2.5 The Kelvin equation

In this chapter we get to know the second essential equation of surface science — the Kelvin®
equation. Like the Young-Laplace equation it is based on thermodynamic principles and does
not refer to a special material or special conditions. The subject of the Kelvin equation is
the vapor pressure of a liquid. Tables of vapor pressures for various liquids and different
temperatures can be found in common textbooks or handbooks of physical chemistry. These
vapor pressures are reported for vapors which are in thermodynamic equilibrium with liquids
having planar surfaces. When the liquid surface is curved, the vapor pressure changes. The
vapor pressure of a drop is higher than that of a flat, planar surface. In a bubble the vapor
pressure is reduced. The Kelvin equation tells us how the vapor pressure depends on the
curvature of the liquid.

The cause for this change in vapor pressure is the Laplace pressure . The raised Laplace
pressure in a drop causes the molecules to evaporate more easily. In the liquid, which sur-
rounds a bubble, the pressure with respect to the inner part of the bubble is reduced. This
makes it more difficult for molecules to evaporate. Quantitatively the change of vapor pres-
sure for curved liquid surfaces is described by the Kelvin equation:
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P is the vapor pressure of the curved, P, that of the flat surface. The index 0" indicates that
everything is only valid in thermodynamic equilibrium. Please keep in mind: in equilibrium
the curvature of a liquid surface is constant everywhere. V,,, is the molar volume of the liquid.
For a sphere-like volume of radius r, the Kelvin equation can be simplified:
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The constant 24V, /RT is 1.03 nm for Ethanol (v = 0.022 N/m, V,, = 58 cm*/mol) and
1.05 nm for Water (v = 0.072 N/m, V,,, = 18 em®/mol) at 25°C.

To derive the Kelvin equation we consider the Gibbs free energy of the liquid. The molar
Gibbs free energy changes when the surface i1s being curved, because the pressure increases

5 William Thomson, later Lord Kelvin, 1824-1907. Physics professor at the University of Glasgow.
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due to the Laplace pressure. In general, any change in the Gibbs free energy is given by the
fundamental equation dGG = VdP — SdT. The increase of the Gibbs free energy per mole of
liquid, upon curving, at constant temperature is

aE 11

AGpy = / VindP = ~+Vip - (— + —) : (2.19)
Jo Ry Ry

We have assumed that the molar volume remains constant, which is certainly a reasonable

assumption because most liquids are practically incompressible for the pressures considered.

For a spherical drop in its vapor, we simply have AG,,, = 2vV,,,/r. The molar Gibbs free

energy of the vapor depends on the vapor pressure I, according to
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For a liquid with a curved surface we have
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The change of the molar Gibbs free energy inside the vapor due to curving the interface is
therefore
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Since the liquid and vapor are supposed to be in equilibrium, the two expressions must be
equal. This immediately leads to the Kelvin equation.

When applying the Kelvin equation, it is instructive to distinguish two cases: A drop in
its vapor (or more generally: a positively curved liquid surface) and a bubble in liquid (a
negatively curved liquid surface).

Drop in its vapor: The vapor pressure of a drop is higher than that of a liquid with a planar
surface. One consequence is that an aerosol of drops (fog) should be unstable. To see this, let
us assume that we have a box filled with many drops in a gaseous environment. Some drops
are larger than others. The small drops have a higher vapor pressure than the large drops.
Hence, more liquid evaporates from their surface. This tends to condense into large drops.
Within a population of drops of different sizes, the bigger drops will grow at the expense of
the smaller ones — a process called Ostwald ripening®. These drops will sink down and, at
the end, bulk liquid fills the bottom of the box.

For a given vapor pressure, there is a critical drop size. Every drop bigger than this size
will grow. Drops at a smaller size will evaporate. If a vapor is cooled to reach over-saturation,
it cannot condense (because every drop would instantly evaporate again), unless nucleation
sites are present. In that way it is possible to explain the existence of over-saturated vapors
and also the undeniable existence of fog.

Bubble in a liquid: From Eq. (2.19) we see that a negative sign has to be used for a bubble
because of the negative curvature of the liquid surface. As a result we get
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% In general, Ostwald ripening is the growth of long objects at the expense of smaller ones. Wilhelm Ostwald,
1853-1932. German physicochemist, professor in Leipzig, Nobel price for chemistry 1909,
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Here, r is the radius of the bubble. The vapor pressure inside a bubble is therefore reduced.
This explains why it is possible to overheat liquids: When the temperature is increased above
the boiling point (at a given external pressure) occasionally, tiny bubbles are formed. Inside
the bubble the vapor pressure is reduced, the vapor condenses, and the bubble collapses. Only
if a bubble larger than a certain critical size is formed, is it more likely to increases in size
rather than to collapse. As an example, vapor pressures for water drops and bubbles in water
are given in Table 2.2

r (nm) P""/P(] drop PK/P(, bubble Table 2.2:  Relative cquuhh‘num vapor
0 0 B . HEOM
pressure of a curved water surface at 25°C

1000 1.001 0.999 for spherical drops and bubbles of ra-
100 1.011 0.989 dius 7.
10 1.114 0.898
1 2.950 0.339

At this point it is necessary to clarify several questions which sometimes cause confusion.
When do we use the term “vapor™ instead of “gas™? Vapor is used when the liquid is present
in the system and liquid evaporation and vapor condensation take place. This distinction is
not always clear cut because, when dealing with adsorption (Chapter 9) we certainly take
the two corresponding processes — adsorption and desorption — into account but still talk
about gas. How does the presence of an additional background gas change the properties
of a vapor? For example, does pure water vapor behave differently from water vapor at the
same partial pressure in air (in the presence of nitrogen and oxygen)? Answer: To a first
approximation there is no difference as long as phenomena in thermodynamic equilibrium are
concerned. “First approximation™ means, as long as interactions between the vapor molecules
and the molecules of the background gas are negligible. However, time-dependent processes
and kinetic phenomena such as diffusion can be completely different and certainly depend on
the background gas. This is, for instance, the reason why drying in a vacuum is much faster
than drying in air.

2.6 Capillary condensation

An important application of the Kelvin equation is the description of capillary condensation.
This is the condensation of vapor into capillaries or fine pores even for vapor pressures below
Py; Py is the equilibrium vapor pressure of the liquid with a planar surface. Lord Kelvin
was the one who realized that the vapor pressure of a liquid depends on the curvature of its
surface. In his words this explains why “moisture is retained by vegetable substances, such as
cotton cloth or oatmeal, or wheat-flour biscuits, at temperatures far above the dew point of the
surrounding atmosphere™ [17].

Capillary condensation can be illustrated by the model of a conical pore with a totally
wetting surface (Fig. 2.12). Liquid will immediately condense in the tip of the pore. Con-
densation continues until the bending radius of the liquid has reached the value given by the
Kelvin equation. The situation is analogous to that of a bubble and we can write
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