the method can be used as a tool to update this GIS land cover database globally 652 and in near-real time much more effectively than by field investigations. Such operational 653 systems can be based on the data provided by the two existing C-band SARs providing wide-654 swath data, namely ENVISAT/ASAR and RADARSAT-1 and 2. The limiting factor in this case 655 would be data availability. Given the large choice of operating modes for these sensors, 656 acquisition conflicts between users are very frequent and make it difficult to obtain consistent 657 time-series. For example, in this study, it has been possible to use only three satellite tracks, 658 while under these latitudes, each part of the Earth surface can be observed by 6 tracks in 659 ascending pass and 6 in descending pass, which makes a potential observation interval of about 660 3 days. The effective acquisition of this data would require dedicated strategies from the space 661 agencies. In the future, the Sentinel-1 satellite (planned for launch by the European Space Agency around 2012) should be able to solve this problem, and is therefore a very promisingtool for the operational application of the rice mapping method developed in this article.

Although tested here only in the Mekong River Delta, the method should be efficient in every rice-growing region, as long as a flooding stage is present. New farming practices have developed in the last years in Vietnam, consisting in direct sowing of germinated seeds on wet soil rather than transplanting of young plants in flooded fields. In that case still, fields are flooded a few days after sowing, so the mapping method is still valid, but as the flooding period is reduced, the need of frequent imagery acquisitions is even harsher.

As the method is based on the detection of an event that occurs at the beginning of the rice growing cycle, it is well-suited to the early assessment of cultivated areas. Therefore, if successfully applied on an operational basis, it would be potentially very useful to national statistics officers, decision makers and rice trade professionals.

- 674
- 675

676 ACKNOWLEDGEMENT

677 The ENVISAT/ASAR data used in this study were provided by the European Space Agency678 (Cat-1 AO project 697).

679

680 **REFERENCES**

681

Food and Agriculture Organization of the United Nations, "General status of the system of food
and agriculture statistics in Viet Nam", <u>http://www.faorap-</u>
apcas.org/vietnam/No2 VNM 1.pdf

685 United Nations Department of Economic and Social Affairs, Population Division, "World 686 population to 2300",

687 http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf

- 688 General Statistics Office of Vietnam, "Structure of used land by province",
- 689 <u>http://www.gso.gov.vn/default_en.aspx?tabid=466&idmid=3&ItemID=6135</u>
- 690 General Statistics Office of Vietnam, "Agriculture, Fishery and Fishery Statistical Data",
 691 <u>http://www.gso.gov.vn/default_en.aspx?tabid=469&idmid=3</u>
- Food and Agriculture Organization of the United Nations, "FAOSTAT",
 http://faostat.fao.org/site/567/default.aspx
- Bouvet, A., Le Toan, T., Floury, N., & Macklin, T. (2010). An end-to-end error model for
 classification methods based on temporal change or polarization ratio of SAR intensities.
 IEEE Transactions on Geoscience and Remote Sensing, 48, 3521-3538
- 697 Bouvet, A., Le Toan, T., & Lam Dao, N. (2009). Monitoring of the Rice Cropping System in the
- Mekong Delta Using ENVISAT/ASAR Dual Polarisation Data. *IEEE Transactions on Geoscience and Remote Sensing*, 47, 517-526
- Chakraborty, M., Manjunath, K.R., Panigrahy, S., Kundu, N., & Parihar, J.S. (2005). Rice crop
 parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data.
 ISPRS Journal of Photogrammetry & Remote Sensing, 59, 310-322
- 703 Chen, C., & McNairn, H. (2006). A neural network integrated approach for rice crop 704 monitoring. *International Journal of Remote Sensing*, 27, 1367-1393
- Chen, J., Lin, H., & Pei, Z. (2007). Application of ENVISAT ASAR data in mapping rice crop
 growth in Southern China. *IEEE Geoscience and Remote Sensing Letters*, *4*, 431-435

707	Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., & Qin, X. (2002).
708	Combining remote sensing and ground census data to develop new maps of the
709	distribution of rice agriculture in China. Global Biogeochemical Cycles, 16

- 710 Inoue, Y., Kurosu, T., Maeno, H., Uratsuka, S., Kozu, T., Dabrowska-Zielinska, K., & Qi, J.
- 711 (2002). Season-long daily measurements of mulitifrequency (Ka, Ku, X, C, and L) and
- full-polarization backscatter signatures over paddy rice field and their relationship with
 biological variables. *Remote Sensing of Environment*, *81*, 194-204
- Kurosu, T., Fujita, M., & Chiba, K. (1995). Monitoring of rice crop growth from space using the
 ERS-1 C-band SAR. *IEEE Transactions on Geoscience and Remote Sensing*, *33*, 10921096
- Le Toan, T., Laur, H., Mougin, E., & Lopes, A. (1989). Multitemporal and dual-polarization
 observations of agricultural vegetation covers by X-band SAR images. *IEEE Transactions on Geoscience and Remote Sensing*, 27, 709-718
- 720 Le Toan, T., Ribbes, F., Wang, L.-F., Floury, N., Ding, K.-H., Kong, J.A., Fujita, M., & Kurosu,
- T. (1997). Rice crop mapping and monitoring using ERS-1 data based on experiment and
 modelling results. *IEEE Transactions on Geoscience and Remote Sensing*, *35*, 41-56
- Liew, S.C., Kam, S.-P., Tuong, T.-P., Chen, P., Minh, V.Q., & Lim, H. (1998). Application of
 multitemporal ERS-2 synthetic aperture radar in delineating rice cropping systems in the
 Mekong River Delta, Vietnam. *IEEE Transactions on Geoscience and Remote Sensing*,
 36, 1412-1420
- Lopes, A., Touzi, R., & Nezry, E. (1990). Adaptive speckle filters and scene heterogeneity.
 IEEE Geoscience and Remote Sensing Letters, 28, 992-1000

729	Lopez-Sanchez, J.M., Ballester-Berman, J.D., & Hajnsek, I. (2010). First results of rice
730	monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images.
731	IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in
732	press
733	Ribbes, F., & Le Toan, T. (1999). Rice field mapping and monitoring with RADARSAT data.
734	International Journal of Remote Sensing, 20, 745-765

- Rignot, E., & van Zyl, J. (1993). Change detection techniques for ERS-1 SAR data. *IEEE Transactions on Geoscience and Remote Sensing*, *31*, 896-906
- Rosenqvist, A. (1999). Temporal and spatial characteristics of irrigated rice in JERS-1 L-band
 SAR data. *International Journal of Remote Sensing*, 20, 1567-1587
- Sakamoto, T., Nguyen, N.V., Ohno, H., Ishitsuka, N., & Yokozawa, M. (2006). Spatio-temporal
 distribution of rice phenology and cropping systems in the Mekong Delta with special
 reference to the seasonal water flow of the Mekong and Bassac rivers. *Remote Sensing of Environment, 100*, 1-16
- Shao, Y., Fan, X., Liu, H., Xiao, J., Ross, S., Brisco, B., Brown, R., & Staples, G. (2001). Rice
 monitoring and production estimation using multitemporal RADARSAT. *Remote Sensing of Environment*, *76*, 310-325
- Tanaka, K. (1995). Transformation of rice-based cropping patterns in the Mekong Delta: From
 intensification to diversification. *Southeast Asian Studies*, *33*, 363-378
- Viovy, N., Arino, O., & Belward, A. (1992). The Best Index Slope Extraction (BISE): A
 method for reducing noise in NDVI time-series. *International Journal of Remote Sensing*, 13, 1585-1590

- 751 Wang, L.-F., Kong, J.A., Ding, K.-H., Le Toan, T., Ribbes-Baillarin, F., & Floury, N. (2005).
- 752 Electromagnetic scattering model for rice canopy based on Monte Carlo simulation.
 753 *Progress In Electromagnetics Research*, 153-171
- 754 Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J.Y., Salas, W., & Moore III, B. (2006). Mapping
- paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images.
 Remote Sensing of Environment, 100, 95-113
- Xiao, X., Boles, S., Frolking, S., Salas, W., Moore III, B., & Li, C. (2002a). Observation of
 flooding and rice transplanting of paddy rice fields at the site to landscape scales in
 China using VEGETATION sensor data. *International Journal of Remote Sensing, 23*,
 3009-3022
- Xiao, X., Boles, S., Frolking, S., Salas, W., Moore III, B., Li, C., He, L., & Zhao, R. (2002b).
 Landscape-scale characterization of cropland in China using Vegetation and Landsat TM
 images. *International Journal of Remote Sensing*, 23, 3579-3594
- 764 Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., & Moore III, B. (2005).
- 765 Mapping paddy rice agriculture in southern China using multi-temporal MODIS images.
- 766 *Remote Sensing of Environment*, 95, 480-492

767