
Tracy
Profiler

The user manual

Bartosz Taudul <wolf@nereid.pl>

August 22, 2024

https://github.com/wolfpld/tracy

mailto:wolf@nereid.pl
https://github.com/wolfpld/tracy

Tracy Profiler The user manual

Quick overview
Hello and welcome to the Tracy Profiler user manual! Here you will find all the information you need to
start using the profiler. This manual has the following layout:

• Chapter 1, A quick look at Tracy Profiler, gives a short description of what Tracy is and how it works.

• Chapter 2, First steps, shows how you can integrate the profiler into your application and how to build
the graphical user interface (section 2.3). At this point, you will be able to establish a connection from
the profiler to your application.

• Chapter 3, Client markup, provides information on how to instrument your application, in order to
retrieve useful profiling data. This includes a description of the C API (section 3.13), which enables
usage of Tracy in any programming language.

• Chapter 4, Capturing the data, goes into more detail on how the profiling information can be captured
and stored on disk.

• Chapter 5, Analyzing captured data, guides you through the graphical user interface of the profiler.

• Chapter 6, Exporting zone statistics to CSV, explains how to export some zone timing statistics into a CSV
format.

• Chapter 7, Importing external profiling data, documents how to import data from other profilers.

• Chapter 8, Configuration files, gives information on the profiler settings.

Quick-start guide
For Tracy to profile your application, you will need to integrate the profiler into your application and run an
independent executable that will act both as a server with which your application will communicate and as a
profiling viewer. The most basic integration looks like this:

• Add the Tracy repository to your project directory.

• Tracy source files in the project/tracy/public directory.

• Add TracyClient.cpp as a source file.

• Add tracy/Tracy.hpp as an include file.

• Include Tracy.hpp in every file you are interested in profiling.

• Define TRACY_ENABLE for the WHOLE project.

• Add the macro FrameMark at the end of each frame loop.

• Add the macro ZoneScoped as the first line of your function definitions to include them in the profile.

• Compile and run both your application and the profiler server.

• Hit Connect on the profiler server.

• Tada! You’re profiling your program!

There’s much more Tracy can do, which can be explored by carefully reading this manual. In case
any problems should surface, refer to section 2.1 to ensure you’ve correctly included Tracy in your project.
Additionally, you should refer to section 3 to make sure you are using FrameMark, ZoneScoped, and any other
Tracy constructs correctly.

2

Tracy Profiler The user manual

Contents

1 A quick look at Tracy Profiler 8
1.1 Real-time . 8
1.2 Nanosecond resolution . 8

1.2.1 Timer accuracy . 9
1.3 Frame profiler . 9
1.4 Sampling profiler . 10
1.5 Remote or embedded telemetry . 10
1.6 Why Tracy? . 10
1.7 Performance impact . 11

1.7.1 Assembly analysis . 11
1.8 Examples . 12
1.9 On the web . 12

1.9.1 Binary distribution . 12

2 First steps 12
2.1 Initial client setup . 13

2.1.1 Static library . 14
2.1.2 CMake integration . 14
2.1.3 Meson integration . 15
2.1.4 Short-lived applications . 15
2.1.5 On-demand profiling . 15
2.1.6 Client discovery . 16
2.1.7 Client network interface . 16
2.1.8 Setup for multi-DLL projects . 16
2.1.9 Problematic platforms . 17

2.1.9.1 Microsoft Visual Studio . 17
2.1.9.2 Universal Windows Platform . 17
2.1.9.3 Apple woes . 17
2.1.9.4 Android lunacy . 18
2.1.9.5 Virtual machines . 18
2.1.9.6 Docker on Linux . 18

2.1.10 Troubleshooting . 18
2.1.11 Changing network port . 19
2.1.12 Limitations . 19

2.2 Check your environment . 19
2.2.1 Operating system . 20
2.2.2 CPU design . 20

2.2.2.1 Superscalar out-of-order speculative execution 20
2.2.2.2 Simultaneous multithreading . 20
2.2.2.3 Turbo mode frequency scaling . 21
2.2.2.4 Power saving . 21
2.2.2.5 AVX offset and power licenses . 21
2.2.2.6 Summing it up . 22

2.3 Building the server . 22
2.3.1 Required libraries . 23

2.3.1.1 Windows . 23
2.3.1.2 Unix . 23
2.3.1.3 Linux . 23

2.3.2 Using an IDE . 24

3

Tracy Profiler The user manual

2.3.3 Embedding the server in profiled application . 25
2.3.4 DPI scaling . 25

2.4 Naming threads . 25
2.4.1 Source location data customization . 25

2.5 Crash handling . 26
2.6 Feature support matrix . 26

3 Client markup 26
3.1 Handling text strings . 27

3.1.1 Program data lifetime . 27
3.1.2 Unique pointers . 28

3.2 Specifying colors . 28
3.3 Marking frames . 29

3.3.1 Secondary frame sets . 29
3.3.2 Discontinuous frames . 29
3.3.3 Frame images . 29

3.3.3.1 OpenGL screen capture code example . 30
3.4 Marking zones . 33

3.4.1 Manual management of zone scope . 33
3.4.2 Multiple zones in one scope . 33
3.4.3 Filtering zones . 34
3.4.4 Transient zones . 35
3.4.5 Variable shadowing . 35
3.4.6 Exiting program from within a zone . 35

3.5 Marking locks . 35
3.5.1 Custom locks . 36

3.6 Plotting data . 36
3.7 Message log . 37

3.7.1 Application information . 37
3.8 Memory profiling . 37

3.8.1 Memory pools . 38
3.9 GPU profiling . 39

3.9.1 OpenGL . 39
3.9.2 Vulkan . 40
3.9.3 Direct3D 11 . 41
3.9.4 Direct3D 12 . 41
3.9.5 OpenCL . 41
3.9.6 Multiple zones in one scope . 42
3.9.7 Transient GPU zones . 42

3.10 Fibers . 42
3.11 Collecting call stacks . 43

3.11.1 Debugging symbols . 44
3.11.1.1 External libraries . 45
3.11.1.2 Using the dbghelp library on Windows . 45
3.11.1.3 Disabling resolution of inline frames . 46
3.11.1.4 Offline symbol resolution . 46

3.12 Lua support . 47
3.12.1 Call stacks . 47
3.12.2 Instrumentation cleanup . 47

3.13 C API . 47
3.13.1 Setting thread names . 48
3.13.2 Frame markup . 48

4

Tracy Profiler The user manual

3.13.3 Zone markup . 48
3.13.3.1 Zone context data structure . 49
3.13.3.2 Zone validation . 49
3.13.3.3 Transient zones in C API . 50

3.13.4 Lock markup . 50
3.13.5 Memory profiling . 51
3.13.6 Plots and messages . 51
3.13.7 GPU zones . 51
3.13.8 Fibers . 52
3.13.9 Connection Status . 52
3.13.10 Call stacks . 52
3.13.11 Using the C API to implement bindings . 52

3.14 Python API . 53
3.14.1 Bindings . 53
3.14.2 Building the Python package . 55

3.15 Automated data collection . 55
3.15.1 Privilege elevation . 55
3.15.2 CPU usage . 56
3.15.3 Context switches . 56
3.15.4 CPU topology . 56
3.15.5 Call stack sampling . 57

3.15.5.1 Wait stacks . 57
3.15.6 Hardware sampling . 58
3.15.7 Executable code retrieval . 59
3.15.8 Vertical synchronization . 59

3.16 Trace parameters . 59
3.17 Source contents callback . 60
3.18 Connection status . 60

4 Capturing the data 60
4.1 Command line . 60
4.2 Interactive profiling . 61

4.2.1 Connection information pop-up . 62
4.2.2 Automatic loading or connecting . 63

4.3 Connection speed . 63
4.4 Memory usage . 63
4.5 Trace versioning . 63

4.5.1 Archival mode . 63
4.5.2 Compression streams . 64
4.5.3 Frame images dictionary . 66
4.5.4 Data removal . 66

4.6 Source file cache scan . 67
4.7 Instrumentation failures . 67

5 Analyzing captured data 67
5.1 Time display . 67
5.2 Main profiler window . 68

5.2.1 Control menu . 68
5.2.1.1 Notification area . 69

5.2.2 Frame time graph . 70
5.2.3 Timeline view . 70

5.2.3.1 Time scale . 71

5

Tracy Profiler The user manual

5.2.3.2 Frame sets . 71
5.2.3.3 Zones, locks and plots display . 71

5.2.4 Navigating the view . 75
5.3 Time ranges . 76

5.3.1 Annotating the trace . 76
5.4 Options menu . 76
5.5 Messages window . 78
5.6 Statistics window . 78

5.6.1 Instrumentation mode . 79
5.6.2 Sampling mode . 79
5.6.3 GPU zones mode . 80

5.7 Find zone window . 80
5.7.1 Timeline interaction . 83
5.7.2 Frame time graph interaction . 83
5.7.3 Limiting zone time range . 83
5.7.4 Zone samples . 84

5.8 Compare traces window . 84
5.8.1 Source files diff . 85

5.9 Memory window . 85
5.9.1 Allocations . 85
5.9.2 Active allocations . 86
5.9.3 Memory map . 86
5.9.4 Bottom-up call stack tree . 86
5.9.5 Top-down call stack tree . 86
5.9.6 Looking back at the memory history . 86

5.10 Allocations list window . 87
5.11 Memory allocation information window . 87
5.12 Trace information window . 87
5.13 Zone information window . 88
5.14 Call stack window . 89

5.14.1 Reading call stacks . 89
5.15 Sample entry call stacks window . 90
5.16 Source view window . 90

5.16.1 Source file view . 90
5.16.2 Symbol view . 91

5.16.2.1 Source mode . 91
5.16.2.2 Assembly mode . 92
5.16.2.3 Combined mode . 94
5.16.2.4 Instruction pointer cost statistics . 94
5.16.2.5 Inspecting hardware samples . 95

5.17 Wait stacks window . 96
5.18 Lock information window . 96
5.19 Frame image playback window . 96
5.20 CPU data window . 96
5.21 Annotation settings window . 96
5.22 Annotation list window . 97
5.23 Time range limits . 97

6 Exporting zone statistics to CSV 97

7 Importing external profiling data 98

6

Tracy Profiler The user manual

8 Configuration files 99
8.1 Root directory . 99
8.2 Trace specific settings . 99

A License 100

B Inventory of external libraries 100

7

Tracy Profiler The user manual

1 A quick look at Tracy Profiler

Tracy is a real-time, nanosecond resolution hybrid frame and sampling profiler that you can use for remote or
embedded telemetry of games and other applications. It can profile CPU1, GPU2, memory allocations, locks,
context switches, automatically attribute screenshots to captured frames, and much more.

While Tracy can perform statistical analysis of sampled call stack data, just like other statistical profilers
(such as VTune, perf, or Very Sleepy), it mainly focuses on manual markup of the source code. Such
markup allows frame-by-frame inspection of the program execution. For example, you will be able to see
exactly which functions are called, how much time they require, and how they interact with each other in a
multi-threaded environment. In contrast, the statistical analysis may show you the hot spots in your code,
but it cannot accurately pinpoint the underlying cause for semi-random frame stutter that may occur every
couple of seconds.

Even though Tracy targets frame profiling, with the emphasis on analysis of frame time in real-time
applications (i.e. games), it does work with utilities that do not employ the concept of a frame. There’s nothing
that would prohibit the profiling of, for example, a compression tool or an event-driven UI application.

You may think of Tracy as the RAD Telemetry plus Intel VTune, on overdrive.

1.1 Real-time

The concept of Tracy being a real-time profiler may be explained in a couple of different ways:

1. The profiled application is not slowed down by profiling3. The act of recording a profiling event has
virtually zero cost – it only takes a few nanoseconds. Even on low-power mobile devices, execution
speed has no noticeable impact.

2. The profiler itself works in real-time, without the need to process collected data in a complex way.
Actually, it is pretty inefficient in how it works because it recalculates the data it presents each frame
anew. And yet, it can run at 60 frames per second.

3. The profiler has full functionality when the profiled application runs and the data is still collected. You
may interact with your application and immediately switch to the profiler when a performance drop
occurs.

1.2 Nanosecond resolution

It is hard to imagine how long a nanosecond is. One good analogy is to compare it with a measure of length.
Let’s say that one second is one meter (the average doorknob is at the height of one meter).

One millisecond (1
1000 of a second) would be then the length of a millimeter. The average size of a red ant

or the width of a pencil is 5 or 6 mm. A modern game running at 60 frames per second has only 16 ms to
update the game world and render the entire scene.

One microsecond (1
1000 of a millisecond) in our comparison equals one micron. The diameter of a typical

bacterium ranges from 1 to 10 microns. The diameter of a red blood cell or width of a strand of spider web
silk is about 7 µm.

And finally, one nanosecond (1
1000 of a microsecond) would be one nanometer. The modern microprocessor

transistor gate, the width of the DNA helix, or the thickness of a cell membrane are in the range of 5 nm. In
one ns the light can travel only 30 cm.

1Direct support is provided for C, C++, and Lua integration. At the same time, third-party bindings to many other languages exist
on the internet, such as Rust, Zig, C#, OCaml, Odin, etc.

2All major graphic APIs: OpenGL, Vulkan, Direct3D 11/12, OpenCL.
3See section 1.7 for a benchmark.

8

Tracy Profiler The user manual

Tracy can achieve single-digit nanosecond measurement resolution due to usage of hardware timing
mechanisms on the x86 and ARM architectures4. Other profilers may rely on the timers provided by the
operating system, which do have significantly reduced resolution (about 300 ns – 1 µs). This is enough to
hide the subtle impact of cache access optimization, etc.

1.2.1 Timer accuracy

You may wonder why it is vital to have a genuinely high resolution timer5. After all, you only want to
profile functions with long execution times and not some short-lived procedures that have no impact on the
application’s run time.

It is wrong to think so. Optimizing a function to execute in 430 ns, instead of 535 ns (note that there is
only a 100 ns difference) results in 14 ms savings if the function is executed 18000 times6. It may not seem
like a big number, but this is how much time there is to render a complete frame in a 60 FPS game. Imagine
that this is your particle processing loop.

You also need to understand how timer precision is reflected in measurement errors. Take a look at
figure 1. There you can see three discrete timer tick events, which increase the value reported by the timer by
300 ns. You can also see four readings of time ranges, marked 𝐴1, 𝐴2; 𝐵1, 𝐵2; 𝐶1, 𝐶2 and 𝐷1, 𝐷2.

Time
Â Â Â

300 ns

𝐴1𝐴2𝐵1 𝐵2𝐶1 𝐶2𝐷1𝐷2

Figure 1: Low precision (300 ns) timer. Discrete timer ticks are indicated by the Â icon.

Now let’s take a look at the timer readings.

• The 𝐴 and 𝐷 ranges both take a very short amount of time (10 ns), but the 𝐴 range is reported as 300 ns,
and the 𝐷 range is reported as 0 ns.

• The 𝐵 range takes a considerable amount of time (590 ns), but according to the timer readings, it took
the same time (300 ns) as the short lived 𝐴 range.

• The 𝐶 range (610 ns) is only 20 ns longer than the 𝐵 range, but it is reported as 900 ns, a 600 ns difference!

Here, you can see why using a high-precision timer is essential. While there is no escape from the
measurement errors, a profiler can reduce their impact by increasing the timer accuracy.

1.3 Frame profiler
Tracy aims to give you an understanding of the inner workings of a tight loop of a game (or any other kind
of interactive application). That’s why it slices the execution time of a program using the frame7 as a basic
work-unit8. The most interesting frames are the ones that took longer than the allocated time, producing
visible hitches in the on-screen animation. Tracy allows inspection of such misbehavior.

4In both 32 and 64 bit variants. On x86, Tracy requires a modern version of the rdtsc instruction (Sandy Bridge and later). Note that
Time Stamp Counter readings’ resolution may depend on the used hardware and its design decisions related to how TSC synchronization
is handled between different CPU sockets, etc. On ARM-based systems Tracy will try to use the timer register (~40 ns resolution). If it
fails (due to kernel configuration), Tracy falls back to system provided timer, which can range in resolution from 250 ns to 1 µs.

5Interestingly the std::chrono::high_resolution_clock is not really a high-resolution clock.
6This is a real optimization case. The values are median function run times and do not reflect the real execution time, which explains

the discrepancy in the total reported time.
7A frame is used to describe a single image displayed on the screen by the game (or any other program), preferably 60 times per

second to achieve smooth animation. You can also think about physics update frames, audio processing frames, etc.
8Frame usage is not required. See section 3.3 for more information.

9

Tracy Profiler The user manual

1.4 Sampling profiler
Tracy can periodically sample what the profiled application is doing, which provides detailed performance
information at the source line/assembly instruction level. This can give you a deep understanding of how
the processor executes the program. Using this information, you can get a coarse view at the call stacks,
fine-tune your algorithms, or even ’steal’ an optimization performed by one compiler and make it available
for the others.

On some platforms, it is possible to sample the hardware performance counters, which will give you
information not only where your program is running slowly, but also why.

1.5 Remote or embedded telemetry
Tracy uses the client-server model to enable a wide range of use-cases (see figure 2). For example, you may
profile a game on a mobile phone over the wireless connection, with the profiler running on a desktop
computer. Or you can run the client and server on the same machine, using a localhost connection. It is also
possible to embed the visualization front-end in the profiled application, making the profiling self-contained9.

¶ Thread 1

¶ Thread 2

¶ Thread 3

Tracy client Network Tracy server

� Display

õ Storage

Figure 2: Client-server model.

In Tracy terminology, the profiled application is a client, and the profiler itself is a server. It was named this
way because the client is a thin layer that just collects events and sends them for processing and long-term
storage on the server. The fact that the server needs to connect to the client to begin the profiling session may
be a bit confusing at first.

1.6 Why Tracy?
You may wonder why you should use Tracy when so many other profilers are available. Here are some
arguments:

• Tracy is free and open-source (BSD license), while RAD Telemetry costs about $8000 per year.

• Tracy provides out-of-the-box Lua bindings. It has been successfully integrated with other native and
interpreted languages (Rust, Arma scripting language) using the C API (see chapter 3.13 for reference).

• Tracy has a wide variety of profiling options. For example, you can profile CPU, GPU, locks, memory
allocations, context switches, and more.

• Tracy is feature-rich. For example, statistical information about zones, trace comparisons, or inclusion
of inline function frames in call stacks (even in statistics of sampled stacks) are features unique to Tracy.

• Tracy focuses on performance. It uses many tricks to reduce memory requirements and network
bandwidth. As a result, the impact on the client execution speed is minimal, while other profilers
perform heavy data processing within the profiled application (and then claim to be lightweight).

9See section 2.3.3 for guidelines.

10

Tracy Profiler The user manual

• Tracy uses low-level kernel APIs, or even raw assembly, where other profilers rely on layers of
abstraction.

• Tracy is multi-platform right from the very beginning. Both on the client and server-side. Other
profilers tend to have Windows-specific graphical interfaces.

• Tracy can handle millions of frames, zones, memory events, and so on, while other profilers tend to
target very short captures.

• Tracy doesn’t require manual markup of interesting areas in your code to start profiling. Instead, you
may rely on automated call stack sampling and add instrumentation later when you know where it’s
needed.

• Tracy provides a mapping of source code to the assembly, with detailed information about the cost of
executing each instruction on the CPU.

1.7 Performance impact
Let’s profile an example application to check how much slowdown is introduced by using Tracy. For this
purpose we have used etcpak10. The input data was a 16384 × 16384 pixels test image, and the 4 × 4 pixel
block compression function was selected to be instrumented. The image was compressed on 12 parallel
threads, and the timing data represents a mean compression time of a single image.

The results are presented in table 1. Dividing the average of run time differences (37.7 ms) by the count of
captured zones per single image (16,777,216) shows us that the impact of profiling is only 2.25 ns per zone
(this includes two events: start and end of a zone).

Mode Zones (total) Zones (single image) Clean run Profiling run Difference
ETC1 201,326,592 16,777,216 110.9 ms 148.2 ms +37.3 ms
ETC2 201,326,592 16,777,216 212.4 ms 250.5 ms +38.1 ms

Table 1: Zone capture time cost.

1.7.1 Assembly analysis

To see how Tracy achieves such small overhead (only 2.25 ns), let’s take a look at the assembly. The following
x64 code is responsible for logging the start of a zone. Do note that it is generated by compiling fully portable
C++.

mov byte ptr [rsp +0 C0h],1 ; store zone activity information
mov r15d ,28h
mov rax , qword ptr gs :[58h] ; TLS
mov r14 , qword ptr [rax] ; queue address
mov rdi , qword ptr [r15+r14] ; data address
mov rbp , qword ptr [rdi +28h] ; buffer counter
mov rbx ,rbp
and ebx ,7 Fh ; 128 item buffer
jne function +54h -----------+ ; check if current buffer is usable
mov rdx ,rbp |
mov rcx ,rdi |
call enqueue_begin_alloc | ; reclaim / alloc next buffer
shl rbx ,5 <-----------------+ ; buffer items are 32 bytes
add rbx , qword ptr [rdi +48h] ; calculate queue item address
mov byte ptr [rbx] ,10h ; queue item type
rdtsc ; retrieve time
shl rdx ,20h

10https://github.com/wolfpld/etcpak

11

https://github.com/wolfpld/etcpak

Tracy Profiler The user manual

or rax ,rdx ; construct 64 bit timestamp
mov qword ptr [rbx +1] , rax ; write timestamp
lea rax ,[__tracy_source_location] ; static struct address
mov qword ptr [rbx +9] , rax ; write source location data
lea rax ,[rbp +1] ; increment buffer counter
mov qword ptr [rdi +28h],rax ; write buffer counter

The second code block, responsible for ending a zone, is similar but smaller, as it can reuse some variables
retrieved in the above code.

1.8 Examples
To see how to integrate Tracy into your application, you may look at example programs in the examples
directory. Looking at the commit history might be the best way to do that.

1.9 On the web
Tracy can be found at the following web addresses:

• Homepage – https://github.com/wolfpld/tracy

• Bug tracker – https://github.com/wolfpld/tracy/issues

• Discord chat – https://discord.gg/pk78auc

• Sponsoring development – https://github.com/sponsors/wolfpld/

• Interactive demo – https://tracy.nereid.pl/

1.9.1 Binary distribution

The version releases of the profiler are provided as precompiled Windows binaries for download at
https://github.com/wolfpld/tracy/releases, along with the user manual. You will need to install the
latest Visual C++ redistributable package to use them.

Development builds of Windows binaries, and the user manual are available as artifacts created by the
automated Continuous Integration system on GitHub.

Note that these binary releases require AVX2 instruction set support on the processor. If you have an
older CPU, you will need to set a proper instruction set architecture in the project properties and build the
executables yourself.

2 First steps
Tracy Profiler supports MSVC, GCC, and clang. You will need to use a reasonably recent version of the
compiler due to the C++11 requirement. The following platforms are confirmed to be working (this is not a
complete list):

• Windows (x86, x64)

• Linux (x86, x64, ARM, ARM64)

• Android (ARM, ARM64, x86)

• FreeBSD (x64)

• WSL (x64)

• OSX (x64)

12

https://github.com/wolfpld/tracy
https://github.com/wolfpld/tracy/issues
https://discord.gg/pk78auc
https://github.com/sponsors/wolfpld/
https://tracy.nereid.pl/
https://github.com/wolfpld/tracy/releases

Tracy Profiler The user manual

• iOS (ARM, ARM64)

• QNX (x64)

Moreover, the following platforms are not supported due to how secretive their owners are but were
reported to be working after extending the system integration layer:

• PlayStation 4

• Xbox One

• Nintendo Switch

• Google Stadia

You may also try your luck with Mingw, but don’t get your hopes too high. This platform was usable
some time ago, but nobody is actively working on resolving any issues you might encounter with it.

2.1 Initial client setup
The recommended way to integrate Tracy into an application is to create a git submodule in the repository
(assuming that you use git for version control). This way, it is straightforward to update Tracy to newly
released versions. If that’s not an option, all the files required to integrate your application with Tracy are
contained in the public directory.

You have two options when deciding on the Tracy Profiler version you want to use. Take into
consideration the following pros and cons:

• Using the last-version-tagged revision will give you a stable platform to work with. You won’t
experience any breakages, major UI overhauls, or network protocol changes. Unfortunately, you
also won’t be getting any bug fixes.

• Working with the bleeding edge master development branch will give you access to all the new
improvements and features added to the profiler. While it is generally expected that master
should always be usable, there are no guarantees that it will be so.

Do note that all bug fixes and pull requests are made against the master branch.

What revision should I use?

With the source code included in your project, add the public/TracyClient.cpp source file to the IDE
project or makefile. You’re done. Tracy is now integrated into the application.

In the default configuration, Tracy is disabled. This way, you don’t have to worry that the production
builds will collect profiling data. To enable profiling, you will probably want to create a separate build
configuration, with the TRACY_ENABLE define.

• Double-check that the define name is entered correctly (as TRACY_ENABLE), don’t make a mistake
of adding an additional D at the end. Make sure that this macro is defined for all files across your
project (e.g. it should be specified in the CFLAGS variable, which is always passed to the compiler,
or in an equivalent way), and not as a #define in just some of the source files.

• Tracy does not consider the value of the definition, only the fact if the macro is defined or not
(unless specified otherwise). Be careful not to make the mistake of assigning numeric values to
Tracy defines, which could lead you to be puzzled why constructs such as TRACY_ENABLE=0 don’t

Important

13

Tracy Profiler The user manual

work as you expect them to do.

You should compile the application you want to profile with all the usual optimization options enabled
(i.e. make a release build). Profiling debugging builds makes little sense, as the unoptimized code and
additional checks (asserts, etc.) completely change how the program behaves. In addition, you should enable
usage of the native architecture of your CPU (e.g. -march=native) to leverage the expanded instruction sets,
which may not be available in the default baseline target configuration.

Finally, on Unix, make sure that the application is linked with libraries libpthread and libdl. BSD
systems will also need to be linked with libexecinfo.

2.1.1 Static library

If you are compiling Tracy as a static library to link with your application, you may encounter some
unexpected problems.

When you link a library into your executable, the linker checks if the library provides symbols needed by
the program. The library is only used if this is the case. This can be an issue because one of the use cases
of Tracy is to simply add it to the application, without any manual instrumentation, and let it profile the
execution by sampling. If you use any kind of Tracy macros in your program, this won’t be a problem.

However, if you find yourself in a situation where this is a consideration, you can simply add the
TracyNoop macro somewhere in your code, for example in the main function. The macro doesn’t do anything
useful, but it inserts a reference that is satisfied by the static library, which results in the Tracy code being
linked in and the profiler being able to work as intended.

2.1.2 CMake integration

You can integrate Tracy with CMake by adding the git submodule folder as a subdirectory.

set options before add_subdirectory
available options : TRACY_ENABLE , TRACY_ON_DEMAND , TRACY_NO_BROADCAST ,

TRACY_NO_CODE_TRANSFER , ...
option (TRACY_ENABLE "" ON)
option (TRACY_ON_DEMAND "" ON)
add_subdirectory (3 rdparty / tracy) # target : TracyClient or alias Tracy :: TracyClient

Link Tracy::TracyClient to any target where you use Tracy for profiling:

target_link_libraries (<TARGET > PUBLIC Tracy :: TracyClient)

When using CMake 3.11 or newer, you can use Tracy via CMake FetchContent. In this case, you do not
need to add a git submodule for Tracy manually. Add this to your CMakeLists.txt:

FetchContent_Declare (
tracy
GIT_REPOSITORY https :// github . com/ wolfpld / tracy . git
GIT_TAG master
GIT_SHALLOW TRUE
GIT_PROGRESS TRUE

)

FetchContent_MakeAvailable (tracy)

Then add this to any target where you use tracy for profiling:

CMake FetchContent

14

Tracy Profiler The user manual

target_link_libraries (<TARGET > PUBLIC TracyClient)

2.1.3 Meson integration

If you are using the Meson build system, you can add Tracy using the Wrap dependency system. To do this,
place the tracy.wrap file in the subprojects directory of your project, with the following content. The head
revision field tracks Tracy’s master branch. If you want to lock to a specific version of Tracy instead, you
can just set the revision field to an appropriate git tag.

[wrap -git]
url = https :// github . com/ wolfpld / tracy . git
revision = head
depth = 1

Then, add the following option entry to the meson.options file. Use the name tracy_enable as shown,
because the Tracy subproject options inherit it.

option (’tracy_enable ’, type: ’boolean ’, value : false , description : ’Enable profiling ’)

Next, add the Tracy dependency to the meson.build project definition file. Don’t forget to include this
dependency in the appropriate executable or library definitions. This dependency will set all the appropriate
definitions (such as TRACY_ENABLE) in your program, so you don’t have to do it manually.

tracy = dependency (’tracy ’, static : true)

Finally, let’s check if the debugoptimized build type is enabled, and print a little reminder message if it is
not. For profiling we want the debug annotations to be present, but we also want to have the code to be
optimized.

if get_option (’tracy_enable ’) and get_option (’buildtype ’) != ’debugoptimized ’
warning (’Profiling builds should set --buildtype = debugoptimized ’)

endif

Here’s a sample command to set up a build directory with profiling enabled. The last option,
tracy:on_demand, is used to demonstrate how to set options in the Tracy subproject.

meson setup build --buildtype = debugoptimized -Dtracy_enable = true -Dtracy : on_demand = true

2.1.4 Short-lived applications

In case you want to profile a short-lived program (for example, a compression utility that finishes its work in
one second), set the TRACY_NO_EXIT environment variable to 1. With this option enabled, Tracy will not exit
until an incoming connection is made, even if the application has already finished executing. If your platform
doesn’t support an easy setup of environment variables, you may also add the TRACY_NO_EXIT define to your
build configuration, which has the same effect.

2.1.5 On-demand profiling

By default, Tracy will begin profiling even before the program enters the main function. However, suppose
you don’t want to perform a full capture of the application lifetime. In that case, you may define the
TRACY_ON_DEMAND macro, which will enable profiling only when there’s an established connection with the
server.

15

Tracy Profiler The user manual

You should note that if on-demand profiling is disabled (which is the default), then the recorded events
will be stored in the system memory until a server connection is made and the data can be uploaded11.
Depending on the amount of the things profiled, the requirements for event storage can quickly grow up to a
couple of gigabytes. Furthermore, since this data is no longer available after the initial connection, you won’t
be able to perform a second connection to a client unless the on-demand mode is used.

The client with on-demand profiling enabled needs to perform additional bookkeeping to present a
coherent application state to the profiler. This incurs additional time costs for each profiling event.

Caveats

2.1.6 Client discovery

By default, the Tracy client will announce its presence to the local network12. If you want to disable this
feature, define the TRACY_NO_BROADCAST macro.

The program name that is sent out in the broadcast messages can be customized by using the
TracySetProgramName(name) macro.

2.1.7 Client network interface

By default, the Tracy client will listen on all network interfaces. If you want to restrict it to only lis-
tening on the localhost interface, define the TRACY_ONLY_LOCALHOST macro at compile-time, or set the
TRACY_ONLY_LOCALHOST environment variable to 1 at runtime.

If you need to use a specific Tracy client address, such as QNX requires, define the TRACY_CLIENT_ADDRESS
macro at compile-time as the desired string address.

By default, the Tracy client will listen on IPv6 interfaces, falling back to IPv4 only if IPv6 is unavailable. If
you want to restrict it to only listening on IPv4 interfaces, define the TRACY_ONLY_IPV4 macro at compile-time,
or set the TRACY_ONLY_IPV4 environment variable to 1 at runtime.

2.1.8 Setup for multi-DLL projects

Things are a bit different in projects that consist of multiple DLLs/shared objects. Compiling TracyClient.cpp
into every DLL is not an option because this would result in several instances of Tracy objects lying around in
the process. We instead need to pass their instances to the different DLLs to be reused there.

For that, you need a profiler DLL to which your executable and the other DLLs link. If that doesn’t exist,
you have to create one explicitly for Tracy13. This library should contain the public/TracyClient.cpp
source file. Link the executable and all DLLs you want to profile to this DLL.

If you are targeting Windows with Microsoft Visual Studio or MinGW, add the TRACY_IMPORTS define to
your application.

If you are experiencing crashes or freezes when manually loading/unloading a separate DLL with Tracy
integration, you might want to try defining both TRACY_DELAYED_INIT and TRACY_MANUAL_LIFETIME macros.

TRACY_DELAYED_INIT enables a path where profiler data is gathered into one structure and initialized on
the first request rather than statically at the DLL load at the expense of atomic load on each request to the
profiler data. TRACY_MANUAL_LIFETIME flag augments this behavior to provide manual StartupProfiler
and ShutdownProfiler functions that allow you to create and destroy the profiler data manually. This
manual management removes the need to do an atomic load on each call and lets you define an appropriate
place to free the resources.

11This memory is never released, but the profiler reuses it for collection of other events.
12Additional configuration may be required to achieve full functionality, depending on your network layout. Read about UDP

broadcasts for more information.
13You may also look at the library directory in the profiler source tree.

16

Tracy Profiler The user manual

When working with multiple libraries, it is easy to make a mistake and use different sets of feature
macros between any two compilation jobs. If you do so, Tracy will not be able to work correctly, and
there will be no error or warning messages about the problem. Henceforth, you must make sure each
shared object you want to link with, or load uses the same set of macro definitions.

Please note that using a prebuilt shared Tracy library, as provided by some package manager or
system distribution, also qualifies as using multiple libraries.

Keep everything consistent

2.1.9 Problematic platforms

In the case of some programming environments, you may need to take extra steps to ensure Tracy can work
correctly.

2.1.9.1 Microsoft Visual Studio

If you are using MSVC, you will need to disable the Edit And Continue feature, as it makes the compiler
non-conformant to some aspects of the C++ standard. In order to do so, open the project properties and go
to C/C++ General Debug Information Format and make sure Program Database for Edit And Continue (/ZI) is not
selected.

2.1.9.2 Universal Windows Platform

Due to a restricted access to Win32 APIs and other sandboxing issues (like network isolation), several
limitations apply to using Tracy in a UWP application compared to Windows Desktop:

• Call stack sampling is not available.

• System profiling is not available.

• To be able to connect from another machine on the local network, the app needs the privateNetwork-
ClientServer capability. To connect from localhost, an active inbound loopback exemption is also
necessary14.

2.1.9.3 Apple woes

Because Apple has to be think different, there are some problems with using Tracy on OSX and iOS. First, the
performance hit due to profiling is higher than on other platforms. Second, some critical features are missing
and won’t be possible to achieve:

• There’s no support for the TRACY_NO_EXIT mode.

• Profiling is interrupted when the application exits. This will result in missing zones, memory allocations,
or even source location names.

• OpenGL can’t be profiled.

14https://docs.microsoft.com/en-us/windows/uwp/communication/interprocess-communication#loopback

17

https://docs.microsoft.com/en-us/windows/uwp/communication/interprocess-communication#loopback

Tracy Profiler The user manual

2.1.9.4 Android lunacy

Starting with Android 8.0, you are no longer allowed to use the /proc file system. One of the consequences
of this change is the inability to check system CPU usage.

This is apparently a security enhancement. Unfortunately, in its infinite wisdom, Google has decided not
to give you an option to bypass this restriction.

To workaround this limitation, you will need to have a rooted device. Execute the following commands
using root shell:

setenforce 0
mount -o remount , hidepid =0 /proc
echo -1 > /proc/sys/ kernel / perf_event_paranoid
echo 0 > /proc/sys/ kernel / kptr_restrict

The first command will allow access to system CPU statistics. The second one will enable inspection of
foreign processes (required for context switch capture). The third one will lower restrictions on access to
performance counters. The last one will allow retrieval of kernel symbol pointers. Be sure that you are fully
aware of the consequences of making these changes.

2.1.9.5 Virtual machines

The best way to run Tracy is on bare metal. Avoid profiling applications in virtualized environments,
including services provided in the cloud. Virtualization interferes with the critical facilities needed for the
profiler to work, influencing the results you get. Possible problems may vary, depending on the configuration
of the VM, and include:

• Reduced precision of time stamps.

• Inability to obtain precise timestamps, resulting in error messages such as CPU doesn’t support RDTSC
instruction, or CPU doesn’t support invariant TSC. On Windows, you can work this around by rebuilding
the profiled application with the TRACY_TIMER_QPC define, which severely lowers the resolution of time
readings.

• Frequency of call stack sampling may be reduced.

• Call stack sampling might lack time stamps. While you can use such a reduced data set to perform
statistical analysis, you won’t be able to limit the time range or see the sampling zones on the timeline.

2.1.9.6 Docker on Linux

Although the basic features will work without them, you’ll have to grant elevated access rights to the
container running your client. Here is a sample configuration that may enable the CPU sampling features15.

• --privileged

• --mount "type=bind,source=/sys/kernel/debug,target=/sys/kernel/debug,readonly"

• --user 0:0

• --pid=host

2.1.10 Troubleshooting

Setting the TRACY_VERBOSE variable will make the client display advanced information about the detected
features. By matching those debug prints to the source code, you might be able to uncover why some of the
features are missing on your platform.

15Tested on Ubuntu 22.04.3, docker 24.0.4

18

Tracy Profiler The user manual

2.1.11 Changing network port

By default, the client and server communicate on the network using port 8086. The profiling session utilizes
the TCP protocol, and the client sends presence announcement broadcasts over UDP.

Suppose for some reason you want to use another port16. In that case, you can change it using the
TRACY_DATA_PORT macro for the data connection and TRACY_BROADCAST_PORT macro for client broadcasts.
Alternatively, you may change both ports at the same time by declaring the TRACY_PORT macro (specific
macros listed before have higher priority). You may also change the data connection port without recompiling
the client application by setting the TRACY_PORT environment variable.

If a custom port is not specified and the default listening port is already occupied, the profiler will
automatically try to listen on a number of other ports.

To enable network communication, Tracy needs to open a listening port. Make sure it is not blocked by
an overzealous firewall or anti-virus program.

Important

2.1.12 Limitations

When using Tracy Profiler, keep in mind the following requirements:

• The application may use each lock in no more than 64 unique threads.

• There can be no more than 65534 unique source locations17. This number is further split in half between
native code source locations and dynamic source locations (for example, when Lua instrumentation is
used).

• If there are recursive zones at any point in a zone stack, each unique zone source location should not
appear more than 255 times.

• Profiling session cannot be longer than 1.6 days (247 ns). This also includes on-demand sessions.

• No more than 4 billion (232) memory free events may be recorded.

• No more than 16 million (224) unique call stacks can be captured.

The following conditions also need to apply but don’t trouble yourself with them too much. You would
probably already know if you’d be breaking any.

• Only little-endian CPUs are supported.

• Virtual address space must be limited to 48 bits.

• Tracy server requires CPU which can handle misaligned memory accesses.

2.2 Check your environment
It is not an easy task to reliably measure the performance of an application on modern machines. There are
many factors affecting program execution characteristics, some of which you will be able to minimize and
others you will have to live with. It is critically important that you understand how these variables impact
profiling results, as it is key to understanding the data you get.

16For example, other programs may already be using it, or you may have overzealous firewall rules, or you may want to run two
clients on the same IP address.

17A source location is a place in the code, which is identified by source file name and line number, for example, when you markup a
zone.

19

Tracy Profiler The user manual

2.2.1 Operating system

In a multitasking operating system, applications compete for system resources with each other. This has a
visible effect on the measurements performed by the profiler, which you may or may not accept.

To get the most accurate profiling results, you should minimize interference caused by other programs
running on the same machine. Before starting a profile session, close all web browsers, music players, instant
messengers, and all other non-essential applications like Steam, Uplay, etc. Make sure you don’t have the
debugger hooked into the profiled program, as it also impacts the timing results.

Interference caused by other programs can be seen in the profiler if context switch capture (section 3.15.3)
is enabled.

In MSVC, you would typically run your program using the Start Debugging menu option, which is
conveniently available as a F5 shortcut. You should instead use the Start Without Debugging option,
available as Ctrl + F5 shortcut.

Debugger in Visual Studio

2.2.2 CPU design

Where to even begin here? Modern processors are such complex beasts that it’s almost impossible to
say anything about how they will behave surely. Cache configuration, prefetcher logic, memory timings,
branch predictor, execution unit counts are all the drivers of instructions-per-cycle uplift nowadays after the
megahertz race had hit the wall. Not only is it challenging to reason about, but you also need to take into
account how the CPU topology affects things, which is described in more detail in section 3.15.4.

Nevertheless, let’s look at how we can try to stabilize the profiling data.

2.2.2.1 Superscalar out-of-order speculative execution

Also known as: the spectre thing we have to deal with now.
You must be aware that most processors available on the market18 do not execute machine code linearly, as

laid out in the source code. This can lead to counterintuitive timing results reported by Tracy. Trying to
get more ’reliable’ readings19 would require a change in the behavior of the code, and this is not a thing a
profiler should do. So instead, Tracy shows you what the hardware is really doing.

This is a complex subject, and the details vary from one CPU to another. You can read a brief rundown of the
topic at the following address: https://travisdowns.github.io/blog/2019/06/11/speed-limits.html.

2.2.2.2 Simultaneous multithreading

Also known as: Hyper-threading. Typically present on Intel and AMD processors.
To get the most reliable results, you should have all the CPU core resources dedicated to a single thread

of your program. Otherwise, you’re no longer measuring the behavior of your code but rather how it keeps
up when its computing resources are randomly taken away by some other thing running on another pipeline
within the same physical core.

Note that you might want to observe this behavior if you plan to deploy your application on a machine
with simultaneous multithreading enabled. This would require careful examination of what else is running
on the machine, or even how the operating system schedules the threads of your own program, as various
combinations of competing workloads (e.g., integer/floating-point operations) will be impacted differently.

18Except low-cost ARM CPUs.
19And by saying ’reliable,’ you do in reality mean: behaving in a way you expect it.

20

https://travisdowns.github.io/blog/2019/06/11/speed-limits.html

Tracy Profiler The user manual

2.2.2.3 Turbo mode frequency scaling

Also known as: Turbo Boost (Intel), Precision Boost (AMD).
While the CPU is more-or-less designed always to be able to work at the advertised base frequency, there

is usually some headroom left, which allows usage of the built-in automatic overclocking. There are no
guarantees that the CPU can attain the turbo frequencies or how long it will uphold them, as there are many
things to take into consideration:

• How many cores are in use? Just one, or all 8? All 16?

• What type of work is being performed? Integer? Floating-point? 128-wide SIMD? 256-wide SIMD?
512-wide SIMD?

• Were you lucky in the silicon lottery? Some dies are just better made and can achieve higher frequencies.

• Are you running on the best-rated core or at the worst-rated core? Some cores may be unable to match
the performance of other cores in the same processor.

• What kind of cooling solution are you using? The cheap one bundled with the CPU or a hefty chunk of
metal that has no problem with heat dissipation?

• Do you have complete control over the power profile? Spoiler alert: no. The operating system may run
anything at any time on any of the other cores, which will impact the turbo frequency you’re able to
achieve.

As you can see, this feature basically screams ’unreliable results!’ Best keep it disabled and run at the
base frequency. Otherwise, your timings won’t make much sense. A true example: branchless compression
function executing multiple times with the same input data was measured executing at four different speeds.

Keep in mind that even at the base frequency, you may hit the thermal limits of the silicon and be down
throttled.

2.2.2.4 Power saving

This is, in essence, the same as turbo mode, but in reverse. While unused, processor cores are kept at lower
frequencies (or even wholly disabled) to reduce power usage. When your code starts running20, the core
frequency needs to ramp up, which may be visible in the measurements.

Even worse, if your code doesn’t do a lot of work (for example, because it is waiting for the GPU to finish
rendering the frame), the CPU might not ramp up the core frequency to 100%, which will skew the results.

Again, to get the best results, keep this feature disabled.

2.2.2.5 AVX offset and power licenses

Intel CPUs are unable to run at their advertised frequencies when they perform wide SIMD operations due
to increased power requirements21. Therefore, depending on the width and type of operations executed, the
core operating frequency will be reduced, in some cases quite drastically22. To make things even better, some
parts of the workload will execute within the available power license, at a twice reduced processing rate.
After that, the CPU may be stopped for some time so that the wide parts of executions units can be powered
up. Then the work will continue at full processing rate but at a reduced frequency.

Be very careful when using AVX2 or AVX512.
More information can be found at https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html,

https://en.wikichip.org/wiki/intel/frequency_behavior.
20Not necessarily when the application is started, but also when, for example, a blocking mutex becomes released by other thread and

is acquired.
21AMD processors are not affected by this issue.
22https://en.wikichip.org/wiki/intel/xeon_gold/5120#Frequencies

21

https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://en.wikichip.org/wiki/intel/frequency_behavior
https://en.wikichip.org/wiki/intel/xeon_gold/5120#Frequencies

Tracy Profiler The user manual

2.2.2.6 Summing it up

Power management schemes employed in various CPUs make it hard to reason about the true performance of
the code. For example, figure 3 contains a histogram of function execution times (as described in chapter 5.7),
as measured on an AMD Ryzen CPU. The results ranged from 13.05 µs to 61.25 µs (extreme outliers were not
included on the graph, limiting the longest displayed time to 36.04 µs).

Figure 3: Example function execution times on a Ryzen CPU

We can immediately see that there are two distinct peaks, at 13.4 µs and 15.3 µs. A reasonable assumption
would be that there are two paths in the code, one that can omit some work, and the second one which must
do some additional job. But here’s a catch – the measured code is actually branchless and always executes
the same way. The two peaks represent two turbo frequencies between which the CPU was aggressively
switching.

We can also see that the graph gradually falls off to the right (representing longer times), with a slight
bump near the end. Again, this can be attributed to running in power-saving mode, with different reaction
times to the required operating frequency boost to full power.

2.3 Building the server
Tracy uses the CMake build system. Unlike in most other programs, the root-level CMakeLists.txt file is
only used to provide client integration. The build definition files used to create profiler executables are stored
in directories specific to each utility.

The easiest way to get going is to build the data analyzer, available in the profiler directory. Then, you
can connect to localhost or remote clients and view the collected data right away with it.

If you prefer to inspect the data only after a trace has been performed, you may use the command-line
utility in the capture directory. It will save a data dump that you may later open in the graphical viewer
application.

Ideally, it would be best to use the same version of the Tracy profiler on both client and server. The
network protocol may change in-between releases, in which case you won’t be able to make a connection.

See section 4 for more information about performing captures.

The CMakeLists.txt file only contains the general definition of how the program should be built. To be
able to actually compile the program, you must first create a build directory that takes into account the
specific compiler you have on your system, the set of available libraries, the build options you specify,
and so on. You can do this by issuing the following command, in this case for the profiler utility:

cmake -B profiler / build -S profiler -DCMAKE_BUILD_TYPE = Release

Now that you have a build directory, you can actually compile the program. For example, you could
run the following command:

cmake --build profiler / build --config Release --parallel

How to use CMake

22

Tracy Profiler The user manual

The build directory can be reused if you want to compile the program in the future, for example if
there have been some updates to the source code, and usually does not need to be regenerated. Note
that all build artifacts are contained in the build directory.

Due to the memory requirements for data storage, the Tracy server is only supposed to run on 64-bit
platforms. While nothing prevents the program from building and executing in a 32-bit environment,
doing so is not supported.

Important

2.3.1 Required libraries

The core libraries necessary for the building of Tracy utilities are:

• capstone

• glfw

• freetype

The capstone library will always be downloaded from GitHub when the CMake build directory is created,
unless you have it installed on your system and set the specific build option. You must have git installed for
this download to work. Using the capstone library provided by package managers is not recommended,
as these packages are typically slow to provide up-to-date versions of the library, and the API may be
incompatible.

It is recommended that you install the glfw and freetype libraries on your system so that Tracy can find
them with pkg-config. However, if these libraries are not available, they will be downloaded from GitHub.

2.3.1.1 Windows

There is no need to install external libraries (e.g. with vcpkg). All libraries are downloaded automatically by
CMake. You still need git, though.

2.3.1.2 Unix

On Unix systems (including Linux), you will need to install the pkg-config utility to provide information
about libraries.

Due to some questionable design decisions by the compiler developers, you will most likely also need the
tbb library23. If not found, this library is downloaded automatically.

Installation of the libraries on OSX can be facilitated using the brew package manager.

2.3.1.3 Linux

There are some Linux-specific libraries that you need to have installed on your system. These won’t be
downloaded automatically.

For XDG Portal support in the file selector, you need to install the dbus library. If you’re one of those
weird people who doesn’t like modern things, you can install gtk3 instead and force the GTK file selector
with a build option.

Linux builds of Tracy use the Wayland protocol by default, which allows proper support for Hi-DPI
scaling and high-precision input devices such as touchpads. As such, the glfw library is no longer needed,

23Technically, this is not a Tracy dependency, but rather a libstdc++ dependency, but it may still not be installed by default.

23

Tracy Profiler The user manual

but you will need to install libxkbcommon, wayland, wayland-protocols, libglvnd (or libegl on some
distributions).

If you want to use X11 instead, you can enable the LEGACY option in CMake build settings.

Some Linux distributions require you to add a lib prefix and a -dev or -devel postfix to library names.
You may also need to add a seemingly random number to the library name (for example: freetype2,
or freetype6).

Some Linux distributions ship outdated versions of libraries that are too old for Tracy to build, and
do not provide new versions by design. Please reconsider your choice of distribution in this case, as the
only function of a Linux distribution is to provide packages, and the one you have chosen is clearly
failing at this task.

Linux distributions

Please don’t ask about window decorations in Gnome. The current behavior is the intended behavior.
Gnome does not want windows to have decorations, and Tracy respects that choice. If you find this
problematic, use a desktop environment that actually listens to its users.

Window decorations

2.3.2 Using an IDE

The recommended development environment is Visual Studio Code24. This is a cross-platform solution, so
you always get the same experience, no matter what OS you are using.

VS Code is highly modular, and unlike some other IDEs, it does not come with a compiler. You will need
to have one, such as gcc or clang, already installed on your system. On Windows, you should have MSVC
2022 installed in order to have access to its build tools.

When you open the Tracy directory in VS Code, it will prompt you to install some recommended
extensions: clangd, CodeLLDB, and CMake Tools. You should do this if you don’t already have them.

The CMake build configuration will begin immediately. It is likely that you will be prompted to select a
development kit to use; for example, you may have a preference as to whether you want to use gcc or clang,
and CMake will need to be told about it.

After the build configuration phase is over, you may want to make some further adjustments to what is
being built. The primary place to do this is in the Project Status section of the CMake side panel. The two key
settings there are also available in the status bar at the bottom of the window:

• The Folder setting allows you to choose which Tracy utility you want to work with. Select "profiler" for
the profiler’s GUI.

• The Build variant setting is used to toggle between the debug and release build configurations.

With all this taken care of, you can now start the program with the F5 key, set breakpoints, get code
completion and navigation25, and so on.

24https://code.visualstudio.com/
25To get the Intellisense experience if you are using the MSVC compiler, you need to do some additional setup. First, you need to

install Ninja (https://ninja-build.org/). The Meson installer (https://github.com/mesonbuild/meson/releases) is probably
the most convenient way to do this. Then you need to set the cmake.generator option in the VS Code settings to Ninja. Once this is
done, all you have to do is wipe the existing build directories and run the CMake configuration again.

24

https://code.visualstudio.com/
https://ninja-build.org/
https://github.com/mesonbuild/meson/releases

Tracy Profiler The user manual

2.3.3 Embedding the server in profiled application

While not officially supported, it is possible to embed the server in your application, the same one running
the client part of Tracy. How to make this work is left up for you to figure out.

Note that most libraries bundled with Tracy are modified in some way and contained in the tracy
namespace. The one exception is Dear ImGui, which can be freely replaced.

Be aware that while the Tracy client uses its own separate memory allocator, the server part of Tracy will
use global memory allocation facilities shared with the rest of your application. This will affect both the
memory usage statistics and Tracy memory profiling.

The following defines may be of interest:

• TRACY_NO_FILESELECTOR – controls whether a system load/save dialog is compiled in. If it’s enabled,
the saved traces will be named trace.tracy.

• TRACY_NO_STATISTICS – Tracy will perform statistical data collection on the fly, if this macro is not
defined. This allows extended trace analysis (for example, you can perform a live search for matching
zones) at a small CPU processing cost and a considerable memory usage increase (at least 8 bytes per
zone).

• TRACY_NO_ROOT_WINDOW – the main profiler view won’t occupy the whole window if this macro is
defined. Additional setup is required for this to work. If you want to embed the server into your
application, you probably should enable this option.

2.3.4 DPI scaling

The graphic server application will adapt to the system DPI scaling. If for some reason, this doesn’t work in
your case, you may try setting the TRACY_DPI_SCALE environment variable to a scale fraction, where a value
of 1 indicates no scaling.

2.4 Naming threads
Remember to set thread names for proper identification of threads. You should do so by using the function
tracy::SetThreadName(name) exposed in the public/common/TracySystem.hpp header, as the system
facilities typically have limited functionality.

It is also possible to specify a thread group hint with tracy::SetThreadNameWithHint(name, int32_t
groupHint). This hint is an arbitrary number that is used to group threads together in the profiler UI. The
default value and the value for the main thread is zero.

Tracy will try to capture thread names through operating system data if context switch capture is active.
However, this is only a fallback mechanism, and it shouldn’t be relied upon.

2.4.1 Source location data customization

Some source location data such as function name, file path or line number can be overriden with defines
TracyFunction, TracyFile, TracyLine26 made before including public/tracy/Tracy.hpp header file27.

#if defined (__clang__) || defined (__GNUC__)
define TracyFunction __PRETTY_FUNCTION__
elif defined (_MSC_VER)
define TracyFunction __FUNCSIG__
endif

include <tracy / Tracy .hpp >

26By default the macros unwrap to __FUNCTION__, __FILE__ and __LINE__ respectively.
27You should add either public or public/tracy directory from the Tracy root to the include directories list in your project. Then

you will be able to #include "tracy/Tracy.hpp" or #include "Tracy.hpp", respectively.

25

Tracy Profiler The user manual

...

void Graphics :: Render ()
{

ZoneScoped ;
...

}

2.5 Crash handling

On selected platforms (see section 2.6) Tracy will intercept application crashes28. This serves two purposes.
First, the client application will be able to send the remaining profiling data to the server. Second, the server
will receive a crash report with the crash reason, call stack at the time of the crash, etc.

This is an automatic process, and it doesn’t require user interaction. If you are experiencing issues with
crash handling you may want to try defining the TRACY_NO_CRASH_HANDLER macro to disable the built in
crash handling.

• On MSVC the debugger has priority over the application in handling exceptions. If you want to
finish the profiler data collection with the debugger hooked-up, select the continue option in the
debugger pop-up dialog.

• On Linux, crashes are handled with signals. Tracy needs to have SIGPWR available, which is rather
rarely used. Still, the program you are profiling may expect to employ it for its purposes, which
would cause a conflicta. To workaround such cases, you may set the TRACY_CRASH_SIGNAL macro
value to some other signal (see man 7 signal for a list of signals). Ensure that you avoid conflicts
by selecting a signal that the application wouldn’t usually receive or emit.

aFor example, Mono may use it to trigger garbage collection.

Caveats

2.6 Feature support matrix

Some features of the profiler are only available on selected platforms. Please refer to table 2 for details.

3 Client markup

With the steps mentioned above, you will be able to connect to the profiled program, but there probably
won’t be any data collection performed29. Unless you’re able to perform automatic call stack sampling
(see chapter 3.15.5), you will have to instrument the application manually. All the user-facing interface is
contained in the public/tracy/Tracy.hpp header file30.

Manual instrumentation is best started with adding markup to the application’s main loop, along with
a few functions that the loop calls. Such an approach will give you a rough outline of the function’s time
cost, which you may then further refine by instrumenting functions deeper in the call stack. Alternatively,
automated sampling might guide you more quickly to places of interest.

28For example, invalid memory accesses (’segmentation faults’, ’null pointer exceptions’), divisions by zero, etc.
29With some small exceptions, see section 3.15.
30You should add either public or public/tracy directory from the Tracy root to the include directories list in your project. Then

you will be able to #include "tracy/Tracy.hpp" or #include "Tracy.hpp", respectively.

26

Tracy Profiler The user manual

Feature Windows Linux Android OSX iOS BSD QNX
Profiling program init ✓ ✓ ✓ � � ✓ ✓

CPU zones ✓ ✓ ✓ ✓ ✓ ✓ ✓

Locks ✓ ✓ ✓ ✓ ✓ ✓ ✓

Plots ✓ ✓ ✓ ✓ ✓ ✓ ✓

Messages ✓ ✓ ✓ ✓ ✓ ✓ ✓

Memory ✓ ✓ ✓ ✓ ✓ ✓ p

GPU zones (OpenGL) ✓ ✓ ✓ � � p

GPU zones (Vulkan) ✓ ✓ ✓ ✓ ✓ p

Call stacks ✓ ✓ ✓ ✓ ✓ ✓ p

Symbol resolution ✓ ✓ ✓ ✓ ✓ ✓ ✓

Crash handling ✓ ✓ ✓ p p p p

CPU usage probing ✓ ✓ ✓ ✓ ✓ ✓ p

Context switches ✓ ✓ ✓ p � p p

Wait stacks ✓ ✓ ✓ p � p p

CPU topology information ✓ ✓ ✓ p p p p

Call stack sampling ✓ ✓ ✓ p � p p

Hardware sampling ✓a ✓ ✓ p � p p

VSync capture ✓ ✓ p p p p p

� – Not possible to support due to platform limitations.
aPossible through WSL2.

Table 2: Feature support matrix

3.1 Handling text strings
When dealing with Tracy macros, you will encounter two ways of providing string data to the profiler. In
both cases, you should pass const char* pointers, but there are differences in the expected lifetime of the
pointed data.

1. When a macro only accepts a pointer (for example: TracyMessageL(text)), the provided string data
must be accessible at any time in program execution (this also includes the time after exiting the main
function). The string also cannot be changed. This basically means that the only option is to use a string
literal (e.g.: TracyMessageL("Hello")).

2. If there’s a string pointer with a size parameter (for example TracyMessage(text, size)), the profiler
will allocate a temporary internal buffer to store the data. The size count should not include the
terminating null character, using strlen(text) is fine. The pointed-to data is not used afterward.
Remember that allocating and copying memory involved in this operation has a small time cost.

Be aware that every single instance of text string data passed to the profiler can’t be larger than 64 KB.

3.1.1 Program data lifetime

Take extra care to consider the lifetime of program code (which includes string literals) in your application.
For example, if you dynamically add and remove modules (i.e., DLLs, shared objects) during the runtime,
text data will only be present when the module is loaded. Additionally, when a module is unloaded, the
operating system can place another one in its space in the process memory map, resulting in the aliasing of
text strings. This leads to all sorts of confusion and potential crashes.

Note that string literals are the only option in many parts of the Tracy API. For example, look at how
frame or plot names are specified. You cannot unload modules that contain string literals that you passed to
the profiler31.

31If you really do must unload a module, manually allocating a char buffer, as described in section 3.1.2, will give you a persistent

27

Tracy Profiler The user manual

3.1.2 Unique pointers

In some cases marked in the manual, Tracy expects you to provide a unique pointer in each occurrence the
same string literal is used. This can be exemplified in the following listing:

FrameMarkStart (" Audio processing ");
...
FrameMarkEnd (" Audio processing ");

Here, we pass two string literals with identical contents to two different macros. It is entirely up to
the compiler to decide if it will pool these two strings into one pointer or if there will be two instances
present in the executable image32. For example, on MSVC, this is controlled by Configuration Properties

C/C++ Code Generation Enable String Pooling option in the project properties (optimized builds enable it
automatically). Note that even if string pooling is used on the compilation unit level, it is still up to the linker
to implement pooling across object files.

As you can see, making sure that string literals are properly pooled can be surprisingly tricky. To work
around this problem, you may employ the following technique. In one source file create the unique pointer
for a string literal, for example:

const char * const sl_AudioProcessing = " Audio processing ";

Then in each file where you want to use the literal, use the variable name instead. Notice that if you’d like
to change a name passed to Tracy, you’d need to do it only in one place with such an approach.

extern const char * const sl_AudioProcessing ;

FrameMarkStart (sl_AudioProcessing);
...
FrameMarkEnd (sl_AudioProcessing);

In some cases, you may want to have semi-dynamic strings. For example, you may want to enumerate
workers but don’t know how many will be used. You can handle this by allocating a never-freed char buffer,
which you can then propagate where it’s needed. For example:

char * workerId = new char [16];
snprintf (workerId , 16, " Worker %i", id);
...
FrameMarkStart (workerId);

You have to make sure it’s initialized only once, before passing it to any Tracy API, that it is not overwritten
by new data, etc. In the end, this is just a pointer to character-string data. It doesn’t matter if the memory
was loaded from the program image or allocated on the heap.

3.2 Specifying colors

In some cases, you will want to provide your own colors to be displayed by the profiler. You should use a
hexadecimal 0xRRGGBB notation in all such places.

Alternatively you may use named colors predefined in common/TracyColor.hpp (included by Tracy.hpp).
Visual reference: https://en.wikipedia.org/wiki/X11_color_names.

Do not use 0x000000 if you want to specify black color, as zero is a special value indicating that no color
was set. Instead, use a value close to zero, e.g. 0x000001.

string in memory.
32[ISO12] §2.14.5.12: "Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-defined."

28

https://en.wikipedia.org/wiki/X11_color_names

Tracy Profiler The user manual

3.3 Marking frames

To slice the program’s execution recording into frame-sized chunks33, put the FrameMark macro after you
have completed rendering the frame. Ideally, that would be right after the swap buffers command.

This step is optional, as some applications do not use the concept of a frame.
Do I need this?

3.3.1 Secondary frame sets

In some cases, you may want to track more than one set of frames in your program. To do so, you may use
the FrameMarkNamed(name) macro, which will create a new set of frames for each unique name you provide.
But, first, make sure you are correctly pooling the passed string literal, as described in section 3.1.2.

3.3.2 Discontinuous frames

Some types of frames are discontinuous by their nature – they are executed periodically, with a pause
between each run. Examples of such frames are a physics processing step in a game loop or an audio callback
running on a separate thread. Tracy can also track this kind of frames.

To mark the beginning of a discontinuous frame use the FrameMarkStart(name) macro. After the work
is finished, use the FrameMarkEnd(name) macro.

• Frame types must not be mixed. For each frame set, identified by an unique name, use either
continuous or discontinuous frames only!

• You must issue the FrameMarkStart and FrameMarkEnd macros in proper order. Be extra careful,
especially if multi-threading is involved.

• String literals passed as frame names must be properly pooled, as described in section 3.1.2.

Important

3.3.3 Frame images

It is possible to attach a screen capture of your application to any frame in the main frame set. This can help
you see the context of what’s happening in various places in the trace. You need to implement retrieval of the
image data from GPU by yourself.

Images are sent using the FrameImage(image, width, height, offset, flip) macro, where image is
a pointer to RGBA34 pixel data, width and height are the image dimensions, which must be divisible by 4,
offset specifies how much frame lag was there for the current image (see chapter 3.3.3.1), and flip should
be set, if the graphics API stores images upside-down35. The profiler copies the image data, so you don’t
need to retain it.

Handling image data requires a lot of memory and bandwidth36. To achieve sane memory usage, you
should scale down taken screenshots to a suitable size, e.g., 320 × 180.

To further reduce image data size, frame images are internally compressed using the DXT1 Texture Com-
pression technique37, which significantly reduces data size38, at a slight quality decrease. The compression
algorithm is high-speed and can be made even faster by enabling SIMD processing, as indicated in table 3.

33Each frame starts immediately after previous has ended.
34Alpha value is ignored, but leaving it out wouldn’t map well to the way graphics hardware works.
35For example, OpenGL flips images, but Vulkan does not.
36One uncompressed 1080p image takes 8 MB.
37https://en.wikipedia.org/wiki/S3_Texture_Compression
38One pixel is stored in a nibble (4 bits) instead of 32 bits.

29

https://en.wikipedia.org/wiki/S3_Texture_Compression

Tracy Profiler The user manual

Implementation Required define Time
x86 Reference — 198.2 µs
x86 SSE4.1a __SSE4_1__ 25.4 µs
x86 AVX2 __AVX2__ 17.4 µs

ARM Reference — 1.04 ms
ARM32 NEONb __ARM_NEON 529 µs
ARM64 NEON __ARM_NEON 438 µs

a) VEX encoding; b) ARM32 NEON code compiled for ARM64

Table 3: Client compression time of 320 × 180 image. x86: Ryzen 9 3900X (MSVC); ARM: ODROID-C2 (gcc).

• Frame images are compressed on a second client profiler threada, to reduce memory usage of
queued images. This might have an impact on the performance of the profiled application.

• This second thread will be periodically woken up, even if there are no frame images to compressb.
If you are not using the frame image capture functionality and you don’t wish this thread to be
running, you can define the TRACY_NO_FRAME_IMAGE macro.

• Due to implementation details of the network buffer, a single frame image cannot be greater than
256 KB after compression. Note that a 960 × 540 image fits in this limit.

aSmall part of compression task is offloaded to the server.
bThis way of doing things is required to prevent a deadlock in specific circumstances.

Caveats

3.3.3.1 OpenGL screen capture code example

There are many pitfalls associated with efficiently retrieving screen content. For example, using glReadPixels
and then resizing the image using some library is terrible for performance, as it forces synchronization of the
GPU to CPU and performs the downscaling in software. To do things properly, we need to scale the image
using the graphics hardware and transfer data asynchronously, which allows the GPU to run independently
of the CPU.

The following example shows how this can be achieved using OpenGL 3.2. Of course, more recent
OpenGL versions allow doing things even better (for example, using persistent buffer mapping), but this
manual won’t cover it here.

Let’s begin by defining the required objects. First, we need a texture to store the resized image, a framebuffer
object to be able to write to the texture, a pixel buffer object to store the image data for access by the CPU, and a
fence to know when the data is ready for retrieval. We need everything in at least three copies (we’ll use four)
because the rendering, as seen in the program, can run ahead of the GPU by a couple of frames. Next, we
need an index to access the appropriate data set in a ring-buffer manner. And finally, we need a queue to
store indices to data sets that we are still waiting for.

GLuint m_fiTexture [4];
GLuint m_fiFramebuffer [4];
GLuint m_fiPbo [4];
GLsync m_fiFence [4];
int m_fiIdx = 0;
std :: vector <int > m_fiQueue ;

Everything needs to be correctly initialized (the cleanup is left for the reader to figure out).

glGenTextures (4, m_fiTexture);

30

Tracy Profiler The user manual

glGenFramebuffers (4, m_fiFramebuffer);
glGenBuffers (4, m_fiPbo);
for(int i=0; i <4; i++)
{

glBindTexture (GL_TEXTURE_2D , m_fiTexture [i]);
glTexParameteri (GL_TEXTURE_2D , GL_TEXTURE_MIN_FILTER , GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D , GL_TEXTURE_MAG_FILTER , GL_NEAREST);
glTexImage2D (GL_TEXTURE_2D , 0, GL_RGBA , 320 , 180 , 0, GL_RGBA , GL_UNSIGNED_BYTE ,

nullptr);

glBindFramebuffer (GL_FRAMEBUFFER , m_fiFramebuffer [i]);
glFramebufferTexture2D (GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , GL_TEXTURE_2D ,

m_fiTexture [i], 0);

glBindBuffer (GL_PIXEL_PACK_BUFFER , m_fiPbo [i]);
glBufferData (GL_PIXEL_PACK_BUFFER , 320*180*4 , nullptr , GL_STREAM_READ);

}

We will now set up a screen capture, which will downscale the screen contents to 320 × 180 pixels and
copy the resulting image to a buffer accessible by the CPU when the operation is done. This should be placed
right before swap buffers or present call.

assert (m_fiQueue . empty () || m_fiQueue . front () != m_fiIdx); // check for buffer overrun
glBindFramebuffer (GL_DRAW_FRAMEBUFFER , m_fiFramebuffer [m_fiIdx]);
glBlitFramebuffer (0, 0, res.x, res.y, 0, 0, 320 , 180 , GL_COLOR_BUFFER_BIT , GL_LINEAR);
glBindFramebuffer (GL_DRAW_FRAMEBUFFER , 0);
glBindFramebuffer (GL_READ_FRAMEBUFFER , m_fiFramebuffer [m_fiIdx]);
glBindBuffer (GL_PIXEL_PACK_BUFFER , m_fiPbo [m_fiIdx]);
glReadPixels (0, 0, 320 , 180 , GL_RGBA , GL_UNSIGNED_BYTE , nullptr);
glBindFramebuffer (GL_READ_FRAMEBUFFER , 0);
m_fiFence [m_fiIdx] = glFenceSync (GL_SYNC_GPU_COMMANDS_COMPLETE , 0);
m_fiQueue . emplace_back (m_fiIdx);
m_fiIdx = (m_fiIdx + 1) % 4;

And lastly, just before the capture setup code that was just added39 we need to have the image retrieval
code. We are checking if the capture operation has finished. If it has, we map the pixel buffer object to memory,
inform the profiler that there are image data to be handled, unmap the buffer and go to check the next queue
item. If capture is still pending, we break out of the loop. We will have to wait until the next frame to check if
the GPU has finished performing the capture.

while (! m_fiQueue . empty ())
{

const auto fiIdx = m_fiQueue . front ();
if(glClientWaitSync (m_fiFence [fiIdx], 0, 0) == GL_TIMEOUT_EXPIRED) break ;
glDeleteSync (m_fiFence [fiIdx]);
glBindBuffer (GL_PIXEL_PACK_BUFFER , m_fiPbo [fiIdx]);
auto ptr = glMapBufferRange (GL_PIXEL_PACK_BUFFER , 0, 320*180*4 , GL_MAP_READ_BIT);
FrameImage (ptr , 320 , 180 , m_fiQueue .size () , true);
glUnmapBuffer (GL_PIXEL_PACK_BUFFER);
m_fiQueue . erase (m_fiQueue . begin ());

}

Notice that in the call to FrameImage we are passing the remaining queue size as the offset parameter.
Queue size represents how many frames ahead our program is relative to the GPU. Since we are sending
past frame images, we need to specify how many frames behind the images are. Of course, if this would be
synchronous capture (without the use of fences and with retrieval code after the capture setup), we would
set offset to zero, as there would be no frame lag.

39Yes, before. We are handling past screen captures here.

31

Tracy Profiler The user manual

High quality capture The code above uses glBlitFramebuffer function, which can only use nearest
neighbor filtering. The use of such filtering can result in low-quality screenshots, as shown in figure 4.
However, with a bit more work, it is possible to obtain nicer-looking screenshots, as presented in figure 5.
Unfortunately, you will need to set up a complete rendering pipeline for this to work.

First, you need to allocate an additional set of intermediate frame buffers and textures, sized the same as
the screen. These new textures should have a minification filter set to GL_LINEAR_MIPMAP_LINEAR. You will
also need to set up everything needed to render a full-screen quad: a simple texturing shader and vertex
buffer with appropriate data. Since you will use this vertex buffer to render to the scaled-down frame buffer,
you may prepare its contents beforehand and update it only when the aspect ratio changes.

With all this done, you can perform the screen capture as follows:

• Setup vertex buffer configuration for the full-screen quad buffer (you only need position and uv coordi-
nates).

• Blit the screen contents to the full-sized frame buffer.

• Bind the texture backing the full-sized frame buffer.

• Generate mipmaps using glGenerateMipmap.

• Set viewport to represent the scaled-down image size.

• Bind vertex buffer data, shader, setup the required uniforms.

• Draw full-screen quad to the scaled-down frame buffer.

• Retrieve frame buffer contents, as in the code above.

• Restore viewport, vertex buffer configuration, bound textures, etc.

While this approach is much more complex than the previously discussed one, the resulting image quality
increase makes it worthwhile.

Figure 4: Low-quality screen shot Figure 5: High-quality screen shot

You can see the performance results you may expect in a simple application in table 4. The naïve capture
performs synchronous retrieval of full-screen image and resizes it using stb_image_resize. The proper and
high-quality captures do things as described in this chapter.

Resolution Naïve capture Proper capture High quality
1280 × 720 80 FPS 4200 FPS 2800 FPS
2560 × 1440 23 FPS 3300 FPS 1600 FPS

Table 4: Frame capture efficiency

32

Tracy Profiler The user manual

3.4 Marking zones

To record a zone’s40 execution time add the ZoneScoped macro at the beginning of the scope you want to
measure. This will automatically record function name, source file name, and location. Optionally you may
use the ZoneScopedC(color) macro to set a custom color for the zone. Note that the color value will be
constant in the recording (don’t try to parametrize it). You may also set a custom name for the zone, using the
ZoneScopedN(name) macro. Color and name may be combined by using the ZoneScopedNC(name, color)
macro.

Use the ZoneText(text, size) macro to add a custom text string that the profiler will display along
with the zone information (for example, name of the file you are opening). Multiple text strings can be
attached to any single zone. The dynamic color of a zone can be specified with the ZoneColor(uint32_t)
macro to override the source location color. If you want to send a numeric value and don’t want to pay the
cost of converting it to a string, you may use the ZoneValue(uint64_t) macro. Finally, you can check if the
current zone is active with the ZoneIsActive macro.

If you want to set zone name on a per-call basis, you may do so using the ZoneName(text, size) macro.
However, this name won’t be used in the process of grouping the zones for statistical purposes (sections 5.6
and 5.7).

To use printf-like formatting, you can use the ZoneTextF(fmt, ...) and ZoneNameF(fmt, ...) macros.

Zones are identified using static data structures embedded in program code. Therefore, you need to
consider the lifetime of code in your application, as discussed in section 3.1.1, to make sure that the
profiler can access this data at any time during the program lifetime.

If you can’t fulfill this requirement, you must use transient zones, described in section 3.4.4.

Important

3.4.1 Manual management of zone scope

The zone markup macros automatically report when they end, through the RAII mechanism41. This is very
helpful, but sometimes you may want to mark the zone start and end points yourself, for example, if you
want to have a zone that crosses the function’s boundary. You can achieve this by using the C API, which is
described in section 3.13.

3.4.2 Multiple zones in one scope

Using the ZoneScoped family of macros creates a stack variable named ___tracy_scoped_zone. If you want
to measure more than one zone in the same scope, you will need to use the ZoneNamed macros, which require
that you provide a name for the created variable. For example, instead of ZoneScopedN("Zone name"), you
would use ZoneNamedN(variableName, "Zone name", true)42.

The ZoneText, ZoneColor, ZoneValue, ZoneIsActive, and ZoneName macros apply to the zones cre-
ated using the ZoneScoped macros. For zones created using the ZoneNamed macros, you can use the
ZoneTextV(variableName, text, size), ZoneColorV(variableName, uint32_t), ZoneValueV(variableName,
uint64_t), ZoneIsActiveV(variableName), or ZoneNameV(variableName, text, size) macros, or invoke
the methods Text, Color, Value, IsActive, or Name directly on the variable you have created.

Zone objects can’t be moved or copied.

40A zone represents the lifetime of a special on-stack profiler variable. Typically it would exist for the duration of a whole scope of the
profiled function, but you also can measure time spent in scopes of a for-loop or an if-branch.

41https://en.cppreference.com/w/cpp/language/raii
42The last parameter is explained in section 3.4.3.

33

https://en.cppreference.com/w/cpp/language/raii

Tracy Profiler The user manual

The ZoneScoped macros are imposing the creation and usage of an implicit zone stack. You must also
follow the rules of this stack when using the named macros, which give you some more leeway in doing
things. For example, you can only set the text for the zone which is on top of the stack, as you only
could do with the ZoneText macro. It doesn’t matter that you can call the Text method of a non-top
zone which is accessible through a variable. Take a look at the following code:

{
ZoneNamed (Zone1 , true);
a

{
ZoneNamed (Zone2 , true);
b

}
c

}

It is valid to set the Zone1 text or name only in places a or c . After Zone2 is created at b you can
no longer perform operations on Zone1, until Zone2 is destroyed.

Zone stack

3.4.3 Filtering zones

Zone logging can be disabled on a per-zone basis by making use of the ZoneNamed macros. Each of the
macros takes an active argument (’true’ in the example in section 3.4.2), which will determine whether the
zone should be logged.

Note that this parameter may be a run-time variable, such as a user-controlled switch to enable profiling
of a specific part of code only when required.

If the condition is constant at compile-time, the resulting code will not contain a branch (the profiling
code will either be always enabled or won’t be there at all). The following listing presents how you might
implement profiling of specific application subsystems:

enum SubSystems
{

Sys_Physics = 1 << 0,
Sys_Rendering = 1 << 1,
Sys_NasalDemons = 1 << 2

}

...

// Preferably a define in the build system
define SUBSYSTEMS (Sys_Physics | Sys_NasalDemons)

...

void Physics :: Process ()
{

ZoneNamed (__tracy , SUBSYSTEMS & Sys_Physics); // always true , no runtime cost
...

}

void Graphics :: Render ()
{

ZoneNamed (__tracy , SUBSYSTEMS & Sys_Graphics); // always false , no runtime
cost

...
}

34

Tracy Profiler The user manual

3.4.4 Transient zones

In order to prevent problems caused by unloadable code, described in section 3.1.1, transient zones copy the
source location data to an on-heap buffer. This way, the requirement on the string literal data being accessible
for the rest of the program lifetime is relaxed, at the cost of increased memory usage.

Transient zones can be declared through the ZoneTransient and ZoneTransientN macros, with the same
set of parameters as the ZoneNamed macros. See section 3.4.2 for details and make sure that you observe the
requirements outlined there.

3.4.5 Variable shadowing

The following code is fully compliant with the C++ standard:

void Function ()
{

ZoneScoped ;
...
for(int i=0; i <10; i++)
{

ZoneScoped ;
...

}
}

This doesn’t stop some compilers from dispensing fashion advice about variable shadowing (as both
ZoneScoped calls create a variable with the same name, with the inner scope one shadowing the one in the
outer scope). If you want to avoid these warnings, you will also need to use the ZoneNamed macros.

3.4.6 Exiting program from within a zone

Exiting the profiled application from inside a zone is not supported. When the client calls exit(), the profiler
will wait for all zones to end before a program can be truly terminated. If program execution stops inside a
zone, this will never happen, and the profiled application will seemingly hang up. At this point, you will
need to manually terminate the program (or disconnect the profiler server).

As a workaround, you may add a try/catch pair at the bottom of the function stack (for example in
the main() function) and replace exit() calls with throwing a custom exception. When this exception is
caught, you may call exit(), knowing that the application’s data structures (including profiling zones) were
properly cleaned up.

3.5 Marking locks
Modern programs must use multi-threading to achieve the full performance capability of the CPU. However,
correct execution requires claiming exclusive access to data shared between threads. When many threads want
to simultaneously enter the same critical section, the application’s multi-threaded performance advantage
nullifies. To help solve this problem, Tracy can collect and display lock interactions in threads.

To mark a lock (mutex) for event reporting, use the TracyLockable(type, varname) macro. Note that
the lock must implement the Mutex requirement43 (i.e., there’s no support for timed mutexes). For a concrete
example, you would replace the line

std :: mutex m_lock ;

with

TracyLockable (std :: mutex , m_lock);

43https://en.cppreference.com/w/cpp/named_req/Mutex

35

https://en.cppreference.com/w/cpp/named_req/Mutex

Tracy Profiler The user manual

Alternatively, you may use TracyLockableN(type, varname, description) to provide a custom lock
name at a global level, which will replace the automatically generated ’std::mutex m_lock’-like name. You
may also set a custom name for a specific instance of a lock, through the LockableName(varname, name,
size) macro.

The standard std::lock_guard and std::unique_lock wrappers should use the LockableBase(type)
macro for their template parameter (unless you’re using C++17, with improved template argument deduction).
For example:

std :: lock_guard < LockableBase (std :: mutex)> lock(m_lock);

To mark the location of a lock being held, use the LockMark(varname) macro after you have obtained the
lock. Note that the varname must be a lock variable (a reference is also valid). This step is optional.

Similarly, you can use TracySharedLockable, TracySharedLockableN and SharedLockableBase to mark
locks implementing the SharedMutex requirement44. Note that while there’s no support for timed mutices
in Tracy, both std::shared_mutex and std::shared_timed_mutex may be used45.

The standard std::condition_variable is only able to accept std::mutex locks. To be able to use
Tracy lock wrapper, use std::condition_variable_any instead.

Condition variables

Due to the limits of internal bookkeeping in the profiler, you may use each lock in no more than 64
unique threads. If you have many short-lived temporary threads, consider using a thread pool to limit
the number of created threads.

Caveats

3.5.1 Custom locks

If using the TracyLockable or TracySharedLockable wrappers does not fit your needs, you may want
to add a more fine-grained instrumentation to your code. Classes LockableCtx and SharedLockableCtx
contained in the TracyLock.hpp header contain all the required functionality. Lock implementations in
classes Lockable and SharedLockable show how to properly perform context handling.

3.6 Plotting data
Tracy can capture and draw numeric value changes over time. You may use it to analyze draw call counts,
number of performed queries, etc. To report data, use the TracyPlot(name, value) macro.

To configure how plot values are presented by the profiler, you may use the TracyPlotConfig(name,
format, step, fill, color) macro, where format is one of the following options:

• tracy::PlotFormatType::Number – values will be displayed as plain numbers.

• tracy::PlotFormatType::Memory – treats the values as memory sizes. Will display kilobytes,
megabytes, etc.

• tracy::PlotFormatType::Percentage – values will be displayed as percentage (with value 100 being
equal to 100%).

The step parameter determines whether the plot will be displayed as a staircase or will smoothly change
between plot points (see figure 6). The fill parameter can be used to disable filling the area below the plot
with a solid color.

44https://en.cppreference.com/w/cpp/named_req/SharedMutex
45Since std::shared_mutex was added in C++17, using std::shared_timed_mutex is the only way to have shared mutex functionality

in C++14.

36

https://en.cppreference.com/w/cpp/named_req/SharedMutex

Tracy Profiler The user manual

Figure 6: An identical set of values on a smooth plot (left) and a staircase plot (right).

Each plot has its own color, which by default is derived from the plot name (each unique plot name
produces its own color, which does not change between profiling runs). If you want to provide your own
color instead, you may enter the color parameter. Note that you should set the color value to 0 if you do not
want to set your own color.

For reference, the following command sets the default parameters of the plot (that is, it’s a no-op):
TracyPlotConfig(name, tracy::PlotFormatType::Number, false, true, 0).

It is beneficial but not required to use a unique pointer for name string literal (see section 3.1.2 for more
details).

3.7 Message log
Fast navigation in large data sets and correlating zones with what was happening in the application may
be difficult. To ease these issues, Tracy provides a message log functionality. You can send messages
(for example, your typical debug output) using the TracyMessage(text, size) macro. Alternatively, use
TracyMessageL(text) for string literal messages.

If you want to include color coding of the messages (for example to make critical messages easily visible),
you can use TracyMessageC(text, size, color) or TracyMessageLC(text, color) macros.

3.7.1 Application information

Tracy can collect additional information about the profiled application, which will be available in the trace
description. This can include data such as the source repository revision, the application’s environment
(dev/prod), etc.

Use the TracyAppInfo(text, size) macro to report the data.

3.8 Memory profiling
Tracy can monitor the memory usage of your application. Knowledge about each performed memory
allocation enables the following:

• Memory usage graph (like in massif, but fully interactive).

• List of active allocations at program exit (memory leaks).

• Visualization of the memory map.

• Ability to rewind view of active allocations and memory map to any point of program execution.

• Information about memory statistics of each zone.

• Memory allocation hot-spot tree.

To mark memory events, use the TracyAlloc(ptr, size) and TracyFree(ptr) macros. Typically you
would do that in overloads of operator new and operator delete, for example:

37

Tracy Profiler The user manual

void * operator new(std :: size_t count)
{

auto ptr = malloc (count);
TracyAlloc (ptr , count);
return ptr;

}

void operator delete (void * ptr) noexcept
{

TracyFree (ptr);
free(ptr);

}

In some rare cases (e.g., destruction of TLS block), events may be reported after the profiler is no longer
available, which would lead to a crash. To work around this issue, you may use TracySecureAlloc and
TracySecureFree variants of the macros.

Each tracked memory-free event must also have a corresponding memory allocation event. Tracy will
terminate the profiling session if this assumption is broken (see section 4.7). If you encounter this issue,
you may want to check for:

• Mismatched malloc/new or free/delete.

• Reporting the same memory address being allocated twice (without a free between two alloca-
tions).

• Double freeing the memory.

• Untracked allocations made in external libraries that are freed in the application.

• Places where the memory is allocated, but profiling markup is added.

This requirement is relaxed in the on-demand mode (section 2.1.5) because the memory allocation
event might have happened before the server made the connection.

Important

Note that the pointer data you provide to the profiler does not have to reflect the actual memory layout,
which you may not know in some cases. This includes the possibility of having multiple overlapping
memory allocation regions. For example, you may want to track GPU memory, which may be mapped
to different locations in the program address space during allocation and freeing. Or maybe you use
some memory defragmentation scheme, which by its very design moves pointers around. You may
instead use unique numeric identifiers to identify allocated objects in such cases. This will make some
profiler facilities unavailable. For example, the memory map won’t have much sense anymore.

Non-stable memory addresses

3.8.1 Memory pools

Sometimes an application will use more than one memory pool. For example, in addition to tracking the
malloc/free heap, you may also be interested in memory usage of a graphic API, such as Vulkan. Or maybe
you want to see how your scripting language is managing memory.

To mark that a separate memory pool is to be tracked you should use the named version of memory macros,
for example TracyAllocN(ptr, size, name) and TracyFreeN(ptr, name), where name is an unique pointer
to a string literal (section 3.1.2) identifying the memory pool.

38

Tracy Profiler The user manual

3.9 GPU profiling
Tracy provides bindings for profiling OpenGL, Vulkan, Direct3D 11, Direct3D 12, and OpenCL execution
time on GPU.

Note that the CPU and GPU timers may be unsynchronized unless you create a calibrated context, but
the availability of calibrated contexts is limited. You can try to correct the desynchronization of uncalibrated
contexts in the profiler’s options (section 5.4).

If the graphic API you are using requires explicitly stating that you start and finish the recording of
command buffers, remember that the instrumentation macros requirements must be satisfied during
the zone’s construction and destruction. For example, the zone destructor will be executed in the
following code after buffer recording has ended, which is an error.

{
vkBeginCommandBuffer (cmd , & beginInfo);
TracyVkZone (ctx , cmd , " Render ");
vkEndCommandBuffer (cmd);

}

Add a nested scope encompassing the command buffer recording section to fix such issues.

Check the scope

The profiling results you will get can be unreliable or plainly wrong. It all depends on the quality
of graphics drivers and how the underlying hardware implements timers. While Tracy employs
some heuristics to make things as reliable as possible, it must talk to the GPU through the commonly
unreliable API calls.

For example, on Linux, the Intel GPU driver will report 64-bit precision of time stamps. Unfortunately,
this is not true, as the driver will only provide timestamps with 36-bit precision, rolling over the
exceeding values. Tracy can detect such problems and employ workarounds. This is, sadly, not enough
to make the readings reliable, as this timer we can access through the API is not a real one. Deep
down, the driver has access to the actual timer, which it uses to provide the virtual values we can get.
Unfortunately, this hardware timer has a period which does not match the period of the API timer. As a
result, the virtual timer will sometimes overflow in midst of a cycle, making the reported time values
jump forward. This is a problem that only the driver vendor can fix.

Another problem discovered on AMD GPUs under Linux causes the timestamp register to be
reset every time the GPU enters a low-power mode. This can happen virtually every frame if you are
rendering with vertical synchronization disabled. Needless to say, the timestamp data is not very useful
in this case. The solution to this problem is to navigate to the /sys/devices/pci*/*/*/ directory
corresponding to the GPU and set the power_dpm_force_performance_level value to manual and the
pp_power_profile_mode value to the number corresponding to the COMPUTE profile. Your mileage may
vary, however – on my system I only have one of these values available to set. Nevertheless, you will
find a similar solution suggested by the system vendor in a Direct3D 12 section later in the manual.

If you experience crippling problems while profiling the GPU, you might get better results with a
different driver, different operating system, or different hardware.

Caveat emptor

3.9.1 OpenGL

You will need to include the public/tracy/TracyOpenGL.hpp header file and declare each of your rendering
contexts using the TracyGpuContext macro (typically, you will only have one context). Tracy expects no

39

Tracy Profiler The user manual

more than one context per thread and no context migration. To set a custom name for the context, use the
TracyGpuContextName(name, size) macro.

To mark a GPU zone use the TracyGpuZone(name) macro, where name is a string literal name of the zone.
Alternatively you may use TracyGpuZoneC(name, color) to specify zone color.

You also need to periodically collect the GPU events using the TracyGpuCollect macro. An excellent
place to do it is after the swap buffers function call.

• OpenGL profiling is not supported on OSX, iOSa.

• Nvidia drivers are unable to provide consistent timing results when two OpenGL contexts are
used simultaneously.

• Calling the TracyGpuCollect macro is a fairly slow operation (couple µs).
aBecause Apple is unable to implement standards properly.

Caveats

3.9.2 Vulkan

Similarly, for Vulkan support you should include the public/tracy/TracyVulkan.hpp header file. Tracing
Vulkan devices and queues is a bit more involved, and the Vulkan initialization macro TracyVkContext(physdev,
device, queue, cmdbuf) returns an instance of TracyVkCtx object, which tracks an associated Vulkan
queue. Cleanup is performed using the TracyVkDestroy(ctx) macro. You may create multiple Vulkan
contexts. To set a custom name for the context, use the TracyVkContextName(ctx, name, size) macro.

The physical device, logical device, queue, and command buffer must relate to each other. The queue
must support graphics or compute operations. The command buffer must be in the initial state and be able to
be reset. The profiler will rerecord and submit it to the queue multiple times, and it will be in the executable
state on exit from the initialization function.

To mark a GPU zone use the TracyVkZone(ctx, cmdbuf, name) macro, where name is a string literal
name of the zone. Alternatively you may use TracyVkZoneC(ctx, cmdbuf, name, color) to specify zone
color. The provided command buffer must be in the recording state, and it must be created within the queue
that is associated with ctx context.

You also need to periodically collect the GPU events using the TracyVkCollect(ctx, cmdbuf) macro46.
The provided command buffer must be in the recording state and outside a render pass instance.

Calibrated context In order to maintain synchronization between CPU and GPU time domains, you will
need to enable the VK_EXT_calibrated_timestamps device extension and retrieve the following function
pointers: vkGetPhysicalDeviceCalibrateableTimeDomainsEXT and vkGetCalibratedTimestampsEXT.

To enable calibrated context, replace the macro TracyVkContext with TracyVkContextCalibrated and
pass the two functions as additional parameters, in the order specified above.

Using Vulkan 1.2 features Vulkan 1.2 and VK_EXT_host_query_reset provide mechanics to reset the
query pool without the need of a command buffer. By using TracyVkContextHostCalibrated you can make
use of this feature. It only requires a function pointer to vkResetQueryPool in addition to the ones required
for TracyVkContextCalibrated instead of the VkQueue and VkCommandBuffer handles.

However, using this feature requires the physical device to have calibrated device and host time domains. In
addition to VK_TIME_DOMAIN_DEVICE_EXT, vkGetPhysicalDeviceCalibrateableTimeDomainsEXT will have
to additionally return either VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT or VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_EXT
for Unix and Windows, respectively. If this is not the case, you will need to use TracyVkContextCalibrated
or TracyVkContext macro instead.

46It is considerably faster than the OpenGL’s TracyGpuCollect.

40

Tracy Profiler The user manual

Dynamically loading the Vulkan symbols Some applications dynamically link the Vulkan loader, and
manage a local symbol table, to remove the trampoline overhead of calling through the Vulkan loader itself.

When TRACY_VK_USE_SYMBOL_TABLE is defined the signature of TracyVkContext, TracyVkContextCalibrated,
and TracyVkContextHostCalibrated are adjusted to take in the VkInstance, PFN_vkGetInstanceProcAddr,
and PFN_vkGetDeviceProcAddr to enable constructing a local symbol table to be used to call through the
Vulkan API when tracing.

3.9.3 Direct3D 11

To enable Direct3D 11 support, include the public/tracy/TracyD3D11.hpp header file, and create a
TracyD3D11Ctx object with the TracyD3D11Context(device, devicecontext) macro. The object should
later be cleaned up with the TracyD3D11Destroy macro. Tracy does not support D3D11 command lists. To
set a custom name for the context, use the TracyGpuContextName(name, size) macro.

To mark a GPU zone, use the TracyD3D11Zone(name) macro, where name is a string literal name of the
zone. Alternatively you may use TracyD3D11ZoneC(name, color) to specify zone color.

You also need to periodically collect the GPU events using the TracyD3D11Collect macro. An excellent
place to do it is after the swap chain present function.

3.9.4 Direct3D 12

To enable Direct3D 12 support, include the public/tracy/TracyD3D12.hpp header file. Tracing Direct3D 12
queues is nearly on par with the Vulkan implementation, where a TracyD3D12Ctx is returned from a call to
TracyD3D12Context(device, queue), which should be later cleaned up with the TracyD3D12Destroy(ctx)
macro. Multiple contexts can be created, each with any queue type. To set a custom name for the context,
use the TracyD3D12ContextName(ctx, name, size) macro.

The queue must have been created through the specified device, however, a command list is not needed
for this stage.

Using GPU zones is the same as the Vulkan implementation, where the TracyD3D12Zone(ctx, cmdList,
name) macro is used, with name as a string literal. TracyD3D12ZoneC(ctx, cmdList, name, color) can be
used to create a custom-colored zone. The given command list must be in an open state.

The macro TracyD3D12NewFrame(ctx) is used to mark a new frame, and should appear before or after
recording command lists, similar to FrameMark. This macro is a key component that enables automatic query
data synchronization, so the user doesn’t have to worry about synchronizing GPU execution before invoking
a collection. Event data can then be collected and sent to the profiler using the TracyD3D12Collect(ctx)
macro.

Note that GPU profiling may be slightly inaccurate due to artifacts from dynamic frequency scaling.
To counter this, ID3D12Device::SetStablePowerState() can be used to enable accurate profiling, at the
expense of some performance. If the machine is not in developer mode, the operating system will remove
the device upon calling. Do not use this in the shipping code.

Direct3D 12 contexts are always calibrated.

3.9.5 OpenCL

OpenCL support is achieved by including the public/tracy/TracyOpenCL.hpp header file. Tracing OpenCL
requires the creation of a Tracy OpenCL context using the macro TracyCLContext(context, device), which
will return an instance of TracyCLCtx object that must be used when creating zones. The specified device
must be part of the context. Cleanup is performed using the TracyCLDestroy(ctx) macro. Although not
common, it is possible to create multiple OpenCL contexts for the same application. To set a custom name
for the context, use the TracyCLContextName(ctx, name, size) macro.

To mark an OpenCL zone one must make sure that a valid OpenCL cl_event object is available. The
event will be the object that Tracy will use to query profiling information from the OpenCL driver. For this to
work, you must create all OpenCL queues with the CL_QUEUE_PROFILING_ENABLE property.

41

Tracy Profiler The user manual

OpenCL zones can be created with the TracyCLZone(ctx, name) where name will usually be a descriptive
name for the operation represented by the cl_event. Within the scope of the zone, you must call
TracyCLSetEvent(event) for the event to be registered in Tracy.

Similar to Vulkan and OpenGL, you also need to periodically collect the OpenCL events using the
TracyCLCollect(ctx) macro. An excellent place to perform this operation is after a clFinish since this will
ensure that any previously queued OpenCL commands will have finished by this point.

3.9.6 Multiple zones in one scope

Putting more than one GPU zone macro in a single scope features the same issue as with the ZoneScoped
macros, described in section 3.4.2 (but this time the variable name is ___tracy_gpu_zone).

To solve this problem, in case of OpenGL use the TracyGpuNamedZone macro in place of TracyGpuZone
(or the color variant). The same applies to Vulkan and Direct3D 11/12 – replace TracyVkZone with
TracyVkNamedZone and TracyD3D11Zone/TracyD3D12Zone with TracyD3D11NamedZone/TracyD3D12NamedZone.

Remember to provide your name for the created stack variable as the first parameter to the macros.

3.9.7 Transient GPU zones

Transient zones (see section 3.4.4 for details) are available in OpenGL, Vulkan, and Direct3D 11/12 macros.

3.10 Fibers
Fibers are lightweight threads, which are not under the operating system’s control and need to be manually
scheduled by the application. As far as Tracy is concerned, there are other cooperative multitasking primitives,
like coroutines, or green threads, which also fall under this umbrella.

To enable fiber support in the client code, you will need to add the TRACY_FIBERS define to your project.
You need to do this explicitly, as there is a small performance hit due to additional processing.

To properly instrument fibers, you will need to modify the fiber dispatch code in your program. You
will need to insert the TracyFiberEnter(fiber) macro every time a fiber starts or resumes execution47. You
will also need to insert the TracyFiberLeave macro when the execution control in a thread returns to the
non-fiber part of the code. Note that you can safely call TracyFiberEnter multiple times in succession,
without an intermediate TracyFiberLeave if one fiber is directly switching to another, without returning
control to the fiber dispatch worker.

Fibers are identified by unique const char* string names. Remember that you should observe the rules
laid out in section 3.1.2 while handling such strings.

No additional instrumentation is needed in other parts of the code. Zones, messages, and other such
events will be properly attributed to the currently running fiber in its own separate track.

A straightforward example, which is not actually using any OS fiber functionality, is presented below:

const char * fiber = "job1";
TracyCZoneCtx zone;

int main ()
{

std :: thread t1 ([]{
TracyFiberEnter (fiber);
TracyCZone (ctx , 1);
zone = ctx;
sleep (1);
TracyFiberLeave ;

});
t1.join ();

47You can also provide fiber grouping hints, the same way as for threads, with the TracyFiberEnterHint(fiber, groupHint)
macro.

42

Tracy Profiler The user manual

std :: thread t2 ([]{
TracyFiberEnter (fiber);
sleep (1);
TracyCZoneEnd (zone);
TracyFiberLeave ;

});
t2.join ();

}

As you can see, there are two threads, t1 and t2, which are simulating worker threads that a real fiber
library would use. A C API zone is created in thread t1 and is ended in thread t2. Without the fiber markup,
this would be an invalid operation, but with fibers, the zone is attributed to fiber job1, and not to thread t1
or t2.

3.11 Collecting call stacks

Capture of true calls stacks can be performed by using macros with the S postfix, which require an additional
parameter, specifying the depth of call stack to be captured. The greater the depth, the longer it will take
to perform capture. Currently you can use the following macros: ZoneScopedS, ZoneScopedNS, ZoneScopedCS,
ZoneScopedNCS, TracyAllocS, TracyFreeS, TracySecureAllocS, TracySecureFreeS, TracyMessageS, TracyMessageLS,
TracyMessageCS, TracyMessageLCS, TracyGpuZoneS, TracyGpuZoneCS, TracyVkZoneS, TracyVkZoneCS, and
the named and transient variants.

Be aware that call stack collection is a relatively slow operation. Table 5 and figure 7 show how long it
took to perform a single capture of varying depth on multiple CPU architectures.

Depth x86 x64 ARM ARM64
1 34 ns 98 ns 6.62 µs 6.63 µs
2 35 ns 150 ns 8.08 µs 8.25 µs
3 36 ns 168 ns 9.75 µs 10 µs
4 39 ns 190 ns 10.92 µs 11.58 µs
5 42 ns 206 ns 12.5 µs 13.33 µs
10 52 ns 306 ns 19.62 µs 21.71 µs
15 63 ns 415 ns 26.83 µs 30.13 µs
20 77 ns 531 ns 34.25 µs 38.71 µs
25 89 ns 630 ns 41.17 µs 47.17 µs
30 109 ns 735 ns 48.33 µs 55.63 µs
35 123 ns 843 ns 55.87 µs 64.09 µs
40 142 ns 950 ns 63.12 µs 72.59 µs
45 154 ns 1.05 µs 70.54 µs 81 µs
50 167 ns 1.16 µs 78 µs 89.5 µs
55 179 ns 1.26 µs 85.04 µs 98 µs
60 193 ns 1.37 µs 92.75 µs 106.59 µs

Table 5: Median times of zone capture with call stack. x86, x64: i7 8700K; ARM: Banana Pi; ARM64: ODROID-C2. Selected
architectures are plotted on figure 7

You can force call stack capture in the non-S postfixed macros by adding the TRACY_CALLSTACK define, set
to the desired call stack capture depth. This setting doesn’t affect the explicit call stack macros.

The maximum call stack depth that the profiler can retrieve is 62 frames. This is a restriction at the level
of the operating system.

Tracy will automatically exclude certain uninteresting functions from the captured call stacks. So, for
example, the pass-through intrinsic wrapper functions won’t be reported.

43

Tracy Profiler The user manual

0 10 20 30 40 50 60
0

500

1,000

1,500

Call stack depth

Ti
m

e
(n

s)

x64
x86

Figure 7: Plot of call stack capture times (see table 5). Notice that the capture time grows linearly with requested capture depth

Collecting call stack data will also trigger retrieval of profiled program’s executable code by the profiler.
See section 3.15.7 for details.

Important!

Tracy will prepare for call stack collection regardless of whether you use the functionality or not. In
some cases, this may be unwanted or otherwise troublesome for the user. To disable support for
collecting call stacks, define the TRACY_NO_CALLSTACK macro.

How to disable

On some platforms you can define TRACY_LIBUNWIND_BACKTRACE to use libunwind to perform callstack
captures as it might be a faster alternative than the default implementation. If you do, you must
compile/link you client against libunwind. See https://github.com/libunwind/libunwind for more
details.

libunwind

3.11.1 Debugging symbols

You must compile the profiled application with debugging symbols enabled to have correct call stack
information. You can achieve that in the following way:

• On MSVC, open the project properties and go to Linker Debugging Generate Debug Info , where you
should select the Generate Debug Information option.

• On gcc or clang remember to specify the debugging information -g parameter during compilation and
do not add the strip symbols -s parameter. Additionally, omitting frame pointers will severely reduce
the quality of stack traces, which can be fixed by adding the -fno-omit-frame-pointer parameter.
Link the executable with an additional option -rdynamic (or --export-dynamic, if you are passing
parameters directly to the linker).

44

https://github.com/libunwind/libunwind

Tracy Profiler The user manual

• On OSX, you may need to run dsymutil to extract the debugging data out of the executable binary.

• On iOS you will have to add a New Run Script Phase to your XCode project, which shall execute the
following shell script:

cp -rf ${ TARGET_BUILD_DIR }/${ WRAPPER_NAME }. dSYM /* ${ TARGET_BUILD_DIR }/${
UNLOCALIZED_RESOURCES_FOLDER_PATH }/${ PRODUCT_NAME }. dSYM

You will also need to setup proper dependencies, by setting the following input file:
${TARGET_BUILD_DIR}/${WRAPPER_NAME}.dSYM, and the following output file:
${TARGET_BUILD_DIR}/${UNLOCALIZED_RESOURCES_FOLDER_PATH}/${PRODUCT_NAME}.dSYM.

3.11.1.1 External libraries

You may also be interested in symbols from external libraries, especially if you have sampling profiling
enabled (section 3.15.5).

Windows In MSVC you can retrieve such symbols by going to Tools Options Debugging Symbols and
selecting appropriate Symbol file (.pdb) location servers. Note that additional symbols may significantly
increase application startup times.

Libraries built with vcpkg typically provide PDB symbol files, even for release builds. Using vcpkg to
obtain libraries has the extra benefit that everything is built using local source files, which allows Tracy to
provide a source view not only of your application but also the libraries you use.

Unix On Linux48 information needed for debugging traditionally has been provided by special packages
named debuginfo, dbgsym, or similar. You can use them to retrieve symbols, but keep in mind the following:

1. Your distribution has to provide such packages. Not each one does.

2. Debug packages are usually stored in a separate repository, which you must manually enable.

3. You need to install a separate package for each library you want to have symbols for.

4. Debugging information can require large amounts of disk space.

A modern alternative to installing static debug packages is to use the debuginfod system, which performs
on-demand delivery of debugging information across the internet. See https://sourceware.org/elfutils/
Debuginfod.html for more details. Since this new method of symbol delivery is not yet universally supported,
you will have to manually enable it, both in your system and in Tracy.

First, make sure your distribution maintains a debuginfod server. Then, install the debuginfod library. You
also need to ensure you have appropriately configured which server to access, but distribution maintainers
usually provide this. Next, add the TRACY_DEBUGINFOD define to the program you want to profile and link it
with libdebuginfod. This will enable network delivery of symbols and source file contents. However, the
first run (including after a system update) may be slow to respond until the local debuginfod cache becomes
filled.

3.11.1.2 Using the dbghelp library on Windows

While Tracy will try to expand the known symbols list when it encounters a new module for the first time,
you may want to be able to do such a thing manually. Or maybe you are using the dbghelp.dll library in
some other way in your project, for example, to present a call stack to the user at some point during execution.

Since dbghelp functions are not thread-safe, you must take extra steps to make sure your calls to the Sym*
family of functions are not colliding with calls made by Tracy. To do so, perform the following steps:

48And possibly other systems, if they decide to adapt the required tooling.

45

https://sourceware.org/elfutils/Debuginfod.html
https://sourceware.org/elfutils/Debuginfod.html

Tracy Profiler The user manual

1. Add a TRACY_DBGHELP_LOCK define, with the value set to prefix of lock-handling functions (for example:
TRACY_DBGHELP_LOCK=DbgHelp).

2. Create a dbghelp lock (i.e., mutex) in your application.

3. Provide a set of Init, Lock and Unlock functions, including the provided prefix name, which will
operate on the lock. These functions must be defined using the C linkage. Notice that there’s no
cleanup function.

4. Remember to protect access to dbghelp in your code appropriately!

An example implementation of such a lock interface is provided below, as a reference:

extern "C"
{
static HANDLE dbgHelpLock ;

void DbgHelpInit () { dbgHelpLock = CreateMutex (nullptr , FALSE , nullptr); }
void DbgHelpLock () { WaitForSingleObject (dbgHelpLock , INFINITE); }
void DbgHelpUnlock () { ReleaseMutex (dbgHelpLock); }
}

At initilization time, tracy will attempt to preload symbols for device drivers and process modules. As
this process can be slow when a lot of pdbs are involved, you can set the TRACY_NO_DBGHELP_INIT_LOAD
environment variable to "1" to disable this behavior and rely on-demand symbol loading.

3.11.1.3 Disabling resolution of inline frames

Inline frames retrieval on Windows can be multiple orders of magnitude slower than just performing
essential symbol resolution. This manifests as profiler seemingly being stuck for a long time, having
hundreds of thousands of query backlog entries queued, which are slowly trickling down. If your use case
requires speed of operation rather than having call stacks with inline frames included, you may define
the TRACY_NO_CALLSTACK_INLINES macro, which will make the profiler stick to the basic but fast frame
resolution mode.

3.11.1.4 Offline symbol resolution

By default, tracy client resolves callstack symbols in a background thread at runtime. This process requires
that tracy client load symbols for the shared libraries involved, which requires additial memory allocations,
and potential impact runtime performance if a lot of symbol queries are involved. As an alternative to to
runtime symbol resolution, we can set the environment variable TRACY_SYMBOL_OFFLINE_RESOLVE to 1 and
instead have tracy client only resolve the minimal set of info required for offline resolution (a shared library
path and an offset into that shared library).

The generated tracy capture will have callstack frames symbols showing [unresolved]. The update tool
can be used to load that capture, perform symbol resolution offline (by passing -r) and writing out a new
capture with symbols resolved. By default update will use the original shared libraries paths that were
recorded in the capture (which assumes running in the same machine or a machine with identical filesystem
setup as the one used to run the tracy instrumented application). You can do path substitution with the -p
option to perform any number of path substitions in order to use symbols located elsewhere.

Beware that update will use any matching symbol file to the path it resolved to (no symbol version
checking is done), so if the symbol file doesn’t match the code that was used when doing the callstack
capturing you will get incorrect results.

Important

46

Tracy Profiler The user manual

Also note that in the case of using offline symbol resolving, even after running the update tool to
resolve symbols, the symbols statistics are not updated and will still report the unresolved symbols.

3.12 Lua support
To profile Lua code using Tracy, include the public/tracy/TracyLua.hpp header file in your Lua wrapper
and execute tracy::LuaRegister(lua_State*) function to add instrumentation support.

In the Lua code, add tracy.ZoneBegin() and tracy.ZoneEnd() calls to mark execution zones. You need
to call the ZoneEnd method because there is no automatic destruction of variables in Lua, and we don’t know
when the garbage collection will be performed. Double check if you have included all return paths!

Use tracy.ZoneBeginN(name) if you want to set a custom zone name49.
Use tracy.ZoneText(text) to set zone text.
Use tracy.Message(text) to send messages.
Use tracy.ZoneName(text) to set zone name on a per-call basis.
Lua instrumentation needs to perform additional work (including memory allocation) to store source

location. This approximately doubles the data collection cost.

3.12.1 Call stacks

To collect Lua call stacks (see section 3.11), replace tracy.ZoneBegin() calls with tracy.ZoneBeginS(depth),
and tracy.ZoneBeginN(name) calls with tracy.ZoneBeginNS(name, depth). Using the TRACY_CALLSTACK
macro automatically enables call stack collection in all zones.

Be aware that for Lua call stack retrieval to work, you need to be on a platform that supports the collection
of native call stacks.

Cost of performing Lua call stack capture is presented in table 6 and figure 8. Lua call stacks include
native call stacks, which have a capture cost of their own (table 5), and the depth parameter is applied for
both captures. The presented data were captured with full Lua stack depth, but only 13 frames were available
on the native call stack. Hence, to explain the non-linearity of the graph, you need to consider what was
truly measured:

Costtotal(depth) =
{

CostLua(depth) + Costnative(depth) when depth ≤ 13
CostLua(depth) + Costnative(13) when depth > 13

3.12.2 Instrumentation cleanup

Even if Tracy is disabled, you still have to pay the no-op function call cost. To prevent that, you may
want to use the tracy::LuaRemove(char* script) function, which will replace instrumentation calls with
white-space. This function does nothing if the profiler is enabled.

3.13 C API
To profile code written in C programming language, you will need to include the public/tracy/TracyC.h
header file, which exposes the C API.

At the moment, there’s no support for C API based markup of locks, GPU zones, or Lua.

49While technically this name doesn’t need to be constant, like in the ZoneScopedN macro, it should be, as it is used to group the zones.
This grouping is then used to display various statistics in the profiler. You may still set the per-call name using the tracy.ZoneName
method.

47

Tracy Profiler The user manual

Depth Time
1 707 ns
2 699 ns
3 624 ns
4 727 ns
5 836 ns
10 1.77 µs
15 2.44 µs
20 2.51 µs
25 2.98 µs
30 3.6 µs
35 4.33 µs
40 5.17 µs
45 6.01 µs
50 6.99 µs
55 8.11 µs
60 9.17 µs

Table 6: Median times of Lua zone capture with call stack (x64, 13 native frames)

Tracy is written in C++, so you will need to have a C++ compiler and link with C++ standard library,
even if your program is strictly pure C.

Important

3.13.1 Setting thread names

To set thread names (section 2.4) using the C API you should use the TracyCSetThreadName(name) macro.

3.13.2 Frame markup

To mark frames, as described in section 3.3, use the following macros:

• TracyCFrameMark

• TracyCFrameMarkNamed(name)

• TracyCFrameMarkStart(name)

• TracyCFrameMarkEnd(name)

• TracyCFrameImage(image, width, height, offset, flip)

3.13.3 Zone markup

The following macros mark the beginning of a zone:

• TracyCZone(ctx, active)

• TracyCZoneN(ctx, name, active)

• TracyCZoneC(ctx, color, active)

• TracyCZoneNC(ctx, name, color, active)

48

Tracy Profiler The user manual

0 10 20 30 40 50 60
0

2

4

6

8

10

Call stack depth

Ti
m

e
(µ

s)

Figure 8: Plot of call Lua stack capture times (see table 6)

Refer to sections 3.4 and 3.4.2 for description of macro variants and parameters. The ctx parameter
specifies the name of a data structure, which the macro will create on the stack to hold the internal zone data.

Unlike C++, there’s no automatic destruction mechanism in C, so you will need to mark where the zone
ends manually. To do so use the TracyCZoneEnd(ctx) macro.50

Zone text and name may be set by using the TracyCZoneText(ctx, txt, size), TracyCZoneValue(ctx,
value) and TracyCZoneName(ctx, txt, size) macros. Make sure you are following the zone stack rules,
as described in section 3.4.2!

3.13.3.1 Zone context data structure

In typical use cases the zone context data structure is hidden from your view, requiring only to specify its
name for the TracyCZone and TracyCZoneEnd macros. However, it is possible to use it in advanced scenarios,
for example, if you want to start a zone in one function, then end it in another one. To do so, you will
need to forward the data structure either through a function parameter or as a return value or place it in a
thread-local stack structure. To accomplish this, you need to keep in mind the following rules:

• The created variable name is exactly what you pass as the ctx parameter.

• The data structure is of an opaque, immutable type TracyCZoneCtx.

• Contents of the data structure can be copied by assignment. Do not retrieve or use the structure’s
address – this is asking for trouble.

• You must use the data structure (or any of its copies) exactly once to end a zone.

• Zone must end in the same thread in which it was started.

3.13.3.2 Zone validation

Since all C API instrumentation has to be done by hand, it is possible to miss some code paths where a
zone should be started or ended. Tracy will perform additional validation of instrumentation correctness to
prevent bad profiling runs. Read section 4.7 for more information.

50GCC and Clang provide __attribute__((cleanup)) which can used to run a function when a variable goes out of scope.

49

Tracy Profiler The user manual

However, the validation comes with a performance cost, which you may not want to pay. Therefore, if
you are entirely sure that the instrumentation is not broken in any way, you may use the TRACY_NO_VERIFY
macro, which will disable the validation code.

3.13.3.3 Transient zones in C API

There is no explicit support for transient zones (section 3.4.4) in the C API macros. However, this functionality
can be implemented by following instructions outlined in section 3.13.11.

3.13.4 Lock markup

Marking locks in the C API is done with the following macros:

• TracyCLockAnnounce(lock_ctx)

• TracyCLockTerminate(lock_ctx)

• TracyCLockBeforeLock(lock_ctx)

• TracyCLockAfterLock(lock_ctx)

• TracyCLockAfterUnlock(lock_ctx)

• TracyCLockAfterTryLock(lock_ctx, acquired)

• TracyCLockMark(lock_ctx)

• TracyCLockCustomName(lock_ctx, name, size)

Additionally a lock context has to be defined next to the lock that it will be marking:

TracyCLockCtx tracy_lock_ctx ;
HANDLE lock;

To initialize the lock context use TracyCLockAnnounce, this should be done when the lock you are marking
is initialized/created. When the lock is destroyed use TracyCLockTerminate, this will free the lock context.
You can use the TracyCLockCustomName macro to name a lock.

You must markup both before and after acquiring a lock:

TracyCLockBeforeLock (tracy_lock_ctx);
WaitForSingleObject (lock , INFINITE);
TracyCLockAfterLock (tracy_lock_ctx);

If acquiring the lock may fail, you should instead use the TracyCLockAfterTryLock macro:

TracyCLockBeforeLock (tracy_lock_ctx);
int acquired = WaitForSingleObject (lock , 200) == WAIT_OBJECT_0 ;
TracyCLockAfterTryLock (tracy_lock_ctx , acquired);

After you release the lock use the TracyCLockAfterUnlock macro:

ReleaseMutex (lock);
TracyCLockAfterUnlock (tracy_lock_ctx);

You can optionally mark the location of where the lock is held by using the TracyCLockMark macro, this
should be done after acquiring the lock.

50

Tracy Profiler The user manual

3.13.5 Memory profiling

Use the following macros in your implementations of malloc and free:

• TracyCAlloc(ptr, size)

• TracyCFree(ptr)

• TracyCSecureAlloc(ptr, size)

• TracyCSecureFree(ptr)

Correctly using this functionality can be pretty tricky. You also will need to handle all the memory
allocations made by external libraries (which typically allow usage of custom memory allocation functions)
and the allocations made by system functions. If you can’t track such an allocation, you will need to make
sure freeing is not reported51.

There is no explicit support for realloc function. You will need to handle it by marking memory
allocations and frees, according to the system manual describing the behavior of this routine.

Memory pools (section 3.8.1) are supported through macros with N postfix.
For more information about memory profiling, refer to section 3.8.

3.13.6 Plots and messages

To send additional markup in form of plot data points or messages use the following macros:

• TracyCPlot(name, val)

• TracyCPlotF(name, val)

• TracyCPlotI(name, val)

• TracyCMessage(txt, size)

• TracyCMessageL(txt)

• TracyCMessageC(txt, size, color)

• TracyCMessageLC(txt, color)

• TracyCAppInfo(txt, size)

Consult sections 3.6 and 3.7 for more information.

3.13.7 GPU zones

Hooking up support for GPU zones requires a bit more work than usual. The C API provides a low-level
interface that you can use to submit the data, but there are no facilities to help you with timestamp processing.

Moreover, there are two sets of functions described below. The standard set sends data asynchronously,
while the _serial one ensures proper ordering of all events, regardless of the originating thread. Generally
speaking, you should be using the asynchronous functions only in the case of strictly single-threaded APIs,
like OpenGL.

A GPU context can be created with the ___tracy_emit_gpu_new_context function (or the serialized
variant). You’ll need to specify:

• context – a unique context id.

• gpuTime – an initial GPU timestamp.
51It’s not uncommon to see a pattern where a system function returns some allocated memory, which you then need to release.

51

Tracy Profiler The user manual

• period – the timestamp period of the GPU.

• flags – the flags to use.

• type – the GPU context type.

GPU contexts can be named using the ___tracy_emit_gpu_context_name function.
GPU zones can be created with the ___tracy_emit_gpu_zone_begin_alloc function. The srcloc parame-

ter is the address of the source location data allocated via ___tracy_alloc_srcloc or ___tracy_alloc_srcloc_name.
The queryId parameter is the id of the corresponding timestamp query. It should be unique on a per-frame
basis.

GPU zones are ended via ___tracy_emit_gpu_zone_end.
When the timestamps are fetched from the GPU, they must then be emitted via the ___tracy_emit_gpu_time

function. After all timestamps for a frame are emitted, queryIds may be re-used.
CPU and GPU timestamps may be periodically resynchronized via the ___tracy_emit_gpu_time_sync

function, which takes the GPU timestamp closest to the moment of the call. This can help with timestamp
drift and work around compounding GPU timestamp overflowing. Note that this requires CPU and GPU
synchronization, which will block execution of your application. Do not do this every frame.

To see how you should use this API, you should look at the reference implementation contained in
API-specific C++ headers provided by Tracy. For example, to see how to write your instrumentation of
OpenGL, you should closely follow the contents of the TracyOpenGL.hpp implementation.

3.13.8 Fibers

Fibers are available in the C API through the TracyCFiberEnter and TracyCFiberLeave macros. To use
them, you should observe the requirements listed in section 3.10.

3.13.9 Connection Status

To query the connection status (section 3.18) using the C API you should use the TracyCIsConnected macro.

3.13.10 Call stacks

You can collect call stacks of zones and memory allocation events, as described in section 3.11, by using
macros with S postfix, such as: TracyCZoneS, TracyCZoneNS, TracyCZoneCS, TracyCZoneNCS, TracyCAllocS,
TracyCFreeS, and so on.

3.13.11 Using the C API to implement bindings

Tracy C API exposes functions with the ___tracy prefix that you may use to write bindings to other
programming languages. Most of the functions available are a counterpart to macros described in sec-
tion 3.13. However, some functions do not have macro equivalents and are dedicated expressly for binding
implementation purposes. This includes the following:

• ___tracy_startup_profiler(void)

• ___tracy_shutdown_profiler(void)

• ___tracy_alloc_srcloc(uint32_t line, const char* source, size_t sourceSz, const char*
function, size_t functionSz)

• ___tracy_alloc_srcloc_name(uint32_t line, const char* source, size_t sourceSz, const char*
function, size_t functionSz, const char* name, size_t nameSz)

52

Tracy Profiler The user manual

Here line is line number in the source source file and function is the name of a function in which the
zone is created. sourceSz and functionSz are the size of the corresponding string arguments in bytes. You
may additionally specify an optional zone name, by providing it in the name variable, and specifying its size
in nameSz.

The ___tracy_alloc_srcloc and ___tracy_alloc_srcloc_name functions return an uint64_t source
location identifier corresponding to an allocated source location. As these functions do not require the provided
string data to be available after they return, the calling code is free to deallocate them at any time afterward.
This way, the string lifetime requirements described in section 3.1 are relaxed.

The uint64_t return value from allocation functions must be passed to one of the zone begin functions:

• ___tracy_emit_zone_begin_alloc(srcloc, active)

• ___tracy_emit_zone_begin_alloc_callstack(srcloc, depth, active)

These functions return a TracyCZoneCtx context value, which must be handled, as described in sec-
tions 3.13.3 and 3.13.3.1.

The variable representing an allocated source location is of an opaque type. After it is passed to one of the
zone begin functions, its value cannot be reused (the variable is consumed). You must allocate a new source
location for each zone begin event, even if the location data would be the same as in the previous instance.

Since you are directly calling the profiler functions here, you will need to take care of manually disabling
the code if the TRACY_ENABLE macro is not defined.

Important

3.14 Python API
To profile Python code using Tracy, a Python package can be built. This is done using the excellent C++11
based Python bindings generator pybind11, see https://pybind11.readthedocs.io. As a first step, a
Tracy-Client shared library needs to be built (with the compile definitions you want to use) and then pybind11
is used to create the Python-bindings. Afterwards, a Python c-extension package can be created (the package
will be platform and Python version dependent).

An especially powerful feature is the ability to profile Python code and any other C/C++ code used in a
single code base as long as the C/C++ code links to the same shared Tracy-Client library that is installed
with the Python package.

3.14.1 Bindings

An example of how to use the Tracy-Client bindings is shown below:

#!/ usr/bin/env python3
-*- coding : utf -8 -*-

from time import sleep

import numpy as np

import tracy_client as tracy

tracy.ScopedFrameDecorator("framed")tracy . ScopedZoneDecorator (name="work", color = tracy .
ColorType .Red4)

def work ():
sleep (0.05)

53

https://pybind11.readthedocs.io

Tracy Profiler The user manual

def main ():
assert tracy . program_name (" MyApp ")
assert tracy . app_info ("this is a python app")

tracy . thread_name (" python ") # main thread so bit useless

plot_id = tracy . plot_config ("plot", tracy . PlotFormatType . Number)
assert plot_id is not None

mem_id = None

index = 0
while True:

with tracy . ScopedZone (name="test", color = tracy . ColorType . Coral) as zone:
index += 1

tracy . frame_mark ()

inner = tracy . ScopedZone (depth =5, color = tracy . ColorType . Coral)
inner . color (index % 5)
inner .name(str(index))
inner . enter ()

if index % 2:
tracy . alloc (44 , index)

else :
tracy .free (44)

if not index % 2:
if mem_id is None:

mem_id = tracy . alloc (1337000000 , index , name=" named ", depth =4)
assert mem_id is not None

else :
tracy . alloc (1337000000 , index , id=mem_id , depth =4)

else :
tracy .free (1337000000 , mem_id , 4)

with tracy . ScopedFrame (" custom "):

image = np.full ([400 , 400 , 4], index , dtype =np. uint8)
assert tracy . frame_image (image . tobytes () , 400 , 400)

inner .exit ()

zone.text(index)

assert tracy . message (f"we are at index { index }")
assert tracy . message (f"we are at index { index }", tracy . ColorType . Coral)

assert tracy .plot(plot_id , index)

work ()

sleep (0.1)

if __name__ == " __main__ ":
main ()

Please not the use of ids as way to cope with the need for unique pointers for certain features of the Tracy
profiler, see section 3.1.2.

54

Tracy Profiler The user manual

3.14.2 Building the Python package

To build the Python package, you will need to use the CMake build system to compile the Tracy-Client.
The CMake option -D TRACY_CLIENT_PYTHON=ON is used to enable the generation of the Python bindings in
conjunction with a mandatory creation of a shared Tracy-Client library via one of the CMake options -D
BUILD_SHARED_LIBS=ON or -D DEFAULT_STATIC=OFF.

The following other variables are available in addition:

• EXTERNAL_PYBIND11 — Can be used to disable the download of pybind11 when Tracy is embedded in
another CMake project that already uses pybind11.

• TRACY_CLIENT_PYTHON_TARGET — Optional directory to copy Tracy Python bindings to when Tracy is
embedded in another CMake project.

• BUFFER_SIZE — The size of the global pointer buffer (defaults to 128) for naming Tracy profiling entities
like frame marks, plots, and memory locations.

• NAME_LENGTH — The maximum length (defaults to 128) of a name stored in the global pointer buffer.

Be aware that the memory allocated by this buffer is global and is not freed, see section 3.1.2.
See below for example steps to build the Python bindings using CMake:

mkdir build
cd build
cmake -DTRACY_STATIC =OFF -DTRACY_CLIENT_PYTHON =ON ../
make -j$(nproc)

Once this has finished building the Python package can be built as follows:

cd ../ python
python3 setup .py bdist_wheel

The created package will be in the folder python/dist.

3.15 Automated data collection
Tracy will perform an automatic collection of system data without user intervention. This behavior is
platform-specific and may not be available everywhere. Refer to section 2.6 for more information.

3.15.1 Privilege elevation

Some profiling data can only be retrieved using the kernel facilities, which are not available to users with
normal privilege level. To collect such data, you will need to elevate your rights to the administrator level.
You can do so either by running the profiled program from the root account on Unix or through the Run as
administrator option on Windows52. On Android, you will need to have a rooted device (see section 2.1.9.4 for
additional information).

As this system-level tracing functionality is part of the automated collection process, no user intervention
is necessary to enable it (assuming that the program was granted the rights needed). However, if, for some
reason, you would want to prevent your application from trying to access kernel data, you may recompile your
program with the TRACY_NO_SYSTEM_TRACING define. If you want to disable this functionality dynamically
at runtime instead, you can set the TRACY_NO_SYSTEM_TRACING environment variable to "1".

52To make this easier, you can run MSVC with admin privileges, which will be inherited by your program when you start it from
within the IDE.

55

Tracy Profiler The user manual

Sometimes it may be confusing which program should be given admin access. After all, some other
profilers have to run elevated to access all their capabilities.

In the case of Tracy, you should give the administrative rights to the profiled application. Remember
that the server part of the profiler (where the data is collected and displayed) may be running on
another machine, and thus you can’t use it to access kernel data.

What should be granted privileges?

3.15.2 CPU usage

System-wide CPU load is gathered with relatively high granularity (one reading every 100 ms). The readings
are available as a plot (see section 5.2.3.3). Note that this parameter considers all applications running on the
system, not only the profiled program.

3.15.3 Context switches

Since the profiled program is executing simultaneously with other applications, you can’t have exclusive
access to the CPU. Instead, the multitasking operating system’s scheduler gives threads waiting to execute
short time slices to do part of their work. Afterward, threads are preempted to give other threads a chance to
run. This ensures that each program running in the system has a fair environment, and no program can hog
the system resources for itself.

As a corollary, it is often not enough to know how long it took to execute a zone. For example, the
thread in which a zone was running might have been suspended by the system. This would have artificially
increased the time readings.

To solve this problem, Tracy collects context switch53 information. This data can then be used to see when
a zone was in the executing state and where it was waiting to be resumed.

You may disable context switch data capture by adding the TRACY_NO_CONTEXT_SWITCH define to the
client. Since with this feature you are observing other programs, you can only use it after privilege elevation,
which is described in section 3.15.1.

3.15.4 CPU topology

Tracy may discover CPU topology data to provide further information about program performance charac-
teristics. It is handy when combined with context switch information (section 3.15.3).

In essence, the topology information gives you context about what any given logical CPU really is and
how it relates to other logical CPUs. The topology hierarchy consists of packages, cores, and threads.

Packages contain cores and shared resources, such as memory controller, L3 cache, etc. A store-bought
CPU is an example of a package. While you may think that multi-package configurations would be a domain
of servers, they are actually quite common in the mobile devices world, with many platforms using the
big.LITTLE arrangement of two packages in one silicon chip.

Cores contain at least one thread and shared resources: execution units, L1 and L2 cache, etc.
Threads (or logical CPUs; not to be confused with program threads) are basically the processor instruction

pipelines. A pipeline might become stalled, for example, due to pending memory access, leaving core
resources unused. To reduce this bottleneck, some CPUs may use simultaneous multithreading54, in which
more than one pipeline will be using a single physical core resources.

Knowing which package and core any logical CPU belongs to enables many insights. For example, two
threads scheduled to run on the same core will compete for shared execution units and cache, resulting in
reduced performance. Or, migrating a program thread from one core to another will invalidate the L1 and
L2 cache. However, such invalidation is less costly than migration from one package to another, which also
invalidates the L3 cache.

53A context switch happens when any given CPU core stops executing one thread and starts running another one.
54Commonly known as Hyper-threading.

56

Tracy Profiler The user manual

In this manual, the word core is typically used as a short term for logical CPU. Please do not confuse it
with physical processor cores.

Important

3.15.5 Call stack sampling

Manual markup of zones doesn’t cover every function existing in a program and cannot be performed
in system libraries or the kernel. This can leave blank spaces on the trace, leaving you no clue what the
application was doing. However, Tracy can periodically inspect the state of running threads, providing you
with a snapshot of the call stack at the time when sampling was performed. While this information doesn’t
have the fidelity of manually inserted zones, it can sometimes give you an insight into where to go next.

This feature requires privilege elevation on Windows, but not on Linux. However, running as root on
Linux will also provide you the kernel stack traces. Additionally, you should review chapter 3.11 to see if
you have proper setup for the required program debugging data.

By default, sampling is performed at 8 kHz frequency on Windows (the maximum possible value). On
Linux and Android, it is performed at 10 kHz55. You can change this value by providing the sampling
frequency (in Hz) through the TRACY_SAMPLING_HZ macro.

Call stack sampling may be disabled by using the TRACY_NO_SAMPLING define.

The operating system may decide that sampling takes too much CPU time and reduce the allowed
sampling rate. This can be seen in dmesg output as:

perf: interrupt took too long, lowering kernel.perf_event_max_sample_rate to value .
If the value goes below the sample rate Tracy wants to use, sampling will be silently disabled. To

make it work again, you can set an appropriate value in the kernel.perf_event_max_sample_rate
kernel parameter, using the sysctl utility.

Should you want to disable this mechanism, you can set the kernel.perf_cpu_time_max_percent
parameter to zero. Be sure to read what this would do, as it may have serious consequences that you
should be aware of.

Linux sampling rate limits

3.15.5.1 Wait stacks

The sampling functionality also captures call stacks for context switch events. Such call stacks will show
you what the application was doing when the thread was suspended and subsequently resumed, hence the
name. We can categorize wait stacks into the following categories:

1. Random preemptive multitasking events, which are expected and do not have any significance.

2. Expected waits, which may be caused by issuing sleep commands, waiting for a lock to become
available, performing I/O, and so on. Quantitative analysis of such events may (but probably won’t)
direct you to some problems in your code.

3. Unexpected waits, which should be immediately taken care of. After all, what’s the point of profiling
and optimizing your program if it is constantly waiting for something? An example of such an
unexpected wait may be some anti-virus service interfering with each of your file read operations. In
this case, you could have assumed that the system would buffer a large chunk of the data after the first
read to make it immediately available to the application in the following calls.

55The maximum sampling frequency is limited by the kernel.perf_event_max_sample_rate sysctl parameter.

57

Tracy Profiler The user manual

Wait stacks capture happen at a different time on the supported operating systems due to differences in
the implementation details. For example, on Windows, the stack capture will occur when the program
execution is resumed. However, on Linux, the capture will happen when the scheduler decides to
preempt execution.

Platform differences

3.15.6 Hardware sampling

While the call stack sampling is a generic software-implemented functionality of the operating system, there’s
another way of sampling program execution patterns. Modern processors host a wide array of different
hardware performance counters, which increase when some event in a CPU core happens. These could be as
simple as counting each clock cycle or as implementation-specific as counting ’retired instructions that are
delivered to the back-end after the front-end had at least 1 bubble-slot for a period of 2 cycles’.

Tracy can use these counters to present you the following three statistics, which may help guide you in
discovering why your code is not as fast as possible:

1. Instructions Per Cycle (IPC) – shows how many instructions were executing concurrently within a single
core cycle. Higher values are better. The maximum achievable value depends on the design of the CPU,
including things such as the number of execution units and their individual capabilities. Calculated as
#instructions retired

#cycles . You can disable it with the TRACY_NO_SAMPLE_RETIREMENT macro.

2. Branch miss rate – shows how frequently the CPU branch predictor makes a wrong choice. Lower values
are better. Calculated as #branch misses

#branch instructions . You can disable it with the TRACY_NO_SAMPLE_BRANCH macro.

3. Cache miss rate – shows how frequently the CPU has to retrieve data from memory. Lower values are
better. The specifics of which cache level is taken into account here vary from one implementation to
another. Calculated as #cache misses

#cache references . You can disable it with the TRACY_NO_SAMPLE_CACHE macro.

Each performance counter has to be collected by a dedicated Performance Monitoring Unit (PMU).
However, the availability of PMUs is very limited, so you may not be able to capture all the statistics
mentioned above at the same time (as each requires capture of two different counters). In such a case, you
will need to manually select what needs to be sampled with the macros specified above.

If the provided measurements are not specific enough for your needs, you will need to use a profiler
better tailored to the hardware you are using, such as Intel VTune, or AMD µProf.

Another problem to consider here is the measurement skid. It is pretty hard to accurately pinpoint the
exact assembly instruction which has caused the counter to trigger. Due to this, the results you’ll get may
look a bit nonsense at times. For example, a branch miss may be attributed to the multiply instruction.
Unfortunately, not much can be done with that, as this is exactly what the hardware is reporting. The amount
of skid you will encounter depends on the specific implementation of a processor, and each vendor has its
own solution to minimize it. Intel uses Precise Event Based Sampling (PEBS), which is rather good, but it
still can, for example, blend the branch statistics across the comparison instruction and the following jump
instruction. AMD employs its own Instruction Based Sampling (IBS), which tends to provide worse results
in comparison.

Do note that the statistics presented by Tracy are a combination of two randomly sampled counters, so
you should take them with a grain of salt. The random nature of sampling56 makes it entirely possible
to count more branch misses than branch instructions or some other similar silliness. You should always
cross-check this data with the count of sampled events to decide if you can reliably act upon the provided
values.

56The hardware counters in practice can be triggered only once per million-or-so events happening.

58

Tracy Profiler The user manual

Availability Currently, the hardware performance counter readings are only available on Linux, which
also includes the WSL2 layer on Windows57. Access to them is performed using the kernel-provided
infrastructure, so what you get may depend on how your kernel was configured. This also means that the
exact set of supported hardware is not known, as it depends on what has been implemented in Linux itself.
At this point, the x86 hardware is fully supported (including features such as PEBS or IBS), and there’s PMU
support on a selection of ARM designs. The performance counter data can be captured with no need for
privilege elevation.

3.15.7 Executable code retrieval

Tracy will capture small chunks of the executable image during profiling to enable deep insight into program
execution. The retrieved code can be subsequently disassembled to be inspected in detail. The profiler will
perform this functionality only for functions no larger than 128 KB and only if symbol information is present.

The discovery of previously unseen executable code may result in reduced performance of real-time
capture. This is especially true when the profiling session had just started. However, such behavior is
expected and will go back to normal after several moments.

It would be best to be extra careful when working with non-public code, as parts of your program will be
embedded in the captured trace. You can disable the collection of program code by compiling the profiled
application with the TRACY_NO_CODE_TRANSFER define. You can also strip the code from a saved trace using
the update utility (section 4.5.4).

For proper program code retrieval, you can unload no module used by the application during the
runtime. See section 3.1.1 for an explanation.

On Linux, Tracy will override the dlclose function call to prevent shared objects from being
unloaded. Note that in a well-behaved program this shouldn’t have any effect, as calling dlclose does
not guarantee that the shared object will be unloaded.

Important

3.15.8 Vertical synchronization

On Windows and Linux, Tracy will automatically capture hardware Vsync events, provided that the
application has access to the kernel data (privilege elevation may be needed, see section 3.15.1). These
events will be reported as ’[x] Vsync’ frame sets, where x is the identifier of a specific monitor. Note that
hardware vertical synchronization might not correspond to the one seen by your application due to desktop
composition, command queue buffering, and so on. Also, in some instances, when there is nothing to update
on the screen, the graphic driver may choose to stop issuing screen refresh. As a result, there may be periods
where no vertical synchronization events are reported.

Use the TRACY_NO_VSYNC_CAPTURE macro to disable capture of Vsync events.

3.16 Trace parameters

Sometimes it is desired to change how the profiled application behaves during the profiling run. For example,
you may want to enable or disable the capture of frame images without recompiling and restarting your pro-
gram. To be able to do so you must register a callback function using the TracyParameterRegister(callback,
data) macro, where callback is a function conforming to the following signature:

void Callback (void * data , uint32_t idx , int32_t val)

57You may need Windows 11 and the WSL preview from Microsoft Store for this to work.

59

Tracy Profiler The user manual

The data parameter will have the same value as was specified in the macro. The idx argument is an
user-defined parameter index and val is the value set in the profiler user interface.

To specify individual parameters, use the TracyParameterSetup(idx, name, isBool, val) macro. The
idx value will be passed to the callback function for identification purposes (Tracy doesn’t care what it’s set
to). Name is the parameter label, displayed on the list of parameters. Finally, isBool determines if val should
be interpreted as a boolean value, or as an integer number.

Usage of trace parameters makes profiling runs dependent on user interaction with the profiler, and
thus it’s not recommended to be employed if a consistent profiling environment is desired. Furthermore,
interaction with the parameters is only possible in the graphical profiling application but not in the
command line capture utility.

Important

3.17 Source contents callback
Tracy performs several data discovery attempts to show you the source file contents associated with the exe-
cuted program, which is explained in more detail in chapter 5.16. However, sometimes the source files cannot
be accessed without your help. For example, you may want to profile a script that is loaded by the game and
which only resides in an archive accessible only by your program. Accordingly, Tracy allows inserting your own
custom step at the end of the source discovery chain, with the TracySourceCallbackRegister(callback,
data) macro, where callback is a function conforming to the following signature:

char * Callback (void * data , const char * filename , size_t & size)

The data parameter will have the same value as was specified in the macro. The filename parameter
contains the file name of the queried source file. Finally, the size parameter is used only as an out-value and
does not contain any functional data.

The return value must be nullptr if the input file name is not accessible to the client application. If the
file can be accessed, then the data size must be stored in the size parameter, and the file contents must be
returned in a buffer allocated with the tracy::tracy_malloc_fast(size) function. Buffer contents do not
need to be null-terminated. If for some reason the already allocated buffer can no longer be used, it must be
freed with the tracy::tracy_free_fast(ptr) function.

Transfer of source files larger than some unspecified, but reasonably large58 threshold won’t be performed.

3.18 Connection status
To determine if a connection is currently established between the client and the server, you may use the
TracyIsConnected macro, which returns a boolean value.

4 Capturing the data
After the client application has been instrumented, you will want to connect to it using a server, available
either as a headless capture-only utility or as a full-fledged graphical profiling interface.

4.1 Command line
You can capture a trace using a command line utility contained in the capture directory. To use it you may
provide the following parameters:

58Let’s say around 256 KB sounds reasonable.

60

Tracy Profiler The user manual

• -o output.tracy – the file name of the resulting trace (required).

• -a address – specifies the IP address (or a domain name) of the client application (uses localhost if
not provided).

• -p port – network port which should be used (optional).

• -f – force overwrite, if output file already exists.

• -s seconds – number of seconds to capture before automatically disconnecting (optional).

• -m memlimit – sets memory limit for the trace. The connection will be terminated, if it is exceeded.
Specified as a percentage of total system memory. Can be greater than 100%, which will use swap.
Disabled, if not set.

If no client is running at the given address, the server will wait until it can make a connection. During the
capture, the utility will display the following information:

% ./capture -a 127.0.0.1 -o trace
Connecting to 127.0.0.1:8086...
Queue delay: 5 ns
Timer resolution: 3 ns

1.33 Mbps / 40.4% = 3.29 Mbps | Net: 64.42 MB | Mem: 283.03 MB | Time: 10.6 s

The queue delay and timer resolution parameters are calibration results of timers used by the client. The
following line is a status bar, which displays: network connection speed, connection compression ratio, and
the resulting uncompressed data rate; the total amount of data transferred over the network; memory usage
of the capture utility; time extent of the captured data.

You can disconnect from the client and save the captured trace by pressing Ctrl + C . If you prefer to
disconnect after a fixed time, use the -s seconds parameter.

4.2 Interactive profiling
If you want to look at the profile data in real-time (or load a saved trace file), you can use the data analysis
utility contained in the profiler directory. After starting the application, you will be greeted with a welcome
dialog (figure 9), presenting a bunch of useful links ([User manual, � Web, × Join chat and ♥ Sponsor). The
� Web button opens a drop-down list with links to the profiler’s Ñ Home page and a bunch of Å Feature
videos.

The å Wrench button opens the about dialog, which also contains a number of global settings you may
want to tweak.

The client address entry field and the Û Connect button are used to connect to a running client59. You can
use the connection history button � to display a list of commonly used targets, from which you can quickly
select an address. You can remove entries from this list by hovering the W mouse cursor over an entry and
pressing the Del. button on the keyboard.

If you want to open a trace that you have stored on the disk, you can do so by pressing the i Open saved
trace button.

The discovered clients list is only displayed if clients are broadcasting their presence on the local network60.
Each entry shows the client’s address61 (and port, if different from the default one), how long the client
has been running, and the name of the profiled application. Clicking on an entry will connect to the client.
Incompatible clients are grayed out and can’t be connected to, but Tracy will suggest a compatible version, if
able. Clicking on the Z Filter toggle button will display client filtering input fields, allowing removal of the
displayed entries according to their address, port number, or program name. If filters are active, a yellow
. warning icon will be displayed.

59Note that a custom port may be provided here, for example by entering ’127.0.0.1:1234’.
60Only on IPv4 network and only within the broadcast domain.
61Either as an IP address or as a hostname, if able to resolve.

61

Tracy Profiler The user manual

Tracy Profiler å

[� × ♥

Address entry �

Û Connect i Open trace

Discovered clients: Z
127.0.0.1 | 21 s | Application

Figure 9: Welcome dialog.

Both connecting to a client and opening a saved trace will present you with the main profiler view, which
you can use to analyze the data (see section 5).

Once connected to a client Ctrl + + Alt + R can be used to quickly discard any captured data and
reconnect to a client at the same address.

4.2.1 Connection information pop-up

If this is a real-time capture, you will also have access to the connection information pop-up (figure 10)
through the Û Connection button, with the capture status similar to the one displayed by the command-line
utility. This dialog also shows the connection speed graphed over time and the profiled application’s current
frames per second and frame time measurements. The Query backlog consists of two numbers. The first
represents the number of queries that were held back due to the bandwidth volume overwhelming the
available network send buffer. The second one shows how many queries are in-flight, meaning requests sent
to the client but not yet answered. While these numbers drain down to zero, the performance of real time
profiling may be temporarily compromised. The circle displayed next to the bandwidth graph signals the
connection status. If it’s red, the connection is active. If it’s gray, the client has disconnected.

You can use the Ö Save trace button to save the current profile data to a file62. The available compression
modes are discussed in sections 4.5.1 and 4.5.3. Use the � Stop button to disconnect from the client63. The
. Discard button is used to discard current trace.

Connected to: 127.0.0.1
Bandwidth graph 1.33 Mbps

Ratio 40.4% Real: 3.29 Mbps
Data transferred: 23.11 MB
Query backlog: 0 + 12
FPS: 60 Frame time: 16.7 ms
Ö Save trace � Stop . Discard

Figure 10: Connection information pop-up.

If frame image capture has been implemented (chapter 3.3.3), a thumbnail of the last received frame
image will be provided for reference.

Suppose the profiled application opted to provide trace parameters (see section 3.16) and the connection
is still active. In that case, this pop-up will also contain a trace parameters section, listing all the provided

62You should take this literally. If a live capture is in progress and a save is performed, some data may be missing from the capture
and won’t be saved.

63While requesting disconnect stops retrieval of any new events, the profiler will wait for any data that is still pending for the current
set of events.

62

Tracy Profiler The user manual

options. A callback function will be executed on the client when you change any value here.

4.2.2 Automatic loading or connecting

You can pass the trace file name as an argument to the profiler application to open the capture, skipping the
welcome dialog. You can also use the -a address argument to connect to the given address automatically.
Finally, to specify the network port, pass the -p port parameter. The profiler will use it for client connections
(overridable in the UI) and for listening to client discovery broadcasts.

4.3 Connection speed
Tracy network bandwidth requirements depend on the amount of data collection the profiled application
performs. You may expect anything between 1 Mbps and 100 Mbps data transfer rate in typical use case
scenarios.

The maximum attainable connection speed is determined by the ability of the client to provide data and
the ability of the server to process the received data. In an extreme conditions test performed on an i7 8700K,
the maximum transfer rate peaked at 950 Mbps. In each second, the profiler could process 27 million zones
and consume 1 GB of RAM.

4.4 Memory usage
The captured data is stored in RAM and only written to the disk when the capture finishes. This can result in
memory exhaustion when you capture massive amounts of profile data or even in typical usage situations
when the capture is performed over a long time. Therefore, the recommended usage pattern is to perform
moderate instrumentation of the client code and limit capture time to the strict necessity.

In some cases, it may be helpful to perform an on-demand capture, as described in section 2.1.5. In such a
case, you will be able to profile only the exciting topic (e.g., behavior during loading of a level in a game),
ignoring all the unneeded data.

If you genuinely need to capture large traces, you have two options. Either buy more RAM or use a large
swap file on a fast disk drive64.

4.5 Trace versioning
Each new release of Tracy changes the internal format of trace files. While there is a backward compatibility
layer, allowing loading traces created by previous versions of Tracy in new releases, it won’t be there forever.
You are thus advised to upgrade your traces using the utility contained in the update directory.

To use it, you will need to provide the input file and the output file. The program will print a short
summary when it finishes, with information about trace file versions, their respective sizes and the output
trace file compression ratio:

% ./update old.tracy new.tracy
old.tracy (0.3.0) {916.4 MB} -> new.tracy (0.4.0) {349.4 MB, 31.53%} 9.7 s, 38.13% change

The new file contains the same data as the old one but with an updated internal representation. Note that
the whole trace needs to be loaded to memory to perform an upgrade.

4.5.1 Archival mode

The update utility supports optional higher levels of data compression, which reduce disk size of traces at the
cost of increased compression times. The output files have a reasonable size and are quick to save and load
with the default settings. A list of available compression modes and their respective results is available in
table 7 and figures 11, 12 and 13. The following command-line options control compression mode selection:

64The operating system can manage memory paging much better than Tracy would be ever able to.

63

Tracy Profiler The user manual

Mode Size Ratio Save time Load time
lz4 162.48 MB 17.19% 1.91 s 470 ms

lz4 hc 77.33 MB 8.18% 39.24 s 401 ms
lz4 extreme 72.67 MB 7.68% 4:30 406 ms

zstd 1 63.17 MB 6.68% 2.27 s 868 ms
zstd 2 63.29 MB 6.69% 2.31 s 884 ms
zstd 3 62.94 MB 6.65% 2.43 s 867 ms
zstd 4 62.81 MB 6.64% 2.44 s 855 ms
zstd 5 61.04 MB 6.45% 3.98 s 855 ms
zstd 6 60.27 MB 6.37% 4.19 s 827 ms
zstd 7 61.53 MB 6.5% 6.6 s 761 ms
zstd 8 60.44 MB 6.39% 7.84 s 746 ms
zstd 9 59.58 MB 6.3% 9.6 s 724 ms
zstd 10 59.36 MB 6.28% 10.29 s 706 ms
zstd 11 59.2 MB 6.26% 11.23 s 717 ms
zstd 12 58.51 MB 6.19% 15.43 s 695 ms
zstd 13 56.16 MB 5.94% 35.55 s 642 ms
zstd 14 55.76 MB 5.89% 37.74 s 627 ms
zstd 15 54.65 MB 5.78% 1:01 600 ms
zstd 16 50.94 MB 5.38% 1:34 537 ms
zstd 17 50.18 MB 5.30% 1:44 542 ms
zstd 18 49.91 MB 5.28% 2:17 554 ms
zstd 19 46.99 MB 4.97% 7:09 605 ms
zstd 20 46.81 MB 4.95% 7:08 608 ms
zstd 21 45.77 MB 4.84% 13:01 614 ms
zstd 22 45.52 MB 4.81% 15:11 621 ms

Table 7: Compression results for an example trace.
Tests performed on Ryzen 9 3900X.

• -4 – selects LZ4 algorithm.

• -h – enables LZ4 HC compression.

• -e – uses LZ4 extreme compression.

• -z level – selects Zstandard algorithm, with a specified compression level.

Trace files created using the lz4, lz4 hc and lz4 extreme modes are optimized for fast decompression and
can be further compressed using file compression utilities. For example, using 7-zip results in archives of the
following sizes: 77.2 MB, 54.3 MB, 52.4 MB.

For archival purposes, it is, however, much better to use the zstd compression modes, which are
faster, compress trace files more tightly, and are directly loadable by the profiler, without the intermediate
decompression step.

4.5.2 Compression streams

Saving and loading trace data can be parallelized using the -j streams parameter. Each compression stream
runs on its own thread, and it makes little sense to use more streams than you have CPU cores. Note that the
number of streams set at save time will also be used at load time, which may affect load performance if you
are viewing the trace on a less powerful machine.

Going overboard with the number of streams is not recommended, especially with the fast compression
modes where it will be difficult to keep each stream busy. Also, complex compression codecs (e.g. zstd at

64

Tracy Profiler The user manual

0 5 10 15 20 25

50

100

150

Mode

Si
ze

(M
B)

zstd
lz4

lz4 hc
lz4 extreme

Figure 11: Plot of trace sizes for different compression modes
(see table 7).

0 5 10 15 20 25

101

102

103

Mode
Ti

m
e

(s
)

zstd
lz4

lz4 hc
lz4 extreme

Figure 12: Logarithmic plot of trace compression times for
different compression modes (see table 7).

0 5 10 15 20 25

400

500

600

700

800

900

Mode

Ti
m

e
(m

s)

zstd
lz4

lz4 hc
lz4 extreme

Figure 13: Plot of trace load times for different compression modes (see table 7).

65

Tracy Profiler The user manual

Mode
Streams 4 8 16 32

lz4 100.30% 100.30% 100.61% 102.73%
lz4 hc 100.80% 101.20% 101.61% 102.41%
lz4 ext 100.40% 101.21% 101.62% 102.02%
zstd 1 100.90% 101.36% 101.81% 102.26%
zstd 3 100.51% 101.02% 101.53% 102.04%
zstd 6 100.55% 101.10% 101.65% 102.75%
zstd 9 101.27% 103.16% 105.06% 108.23%
zstd 18 103.08% 106.15% 109.23% 115.38%
zstd 22 107.08% 113.27% 122.12% 130.97%

Table 8: The increase in file size for different compression modes, as compared to a single stream.

Mode
Streams 4 8 16 32

lz4 2.04 2.52 2.11 3.24
lz4 hc 3.56 6.73 9.49 15.26
lz4 ext 3.38 6.53 9.57 17.03
zstd 1 2.24 3.68 3.40 3.37
zstd 3 3.23 4.13 4.07 4.50
zstd 6 3.52 6.00 6.53 6.95
zstd 9 3.10 4.26 5.12 5.40
zstd 18 3.22 5.41 8.49 14.51
zstd 22 3.99 7.47 11.10 18.20

Table 9: The speedup (x times faster) in saving time for different modes of compression, as compared to a single stream.

level 22) have significantly worse compression rates when the work is divided. This is a fairly nuanced topic,
and you are encouraged to do your own measurements, but for a rough guideline on the behavior, you can
refer to tables 8 and 9.

4.5.3 Frame images dictionary

Frame images have to be compressed individually so that there are no delays during random access to the
contents of any image. Unfortunately, because of this, there is no reuse of compression state between similar
(or even identical) images, which leads to increased memory consumption. The profiler can partially remedy
this by enabling the calculation of an optional frame images dictionary with the -d command line parameter.

Saving a trace with frame images dictionary-enabled will need some extra time, depending on the amount
of image data you have captured. Loading such a trace will also be slower, but not by much. How much
RAM the dictionary will save depends on the similarity of frame images. Be aware that post-processing
effects such as artificial film grain have a subtle impact on image contents, which is significant in this case.

The dictionary cannot be used when you are capturing a trace.

4.5.4 Data removal

In some cases you may want to share just a portion of the trace file, omitting sensitive data such as source file
cache, or machine code of the symbols. This can be achieved using the -s flags command line option. To
select what kind of data is to be stripped, you need to provide a list of flags selected from the following:

• l – locks.

• m – messages.

66

Tracy Profiler The user manual

• p – plots.

• M – memory.

• i – frame images.

• c – context switches.

• s – sampling data.

• C – symbol code.

• S – source file cache.

Flags can be concatenated. For example specifying -s CSi will remove symbol code, source file cache,
and frame images in the destination trace file.

4.6 Source file cache scan
Sometimes access to source files may not be possible during the capture. This may be due to capturing the
trace on a machine without the source files on disk, use of paths relative to the build directory, clash of file
location schemas (e.g., on Windows, you can have native paths, like C:\directory\file and WSL paths,
like /mnt/c/directory/file, pointing to the same file), and so on.

You may force a recheck of the source file availability during the update process with the -c command
line parameter. All the source files missing from the cache will be then scanned again and added to the cache
if they do pass the validity checks (see section 5.16).

4.7 Instrumentation failures
In some cases, your program may be incorrectly instrumented. For example, you could have unbalanced
zone begin and end events or report a memory-free event without first reporting a memory allocation event.
When Tracy detects such misbehavior, it immediately terminates the connection with the client and displays
an error message.

5 Analyzing captured data

You have instrumented your application, and you have captured a profiling trace. Now you want to look at
the collected data. You can do this in the application contained in the profiler directory.

The workflow is identical, whether you are viewing a previously saved trace or if you’re performing a live
capture, as described in section 4.2.

5.1 Time display
In most cases Tracy will display an approximation of time value, depending on how big it is. For example, a
short time range will be displayed as 123 ns, and some longer ones will be shortened to 123.45 µs, 123.45 ms,
12.34 s, 1:23.4, 12:34:56, or even 1d12:34:56 to indicate more than a day has passed.

While such a presentation makes time values easy to read, it is not always appropriate. For example, you
may have multiple events happen at a time approximated to 1:23.4, giving you the precision of only 1/10 of a
second. And there’s certainly a lot that can happen in 100 ms.

An alternative time display is used in appropriate places to solve this problem. It combines a day–hour–
minute–second value with full nanosecond resolution, resulting in values such as 1:23 456,789,012 ns.

67

Tracy Profiler The user manual

 Ó Options V Messages Û Find zone � Statistics : Memory 8 Compare [Info { ß

� Frames: 364 � � 4 52.7 ms õ 6.06 s : 195.2 MB Notification area

Frame time graph

Timeline view

Figure 14: Main profiler window. Note that this manual has split the top line of buttons into two rows.

5.2 Main profiler window
The main profiler window is split into three sections, as seen in figure 14: the control menu, the frame time
graph, and the timeline display.

5.2.1 Control menu

The control menu (top row of buttons) provides access to various profiler features. The buttons perform the
following actions:

• Û Connection – Opens the connection information popup (see section 4.2.1). Only available when live
capture is in progress.

• Close – This button unloads the current profiling trace and returns to the welcome menu, where
another trace can be loaded. In live captures it is replaced by r Pause, � Resume and □ Stopped buttons.

• r Pause – While a live capture is in progress, the profiler will display recent events, as either the last
three fully captured frames, or a certain time range. You can use this to see the current behavior of the
program. The pause button65 will stop the automatic updates of the timeline view (the capture will
still be progressing).

• � Resume – This button allows to resume following the most recent events in a live capture. You will
have selection of one of the following options: ß Newest three frames, or Î Use current zoom level.

• □ Stopped – Inactive button used to indicate that the client application was terminated.

• Ó Options – Toggles the settings menu (section 5.4).

• V Messages – Toggles the message log window (section 5.5), which displays custom messages sent by
the client, as described in section 3.7.

• Û Find zone – This buttons toggles the find zone window, which allows inspection of zone behavior
statistics (section 5.7).

• � Statistics – Toggles the statistics window, which displays zones sorted by their total time cost
(section 5.6).

• : Memory – Various memory profiling options may be accessed here (section 5.9).
65Or perform any action on the timeline view, apart from changing the zoom level.

68

Tracy Profiler The user manual

• 8 Compare – Toggles the trace compare window, which allows you to see the performance difference
between two profiling runs (section 5.8).

• [Info – Show general information about the trace (section 5.12).

• { Tools – Allows access to optional data collected during capture. Some choices might be unavailable.

– � Playback – If frame images were captured (section 3.3.3), you will have option to open frame
image playback window, described in chapter 5.19.

– � CPU data – If context switch data was captured (section 3.15.3), this button will allow inspecting
what was the processor load during the capture, as described in section 5.20.

– 4 Annotations – If annotations have been made (section 5.3.1), you can open a list of all annotations,
described in chapter 5.22.

– Ì Limits – Displays time range limits window (section 5.3).
– Ý Wait stacks – If sampling was performed, an option to display wait stacks may be available. See

chapter 3.15.5.1 for more details.

• ßDisplay scale – Enables run-time resizing of the displayed content. This may be useful in environments
with potentially reduced visibility, e.g. during a presentation. Note that this setting is independent to
the UI scaling coming from the system DPI settings.

The frame information block66 consists of four elements: the current frame set name along with the
number of captured frames (click on it with the left mouse button to go to a specified frame), the two
navigational buttons � and �, which allow you to focus the timeline view on the previous or next frame, and
the frame set selection button �, which is used to switch to another frame set67. For more information about
marking frames, see section 3.3.

The following three items show the 4 view time range, the õ time span of the whole capture (clicking on it
with the middle mouse button will set the view range to the entire capture), and the : memory usage of
the profiler.

5.2.1.1 Notification area

The notification area displays informational notices, for example, how long it took to load a trace from
the disk. A pulsating dot next to the X icon indicates that some background tasks are being performed
that may need to be completed before full capabilities of the profiler are available. If a crash was captured
during profiling (section 2.5), a þ crash icon will be displayed. The red Õ icon indicates that queries are
currently being backlogged, while the same yellow icon indicates that some queries are currently in-flight
(see chapter 4.2.1 for more information).

If the drawing of timeline elements was disabled in the options menu (section 5.4), the profiler will use
the following orange icons to remind you about that fact. Click on the icons to enable drawing of the selected
elements. Note that collapsed labels (section 5.2.3.3) are not taken into account here.

• / – Display of empty labels is enabled.

• Ì – Context switches are hidden.

• � – CPU data is hidden.

• 4 – GPU zones are hidden.

• > – CPU zones are hidden.
66Visible only if frame instrumentation was included in the capture.
67See section 5.2.3.2 for another way to change the active frame set.

69

Tracy Profiler The user manual

• � – Locks are hidden.

• ô – Plots are hidden.

• x – Ghost zones are not displayed.

• � – At least one timeline item (e.g. a single thread, a single plot, a single lock, etc.) is hidden.

5.2.2 Frame time graph

The graph of the currently selected frame set (figure 15) provides an outlook on the time spent in each frame,
allowing you to see where the problematic frames are and to navigate to them quickly.

Figure 15: Frame time graph.

Each bar displayed on the graph represents a unique frame in the current frame set68. The progress of
time is in the right direction. The bar height indicates the time spent in the frame, complemented by the
color information, which depends on the target FPS value. You can set the desired FPS in the options menu
(see section 5.4).

• If the bar is blue, then the frame met the best time of twice the target FPS (represented by the green
target line).

• If the bar is green, then the frame met the good time of target FPS (represented by the yellow line).

• If the bar is yellow, then the frame met the bad time of half the FPS (represented by the red target line).

• If the bar is red, then the frame didn’t meet any time limits.

The frames visible on the timeline are marked with a violet box drawn over them.
When a zone is displayed in the find zone window (section 5.7), the coloring of frames may be changed,

as described in section 5.7.2.
Moving the W mouse cursor over the frames displayed on the graph will display a tooltip with information

about frame number, frame time, frame image (if available, see chapter 3.3.3), etc. Such tooltips are common
for many UI elements in the profiler and won’t be mentioned later in the manual.

You may focus the timeline view on the frames by clicking or dragging the left mouse button on the
graph. The graph may be scrolled left and right by dragging the right mouse button over the graph.
Finally, you may zoom the view in and out by using the mouse wheel. If the view is zoomed out, so that
multiple frames are merged into one column, the profiler will use the highest frame time to represent the
given column.

Clicking the left mouse button on the graph while the Ctrl key is pressed will open the frame image
playback window (section 5.19) and set the playback to the selected frame. See section 3.3.3 for more
information about frame images.

5.2.3 Timeline view

The timeline is the most crucial element of the profiler UI. All the captured data is displayed there, laid
out on the horizontal axis, according to time flow. Where there was no profiling performed, the timeline is
dimmed out. The view is split into three parts: the time scale, the frame sets, and the combined zones, locks,
and plots display.

68Unless the view is zoomed out and multiple frames are merged into one column.

70

Tracy Profiler The user manual

Collapsed items Due to extreme differences in time scales, you will almost constantly see events too
small to be displayed on the screen. Such events have preset minimum size (so they can be seen) and are
marked with a zig-zag pattern to indicate that you need to zoom in to see more detail.

The zig-zag pattern can be seen applied to frame sets on figure 17, and zones on figure 18.

5.2.3.1 Time scale

The time scale is a quick aid in determining the relation between screen space and the time it represents
(figure 16).

+13.76 s 20 µs 40 µs 60 µs 80 µs 100 µs

Figure 16: Time scale.

The leftmost value on the scale represents when the timeline starts. The rest of the numbers label the
notches on the scale, with some numbers omitted if there’s no space to display them.

Hovering the W mouse pointer over the time scale will display a tooltip with the exact timestamp at the
position of the mouse cursor.

5.2.3.2 Frame sets

Frames from each frame set are displayed directly underneath the time scale. Each frame set occupies a
separate row. The currently selected frame set is highlighted with bright colors, with the rest dimmed out.

Frame 312 (6.99 ms) Frame 347 (5.24 ms) 1.63 ms

Figure 17: Frames on the timeline.

In figure 17 we can see the fully described frames 312 and 347. The description consists of the frame
name, which is Frame for the default frame set (section 3.3) or the name you used for the secondary name set
(section 3.3.1), the frame number, and the frame time. Since frame 348 is too small to be fully labeled, only
the frame time is shown. On the other hand, frame 349 is even smaller, with no space for any text. Moreover,
frames 313 to 346 are too small to be displayed individually, so they are replaced with a zig-zag pattern, as
described in section 5.2.3.

You can also see frame separators are projected down to the rest of the timeline view. Note that only the
separators for the currently selected frame set are displayed. You can make a frame set active by clicking the

left mouse button on a frame set row you want to select (also see section 5.2.1).
Clicking the middle mouse button on a frame will zoom the view to the extent of the frame.
If a frame has an associated frame image (see chapter 3.3.3), you can hold the Ctrl key and click the left

mouse button on the frame to open the frame image playback window (see chapter 5.19) and set the playback
to the selected frame.

If the c Draw frame targets option is enabled (see section 5.4), time regions in frames exceeding the set
target value will be marked with a red background.

5.2.3.3 Zones, locks and plots display

You will find the zones with locks and their associated threads on this combined view. The plots are graphed
right below.

The left-hand side index area of the timeline view displays various labels (threads, locks), which can be
categorized in the following way:

71

Tracy Profiler The user manual

Main thread

Update
6 Physics

Render

Physics lock

Streaming thread x

Streaming job Streaming job
Load image

Figure 18: Zones and locks display.

• Light blue label – GPU context. Multi-threaded Vulkan, OpenCL, and Direct3D 12 contexts are
additionally split into separate threads.

• Pink label – CPU data graph.

• White label – A CPU thread. It will be replaced by a bright red label in a thread that has crashed
(section 2.5). If automated sampling was performed, clicking the left mouse button on the x ghost
zones button will switch zone display mode between ’instrumented’ and ’ghost.’

• Green label – Fiber, coroutine, or any other sort of cooperative multitasking ’green thread.’

• Light red label – Indicates a lock.

• Yellow label – Plot.

Labels accompanied by the � symbol can be collapsed out of the view to reduce visual clutter. Hover
the W mouse pointer over the label to display additional information. Click the middle mouse button on a
title to zoom the view to the extent of the label contents. Finally, click the right mouse button on a label to
display the context menu with available actions:

• 6 Hide – Hides the label along with the content associated to it. To make the label visible again, you
must find it in the options menu (section 5.4).

Zones In an example in figure 18 you can see that there are two threads: Main thread and Streaming
thread69. We can see that the Main thread has two root level zones visible: Update and Render. The Update
zone is split into further sub-zones, some of which are too small to be displayed at the current zoom level.
This is indicated by drawing a zig-zag pattern over the merged zones box (section 5.2.3), with the number of
collapsed zones printed in place of the zone name. We can also see that the Physics zone acquires the Physics
lock mutex for most of its run time.

Meanwhile, the Streaming thread is performing some Streaming jobs. The first Streaming job sent a message
(section 3.7). In addition to being listed in the message log, it is indicated by a triangle over the thread
separator. When multiple messages are in one place, the triangle outline shape changes to a filled triangle.

The GPU zones are displayed just like CPU zones, with an OpenGL/Vulkan/Direct3D/OpenCL context
in place of a thread name.

69By clicking on a thread name, you can temporarily disable the display of the zones in this thread.

72

Tracy Profiler The user manual

Hovering the W mouse pointer over a zone will highlight all other zones that have the exact source location
with a white outline. Clicking the left mouse button on a zone will open the zone information window
(section 5.13). Holding the Ctrl key and clicking the left mouse button on a zone will open the zone
statistics window (section 5.7). Clicking the middle mouse button on a zone will zoom the view to the
extent of the zone.

Ghost zones You can enable the view of ghost zones (not pictured on figure 18, but similar to standard
zones view) by clicking on the x ghost zones icon next to the thread label, available if automated sampling
(see chapter 3.15.5) was performed. Ghost zones will also be displayed by default if no instrumented zones
are available for a given thread to help with pinpointing functions that should be instrumented.

Ghost zones represent true function calls in the program, periodically reported by the operating system.
Due to the limited sampling resolution, you need to take great care when looking at reported timing data.
While it may be apparent that some small function requires a relatively long time to execute, for example,
125 µs (8 kHz sampling rate), in reality, this time represents a period between taking two distinct samples,
not the actual function run time. Similarly, two (or more) separate function calls may be represented as a
single ghost zone because the profiler doesn’t have the information needed to know about the actual lifetime
of a sampled function.

Another common pitfall to watch for is the order of presented functions. It is not what you expect it to be!
Read chapter 5.14.1 for critical insight on how call stacks might seem nonsensical at first and why they aren’t.

The available information about ghost zones is quite limited, but it’s enough to give you a rough outlook
on the execution of your application. The timeline view alone is more than any other statistical profiler
can present. In addition, Tracy correctly handles inlined function calls, which are indicated by a darker
background of ghost zones. Lastly, zones representing kernel-mode functions are displayed with red function
names.

Clicking the left mouse button on a ghost zone will open the corresponding source file location, if able
(see chapter 5.16 for conditions). There are three ways in which source locations can be assigned to a ghost
zone:

1. If the selected ghost zone is not an inline frame and its symbol data has been retrieved, the source
location points to the function entry location (first line of the function).

2. If the selected ghost zone is not an inline frame, but its symbol data is not available, the source location
will point to a semi-random location within the function body (i.e. to one of the sampled addresses in
the program, but not necessarily the one representing the selected time stamp, as multiple samples
with different addresses may be merged into one ghost zone).

3. If the selected ghost zone is an inline frame, the source location will point to a semi-random location
within the inlined function body (see details in the above point). It is impossible to go to such a
function’s entry location, as it doesn’t exist in the program binary. Inlined functions begin in the parent
function.

Call stack samples The row of dots right below the Main thread label shows call stack sample points,
which may have been automatically captured (see chapter 3.15.5 for more detail). Hovering the W mouse
pointer over each dot will display a short call stack summary while clicking on the dot with the left mouse
button will open a more detailed call stack information window (see section 5.14).

Context switches The thick line right below the samples represents context switch data (see section 3.15.3).
We can see that the main thread, as displayed, starts in a suspended state, represented by the dotted region.
Then it is woken up and starts execution of the Update zone. It is preempted amid the physics processing,
which explains why there is an empty space between child zones. Then it is resumed again and continues
execution into the Render zone, where it is preempted again, but for a shorter time. After rendering is done,

73

Tracy Profiler The user manual

the thread sleeps again, presumably waiting for the vertical blanking to indicate the next frame. Similar
information is also available for the streaming thread.

Context switch regions are using the following color key:

• Green – Thread is running.

• Red – Thread is waiting to be resumed by the scheduler. There are many reasons why a thread may be
in the waiting state. Hovering the W mouse pointer over the region will display more information. If
sampling was performed, the profiler might display a wait stack. See section 3.15.5.1 for additional
details.

• Blue – Thread is waiting to be resumed and is migrating to another CPU core. This might have visible
performance effects because low-level CPU caches are not shared between cores, which may result in
additional cache misses. To avoid this problem, you may pin a thread to a specific core by setting its
affinity.

• Bronze – Thread has been placed in the scheduler’s run queue and is about to be resumed.

Fiber work and yield states are presented in the same way as context switch regions.

CPU data This label is only available if the profiler collected context switch data. It is split into two
parts: a graph of CPU load by various threads running in the system and a per-core thread execution display.

The CPU load graph shows how much CPU resources were used at any given time during program
execution. The green part of the graph represents threads belonging to the profiled application, and the gray
part of the graph shows all other programs running in the system. Hovering the W mouse pointer over the
graph will display a list of threads running on the CPU at the given time.

Each line in the thread execution display represents a separate logical CPU thread. If CPU topology data
is available (see section 3.15.4), package and core assignment will be displayed in brackets, in addition to
numerical processor identifier (i.e. [package :core] CPU thread). When a core is busy executing a thread,
a zone will be drawn at the appropriate time. Zones are colored according to the following key:

• Bright color – or orange if dynamic thread colors are disabled – Thread tracked by the profiler.

• Dark blue – Thread existing in the profiled application but not known to the profiler. This may include
internal profiler threads, helper threads created by external libraries, etc.

• Gray – Threads assigned to other programs running in the system.

When the W mouse pointer is hovered over either the CPU data zone or the thread timeline label, Tracy
will display a line connecting all zones associated with the selected thread. This can be used to quickly see
how the thread migrated across the CPU cores.

Clicking the left mouse button on a tracked thread will make it visible on the timeline if it was either
hidden or collapsed before.

Careful examination of the data presented on this graph may allow you to determine areas where the
profiled application was fighting for system resources with other programs (see section 2.2.1) or give you a
hint to add more instrumentation macros.

Locks Mutual exclusion zones are displayed in each thread that tries to acquire them. There are three
color-coded kinds of lock event regions that may be displayed. Note that the contention regions are always
displayed over the uncontented ones when the timeline view is zoomed out.

• Green region70 – The lock is being held solely by one thread, and no other thread tries to access it. In the
case of shared locks, multiple threads hold the read lock, but no thread requires a write lock.

70This region type is disabled by default and needs to be enabled in options (section 5.4).

74

Tracy Profiler The user manual

• Yellow region – The lock is being owned by this thread, and some other thread also wants to acquire the
lock.

• Red region – The thread wants to acquire the lock but is blocked by other thread or threads in case of a
shared lock.

Hovering the W mouse pointer over a lock timeline will highlight the lock in all threads to help read
the lock behavior. Hovering the W mouse pointer over a lock event will display important information,
for example, a list of threads that are currently blocking or which are blocked by the lock. Clicking the

left mouse button on a lock event or a lock label will open the lock information window, as described in
section 5.18. Clicking the middle mouse button on a lock event will zoom the view to the extent of the
event.

Plots The numerical data values (figure 19) are plotted right below the zones and locks. Note that the
minimum and maximum values currently displayed on the plot are visible on the screen, along with the y
range of the plot and the number of drawn data points. The discrete data points are indicated with little
rectangles. A filled rectangle indicates multiple data points.

Queue size (y-range: 463, visible data points: 7)
731

268

Figure 19: Plot display.

When memory profiling (section 3.8) is enabled, Tracy will automatically generate a : Memory usage
plot, which has extended capabilities. For example, hovering over a data point (memory allocation event)
will visually display the allocation duration. Clicking the left mouse button on the data point will open
the memory allocation information window, which will show the duration of the allocation as long as the
window is open.

Another plot that Tracy automatically provides is the T CPU usage plot, which represents the total system
CPU usage percentage (it is not limited to the profiled application).

5.2.4 Navigating the view

Hovering the W mouse pointer over the timeline view will display a vertical line that you can use to line up
events in multiple threads visually. Dragging the left mouse button will display the time measurement of
the selected region.

The timeline view may be scrolled both vertically and horizontally by dragging the right mouse button.
Note that only the zones, locks, and plots scroll vertically, while the time scale and frame sets always stay on
the top.

You can zoom in and out the timeline view by using the mouse wheel. Pressing the Ctrl key will make
zooming more precise while pressing the key will make it faster. You can select a range to which you
want to zoom in by dragging the middle mouse button. Dragging the middle mouse button while the
Ctrl key is pressed will zoom out.

It is also possible to navigate the timeline using the keyboard. The A and D keys scroll the view to the
left and right, respectively. The W and S keys change the zoom level.

75

Tracy Profiler The user manual

5.3 Time ranges
Sometimes, you may want to specify a time range, such as limiting some statistics to a specific part of your
program execution or marking interesting places.

To define a time range, drag the left mouse button over the timeline view while holding the Ctrl key.
When the mouse key is released, the profiler will mark the selected time extent with a blue striped pattern,
and it will display a context menu with the following options:

• Û Limit find zone time range – this will limit find zone results. See chapter 5.7 for more details.

• � Limit statistics time range – selecting this option will limit statistics results. See chapter 5.6 for more
details.

• Ý Limit wait stacks time range – limits wait stacks results. Refer to chapter 5.17.

• : Limit memory time range – limits memory results. Read more about this in chapter 5.9.

• 4 Add annotation – use to annotate regions of interest, as described in chapter 5.3.1.

Alternatively, you may specify the time range by clicking the right mouse button on a zone or a frame.
The resulting time extent will match the selected item.

To reduce clutter, time range regions are only displayed if the windows they affect are open or if the time
range limits control window is open (section 5.23). You can access the time range limits window through the
{ Tools button on the control menu.

You can freely adjust each time range on the timeline by clicking the left mouse button on the range’s
edge and dragging the mouse.

5.3.1 Annotating the trace

Tracy allows adding custom notes to the trace. For example, you may want to mark a region to ignore because
the application was out-of-focus or a region where a new user was connecting to the game, which resulted in
a frame drop that needs to be investigated.

Methods of specifying the annotation region are described in section 5.3. When a new annotation is
added, a settings window is displayed (section 5.21), allowing you to enter a description.

Annotations are displayed on the timeline, as presented in figure 20. Clicking on the circle next to the
text description will open the annotation settings window, in which you can modify or remove the region.
List of all annotations in the trace is available in the annotations list window described in section 5.22, which
is accessible through the { Tools button on the control menu.

Description

Figure 20: Annotation region.

Please note that while the annotations persist between profiling sessions, they are not saved in the trace
but in the user data files, as described in section 8.2.

5.4 Options menu
In this window, you can set various trace-related options. For example, the timeline view might sometimes
become overcrowded, in which case disabling the display of some profiling events can increase readability.

• / Draw empty labels – By default threads that don’t have anything to display at the current zoom level
are hidden. Enabling this option will show them anyway.

76

Tracy Profiler The user manual

• c Draw frame targets – If enabled, time regions in any frame from the currently selected frame set,
which exceed the specified Target FPS value will be marked with a red background on timeline view.

– Target FPS – Controls the option above, but also the frame bar colors in the frame time graph
(section 5.2.2). The color range thresholds are presented in a line directly below.

• Ì Draw context switches – Allows disabling context switch display in threads.

– Q Darken inactive thread – If enabled, inactive regions in threads will be dimmed out.

• � Draw CPU data – Per-CPU behavior graph can be disabled here.

– ô Draw CPU usage graph – You can disable drawing of the CPU usage graph here.

• 4 Draw GPU zones – Allows disabling display of OpenGL/Vulkan/Direct3D/OpenCL zones. The
GPU zones drop-down allows disabling individual GPU contexts and setting CPU/GPU drift offsets
of uncalibrated contexts (see section 3.9 for more information). The Æ Auto button automatically
measures the GPU drift value71.

• > Draw CPU zones – Determines whether CPU zones are displayed.

– x Draw ghost zones – Controls if ghost zones should be displayed in threads which don’t have any
instrumented zones available.

– h Zone colors – Zones with no user-set color may be colored according to the following schemes:

‗ Disabled – A constant color (blue) will be used.
‗ Thread dynamic – Zones are colored according to a thread (identifier number) they belong to

and depth level.
‗ Source location dynamic – Zone color is determined by source location (function name) and

depth level.

Enabling the Ignore custom option will force usage of the selected zone coloring scheme, disregarding
any colors set by the user in profiled code.

– Î Zone name shortening – controls display behavior of long zone names, which don’t fit inside a
zone box:

‗ Disabled – Shortening of zone names is not performed and names are always displayed in full
(e.g. bool ns::container<float>::add(const float&)).

‗ Minimal length – Always reduces zone name to minimal length, even if there is space available
for a longer form (e.g. add()).

‗ Only normalize – Only performs normalization of the zone name72, but does not remove
namespaces (e.g. ns::container<>::add()).

‗ As needed – Name shortening steps will be performed only if there is no space to display a
complete zone name, and only until the name fits available space, or shortening is no longer
possible (e.g. container<>::add()).

‗ As needed + normalize – Same as above, but zone name normalization will always be performed,
even if the entire zone name fits in the space available.

Function names in the remaining places across the UI will be normalized unless this option is set
to Disabled.

71There is an assumption that drift is linear. Automated measurement calculates and removes change over time in delay-to-execution
of GPU zones. Resulting value may still be incorrect.

72The normalization process removes the function const qualifier, some common return type declarations and all function parameters
and template arguments.

77

Tracy Profiler The user manual

• � Draw locks – Controls the display of locks. If the Only contended option is selected, the profiler won’t
display the non-blocking regions of locks (see section 5.2.3.3). The Locks drop-down allows disabling the
display of locks on a per-lock basis. As a convenience, the list of locks is split into the single-threaded
and multi-threaded (contended and uncontended) categories. Clicking the right mouse button on a
lock label opens the lock information window (section 5.18).

• ô Draw plots – Allows disabling display of plots. Individual plots can be disabled in the Plots
drop-down. The vertical size of the plots can be adjusted using the Plot heights slider.

• ¶ Visible threads – Here you can select which threads are visible on the timeline. You can change the
display order of threads by dragging thread labels. Threads can be sorted alphabetically with the Sort
button.

• ì Visible frame sets – Frame set display can be enabled or disabled here. Note that disabled frame sets
are still available for selection in the frame set selection drop-down (section 5.2.1) but are marked with
a dimmed font.

Disabling the display of some events is especially recommended when the profiler performance drops
below acceptable levels for interactive usage.

5.5 Messages window
In this window, you can see all the messages that were sent by the client application, as described in section 3.7.
The window is split into four columns: time, thread, message and call stack. Hovering the W mouse cursor over
a message will highlight it on the timeline view. Clicking the left mouse button on a message will center
the timeline view on the selected message.

The call stack column is filled only if a call stack capture was requested, as described in section 3.11. A
single entry consists of the � Show button, which opens the call stack information window (chapter 5.14) and
of abbreviated information about the call path.

If the ë Show frame images option is selected, hovering the W mouse cursor over a message will show a
tooltip containing frame image (see section 3.3.3) associated with a frame in which the message was issued, if
available.

The message list will automatically scroll down to display the most recent message during live capture.
You can disable this behavior by manually scrolling the message list up. The auto-scrolling feature will be
enabled again when the view is scrolled down to display the last message.

You can filter the message list in the following ways:

• By the originating thread in the ¶ Visible threads drop-down.

• By matching the message text to the expression in the Z Filter messages entry field. Multiple filter
expressions can be comma-separated (e.g. ’warn, info’ will match messages containing strings ’warn’
or ’info’). You can exclude matches by preceding the term with a minus character (e.g., ’-debug’ will
hide all messages containing the string ’debug’).

5.6 Statistics window
Looking at the timeline view gives you a very localized outlook on things. However, sometimes you want to
look at the general overview of the program’s behavior. For example, you want to know which function
takes the most of the application’s execution time. The statistics window provides you with exactly that
information.

If the trace capture was performed with call stack sampling enabled (as described in chapter 3.15.5), you
will be presented with an option to switch between N Instrumentation and 5 Sampling modes. If the profiler
collected no sampling data, but it retrieved symbols, the second mode will be displayed as « Symbols,
enabling you to list available symbols.

If GPU zones were captured, you would also have the 4 GPU option to view the GPU zones statistics.

78

Tracy Profiler The user manual

5.6.1 Instrumentation mode

Here you will find a multi-column display of captured zones, which contains: the zone name and location,
total time spent in the zone, the count of zone executions, the mean time spent in the zone per call and the number
of threads the zone has appeared in, labeled with a ¶ thread icon. You may sort the view according to the
four displayed values or by the name.

In the Timing menu, the With children selection displays inclusive measurements, that is, containing
execution time of zone’s children. The Self only selection switches the measurement to exclusive, displaying
just the time spent in the zone, subtracting the child calls. Finally, the Non-reentrant selection shows inclusive
time but counts only the first appearance of a given zone on a thread’s stack.

Clicking the left mouse button on a zone will open the individual zone statistics view in the find zone
window (section 5.7).

You can filter the displayed list of zones by matching the zone name to the expression in the Z Filter zones
entry field. Refer to section 5.5 for a more detailed description of the expression syntax.

To limit the statistics to a specific time extent, you may enable the Limit range option (chapter 5.3). The
inclusion region will be marked with a red striped pattern. Note that a zone must be entirely inside the
region to be counted. You can access more options through the Ì Limits button, which will open the time
range limits window, described in section 5.23.

5.6.2 Sampling mode

Data displayed in this mode is, in essence, very similar to the instrumentation one. Here you will find
function names, their locations in source code, and time measurements. There are, however, some significant
differences.

First and foremost, the presented information is constructed from many call stack samples, which
represent real addresses in the application’s binary code, mapped to the line numbers in the source files. This
reverse mapping may not always be possible or could be erroneous. Furthermore, due to the nature of the
sampling process, it is impossible to obtain exact time measurements. Instead, time values are guesstimated
by multiplying the number of sample counts by mean time between two different samples.

The sample statistics list symbols, not functions. These terms are similar, but not exactly the same. A
symbol always has a base function that gives it its name. In most cases, a symbol will also contain a number
of inlined functions. In some cases, the same function may be inlined more than once within the same
symbol.

The Name column contains name of the symbol in which the sampling was done. Kernel-mode symbol
samples are distinguished with the red color. Symbols containing inlined functions are listed with the number
of inlined functions in parentheses and can be expanded to show all inlined functions (some functions may
be hidden if the « Show all option is disabled due to lack of sampling data). Clicking on a function name
will open the sample entry call stacks window (see chapter 5.15)73.

By default, each inlining of a function is listed separately. If you prefer to combine the measurements for
functions that are inlined multiple times within a function, you can do so by enabling the 	 Aggregate option.
You cannot view sample entry call stacks of inlined functions when this grouping method is enabled.

If the ú Inlines option is enabled, the list will show all functions without grouping them by symbol.
In this mode, inline functions are preceded by a � symbol and their parent function name is displayed in
parentheses.

The Location column displays the corresponding source file name and line number. Depending on
the Location option selection, it can either show the function entry address or the instruction at which the
sampling was performed. The Entry mode points at the beginning of a non-inlined function or at the place
where the compiler inserted an inlined function in its parent function. The Sample mode is not useful for
non-inlined functions, as it points to one randomly selected sampling point out of many that were captured.
However, in the case of inlined functions, this random sampling point is within the inlined function body.

73Note that if inclusive times are displayed, listed functions will be partially or completely coming from mid-stack frames, preventing,
or limiting the capability to display parent call stacks.

79

Tracy Profiler The user manual

Using these options in tandem lets you look at both the inlined function code and the place where it was
inserted. If the Smart location is selected, the profiler will display the entry point position for non-inlined
functions and sample location for inlined functions. Selecting the @ Address option will instead print the
symbol address.

The location data is complemented by the originating executable image name, contained in the Image
column.

The profiler may not find some function locations due to insufficient debugging data available on the
client-side. To filter out such entries, use the 6 Hide unknown option.

The Time or Count column (depending on the 7 Show time option selection) shows number of taken
samples, either as a raw count, or in an easier to understand time format. Note that the percentage value of
time is calculated relative to the wall-clock time. The percentage value of sample counts is relative to the
total number of collected samples. You can also make the percentages of inline functions relative to the base
symbol measurements by enabling the � Base relative option.

The last column, Code size, displays the size of the symbol in the executable image of the program. Since
inlined routines are directly embedded into other functions, their symbol size will be based on the parent
symbol and displayed as ’less than’. In some cases, this data won’t be available. If the symbol code has been
retrieved74 symbol size will be prepended with the õ icon, and clicking the right mouse button on the
location column entry will open symbol view window (section 5.16.2).

Finally, the list can be filtered using the Z Filter symbols entry field, just like in the instrumentation
mode case. Additionally, you can also filter results by the originating image name of the symbol. You may
disable the display of kernel symbols with the ½ Include kernel switch. The exclusive/inclusive time counting
mode can be switched using the Timing menu (non-reentrant timing is not available in the Sampling view).
Limiting the time range is also available but is restricted to self-time. If the « Show all option is selected,
the list will include not only the call stack samples but also all other symbols collected during the profiling
process (this is enabled by default if no sampling was performed).

A simple CSV document containing the visible zones after filtering and limiting can be copied to the
clipboard with the button adjacent to the visible zones count. The document contains the following columns:

• name – Zone name

• src_file – Source file where the zone was set

• src_line – Line in the source file where the zone was set

• total_ns – Total zone time in nanoseconds

• counts – Zone count

5.6.3 GPU zones mode

This is an analog of the instrumentation mode, but for the GPU zones. Note that the available options may
be limited here.

5.7 Find zone window
The individual behavior of zones may be influenced by many factors, like CPU cache effects, access times
amortized by the disk cache, thread context switching, etc. Moreover, sometimes the execution time depends
on the internal data structures and their response to different inputs. In other words, it is hard to determine
the actual performance characteristics by looking at any single zone.

Tracy gives you the ability to display an execution time histogram of all occurrences of a zone. On this
view, you can see how the function behaves in general. You can inspect how various data inputs influence
the execution time. You can filter the data to eventually drill down to the individual zone calls to see the
environment in which they were called.

74Symbols larger than 128 KB are not captured.

80

Tracy Profiler The user manual

You start by entering a search query, which will be matched against known zone names (see section 3.4
for information on the grouping of zone names). If the search found some results, you will be presented
with a list of zones in the matched source locations drop-down. The selected zone’s graph is displayed on the
histogram drop-down, and also the matching zones are highlighted on the timeline view.

Clicking the right mouse button on the source file location will open the source file view window
(if applicable, see section 5.16). If symbol data is available Tracy will try to match the instrumented zone
name to a captured symbol. If this succeeds and there are no duplicate matches, the source file view will be
accompanied by the disassembly of the code. Since this matching is not exact, in rare cases you may get the
wrong data here. To just display the source code, press and hold the Ctrl key while clicking the right
mouse button.

An example histogram is presented in figure 21. Here you can see that the majority of zone calls (by
count) are clustered in the 300 ns group, closely followed by the 10 µs cluster. There are some outliers at the
1 and 10 ms marks, which can be ignored on most occasions, as these are single occurrences.

100 ns
1 µs 10 µs 100 µs 1 ms

10 ms� 10 ms �

Figure 21: Zone execution time histogram. Note that the extreme time labels and time range indicator (middle time value) are
displayed in a separate line.

Various data statistics about displayed data accompany the histogram, for example, the total time of the
displayed samples or the maximum number of counts in histogram bins. The following options control how the
data is presented:

• Log values – Switches between linear and logarithmic scale on the y axis of the graph, representing the
call counts75.

• Log time – Switches between linear and logarithmic scale on the x axis of the graph, representing the
time bins.

• Cumulate time – Changes how the histogram bin values are calculated. By default, the vertical bars on
the graph represent the call counts of zones that fit in the given time bin. If this option is enabled, the
bars represent the time spent in the zones. For example, on the graph presented in figure 21 the 10 µs
cluster is the dominating one, if we look at the time spent in the zone, even if the 300 ns cluster has a
greater number of call counts.

• Self time – Removes children time from the analyzed zones, which results in displaying only the time
spent in the zone itself (or in non-instrumented function calls). It cannot be selected when Running time
is active.

• Running time – Removes time when zone’s thread execution was suspended by the operating system
due to preemption by other threads, waiting for system resources, lock contention, etc. Available only
when the profiler performed context switch capture (section 3.15.3). It cannot be selected when Self
time is active.

75Or time, if the cumulate time option is enabled.

81

Tracy Profiler The user manual

• Minimum values in bin – Excludes display of bins that do not hold enough values at both ends of the time
range. Increasing this parameter will eliminate outliers, allowing us to concentrate on the interesting
part of the graph.

You can drag the left mouse button over the histogram to select a time range that you want to look at
closely. This will display the data in the histogram info section, and it will also filter zones shown in the found
zones section. This is quite useful if you actually want to look at the outliers, i.e., where did they originate
from, what the program was doing at the moment, etc76. You can reset the selection range by pressing the
right mouse button on the histogram.

The found zones section displays the individual zones grouped according to the following criteria:

• Thread – In this mode you can see which threads were executing the zone.

• User text – Splits the zones according to the custom user text (see section 3.4).

• Zone name – Groups zones by the name set on a per-call basis (see section 3.4).

• Call stacks – Zones are grouped by the originating call stack (see section 3.11). Note that two call stacks
may sometimes appear identical, even if they are not, due to an easily overlooked difference in the
source line numbers.

• Parent – Groups zones according to the parent zone. This mode relies on the zone hierarchy and not on
the call stack information.

• No grouping – Disables zone grouping. It may be useful when you want to see zones in order as they
appear.

You may sort each group according to the order in which it appeared, the call count, the total time spent in
the group, or the mean time per call. Expanding the group view will display individual occurrences of the
zone, which can be sorted by application’s time, execution time, or zone’s name. Clicking the left mouse
button on a zone will open the zone information window (section 5.13). Clicking the middle mouse
button on a zone will zoom the timeline view to the zone’s extent.

Clicking the left mouse button on the group name will highlight the group time data on the histogram
(figure 22). This function provides a quick insight into the impact of the originating thread or input data on
the zone performance. Clicking on the 2 Clear button will reset the group selection. If the grouping mode
is set to Parent option, clicking the middle mouse button on the parent zone group will switch the find
zone view to display the selected zone.

100 ns 1 µs 10 µs 100 µs 1 ms 10 ms

Figure 22: Zone execution time histogram with a group highlighted.

The call stack grouping mode has a different way of listing groups. Here only one group is displayed at
any time due to the need to display the call stack frames. You can switch between call stack groups by using

76More often than not you will find out, that the application was just starting, or access to a cold file was required and there’s not
much you can do to optimize that particular case.

82

Tracy Profiler The user manual

the � and � buttons. You can select the group by clicking on the ✓ Select button. You can open the call stack
window (section 5.14) by pressing the � Call stack button.

Tracy displays a variety of statistical values regarding the selected function: mean (average value), median
(middle value), mode (most common value, quantized using histogram bins), and σ (standard deviation).
The mean and median zone times are also displayed on the histogram as red (mean) and blue (median)
vertical bars. Additional bars will indicate the mean group time (orange) and median group time (green).
You can disable the drawing of either set of markers by clicking on the check-box next to the color legend.

Hovering the W mouse cursor over a zone on the timeline, which is currently selected in the find zone
window, will display a pulsing vertical bar on the histogram, highlighting the bin to which the hovered zone
has been assigned. In addition, it will also highlight zone entry on the zone list.

You may press Ctrl + F to open or focus the find zone window and set the keyboard input on the
search box.

Keyboard shortcut

When using the execution times histogram, you must know the hardware peculiarities. Read section 2.2.2
for more detail.

Caveats

5.7.1 Timeline interaction

The profiler will highlight matching zones on the timeline display when the zone statistics are displayed in
the find zone menu. Highlight colors match the histogram display. A bright blue highlight indicates that a
zone is in the optional selection range, while the yellow highlight is used for the rest of the zones.

5.7.2 Frame time graph interaction

The frame time graph (section 5.2.2) behavior is altered when a zone is displayed in the find zone window
and the Show zone time in frames option is selected. An accumulated zone execution time is shown instead of
coloring the frame bars according to the frame time targets.

Each bar is drawn in gray color, with the white part accounting for the zone time. If the execution time
is greater than the frame time (this is possible if more than one thread was executing the same zone), the
overflow will be displayed using red color.

Enabling Self time option affects the displayed values, but Running time does not.

The profiler might not calculate the displayed data correctly, and it may not include some zones in the
reported times.

Caveats

5.7.3 Limiting zone time range

If the Limit range option is selected, the profiler will include only the zones within the specified time range
(chapter 5.3) in the data. The inclusion region will be marked with a green striped pattern. Note that a zone
must be entirely inside the region to be counted. You can access more options through the Ì Limits button,
which will open the time range limits window, described in section 5.23.

83

Tracy Profiler The user manual

5.7.4 Zone samples

If sampling data has been captured (see section 3.15.5), an additional expandable 5 Samples section will
be displayed. This section contains only the sample data attributed to the displayed zone. Looking at this
list may give you additional insight into what is happening within the zone. Refer to section 5.6.2 for more
information about this view.

You can further narrow down the list of samples by selecting a time range on the histogram or by choosing
a group in the Found zones section. However, do note that the random nature of sampling makes it highly
unlikely that short-lived zones (i.e., left part of the histogram) will have any sample data collected.

5.8 Compare traces window
Comparing the performance impact of the optimization work is not an easy thing to do. Benchmarking is
often inconclusive, if even possible, in the case of interactive applications, where the benchmarked function
might not have a visible impact on frame render time. Furthermore, doing isolated micro-benchmarks loses
the application’s execution environment, in which many different parts compete for limited system resources.

Tracy solves this problem by providing a compare traces functionality, very similar to the find zone
window, described in section 5.7. You can compare traces either by zone or frame timing data.

You would begin your work by recording a reference trace that represents the usual behavior of the
program. Then, after the optimization of the code is completed, you record another trace, doing roughly
what you did for the reference one. Finally, having the optimized trace open, you select the i Open second
trace option in the compare traces window and load the reference trace.

Now things start to get familiar. You search for a zone, similarly like in the find zone window, choose the
one you want in the matched source locations drop-down, and then you look at the histogram77. This time there
are two overlaid graphs, one representing the current trace and the second one representing the external
(reference) trace (figure 23). You can easily see how the performance characteristics of the zone were affected
by your modifications.

100 ns 1 µs 10 µs 100 µs 1 ms 10 ms

Figure 23: Compare traces histogram.

Note that the traces are color and symbol-coded. The current trace is marked by a yellow � symbol, and
the external one is marked by a red v symbol.

When searching for source locations it’s not uncommon to match more than one zone (for example a
search for Draw may result in DrawCircle and DrawRectangle matches). Typically you wouldn’t want to
compare execution profiles of two unrelated functions, which is prevented by the link selection option, which
ensures that when you choose a source location in one trace, the corresponding one is also selected in the
second trace. Be aware that this may still result in a mismatch, for example, if you have overloaded functions.
In such a case, you will need to select the appropriate function in the other trace manually.

It may be difficult, if not impossible, to perform identical runs of a program. This means that the number
of collected zones may differ in both traces, influencing the displayed results. To fix this problem, enable the
Normalize values option, which will adjust the displayed results as if both traces had the same number of
recorded zones.

77When comparing frame times you are presented with a list of available frame sets, without the search box.

84

Tracy Profiler The user manual

Set custom trace descriptions (see section 5.12) to easily differentiate the two loaded traces. If no trace
description is set, the name of the profiled program will be displayed along with the capture time.

Trace descriptions

5.8.1 Source files diff

To see what changes were made in the source code between the two compared traces, select the Source diff
compare mode. This will display a list of deleted, added, and changed files. By default, the difference is
calculated from the older trace to the newer one. You can reverse this by clicking on the Switch button.

Please note that changes will be registered only if the file has the same name and location in both traces.
Tracy does not resolve file renames or moves.

5.9 Memory window
You can view the data gathered by profiling memory usage (section 3.8) in the memory window. If the
profiler tracked more than one memory pool during the capture, you would be able to select which collection
you want to look at, using the � Memory pool selection box.

The top row contains statistics, such as total allocations count, number of active allocations, current memory
usage and process memory span78.

The lists of captured memory allocations are displayed in a common multi-column format through the
profiler. The first column specifies the memory address of an allocation or an address and an offset if the
address is not at the start of the allocation. Clicking the left mouse button on an address will open the
memory allocation information window79 (see section 5.11). Clicking the middle mouse button on an
address will zoom the timeline view to memory allocation’s range. The next column contains the allocation
size.

The allocation’s timing data is contained in two columns: appeared at and duration. Clicking the left
mouse button on the first one will center the timeline view at the beginning of allocation, and likewise,
clicking on the second one will center the timeline view at the end of allocation. Note that allocations that
have not yet been freed will have their duration displayed in green color.

The memory event location in the code is displayed in the last four columns. The thread column contains
the thread where the allocation was made and freed (if applicable), or an alloc / free pair of the threads if it
was allocated in one thread and freed in another. The zone alloc contains the zone in which the allocation was
performed80, or - if there was no active zone in the given thread at the time of allocation. Clicking the left
mouse button on the zone name will open the zone information window (section 5.13). Similarly, the zone
free column displays the zone which freed the allocation, which may be colored yellow, if it is the same zone
that did the allocation. Alternatively, if the zone has not yet been freed, a green active text is displayed. The
last column contains the alloc and free call stack buttons, or their placeholders, if no call stack is available
(see section 3.11 for more information). Clicking on either of the buttons will open the call stack window
(section 5.14). Note that the call stack buttons that match the information window will be highlighted.

The memory window is split into the following sections:

5.9.1 Allocations

The @ Allocations pane allows you to search for the specified address usage during the whole lifetime of the
program. All recorded memory allocations that match the query will be displayed on a list.

78Memory span describes the address space consumed by the program. It is calculated as a difference between the maximum and
minimum observed in-use memory address.

79While the allocation information window is opened, the address will be highlighted on the list.
80The actual allocation is typically a couple functions deeper in the call stack.

85

Tracy Profiler The user manual

5.9.2 Active allocations

The È Active allocations pane displays a list of currently active memory allocations and their total memory
usage. Here, you can see where your program allocated memory it is now using. If the application has
already exited, this becomes a list of leaked memory.

5.9.3 Memory map

On the ' Memory map pane, you can see the graphical representation of your program’s address space.
Active allocations are displayed as green lines, while the freed memory is red. The brightness of the color
indicates how much time has passed since the last memory event at the given location – the most recent
events are the most vibrant.

This view may help assess the general memory behavior of the application or in debugging the problems
resulting from address space fragmentation.

5.9.4 Bottom-up call stack tree

The � Bottom-up call stack tree pane is only available, if the memory events were collecting the call stack data
(section 3.11). In this view, you are presented with a tree of memory allocations, starting at the call stack
entry point and going up to the allocation’s pinpointed place. Each tree level is sorted according to the
number of bytes allocated in the given branch.

Each tree node consists of the function name, the source file location, and the memory allocation data.
The memory allocation data is either yellow inclusive events count (allocations performed by children) or the
cyan exclusive events count (allocations that took place in the node)81. Two values are counted: total memory
size and number of allocations.

The 	 Group by function name option controls how tree nodes are grouped. If it is disabled, the grouping
is performed at a machine instruction-level granularity. This may result in a very verbose output, but the
displayed source locations are precise. To make the tree more readable, you may opt to perform grouping at
the function name level, which will result in less valid source file locations, as multiple entries are collapsed
into one.

Enabling the Only active allocations option will limit the call stack tree only to display active allocations.
Enabling Only inactive allocations option will have similar effect for inactive allocations. Both are mutually
exclusive, enabling one disables the other. Displaing inactive allocations, when combined with Limit range,
will show short lived allocatios highlighting potentially unwanted behavior in the code.

Clicking the right mouse button on the function name will open the allocations list window (see
section 5.10), which lists all the allocations included at the current call stack tree level. Likewise, clicking the

right mouse button on the source file location will open the source file view window (if applicable, see
section 5.16).

Some function names may be too long to correctly display, with the events count data at the end. In such
cases, you may press the control button, which will display the events count tooltip.

5.9.5 Top-down call stack tree

This pane is identical in functionality to the Bottom-up call stack tree, but the call stack order is reversed when
the tree is built. This means that the tree starts at the memory allocation functions and goes down to the call
stack entry point.

5.9.6 Looking back at the memory history

By default, the memory window displays the memory data at the current point of program execution. It is,
however, possible to view the historical data by enabling the Ì Limits option. The profiler will consider only

81Due to the way call stacks work, there is no possibility for an entry to have both inclusive and exclusive counts, in an adequately
instrumented program.

86

Tracy Profiler The user manual

the memory events within the time range in the displayed results. See section 5.23 for more information.

5.10 Allocations list window
This window displays the list of allocations included at the selected call stack tree level (see section 5.9 and
5.9.4).

5.11 Memory allocation information window
The information about the selected memory allocation is displayed in this window. It lists the allocation’s
address and size, along with the time, thread, and zone data of the allocation and free events. Clicking the
C Zoom to allocation button will zoom the timeline view to the allocation’s extent.

5.12 Trace information window
This window contains information about the current trace: captured program name, time of the capture,
profiler version which performed the capture, and a custom trace description, which you can fill in.

Open the Trace statistics section to see information about the trace, such as achieved timer resolution,
number of captured zones, lock events, plot data points, memory allocations, etc.

There’s also a section containing the selected frame set timing statistics and histogram82. As a convenience,
you can switch the active frame set here and limit the displayed frame statistics to the frame range visible on
the screen.

If CPU topology data is available (see section 3.15.4), you will be able to view the package, core, and thread
hierarchy.

The Source location substitutions section allows adapting the source file paths, as captured by the profiler, to
the actual on-disk locations83. You can create a new substitution by clicking the Add new substitution button.
This will add a new entry, with input fields for ECMAScript-conforming regular expression pattern and its
corresponding replacement string. You can quickly test the outcome of substitutions in the example source
location input field, which will be transformed and displayed below, as result.

Let’s say we have an Unix-based operating system with program sources in /home/user/program/src/
directory. We have also performed a capture of an application running under Windows, with sources
in C:\Users\user\Desktop\program\src directory. The source locations don’t match, and the profiler
can’t access the source files on our disk. We can fix that by adding two substitution patterns:

• ˆC:\\Users\\user\\Desktop → /home/user

• \\ → /

Quick example

By default, all source file modification times need to be older than the cature time of the trace. This can
be disabled using the Enforce source file modification time older than trace capture time check box, i.e. when the
source files are under source control and the file modification time is not relevant.

In this window, you can view the information about the machine on which the profiled application was
running. This includes the operating system, used compiler, CPU name, total available RAM, etc. In addition,
if application information was provided (see section 3.7.1), it will also be displayed here.

If an application should crash during profiling (section 2.5), the profiler will display the crash information
in this window. It provides you information about the thread that has crashed, the crash reason, and the
crash call stack (section 5.14).

82See section 5.7 for a description of the histogram. Note that there are subtle differences in the available functionality.
83This does not affect source files cached during the profiling run.

87

Tracy Profiler The user manual

5.13 Zone information window
The zone information window displays detailed information about a single zone. There can be only one zone
information window open at any time. While the window is open, the profiler will highlight the zone on the
timeline view with a green outline. The following data is presented:

• Basic source location information: function name, source file location, and the thread name.

• Timing information.

• If the profiler performed context switch capture (section 3.15.3) and a thread was suspended during
zone execution, a list of wait regions will be displayed, with complete information about the timing,
CPU migrations, and wait reasons. If CPU topology data is available (section 3.15.4), the profiler will
mark zone migrations across cores with ’C’ and migrations across packages – with ’P.’ In some cases,
context switch data might be incomplete84, in which case a warning message will be displayed.

• Memory events list, both summarized and a list of individual allocation/free events (see section 5.9 for
more information on the memory events list).

• List of messages that the profiler logged in the zone’s scope. If the exclude children option is disabled,
messages emitted in child zones will also be included.

• Zone trace, taking into account the zone tree and call stack information (section 3.11), trying to
reconstruct a combined zone + call stack trace85. Captured zones are displayed as standard text, while
not instrumented functions are dimmed. Hovering the W mouse pointer over a zone will highlight it on
the timeline view with a red outline. Clicking the left mouse button on a zone will switch the zone
info window to that zone. Clicking the middle mouse button on a zone will zoom the timeline view
to the zone’s extent. Clicking the right mouse button on a source file location will open the source
file view window (if applicable, see section 5.16).

• Child zones list, showing how the current zone’s execution time was used. Zones on this list can be
grouped according to their source location. Each group can be expanded to show individual entries.
All the controls from the zone trace are also available here.

• Time distribution in child zones, which expands the information provided in the child zones list by
processing all zone children (including multiple levels of grandchildren). This results in a statistical list
of zones that were really doing the work in the current zone’s time span. If a group of zones is selected
on this list, the find zone window (section 5.7) will open, with a time range limited to show only the
children of the current zone.

The zone information window has the following controls available:

• C Zoom to zone – Zooms the timeline view to the zone’s extent.

• (Go to parent – Switches the zone information window to display current zone’s parent zone (if
available).

• ¡ Statistics – Displays the zone general performance characteristics in the find zone window (section 5.7).

• � Call stack – Views the current zone’s call stack in the call stack window (section 5.14). The button will
be highlighted if the call stack window shows the zone’s call stack. Only available if zone had captured
call stack data (section 3.11).

84For example, when capture is ongoing and context switch information has not yet been received.
85Reconstruction is only possible if all zones have complete call stack capture data available. In the case where that’s not available, an

unknown frames entry will be present.

88

Tracy Profiler The user manual

• A Source – Display source file view window with the zone source code (only available if applicable, see
section 5.16). The button will be highlighted if the source file is displayed (but the focused source line
might be different).

• # Go back – Returns to the previously viewed zone. The viewing history is lost when the zone
information window is closed or when the type of displayed zone changes (from CPU to GPU or vice
versa).

Clicking on the ¿ Copy to clipboard buttons will copy the appropriate data to the clipboard.

5.14 Call stack window
This window shows the frames contained in the selected call stack. Each frame is described by a function
name, source file location, and originating image86 name. Function frames originating from the kernel are
marked with a red color. Clicking the left mouse button on either the function name of source file location
will copy the name to the clipboard. Clicking the right mouse button on the source file location will open
the source file view window (if applicable, see section 5.16).

A single stack frame may have multiple function call places associated with it. This happens in the case
of inlined function calls. Such entries will be displayed in the call stack window, with inline in place of frame
number87.

Stack frame location may be displayed in the following number of ways, depending on the @ Frame
location option selection:

• Source code – displays source file and line number associated with the frame.

• Entry point – source code at the beginning of the function containing selected frame, or function call
place in case of inline frames.

• Return address – shows return address, which you may use to pinpoint the exact instruction in the
disassembly.

• Symbol address – displays begin address of the function containing the frame address.

In some cases, it may not be possible to decode stack frame addresses correctly. Such frames will
be presented with a dimmed ’[ntdll.dll]’ name of the image containing the frame address, or simply
’[unknown]’ if the profiler cannot retrieve even this information. Additionally, ’[kernel]’ is used to indicate
unknown stack frames within the operating system’s internal routines.

If the displayed call stack is a sampled call stack (chapter 3.15.5), an additional button will be available,
� Global entry statistics. Clicking it will open the sample entry call stacks window (chapter 5.15) for the
current call stack.

Clicking on the ¿ Copy to clipboard button will copy call stack to the clipboard.

5.14.1 Reading call stacks

You need to take special care when reading call stacks. Contrary to their name, call stacks do not show
function call stacks, but rather function return stacks. This might not be very clear at first, but this is how
programs do work. Consider the following source code:

int main ()
{

auto app = std :: make_unique < Application >();
app ->Run ();
app. reset ();

}

86Executable images are called modules by Microsoft.
87Or ’�’ icon in case of call stack tooltips.

89

Tracy Profiler The user manual

Let’s say you are looking at the call stack of some function called within Application::Run. This is the
result you might get:

0. ...
1. ...
2. Application :: Run
3. std :: unique_ptr < Application >:: reset
4. main

At the first glance it may look like unique_ptr::reset was the call site of the Application::Run, which
would make no sense, but this is not the case here. When you remember these are the function return points, it
becomes much more clear what is happening. As an optimization, Application::Run is returning directly
into unique_ptr::reset, skipping the return to main and an unnecessary reset function call.

Moreover, the linker may determine in some rare cases that any two functions in your program are
identical88. As a result, only one copy of the binary code will be provided in the executable for both functions
to share. While this optimization produces more compact programs, it also means that there’s no way to
distinguish the two functions apart in the resulting machine code. In effect, some call stacks may look
nonsensical until you perform a small investigation.

5.15 Sample entry call stacks window
This window displays statistical information about the selected symbol. All sampled call stacks (chapter 3.15.5)
leading to the symbol are counted and displayed in descending order. You can choose the displayed call
stack using the entry call stack controls, which also display time spent in the selected call stack. Alternatively,
sample counts may be shown by disabling the 7 Show time option, which is described in more detail in
chapter 5.6.2.

The layout of frame list and the @ Frame location option selection is similar to the call stack window,
described in chapter 5.14.

5.16 Source view window
This window can operate in one of the two modes. The first one is quite simple, just showing the source code
associated with a source file. The second one, which is used if symbol context is available, is considerably
more feature-rich.

5.16.1 Source file view

In source view mode, you can view the source code of the profiled application to take a quick glance at the
context of the function behavior you are analyzing. The profiler will highlight the selected line (for example,
a location of a profiling zone) both in the source code listing and on the scroll bar. The contents of the file
displayed in the source view can be copied to the clipboard using the button adjacent to the file name.

To display source files, Tracy has to gain access to them somehow. Since having the source code is
not needed for the profiled application to run, this can be problematic in some cases. The source files
search order is as follows:

1. Discovery is performed on the server side. Found files are cached in the trace. This is appropriate
when the client and the server run on the same machine or if you’re deploying your application to the target
device and then run the profiler on the same workstation.

Important

88For example, if all they do is zero-initialize a region of memory. As some constructors would do.

90

Tracy Profiler The user manual

2. If not found, discovery is performed on the client-side. Found files are cached in the trace. This is
appropriate when you are developing your code on another machine, for example, you may be working on a
dev-board through an SSH connection.

3. If not found, Tracy will try to open source files that you might have on your disk later on. The
profiler won’t store these files in the trace. You may provide custom file path substitution rules to
redirect this search to the right place (see section 5.12).

Note that the discovery process not only looks for a file on the disk but it also checks its time stamp
and validates it against the executable image timestamp or, if it’s not available, the time of the performed
capture. This will prevent the use of newer source files (i.e., were changed) than the program you’re
profiling.

Nevertheless, the displayed source files might still not reflect the code that you profiled! It is up
to you to verify that you don’t have a modified version of the code with regards to the trace.

5.16.2 Symbol view

A much more capable symbol view mode is available if the inspected source location has an associated
symbol context (i.e., if it comes from a call stack capture, from call stack sampling, etc.). A symbol is a unit
of machine code, basically a callable function. It may be generated using multiple source files and may
consist of numerous inlined functions. A list of all captured symbols is available in the statistics window, as
described in chapter 5.6.2.

The header of symbol view window contains a name of the selected « symbol, a list of ú functions that
contribute to the symbol, and information such as count of probed 5 Samples.

Additionally, you may use the Mode selector to decide what content should be displayed in the panels
below:

• Source – only the source code will be displayed.

• Assembly – only the machine code disassembly will be shown.

• Both – selects combined mode, in which source code and disassembly will be listed next to each other.

Some modes may be unavailable in some circumstances (missing or outdated source files, lack of machine
code). In case the Assembly mode is unavailable, this might be due to the capstone disassembly engine
failing to disassemble the machine instructions. See section 2.3 for more information.

5.16.2.1 Source mode

This is pretty much the source file view window, but with the ability to select one of the source files that
the compiler used to build the symbol. Additionally, each source file line that produced machine code in
the symbol will show a count of associated assembly instructions, displayed with an ’@’ prefix, and will be
marked with grey color on the scroll bar. Due to how optimizing compilers work, some lines may seemingly
not produce any machine code, for example, because iterating a loop counter index might have been reduced
to advancing a data pointer. Some other lines may have a disproportionate amount of associated instructions,
e.g., when the compiler applied a loop unrolling optimization. This varies from case to case and from
compiler to compiler.

The Propagate inlines option, available when sample data is present, will enable propagation of the
instruction costs down the local call stack. For example, suppose a base function in the symbol issues a call
to an inlined function (which may not be readily visible due to being contained in another source file). In
that case, any cost attributed to the inlined function will be visible in the base function. Because the cost
information is added to all the entries in the local call stacks, it is possible to see seemingly nonsense total
cost values when this feature is enabled. To quickly toggle this on or off, you may also press the X key.

91

Tracy Profiler The user manual

5.16.2.2 Assembly mode

This mode shows the disassembly of the symbol machine code. If only one inline function is selected through
the ú Function selector, assembly instructions outside of this function will be dimmed out. Each assembly
instruction is displayed listed with its location in the program memory during execution. If the Ý Relative
address option is selected, the profiler will print an offset from the symbol beginning instead. Clicking the

left mouse button on the address/offset will switch to counting line numbers, using the selected one as
the origin (i.e., zero value). Line numbers are displayed inside [] brackets. This display mode can be useful
to correlate lines with the output of external tools, such as llvm-mca. To disable line numbering click the

right mouse button on a line number.
If the K Source locations option is selected, each line of the assembly code will also contain information

about the originating source file name and line number. Each file is assigned its own color for easier
differentiation between different source files. Clicking the left mouse button on a displayed source location
will switch the source file, if necessary, and focus the source view on the selected line. Additionally, hovering
the W mouse cursor over the presented location will show a tooltip containing the name of a function the
instruction originates from, along with an appropriate source code fragment and the local call stack if it
exists.

In some cases, it may be challenging to understand what is being displayed in the disassembly. For
example, calling the std::lower_bound function may generate multiple levels of inlined functions:
first, we enter the search algorithm, then the comparison functions, which in turn may be lambdas that
call even more external code, and so on. In such an event, you will most likely see that some external
code is taking a long time to execute, and you will be none the wiser on improving things.

The local call stack for an assembly instruction represents all the inline function calls within the
symbol (hence the ’local’ part), which were made to reach the instruction. Deeper inspection of the
local call stack, including navigation to the source call site of each participating inline function, can be
performed through the context menu accessible by pressing the right mouse button on the source
location.

Local call stack

Selecting theÔRaw code option will enable the display of raw machine code bytes for each line. Individual
bytes are displayed with interwoven colors to make reading easier.

If any instruction would jump to a predefined address, the symbolic name of the jump target will be
additionally displayed. If the destination location is within the currently displayed symbol, an -> arrow will
be prepended to the name. Hovering the W mouse pointer over such symbol name will highlight the target
location. Clicking on it with the left mouse button will focus the view on the destination instruction or
switch view to the destination symbol.

Enabling the ã Jumps option will show jumps within the symbol code as a series of arrows from the
jump source to the jump target, and hovering the W mouse pointer over a jump arrow will display a jump
information tooltip. It will also draw the jump range on the scroll bar as a green line. A horizontal green line
will mark the jump target location. Clicking on a jump arrow with the left mouse button will focus the
view on the target location. The right mouse button opens a jump context menu, which allows inspection
and navigation to the target location or any of the source locations. Jumps going out of the symbol89 will be
indicated by a smaller arrow pointing away from the code.

Portions of the executable used to show the symbol view are stored within the captured profile and don’t
rely on the available local disk files.

Exploring microarchitecture If the listed assembly code targets x86 or x64 instruction set architectures,
hovering W mouse pointer over an instruction will display a tooltip with microarchitectural data, based on

89This includes jumps, procedure calls, and returns. For example, in x86 assembly the respective operand names can be: jmp, call,
ret.

92

Tracy Profiler The user manual

measurements made in [AR19]. This information is retrieved from instruction cycle tables and does not represent the
true behavior of the profiled code. Reading the cited article will give you a detailed definition of the presented
data, but here’s a quick (and inaccurate) explanation:

• Throughput – How many cycles are required to execute an instruction in a stream of the same independent
instructions. For example, if the CPU may execute two independent add instructions simultaneously
on different execution units, then the throughput (cycle cost per instruction) is 0.5.

• Latency – How many cycles it takes for an instruction to finish executing. This is reported as a min-max
range, as some output values may be available earlier than the rest.

• µops – How many microcode operations have to be dispatched for an instruction to retire. For example,
adding a value from memory to a register may consist of two microinstructions: first load the value
from memory, then add it to the register.

• Ports – Which ports (execution units) are required for dispatch of microinstructions. For example,
2*p0+1*p015 would mean that out of the three microinstructions implementing the assembly instruction,
two can only be executed on port 0, and one microinstruction can be executed on ports 0, 1, or 5. The
number of available ports and their capabilities varies between different processors architectures. Refer
to https://wikichip.org/ for more information.

Selection of the CPU microarchitecture can be performed using the > µarch drop-down. Each architecture
is accompanied by the name of an example CPU implementing it. If the current selection matches the
microarchitecture on which the profiled application was running, the > icon will be green90. Otherwise, it
will be red91. Clicking on the > icon when it is red will reset the selected microarchitecture to the one the
profiled application was running on.

Clicking on the K Save button lets you write the disassembly listing to a file. You can then manually
extract some critical loop kernel and pass it to a CPU simulator, such as LLVM Machine Code Analyzer
(llvm-mca)92, to see how the code is executed and if there are any pipeline bubbles. Consult the llvm-mca
documentation for more details. Alternatively, you might click the right mouse button on a jump arrow
and save only the instructions within the jump range, using the K Save jump range button.

Instruction dependencies Assembly instructions may read values stored in registers and may also
write values to registers. As a result, a dependency between two instructions is created when one produces
some result, which the other then consumes. Combining this dependency graph with information about
instruction latencies may give a deep understanding of the bottlenecks in code performance.

Clicking the left mouse button on any assembly instruction will mark it as a target for resolving
register dependencies between instructions. To cancel this selection, click on any assembly instruction with

right mouse button.
The selected instruction will be highlighted in white, while its dependencies will be highlighted in red.

Additionally, a list of dependent registers will be listed next to each instruction which reads or writes to
them, with the following color code:

• Green – Register value is read (is a dependency after target instruction).

• Red – A value is written to a register (is a dependency before target instruction).

• Yellow – Register is read and then modified.

• Grey – Value in a register is either discarded (overwritten) or was already consumed by an earlier
instruction (i.e., it is readily available93). The profiler will not follow the dependency chain further.

90Comparing sampled instruction counts with microarchitectural details only makes sense when this selection is properly matched.
91You can use this to gain insight into how the code may behave on other processors.
92https://llvm.org/docs/CommandGuide/llvm-mca.html
93This is actually a bit of simplification. Run a pipeline simulator, e.g., llvm-mca for a better analysis.

93

https://wikichip.org/
https://llvm.org/docs/CommandGuide/llvm-mca.html

Tracy Profiler The user manual

Search for dependencies follows program control flow, so there may be multiple producers and consumers
for any single register. While the after and before guidelines mentioned above hold in the general case,
things may be more complicated when there’s a large number of conditional jumps in the code. Note that
dependencies further away than 64 instructions are not displayed.

For more straightforward navigation, dependencies are also marked on the left side of the scroll bar,
following the green, red and yellow conventions. The selected instruction is marked in blue.

5.16.2.3 Combined mode

In this mode, the source and assembly panes will be displayed together, providing the best way to gain
insight into the code. Hovering the W mouse pointer over the source file line or the location of the assembly
line will highlight the corresponding lines in the second pane (both in the listing and on the scroll bar).
Clicking the left mouse button on a line will select it and focus on it in both panes. Note that while an
assembly line always has only one corresponding source line, a single source line may have many associated
assembly lines, not necessarily next to each other. Clicking on the same source line more than once will focus
the assembly view on the next associated instructions block.

5.16.2.4 Instruction pointer cost statistics

If automated call stack sampling (see chapter 3.15.5) was performed, additional profiling information will
be available. The first column of source and assembly views will contain percentage counts of collected
instruction pointer samples for each displayed line, both in numerical and graphical bar form. You can use
this information to determine which function line takes the most time. The displayed percentage values are
heat map color-coded, with the lowest values mapped to dark red and the highest to bright yellow. The color
code will appear next to the percentage value and on the scroll bar so that you can identify ’hot’ places in the
code at a glance.

By default, samples are displayed only within the selected symbol, in isolation. In some cases, you
may, however, want to include samples from functions that the selected symbol called. To do so, enable
the ÷ Child calls option, which you may also temporarily toggle by holding the Z key. You can also click
the � drop down control to display a child call distribution list, which shows each known function94 that the
symbol called. Make sure to familiarize yourself with section 5.14.1 to be able to read the results correctly.

Instruction timings can be viewed as a group. To begin constructing such a group, click the left mouse
button on the percentage value. Additional instructions can be added using the Ctrl key while holding
the key will allow selection of a range. To cancel the selection, click the right mouse button on a
percentage value. Group statistics can be seen at the bottom of the pane.

Clicking the middle mouse button on the percentage value of an assembly instruction will display
entry call stacks of the selected sample (see chapter 5.15). This functionality is only available for instructions
that have collected sampling data and only in the assembly view, as the source code may be inlined multiple
times, which would result in ambiguous location data. Note that number of entry call stacks is displayed in a
tooltip for a quick reference.

The sample data source is controlled by the ú Function control in the window header. If this option
should be disabled, sample data will represent the whole symbol. If it is enabled, then the sample data will
only include the selected function. You can change the currently selected function by opening the drop-down
box, which includes time statistics. The time percentage values of each contributing function are calculated
relative to the total number of samples collected within the symbol.

Selecting the Limit range option will restrict counted samples to the time extent shared with the statistics
view (displayed as a red-striped region on the timeline). See section 5.3 for more detail.

94You should remember that these are results of random sampling. Some function calls may be missing here.

94

Tracy Profiler The user manual

Be aware that the data is not entirely accurate, as it results from a random sampling of program
execution. Furthermore, undocumented implementation details of an out-of-order CPU architecture
will highly impact the measurement. Read chapter 2.2.2 to see the tip of an iceberg.

Important

5.16.2.5 Inspecting hardware samples

As described in chapter 3.15.6, on some platforms, Tracy can capture the internal statistics counted by the
CPU hardware. If this data has been collected, the Ë Cost selection list will be available. It allows changing
what is taken into consideration for display by the cost statistics. You can select the following options:

• Sample count – this selects the instruction pointer statistics, collected by call stack sampling performed by
the operating system. This is the default data shown when hardware samples have not been captured.

• Cycles – an option very similar to the sample count, but the data is collected directly by the CPU hardware
counters. This may make the results more reliable.

• Branch impact – indicates places where many branch instructions are issued, and at the same time,
incorrectly predicted. Calculated as

√
#branch instructions ∗ #branch misses. This is more useful than

the raw branch miss rate, as it considers the number of events taking place.

• Cache impact – similar to branch impact, but it shows cache miss data instead. These values are calculated
as

√
#cache references ∗ #cache misses and will highlight places with lots of cache accesses that also

miss.

• The rest of the available selections just show raw values gathered from the hardware counters. These
are: Retirements, Branches taken, Branch miss, Cache access and Cache miss.

If the � HW (hardware samples) switch is enabled, the profiler will supplement the cost percentages
column with three additional columns. The first added column displays the instructions per cycle (IPC)
value. The two remaining columns show branch and cache data, as described below. The displayed values
are color-coded, with green indicating good execution performance and red indicating that the code stalled
the CPU pipeline for one reason or another.

If the � Impact switch is enabled, the branch and cache columns will show how much impact the branch
mispredictions and cache misses have. The way these statistics are calculated is described in the list above. In
the other case, the columns will show the raw branch and cache miss rate ratios, isolated to their respective
source and assembly lines and not relative to the whole symbol.

The percentage values when � Impact option is not selected will not take into account the relative
count of events. For example, you may see a 100% cache miss rate when some instruction missed 10
out of 10 cache accesses. While not ideal, this is not as important as a seemingly better 50% cache miss
rate instruction, which actually has missed 1000 out of 2000 accesses. Therefore, you should always
cross-check the presented information with the respective event counts. To help with this, Tracy will
dim statistically unimportant values.

Isolated values

95

Tracy Profiler The user manual

5.17 Wait stacks window

If wait stack information has been captured (chapter 3.15.5.1), here you will be able to inspect the collected
data. There are three different views available:

• O List – shows all unique wait stacks, sorted by the number of times they were observed.

• � Bottom-up tree – displays wait stacks in the form of a collapsible tree, which starts at the bottom of the
call stack.

• � Top-down tree – displays wait stacks in the form of a collapsible tree, which starts at the top of the call
stack.

Displayed data may be narrowed down to a specific time range or to include only selected threads.

5.18 Lock information window

This window presents information and statistics about a lock. The lock events count represents the total
number collected of wait, obtain and release events. The announce, termination, and lock lifetime measure
the time from the lockable construction until destruction.

5.19 Frame image playback window

You may view a live replay of the profiled application screen captures (see section 3.3.3) using this window.
Playback is controlled by the � Play and r Pause buttons and the Frame image slider can be used to scrub to
the desired timestamp. Alternatively you may use the � and � buttons to change single frame back or forward.

If the Sync timeline option is selected, the profiler will focus the timeline view on the frame corresponding
to the currently displayed screenshot. The Zoom 2× option enlarges the image for easier viewing.

The following parameters also accompany each displayed frame image: timestamp, showing at which
time the image was captured, frame, displaying the numerical value of the corresponding frame, and ratio,
telling how well the in-memory loss-less compression was able to reduce the image data size.

5.20 CPU data window

Statistical data about all processes running on the system during the capture is available in this window if
the profiler performed context switch capture (section 3.15.3).

Each running program has an assigned process identifier (PID), which is displayed in the first column.
The profiler will also display a list of thread identifiers (TIDs) if a program entry is expanded.

The running time column shows how much processor time was used by a process or thread. The percentage
may be over 100%, as it is scaled to trace length, and multiple threads belonging to a single program may be
executing simultaneously. The running regions column displays how many times a given entry was in the
running state, and the CPU migrations shows how many times an entry was moved from one CPU core to
another when the system scheduler suspended an entry.

The profiled program is highlighted using green color. Furthermore, the yellow highlight indicates
threads known to the profiler (that is, which sent events due to instrumentation).

5.21 Annotation settings window

In this window, you may modify how a timeline annotation (section 5.3.1) is presented by setting its text
description or selecting region highlight color. If the note is no longer needed, you may also remove it here.

96

Tracy Profiler The user manual

5.22 Annotation list window
This window lists all annotations marked on the timeline. Each annotation is presented, as shown on figure 24.
From left to right the elements are:

• � Edit – Opens the annotation settings window (section 5.21).

• C Zoom – Zooms timeline to the annotation extent.

• � Remove – Removes the annotation. You must press the Ctrl key to enable this button.

• Colored box – Color of the annotation.

• Text description of the annotation.

� C � Text description

Figure 24: Annotation list entry

A new view-sized annotation can be added in this window by pressing the + Add annotation button. This
effectively saves your current viewport for further reference.

5.23 Time range limits
This window displays information about time range limits (section 5.3) for find zone (section 5.7), statistics
(section 5.6), memory (section 5.9) and wait stacks (section 5.17) results. Each limit can be enabled or disabled
and adjusted through the following options:

• Limit to view – Set the time range limit to current view.

• C Focus – Set the timeline view to the time range extent.

• 4 Set from annotation – Allows using the annotation region for limiting purposes.

• � Copy from statistics – Copies the statistics time range limit.

• Û Copy from find zone – Copies the find zone time range limit.

• Ý Copy from wait stacks – Copies the wait stacks time range limit.

• : Copy from memory – Copies the memory time range limit.

Note that ranges displayed in the window have color hints that match the color of the striped regions on
the timeline.

6 Exporting zone statistics to CSV
You can use a command-line utility in the csvexport directory to export primary zone statistics from a saved
trace into a CSV format. The tool requires a single .tracy file as an argument and prints the result into the
standard output (stdout), from where you can redirect it into a file or use it as an input into another tool. By
default, the utility will list all zones with the following columns:

• name – Zone name

• src_file – Source file where the zone was set

• src_line – Line in the source file where the zone was set

97

Tracy Profiler The user manual

• total_ns – Total zone time in nanoseconds

• total_perc – Total zone time as a percentage of the program’s execution time

• counts – Zone count

• mean_ns – Mean zone time (equivalent to MPTC in the profiler GUI) in nanoseconds

• min_ns – Minimum zone time in nanoseconds

• max_ns – Maximum zone time in nanoseconds

• std_ns – Standard deviation of the zone time in nanoseconds

You can customize the output with the following command line options:

• -h, --help – Display a help message

• -f, --filter <name> – Filter the zone names

• -c, --case – Make the name filtering case sensitive

• -s, --sep <separator> – Customize the CSV separator (default is “,”)

• -e, --self – Use self time (equivalent to the “Self time” toggle in the profiler GUI)

• -u, --unwrap – Report each zone individually; this will discard the statistics columns and instead
report the timestamp and duration for each zone entry

7 Importing external profiling data
Tracy can import data generated by other profilers. This external data cannot be directly loaded but must be
converted first. Currently, there’s support for the following formats:

• chrome:tracing data through the import-chrome utility. The trace files typically have a .json or
.json.zst extension. To use this tool to process a file named mytracefile.json, assuming it’s
compiled, run:

$ import - chrome mytracefile .json mytracefile . tracy
$ tracy mytracefile . tracy

• Fuchsia’s tracing format95 data through the import-fuchsia utility. This format has many commonali-
ties with the chrome:tracing format, but it uses a compact and efficient binary encoding that can help
lower tracing overhead. The file extension is .fxt or .fxt.zst.
To this this tool, assuming it’s compiled, run:

$ import - fuchsia mytracefile .fxt mytracefile . tracy
$ tracy mytracefile . tracy

Tracy can import traces compressed with the Zstandard algorithm (for example, using the zstd
command-line utility). Traces ending with .zst extension are assumed to be compressed. This applies
for both chrome and fuchsia traces.

Compressed traces

95https://fuchsia.dev/fuchsia-src/reference/tracing/trace-format

98

https://fuchsia.dev/fuchsia-src/reference/tracing/trace-format

Tracy Profiler The user manual

Chrome tracing format doesn’t document a way to provide source location data. The import-chrome
and import-fuchsia utilities will however recognize a custom loc tag in the root of zone begin
events. You should be formatting this data in the usual filename:line style, for example: hello.c:42.
Providing the line number (including a colon) is optional but highly recommended.

Source locations

• Tracy is a single-process profiler. Should the imported trace contain PID entries, each PID+TID
pair will create a new pseudo-TID number, which the profiler will then decode into a PID+TID
pair in thread labels. If you want to preserve the original TID numbers, your traces should omit
PID entries.

• The imported data may be severely limited, either by not mapping directly to the data structures
used by Tracy or by following undocumented practices.

Limitations

8 Configuration files
While the client part doesn’t read or write anything to the disk (except for accessing the /proc filesystem on
Linux), the server part has to keep some persistent state. The naming conventions or internal data format of
the files are not meant to be known by profiler users, but you may want to do a backup of the configuration
or move it to another machine.

On Windows settings are stored in the %APPDATA%/tracy directory. All other platforms use the
$XDG_CONFIG_HOME/tracy directory, or $HOME/.config/tracy if the XDG_CONFIG_HOME environment variable
is not set.

8.1 Root directory
Various files at the root configuration directory store common profiler state such as UI windows position,
connections history, etc.

8.2 Trace specific settings
Trace files saved on disk are immutable and can’t be changed. Still, it may be desirable to store additional
per-trace information to be used by the profiler, for example, a custom description of the trace or the timeline
view position used in the previous profiling session.

This external data is stored in the user/[letter]/[program]/[week]/[epoch] directory, relative to
the configuration’s root directory. The program part is the name of the profiled application (for example
program.exe). The letter part is the first letter of the profiled application’s name. The week part is a count
of weeks since the Unix epoch, and the epoch part is a count of seconds since the Unix epoch. This rather
unusual convention prevents the creation of directories with hundreds of entries.

The profiler never prunes user settings.

99

Tracy Profiler The user manual

Appendices
A License
Tracy Profiler (https://github.com/wolfpld/tracy) is licensed under the
3-clause BSD license.

Copyright (c) 2017-2024, Bartosz Taudul <wolf@nereid.pl>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B Inventory of external libraries

The following libraries are included with and used by the Tracy Profiler. Entries marked with a ⋆ icon are
used in the client code.

• 3-clause BSD license

– getopt_port – https://github.com/kimgr/getopt_port

– libbacktrace ⋆ – https://github.com/ianlancetaylor/libbacktrace

– Zstandard – https://github.com/facebook/zstd

– Diff Template Library – https://github.com/cubicdaiya/dtl

• 2-clause BSD license

– concurrentqueue ⋆ – https://github.com/cameron314/concurrentqueue

– LZ4 ⋆ – https://github.com/lz4/lz4

– xxHash – https://github.com/Cyan4973/xxHash

• Public domain

100

https://github.com/kimgr/getopt_port
https://github.com/ianlancetaylor/libbacktrace
https://github.com/facebook/zstd
https://github.com/cubicdaiya/dtl
https://github.com/cameron314/concurrentqueue
https://github.com/lz4/lz4
https://github.com/Cyan4973/xxHash

Tracy Profiler The user manual

– rpmalloc ⋆ – https://github.com/rampantpixels/rpmalloc

– gl3w – https://github.com/skaslev/gl3w

– stb_image – https://github.com/nothings/stb

– stb_image_resize – https://github.com/nothings/stb

• zlib license

– Native File Dialog Extended – https://github.com/btzy/nativefiledialog-extended

– IconFontCppHeaders – https://github.com/juliettef/IconFontCppHeaders

– pdqsort – https://github.com/orlp/pdqsort

• MIT license

– Dear ImGui – https://github.com/ocornut/imgui

– JSON for Modern C++ – https://github.com/nlohmann/json

– robin-hood-hashing – https://github.com/martinus/robin-hood-hashing

– SPSCQueue ⋆ – https://github.com/rigtorp/SPSCQueue

– ini – https://github.com/rxi/ini

• Apache license 2.0

– Droid Sans – https://www.fontsquirrel.com/fonts/droid-sans

• SIL Open Font License 1.1

– Fira Code – https://github.com/tonsky/FiraCode

– Font Awesome – https://fontawesome.com/

References
[AR19] Andreas Abel and Jan Reineke. uops.info: Characterizing latency, throughput, and port usage of

instructions on intel microarchitectures. In ASPLOS, ASPLOS ’19, pages 673–686, New York, NY,
USA, 2019. ACM.

[ISO12] ISO. ISO/IEC 14882:2011 Information technology — Programming languages — C++. International
Organization for Standardization, Geneva, Switzerland, February 2012.

101

https://github.com/rampantpixels/rpmalloc
https://github.com/skaslev/gl3w
https://github.com/nothings/stb
https://github.com/nothings/stb
https://github.com/btzy/nativefiledialog-extended
https://github.com/juliettef/IconFontCppHeaders
https://github.com/orlp/pdqsort
https://github.com/ocornut/imgui
https://github.com/nlohmann/json
https://github.com/martinus/robin-hood-hashing
https://github.com/rigtorp/SPSCQueue
https://github.com/rxi/ini
https://www.fontsquirrel.com/fonts/droid-sans
https://github.com/tonsky/FiraCode
https://fontawesome.com/

	A quick look at Tracy Profiler
	Real-time
	Nanosecond resolution
	Timer accuracy

	Frame profiler
	Sampling profiler
	Remote or embedded telemetry
	Why Tracy?
	Performance impact
	Assembly analysis

	Examples
	On the web
	Binary distribution

	First steps
	Initial client setup
	Static library
	CMake integration
	Meson integration
	Short-lived applications
	On-demand profiling
	Client discovery
	Client network interface
	Setup for multi-DLL projects
	Problematic platforms
	Microsoft Visual Studio
	Universal Windows Platform
	Apple woes
	Android lunacy
	Virtual machines
	Docker on Linux

	Troubleshooting
	Changing network port
	Limitations

	Check your environment
	Operating system
	CPU design
	Superscalar out-of-order speculative execution
	Simultaneous multithreading
	Turbo mode frequency scaling
	Power saving
	AVX offset and power licenses
	Summing it up

	Building the server
	Required libraries
	Windows
	Unix
	Linux

	Using an IDE
	Embedding the server in profiled application
	DPI scaling

	Naming threads
	Source location data customization

	Crash handling
	Feature support matrix

	Client markup
	Handling text strings
	Program data lifetime
	Unique pointers

	Specifying colors
	Marking frames
	Secondary frame sets
	Discontinuous frames
	Frame images
	OpenGL screen capture code example

	Marking zones
	Manual management of zone scope
	Multiple zones in one scope
	Filtering zones
	Transient zones
	Variable shadowing
	Exiting program from within a zone

	Marking locks
	Custom locks

	Plotting data
	Message log
	Application information

	Memory profiling
	Memory pools

	GPU profiling
	OpenGL
	Vulkan
	Direct3D 11
	Direct3D 12
	OpenCL
	Multiple zones in one scope
	Transient GPU zones

	Fibers
	Collecting call stacks
	Debugging symbols
	External libraries
	Using the dbghelp library on Windows
	Disabling resolution of inline frames
	Offline symbol resolution

	Lua support
	Call stacks
	Instrumentation cleanup

	C API
	Setting thread names
	Frame markup
	Zone markup
	Zone context data structure
	Zone validation
	Transient zones in C API

	Lock markup
	Memory profiling
	Plots and messages
	GPU zones
	Fibers
	Connection Status
	Call stacks
	Using the C API to implement bindings

	Python API
	Bindings
	Building the Python package

	Automated data collection
	Privilege elevation
	CPU usage
	Context switches
	CPU topology
	Call stack sampling
	Wait stacks

	Hardware sampling
	Executable code retrieval
	Vertical synchronization

	Trace parameters
	Source contents callback
	Connection status

	Capturing the data
	Command line
	Interactive profiling
	Connection information pop-up
	Automatic loading or connecting

	Connection speed
	Memory usage
	Trace versioning
	Archival mode
	Compression streams
	Frame images dictionary
	Data removal

	Source file cache scan
	Instrumentation failures

	Analyzing captured data
	Time display
	Main profiler window
	Control menu
	Notification area

	Frame time graph
	Timeline view
	Time scale
	Frame sets
	Zones, locks and plots display

	Navigating the view

	Time ranges
	Annotating the trace

	Options menu
	Messages window
	Statistics window
	Instrumentation mode
	Sampling mode
	GPU zones mode

	Find zone window
	Timeline interaction
	Frame time graph interaction
	Limiting zone time range
	Zone samples

	Compare traces window
	Source files diff

	Memory window
	Allocations
	Active allocations
	Memory map
	Bottom-up call stack tree
	Top-down call stack tree
	Looking back at the memory history

	Allocations list window
	Memory allocation information window
	Trace information window
	Zone information window
	Call stack window
	Reading call stacks

	Sample entry call stacks window
	Source view window
	Source file view
	Symbol view
	Source mode
	Assembly mode
	Combined mode
	Instruction pointer cost statistics
	Inspecting hardware samples

	Wait stacks window
	Lock information window
	Frame image playback window
	CPU data window
	Annotation settings window
	Annotation list window
	Time range limits

	Exporting zone statistics to CSV
	Importing external profiling data
	Configuration files
	Root directory
	Trace specific settings

	License
	Inventory of external libraries

