Skip to content

Official implementation of the ICML 2020 paper "PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions".

License

Notifications You must be signed in to change notification settings

shenzy08/PDO-eConvs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

PDO-eConvs

The implementation of the paper "PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions" (ICML2020). Please contact [email protected] if you have any question.

Prerequisites

Tensorflow

Your may refer to https://github.com/Roderickzzc/Pdo-econv-pytorch for an implementation by Pytorch.

Datasets

MNIST-rot-12k can be downloaded from http://www.iro.umontreal.ca/~lisa/icml2007data/mnist_rotation_new.zip, and CIFAR from http://www.cs.toronto.edu/~kriz/cifar.html

Usage

MNIST-rot-12k:

python3 mnist.py

CIFAR10/100

python3 cifar.py --aug True --dataset cifar10

Experimental Results

Error rates on MNIST-rot-12k (without data augmentation).

Network Test Error (%) params
CNN 5.03 22k
G-CNN 2.28 25k
PDO-eConv 1.87 26k

Error rates on CIFAR.

Method G Depth C10 C100 params
ResNet Z^2 26 11.5 31.66 0.37M
HexaConv p6 26 9.98 0.34M
p6m 26 8.64 0.34M
PDO-eConv p6 26 5.65 27.13 0.36M
p6m 26 5.38 27.00 0.37M
------ ------ ------ ------ ------ ------
ResNet Z^2 44 5.61 24.08 2.64M
G-CNN p4m 44 4.94 23.19 2.62M
ResNet p8 44 3.68 20.01 2.62M
------ ------ ------ ------ ------ ------
ResNet Z^2 1001 4.92 22.71 10.3M
Z^2 26 4.00 19.25 36.5M
G-CNN p4m 26 4.17 7.2M
PDO-eConv p8 26 3.50 18.40 4.6M

Citation

If you found this package useful, please cite

@inproceedings{shen2020pdo,
  title={PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions},
  author={Shen, Zhengyang and He, Lingshen and Lin, Zhouchen and Ma, Jinwen},
  booktitle={International Conference on Machine Learning},
  pages={8697--8706},
  year={2020},
  organization={PMLR}
}

About

Official implementation of the ICML 2020 paper "PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions".

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages