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ABSTRACT

Most automatic speech recognition (ASR) systems incorpo-
rate a single source of information about their input, namely,
features and transformations derived from the speech signal.
However, in many applications, e.g., vehicle-based speech
recognition, sensor data and environmental information are
often available to complement audio information. In this pa-
per, we show how these data can be used to improve hybrid
DNN-HMM ASR systems for a vehicle-based speech recog-
nition task. Feature fusion is accomplished by augmenting
acoustic features with additional side information before be-
ing presented to the DNN acoustic model. The additional
features are extracted from the vehicle speed, HVAC status,
windshield wiper status, and vehicle type. This supplemen-
tary information improves the DNNs ability to discriminate
phonetic events in an environment-aware way without hav-
ing to make any modification to the DNN training algorithms.
Experimental results show that heterogeneous data are effec-
tive irrespective of whether cross-entropy or sequence train-
ing is used. For CE training, a WER reduction of 6.3% is
obtained, while sequential training reduces it by 5.5%.

Index Terms— Noise Robustness, Deep Neural Network,
Additional Feature for ASR, Condition-aware DNN

1. INTRODUCTION

Recently, there is a growing demand for distant speech input
for a variety of consumer products [1, 2], such as phone calls,
music and navigation while driving, robotic communication
systems, voice controls of mobile phones, or other portable
devices. However, the noise and reverberations in these envi-
ronments can dramatically degrade the performance of even
state-of-the-art ASR systems.

To improve ASR robustness, different approaches have
been investigated: Front-end methods include speech signal
pre-processing [3, 4, 5], robust acoustic features [6, 7]; back-
end methods include model compensation or adaptation [8],
and uncertainty decoding [9] etc.

Recently, deep neural networks (DNNs) have become a
competitive alternative to Gaussian Mixture Models (GMMs)

[10]. Many researchers have also reported different ways of
using DNNs to generate robust speech features. For example,
[7] investigated the effectiveness of DNNs for detecting artic-
ulatory features, which, combined with MFCC features, were
used for robust ASR tasks. Noise-aware training (NAT) was
proposed in [11] to improve noise robustness of DNN-based
ASR systems. It uses a crude estimate of noise obtained by
averaging the first and the last few frames of each utterance as
input to the DNN acoustic model. Similarly, [12] uses speech
separation to obtain a more accurate estimate of noise. In
the above prior work, the additional features are generally de-
rived from the speech signals, and there are limited studies on
utilizing existing environmental information.

In this paper, we investigate the benefit of using features
extracted from available heterogeneous data in addition to the
features derived from speech signals. In many ASR tasks,
e.g., vehicle-based speech recognition and robotic communi-
cation systems, various data from the motor sensors, devices
and camera sensor etc., are available, which may provide ad-
ditional clues for ASR. We propose a DNN-based method to
incorporate such information by augmenting the input speech
features with additional features extracted from the heteroge-
neous data.

We evaluate this approach using a vehicle-based speech
corpus consisting of 30 hours of data recorded from 113
speakers under a variety of conditions. The heterogeneous
data include vehicle speed, vehicle model, windshield wiper
and fan status, etc., which can be obtained in real time with-
out human supervision. We demonstrate that our proposed
approach successfully integrates these discrete and contin-
uous data, and that these data are helpful in improving the
robustness of the ASR system. Our experiments show that
the additional features can lead up to 6.3% WER reduction in
cross entropy training and 5.5% in sequence training, com-
pared to the baseline DNN-HMM hybrid systems.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our proposed Heterogeneous DNN system.
Section 3 introduces the dataset. Section 4 provides the exper-
iments and results. Finally conclusions are drawn in Section
5.
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2. SYSTEM DESCRIPTION

A DNN is a multi-layer perceptron with many hidden layers
between its inputs and outputs. In a modern DNN hidden
Markov model (HMM) hybrid system, the DNN is trained to
provide posterior probability estimates for the HMM states.
Starting with a visible input x, each hidden layer models the
posterior probabilities of a set of binary hidden variables h
given the input visible variables v, while the output layer
models the class posterior probabilities.

The networks are trained by optimizing a given training
objective function using the error back-propagation proce-
dure. For the DNNs in this work, we use two different loss ob-
jectives. One is Cross Entropy (CE), which minimizes frame
error. The other one is sequence-discriminative training us-
ing state-level minimum Bayes risk (sMBR) criterion, which
minimizes expected sentence error.

2.1. Speech Features
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Figure 1: Generation of our baseline/Type I features

performance of GMM-based systems usually deteriorates with
the investigated features.

The rest of the paper is organized as follows. In Section 2,
we describe our DNN training setup. In Section 3, we provide
details of the four types of features that we investigated. In
Section 4, we discuss our experimental setup, and present the
results in Section 5. Finally, we conclude in Section 6.

2. Our DNN training setup
Most of the details of our DNN setup are based on [10]. The
neural networks had 4 hidden layers. The output layer is a soft-
max layer, and the outputs represent the log-posterior of the out-
put labels, which correspond to context-dependent HMM states
(there were about 2600 states in our experiments). The input
features are either the standard 40-dimensional features in the
baseline case, or various higher-dimensional features that we
describe in this paper. The number of neurons in the hidden
layer is the same for all hidden layers, and is computed in order
to give a specified total number of DNN parameters (typically
in the millions, e.g. 10 million for a large system trained on
100 hours of data). The nonlinearities in the hidden layers are
sigmoid functions whose range is between zero and one. The
objective function is the cross-entropy criterion, i.e. for each
frame, the log-probability of the correct class. The alignment
of context-dependent states to frames derives from the GMM
baseline systems and is left fixed during training.

The connection weights were randomly initialized with a
normal distribution multiplied by 0.1, and the biases of the sig-
moid units were initialized by sampling uniformly from the in-
terval [-4.1,-3.9]2. The learning rate was decided by the “new-
bob” algorithm: for the first epoch, we used 0.008 as the learn-
ing rate, and this was kept fixed as long as the increment in
cross-validation frame accuracy in a single epoch was higher
than 0.5%. For the subsequent epochs, the learning rate was
halved; this was repeated until the increase in cross-validation
accuracy per epoch is less than a stopping threshold, of 0.1%.
The weights are updated using mini-batches of size 256 frames;
the gradients are summed over each mini-batch.

For these experiments we used conventional CPUs rather
than GPUs, with the matrix operations parallelized over multi-
ple cores (between 4 and 20) using Intel’s MKL implementa-
tion of BLAS. Training on 109 hours of Switchboard telephone
speech data took about a week for the sizes of network we used
(around 10 million parameters).

3. Investigated Features
3.1. Baseline/Type-I features
Figure 1 shows the generation of Type-I features. The dimen-
sion of the final features supplied as the input to the DNN is de-
noted as d. The baseline features correspond to d=40. The fea-
tures are derived by processing the conventional 13-dimensional
MFCCs. The steps are as follows:

2It has been found that where training data is plentiful, pre-training
does not seem to be necessary [11] and conventional random initializa-
tion [1] will suffice. In this work we do not use pre-training.

- Cepstral mean subtraction is applied on a per speaker basis.
- The resulting 13-dimensional features are spliced across ±4
frames to produce 117 dimensional vectors.

- Then LDA [4] is used to reduce the dimensionality to d. The
context-dependent HMM states are used as classes for the
LDA estimation.

- We apply MLLT [12] (also known as global STC [6]). It is
a feature orthogonalizing transform that makes the features
more accurately modeled by diagonal-covariance Gaussians.

- Then, global fMLLR [7] (also known as global CMLLR) is
applied to normalize inter-speaker variability.

In our experiments fMLLR is applied both during training and
test, which is known as SAT. In some cases, the results are also
shown when it is applied only during test.

3.2. Type-II features
The main concern with our Type-I features is that as we increase
the dimension of the features, we also (quadratically) increase
the number of parameters in the fMLLR transforms. As a con-
sequence the speaker-specific data might become in-sufficient
for reliable estimation of the parameters when d becomes large
(e.g., 80 or more). In addition, Type-I features require training
of the HMM/GMMs in the higher dimensional space which can
be problematic. Our Type-II features (Figure 2) are designed
to avoid the above problems by applying speaker adaptation to
only the first 40 coefficients of the LDA features, and passing
some of the remaining dimensions directly to the neural net-
work while bypassing MLLT and fMLLR. It also avoids the
training of the HMM/GMMs in the higher-dimensional space.

3.3. Type-III features
Another way to increase the dimension of the features, while
keeping the dimension of fMLLR matrices 40 × 41, is to splice
the baseline 40-dimensional speaker adapted features again
across time and use them as the input to the DNN (Figure 3).
The Type-III features are most closely related to the previous
work in this area [13, 11].

3.4. Type-IV features
The Type-IV features (Figure 3) consist of our baseline 40-
dimensional speaker adapted features that have been spliced
again, followed by de-correlation and dimensionality reduction
using another LDA. We use a variable window size in this case
(typically ±4 frames) and the LDA is estimated using the state
alignments obtained from the baseline SAT model.

We do not believe that the dimensionality reduction pro-
vided by this LDA is something very useful; rather the whiten-
ing effect on the features will be favorable for the DNN training.
The LDAwould work as a pre-conditioner of the data, making it
possible to set higher learning rates leading to a faster learning,
especially when pre-training is not used.

4. Experimental setup
The experimental results are reported with the acoustic models
trained on a 109-hour subset of the Switchboard Part I training
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Fig. 1. Generation of baseline speech features.

As shown in Figure 1, the speech waveforms are first pa-
rameterized into a conventional sequence of 39-dimensional
Mel-frequency cepstral coefficient (MFCC) vectors based
on a 25ms Hamming window, and computed every 10ms.
Cepstral mean subtraction is applied on a per speaker basis.
The MFCCs are then spliced across 9 frames to produce 351
dimensional vectors. Linear discriminant analysis (LDA)
is used to reduce the dimensionality down to 40 by using
context-dependent HMM states as classes for LDA estima-
tion. A maximum likelihood linear transform (MLLT) [13]
is then applied to the MFCC-LDA features to better orthog-
onalize the data. Finally, global fMLLR [14] is applied to
normalize inter-speaker variability. In our experiments fM-
LLR is applied both during training and test, which is known
as speaker-adaptive training (SAT) [15].

2.2. Heterogeneous Features

The heterogeneous data we explore include speed, HVAC fan
status, wiper status, and vehicle type. These data can be auto-
matically reported by the vehicle in real time in parallel with
the audio and require no human supervision. Table 1 lists the
values of the additional data used in our experiments.

In order to fit this information into the DNN model,
pre-processing are conducted on these data. We suggest
that all real-valued feature vectors be normalized globally to
zero mean, unit variance, while all status feature vectors be

Data Type Values
speed real-valued 0 MPH, 35 MPH, 65 MPH
ac fan status On/Off
wiper status On/Off

vehicle type categorical model1, model2, .., model5

Table 1. List of available heterogeneous data

mapped to binaries of 0/1. Therefore, speed is normalized
globally to zero mean, unit variance. AC fan status and wiper
status are mapped to binary values. Vehicle types are mapped
to five distinct values according to the size of the vehicle
model, and further normalized globally to zero mean, unit
variance.

These extracted additional features are concatenated with
the spliced corresponding speech features. We append indi-
vidual, combinations of two, three and all four additional fea-
tures to the speech features to test the effectiveness of these
different additional features.

2.3. DNN with Heterogeneous Data

For the DNN with heterogeneous data, the input speech fea-
tures (fMLLR-adapted MFCC-LDA-MLLT) are computed as
in the baseline system. However, these features are now aug-
mented with various combinations of additional features com-
puted from the heterogeneous data. The features are aug-
mented for both training and decoding.
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input layer (440+n inputs) 

compute 
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Fig. 2. Diagram of the proposed Heterogeneous DNN system.
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Figure 2 gives a diagram of our DNN framework that in-
corporates additional features. The speech features are de-
rived from speech signals, while the additional features are
provided by various sources of sensor information, e.g., cam-
era sensor, motion sensor, speed sensor, fan power etc. As
discussed in Section 2.2, in our Ford experiment, these addi-
tional features include vehicle speed, HVAC fan status, wind-
shield wiper status, and vehicle type. Thus, the DNN’s input
is a super vector with the additional features appended to the
speech features. At time t, the input

v0t = [xt−τ , ..., xt−1, xt, xt+1, ..., xt+τ , ct]. (1)

Each observation is propagated forward through the network,
starting with the lowest layer v0 . The output variables of each
layer become the input variables of the next layer. In the fi-
nal layer, the class posterior probabilities are computed using
a softmax layer. Specifically, instead of 440 MFCC-LDA-
MLLT-fMLLR speech features, the DNN input layer has 440
speech features and n-dimensional additional features c as in-
put, where n is the number of additional features used. During
training and testing, these additional features are extracted at
frame level from the parallel heterogeneous data provided by
the vehicles.

3. DATASET

The speech corpus used for our experiments is a 30-hour
2k-vocabulary dataset collected by Ford Motor Company
in actual driving, reverberant and noisy environments. The
utterances were recorded in vehicles of varying body styles
(e.g., small, medium, large car, SUV, pick-up truck) with
talkers (drivers) of varying gender, age and dialects, under
different ambient noise conditions (blower on/off, road sur-
face rough/smooth, vehicle speed 0-65 MPH, windshield
wipers on/off, vehicle windows open/closed, etc.). For our
experiments, the data were randomly partitioned into three
sets with non-overlapping speakers. The training set contains
17,183 utterances from 90 speakers, the development set con-
tains 2,773 utterances from 14 speakers, and the evaluation
set contains 1,763 utterances from 9 speakers. The OOV
rate is 5.03%. Aside from the speakers, all other recording
conditions are found in all three data sets.

4. EXPERIMENTS

4.1. Speech-based DNN-HMMs

For the baseline speech-only system, we first flat-start trained
26 context-independent monophone acoustic models using
MFCC features, then used these models to bootstrap the
training of a context-dependent triphone GMM-HMM sys-
tem. The triphone GMM-HMM system is then retrained
by MFCC-LDA-MLLT features. The resulting models con-
tain 3,158 tied triphone states, and 90K Gaussians. This

GMM-HMM system is then used to generate fMLLR feature
transforms for training and test speakers. The features for
both the training and test speakers are then transformed using
these fMLLR transforms. The resulting transformed features
are input to the neural net. We use the Kaldi toolkit for these
experiments [16].

For decoding, a trigram language model with modified
Good-Turing smoothing was used. The trigram language
model was generated from the 27-hour training data using
the sriLM toolkit [17]. The perplexity of the trigram search
LM on the Ford development text is 14. Given that we have a
small vocabulary task, experiments show that results using a
quadgram LM do not differ much with that of a trigram LM.
Therefore, trigram LM is used for all following experiments.

The DNN baseline is trained on the fMLLR transformed
MFCC-LDA-MLLT features, except that the features are
globally normalized to have zero mean and unit variance.
The fMLLR transforms are the same as those estimated for
the GMM-HMM system during training and testing. The
network has 4 hidden layers, where each hidden layer has
1024 units; the DNN has 3158 output units. The input to the
network consists of 11 stacked frames (5 frames on each side
of the current frame). We perform pre-training using one-step
contrastive divergence [18], whereby each layer is learned
one at a time, with subsequent layers being stacked on top of
the pre-trained lower layers.

For the DNNs in this work, we use two different loss ob-
jectives. First we train the 4-layer DNN using back propaga-
tion with Cross Entropy (CE) as the objective function. Af-
ter calculating the gradients for this loss objectives, stochastic
gradient descent (SGD) [19] is used to update the network pa-
rameters. For SGD, we used minibatches of 256 frames, and
an exponentially decaying schedule that starts with an initial
learning rate of 0.008 and halves the rate when the improve-
ment in frame accuracy on a cross-validation set between two
successive epochs falls below 0.5%. The optimization termi-
nated when the frame accuracy increased by less than 0.1%.
Cross-validation is done on a set of 180 utterances that are
held out from the training data. The word error rate on the
Ford evaluation set is shown in Table 2 as DNN-CE.

Baseline systems WER
DNN-CE 7.04%

DNN-sequence 6.53%

Table 2. WER of baseline systems using CE training, fol-
lowed by sequence training.

The resulting DNN is then used for sequence training.
We use state-level minimum Bayes risk (sMBR) criterion for
the sequence-discriminative training. After calculating the
gradients for this loss objectives, SGD is used to update the
network parameters. The SGD back propagation parameters
are the same as with the DNN-CE baseline. The word error
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rate on the Ford evaluation set is shown in Table 2 as DNN-
sequence.

4.2. Heterogeneous DNN-HMMs

In this section we present experimental results of the pro-
posed Heterogeneous DNN-HMM system. We train DNNs
augmented with different combinations of the additional fea-
tures. For each distinct additional feature combination, we
train a separate DNN. The network configurations and train-
ing/decoding procedures remain the same as in Section 4.1.

In order to compare the effect of different additional fea-
tures, Table 3 provides the WER of the DNN-CE system using
different additional feature combinations. Our experiments
show that systems with all different additional feature combi-
nations improved the WERs. Here we only list the result of
seven good feature combination candidates in Table 3. Speed
gives the lowest WER among the individual additional fea-
tures. This might be related to the fact that speed is a dom-
inant contributor of the noise. With more additional features
included, the WER continues to drop. The complete addi-
tional feature set of using speed, ac fan, wiper status and ve-
hicle type gives the lowest WER among all additional feature
combinations. This demonstrates that having this information
is helpful for noise robustness.

Additional Features (AFs) WER
+ speed 6.71%
+ ac fan 6.72%
+ wiper 6.81%
+ vehicle 6.89%
+ speed, ac fan 6.63%
+ speed, ac fan, wiper 6.61%
+ speed, ac fan, wiper, vehicle 6.60%

Table 3. WER of the DNN-CE system with different addi-
tional features.

Table 4 compares the performance of the baseline sys-
tems against our systems with additional features. The ad-
ditional features used here are c = (speed, ac fan, wiper,
vehicle). We compare the WER with and without the addi-
tional features. We can see that, compared to the the DNN-CE
baseline, WER is reduced by 6.3%. Compared to the DNN-
sequence baseline, WER is reduced by 5.5%. The absolute
gain doesn’t seem to be huge due to our comparatively small
baseline WER, but the 6.3% comparative gain suggests that if
this approach is used on a larger-vocabulary task, the absolute
gain might be more substantial.

To further demonstrate the effectiveness of the heteroge-
neous data, in Table 5 we provide the noise-adaptive train-
ing (NAT) results using signal-to-noise ratios (SNRs) derived
from speech signals. SNRs are computed using the NIST met-
ric. The results demonstrate that additional features we use

without AFs with AFs WERR
DNN-CE 7.04% 6.60% 6.3%
DNN-sequence 6.53% 6.17% 5.5%

Table 4. WER comparison of with v.s. without the additional
features, and the Word error reduction rate (WERR).

outperform the SNRs computed from the the speech signals
in both CE and sequence training cases. This indicates that
the heterogeneous data contain richer information about the
environment than the SNRs computed from the speech sig-
nals. These additional features are better alternatives to SNR
to do noise-adaptive training or environment-aware training.
Moreover, the additional features and SNRs are not exclusive.
Maybe using them jointly will lead to a better adaptation sce-
nario.

with AFs with SNR
DNN-CE 6.60% 6.91%

DNN-sequence 6.17% 6.51%

Table 5. WER comparison of using additional features v.s.
using SNRs

5. CONCLUSION

We have shown that DNNs can adapt to environment charac-
teristics if we augment standard acoustic features by append-
ing features from heterogeneous data. It learns useful rela-
tionship between these heterogeneous data and noisy speech
features, which enable the model to generate more accurate
posterior probabilities. This was motivated by the success of
noise-aware training where SNRs have been found to be use-
ful for noise robustness because it can serve to characterize
the noise level.

Our experiments demonstrate that WER can be reduced
by 6.3% with the additional features compared to the baseline
DNN-HMM hybrid system. Moreover, this outperforms the
improvement brought by noise-aware training using SNRs by
a large margin. This indicates that the heterogeneous data
contain richer information about the environment than the
SNRs. If other heterogeneous data and representations con-
tain similar information about the environment, they can pos-
sibly also be used to do environment-adaptation of DNN-
HMM system in the same way for better noise robustness.

This framework can also be generalized to incorporate
other features, both continuous and discrete, for various ro-
bust ASR tasks. For example, visual information, acoustic
sensor data and machine status can be explored using this ap-
proach. Moreover, different DNN structures can also be in-
vestigated, by feeding the additional features at different layer
levels into the network.
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