
Mining Software Entities in Scientific Literature:
Document-level NER

for an Extremely Imbalance and Large-scale Task
Patrice Lopez
science-miner

France
patrice.lopez@science-miner.com

Caifan Du
Johanna Cohoon

University of Texas at Austin
USA

Karthik Ram
Berkeley Institute for Data Science

USA

James Howison
University of Texas at Austin

USA

ABSTRACT

We present a comprehensive information extraction system dedi-
cated to software entities in scientific literature. This task combines
the complexity of automatic reading of scientific documents (PDF
processing, document structuring, styled/rich text, scaling) with
challenges specific to mining software entities: high heterogeneity
and extreme sparsity of mentions, document-level cross-references,
disambiguation of noisy software mentions and poor portability
of Machine Learning approaches between highly specialized do-
mains. While NER is a key component to recognize new and unseen
software, considering this task as a simple NER application fails to
address most of these issues.

In this paper, we propose a multi-model Machine Learning ap-
proach where raw documents are ingested by a cascade of docu-
ment structuring processes applied not to text, but to layout token
elements. The cascading process further enriches the relevant struc-
tures of the document with a Deep Learning software mention
recognizer adapted to the high sparsity of mentions. The Machine
Learning cascade culminates with entity disambiguation to alleviate
false positives and to provide software entity linking. A bibliograph-
ical reference resolution is integrated to the process for attaching
references cited alongside the software mentions.

Based on the first gold-standard annotated dataset developed
for software mentions, this work establishes a new reference end-
to-end performance for this task. Experiments with the CORD-19
publications have further demonstrated that our system provides
practically usable performance and is scalable to the whole scientific
corpus, enabling novel applications for crediting research software
and for better understanding the impact of software in science.

CCS CONCEPTS

•Computingmethodologies→ Information extraction; •Ap-
plied computing → Document analysis.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8446-9/21/11.
https://doi.org/10.1145/3459637.3481936

KEYWORDS

Software; Scientific Literature; Entity Recognition; Entity Disam-
biguation; Document Analysis
ACM Reference Format:

Patrice Lopez, Caifan Du, Johanna Cohoon, Karthik Ram, and James Howi-
son. 2021. Mining Software Entities in Scientific Literature: Document-level
NER for an Extremely Imbalance and Large-scale Task. In Proceedings of the
30th ACM International Conference on Information and Knowledge Manage-
ment (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3481936

1 INTRODUCTION

Software is increasingly used to support research activities. Many
researchers include software with their results, as shown by ser-
vices like rOpenSci [5] and Papers with Code1. Quality software
facilitates scientific progress and research reproducibility. Software,
however, is still relatively invisible in research, citation databases,
and academic search engines. Because it is impossible to search
for research software as easily as for articles, users miss relevant
software and software is not easily found by potential users. In ad-
dition, because identifying and crediting contributions of software
developers is difficult, researchers have less incentives to develop
better and more reusable software. While some recent works have
focused on improving software cataloging [11] and standards for
software citation [15], mining software mentions in the scientific
literature as currently published offers a factual approach, directly
usable to increase research software visibility.

Named entity recognition (NER) in scholarly literature has been
successfully applied across a range of entity types, including species
names, chemical, and biomedical entities [6, 12, 13, 30]. Mining
software entities has attracted a lot of interest in the recent years. A
recent review article [16] offers a comprehensive analysis of prior
works that extract software and data mentioned in research articles.
From 48 reviewed studies, of which 15 cover software and packages,
Krüger and Schindle categorize four extraction approaches: (1)
term search, (2) manual extraction, (3) rule-based extraction, and
(4) supervised learning.

Term search was employed in 12 studies, although only one
study related to software extraction. Term search refers to searching
bibliographical databases for known string identifiers, such as URL,

1https://paperswithcode.com

This work is licensed under a Creative Commons Attribution International 4.0 License.

CIKM ’21, November 1–5, 2021, Virtual Event, Australia.
© 2021 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-8446-9/21/11.
https://doi.org/10.1145/3459637.3481936

https://doi.org/10.1145/3459637.3481936
https://doi.org/10.1145/3459637.3481936
https://paperswithcode.com
https://creativecommons.org/licenses/by/4.0/

Table 1: Distribution of software citations in the Biomedical domain from [14]

types examples proportion

mention with reference ... was calculated using biosys (Swofford & Selander 1981)... 37%
mention ... were analuzed usingMapQTL (4.0) software... 31%

device-like ... GraphPad prism software (San Diego, CA, USA) was used for data analyses 19%
URL ... freely available from http://www.cibiv.at/software/pda/... 5%

mention with website ... using BrainSuite2 (http://brainsuite.usc.edu)... 5%
user manual reference ... as analyzed by the BIAevaluation software (Biacore, 1997)... 2%

unnamed ... was carried out using software implemented in the Java programming language 1%

DOI, or particular software names known in advance, strongly
limiting the capacity of recognition. Manual extraction, applied in
16 studies with six addressing software, is relevant to occasional
review work, but is not able to scale.

Rule-based approaches rely on pre-defined heuristics to auto-
matically extract mentions of software from text. 16 of the studies
reviewed by Krüger and Schindle used rule-based approaches; six of
these were related to software extraction. While rules can achieve
good precision, they are usually limited in terms of coverage. They
are time-consuming to create and to maintain. Furthermore, since
this approach is often used because of a lack of annotated data, rule
evaluation can be unreliable and their portability to new domains
is uncertain. Supervised learning has been used in four studies, two
only covering software recognition [9, 10]. These and [27] use a
CRF approach, while [16] experiments with a BiLSTM-CRF model.
However, they are all based on datasets with very limited number
of documents that over-represent software mentions. While strict
supervised learning provides the best performance for NER appli-
cations, they typically require large and realistic sets of annotated
data, which are missing for software entities.

Our system relies on a gold-standard annotated corpus, the Soft-
cite Dataset [8], presented in section 2 and available online2 under
CC-BY license. This new dataset, by its size and quality, makes it
possible to experiment with fully supervised Machine Learning
(ML) approaches and to provide more rigorous evaluations. The
analysis of the Softcite Dataset helped us understand how software
are mentioned and identify the main requirements and challenges
of this task (section 3), which go far beyond the traditional NER
used by prior research. In this paper we provide details on our sys-
tem, the Softcite recognizer, available as open source3 (including
models and evaluation scripts) under the Apache 2 license.

To better capture the specificities of mining scholarly literature,
our efforts are realized from an end-to-end perspective. In particular,
we address the concrete challenge of applying state-of-the-art ML
methods to dozens of millions of published PDFs across different
scientific domains, where software mentions represent only a few
relevant tokens out of several thousands in every document. Finally,
to validate our approach, we mined the CORD-19 PDF publication
set [32], with results available online4.

2https://zenodo.org/record/4445202
3https://github.com/ourresearch/software-mentions
4https://zenodo.org/record/5140437

Table 2: Overview of the annotations in the gold-standard

Softcite Dataset, with the proportion per 1000 of annotated

tokens given the total number of tokens of the corpus (total

of 46,052,050 tokens).

annot. types # annot. # tokens ‰tokens

software name 5,172 6,396 0.139
version 1,591 3,627 0.079

publisher 1,358 2,686 0.058
URL 215 2,571 0.056
total 8336 15,280 0.332

2 THE SOFTCITE DATASET

We developed the Softcite Dataset [8] as a on-going long term effort
to understand software citations and to support experiments with
supervised learning. This dataset includes the mentions of software
names and related attributes version (version number or version
date), publisher, and URL from 4,971 full-text research articles, a
total of 8,336 annotations. Articles were randomly selected from
the PubMed Central (PMC) Open Access Subset (2,521 articles), and
from open access articles in Economic (2,450 articles) via Unpay-
wall [29]. The manual annotation was realized with a multi-round
annotation process starting from the complete article content and in-
volved 38 human annotators. Percentage inter-annotator agreement
for the annotations is 75.5%. All annotations were then reconciled
and checked for a final choice by two expert annotators, ensuring
consistency in the labeling and a gold-standard quality.

Table 2 presents an overview of the annotations in the dataset.
The final published dataset includes only the paragraphs with at
least one annotation. Before the Softcite Dataset, the largest similar
dataset used for supervised learning experiments [9, 10, 16] was a
set of 85 annotated documents (versus 4,971 in the Softcite Dataset)
presented in [9], with average name mention frequency per docu-
ment of 40.3 for the training set and 70.0 for the test set, whereas
mention frequency is only 1.04 software name per document in the
randomly selected Softcite Dataset.

3 TASK DESCRIPTION

3.1 Heterogeneity of software citations

In a previous study [14], summarized by Table 1, we observed that
software citations in Biomedicine came in many different forms,

https://zenodo.org/record/4445202
https://github.com/ourresearch/software-mentions
https://zenodo.org/record/5140437

dominated by informal mentions. These results show the neces-
sity of identifying various types of information beyond a software
name: associated bibliographical references, URL, software publish-
ers and creators, and version numbers. Recognizing the associated
bibliographical references takes several steps: identify the reference
markers locally associatedwith a softwaremention, link thesemark-
ers to their reference entries usually in the bibliography section,
parse the references, and match them to registered bibliographical
records such as a CrossRef DOI entries. URLs are frequently in
footnotes, which necessitates cross-reference linking within the
document.

3.2 Sparsity of mentions

As the count of software mentions in Table 2 shows, one of the key
challenges in automatic software recognition is the low frequency
of the mentions in documents. Only 1,441 out of 4,971 (29.0%) of the
articles contain at least one software mention. This is even more
significant at the level of tokens (including traditional delimiters
but excluding space characters), which is the level of prediction in
a sequence labeling process like NER. The 4,971 full-texts contain a
total of around 46million tokens, but only 15,280 tokens are relevant
to a software mention; so around one token would be positively
labeled for each 3,000 "negative" tokens, with a ratio as low as one
token per 17,500 tokens for publishers and URL fields.

This issue is usually referred as the Class Imbalance Problem
(CIP) in Machine Learning. CIP is determined by the Imbalance
Ratio (IR), i.e., the ratio between the negative samples and the
positives. An IR value above 500 is usually already considered to
be extreme [20]. With the higher observed IR, an ML approach to
finding new unseen software mentions is a major difficulty. We
observed that very few studies investigated extreme CIP in the
context of NER. These studies usually focused on chemical and
biomedical entities, which, while highly imbalanced, do not present
such extreme IR as we observe for software mentions [2, 31].

3.3 Document-level information

As mentioned previously, information related to cited software is
often spread in different places within a document. In addition to
this constraint, the Softcite Dataset shows that the distribution of
software mentions in documents is not uniform and the same entity
is frequently mentioned several times in one document [8]. Each
context of citation can bring different information. A global view
of the software mentions at document level is therefore a practical
requirement for fully recognizing all mentions to software and
further matching them to unique software entities.

3.4 PDF processing

Mining for specific entities is only relevant to certain textual struc-
tures of a scientific document, such as paragraphs, abstracts, figure
captions, etc. In the Softcite corpus, we calculated that, on average,
28% of publication content should be filtered out. This includes
metadata (author, affiliations), bibliographical sections, table and
figure content, formulas, headnotes, page numbers, reference mark-
ers, or editorial annexes (like conflicts of interest).

Text mining work usually assumes the availability of clean and
structured text enabling recognition only on relevant document

parts, but this is not the condition of real world applications. The
most widespread and easily available scientific publication format is
raw PDF, a presentation-oriented format that destroys the semantics
and the original structure of data, introducing noise in text encoding
and text order stream. This format raises major issues for text
mining applications, both in terms of significant source of errors
and technical feasibility [33].

Publishers’ structured XML including the text body, such as JATS,
is text-mining friendly, but has limited availability. Decades of back
files are only available in PDF. Even when available, XML full-texts
are in a variety of different native publisher XML formats, often
incomplete and inconsistent from one to another, difficult to use
at scale. Moreover, XML full-texts are usually subject to numerous
complex and time-consuming commercial agreements. Thus, sup-
porting PDF by using a layout aware parsing and conversion tool
appeared very early as a key requirement for our task.

3.5 Specialized domains

Technical and scientific documents aim at supporting specialist
communication and are thus written in specialist language, 30-80%
of which is composed of terminology according to [1]. Scientific
texts follow thus a specialized language with specific vocabularies
and nomenclatures highly depending on technical domains.

The usage of existing general-purpose NLP components on sci-
entific text results most of the time in a significant loss of accuracy
as compared to custom models. For example, ScispaCy improves
F1-scores by 3.3 to 23.5 points on some tasks related to Biomedical
literature as compared to the general domain spaCy [25]. SciB-
ert surpasses Bert-base model by 0.1 to 7.07 points in F1-score
depending on the task [3]. We also observed in these works that
the portability of ML models from one scientific field to another is
uneven, even when customized. This directly challenges the recog-
nition of cross-domain entities like software across fields.

4 DOCUMENT PROCESSING AS A CASCADE

OF MACHINE LEARNING MODELS

Figure 1 presents the Softcite pipeline, which tries to address these
challenges in an accurate, scalable, and generic manner. The dif-
ferent approaches and components are presented in details in the
next sections.

4.1 Document structuring

We rely on GROBID5 for parsing, extracting, and structuring the
content of scientific articles in PDF, but also to drive further entity
mining in relevant sections. GROBID is an open source library
specialized for scholarly PDF implementing a cascade of ML models
to mark up the structure of a document. The tool, created by the
first author of this paper [22], is used for this purpose by many
large scientific information service providers such as ResearchGate,
Academia.edu, and Internet Archive, by large-scale citation services,
for example scite.ai, which has extracted more than 800 million
bibliographical citation contexts with this tool [26], or for creating
machine-friendly datasets of research papers, like the recent PDF
set of the CORD-19 dataset [32].

5https://github.com/kermitt2/grobid

https://github.com/kermitt2/grobid

Figure 1: Overview of the Softcite software extraction

pipeline. Blue boxes represent the main processing compo-

nents, and ovals the different data results.

Each ML model in GROBID is a sequence labeling model. Se-
quence labeling is defined in an abstract manner and its concrete
implementation can be selected by choosing among standard ML
architectures, including a fast linear chain CRF and a variety of
state-of-the-art Deep Learning (DL) models. Sequence labeling mod-
els are limited to the labeling of a linear sequence of text, therefore
they associate a one-dimension structure to a stream of tokens. One
way to create additional levels of embedded structures is to cas-
cade several sequence labeling models, the output of a first model
being piped to one or several models. This is the approach taken
by GROBID, and Figure 2 shows the current model cascade. Each
model can use a different sequence labeling algorithm, different
features, and different tokenizers, depending on the labels used by
the particular model, on the amount of available training data, on
the runtime, memory, and accuracy constraints, etc.

In addition to layout recognition and recovery of the reading
order, GROBID and its PDF parsing component pdfalto handle a va-
riety of text cleaning processes: UTF-8 encoding and character com-
position, de-hyphenization, reconnecting paragraphs interrupted
by a page break, a figure or a table, special font resolution, recog-
nition of formula, etc. Complementary to the support of ALTO, a
modern format for OCR output, pdfalto implements additional fea-
tures relevant to scientific documents, in particular the recognition

of superscript/subscript style and the robust recognition of line
numbers for review manuscripts.

Bibliographical references and the corresponding reference call-
outs within the text body are also identified and parsed following
a set of dedicated ML models, with a F1-score between 80 and
86%, depending on the evaluation approach, for a dataset of 1,943
PubMed Central articles. Finally a parsed reference with incomplete
metadata is resolved against the current 105 million DOI records of
CrossRef via biblio-glutton6, a fast open source reference matching
service showing an accuracy of 95.39 F1-score on a set of 17,015
raw bibliographical reference/DOI pairs extracted from PubMed
Central PDF/JATS articles (see biblio-glutton repository).

Various evaluations for the different GROBID models and for the
end-to-end process are available at the project repository7. These
evaluations are continuously updated with new releases.

4.2 Layout tokens, not text

If processing PDF is very challenging from a text mining perspec-
tive, this format provides a lot of advantages to the human readers8.
We think it is possible to exploit some of these advantages to better
present and interact with text mining results. More precisely by cal-
culating the bounding box coordinates of the extracted information
in the PDF, we make possible augmented interactive PDF.

In the complete cascading of process, GROBID does not manipu-
late text but Layout Tokens, a structure containing the Unicode text
token but also the associated available rich text information (font
size and name, style attributes, etc.) and the location in the PDF
expressed by bounding boxes. Layout Tokens are grouped following
layout criteria (lines, blocks, columns) as a first result of the PDF
layout analysis by pdfalto, and then further semantically grouped
through the ML process, as a succession of labeled fields.

Operations on 2D bounding boxes are well known and straight-
forward to apply to Layout elements. By synchronizing the bound-
ing boxes with the sequence labeling, we can render any text mining
results on their original PDF source. Text mining is then not limited
to populating a database, it allows user-friendly visualizations of
semantically enriched documents and new interactions.

Layout information is also used to instantiate layout features,
which can be exploited or not depending on the capacity of the ML
models. Layout features are crucial for the reliable recognition of
structures such as titles, abstracts, section titles, figures, tables, ref-
erence markers which are often only characterized by their relative
position (vertical space, indentation, blocks, etc.) and font style (e.g.
superscript for reference markers). While the layout features are
not directly involved in the recognition of software names, they
are used to identify and select relevant structures to be processed,
to recover valid text order, encoding, and text tokens, and in the
identification of reference markers attached to software mentions.

4.3 Identification of Candidate Mentions

Similarly as the models in GROBID, software mention recognition
is implemented as a sequence labeling task, where the labels are
6https://github.com/kermitt2/biblio-glutton
7https://grobid.readthedocs.io/en/latest/Benchmarking/
8Themain advantages for the users are a fixed layout, a preservation format, a universal
support by document visualization and editing tools, the ease of storage, annotations
and additions of web links and, finally, a professional printing typeset quality.

https://github.com/kermitt2/biblio-glutton
https://grobid.readthedocs.io/en/latest/Benchmarking/

segmentation

fulltext

table

recognition of software mention candidates

figure

reference-segmenter

reference

name-citation

header

date

name-header

Figure 2: The GROBID cascade of sequence labeling models. The software mention model (in red) is added as a downstream

model applied on certain outputs of the existing GROBID models. These GROBID models correspond to the relevant textual

structures where a software mention can take place (title, abstract, and keywords from the article header; paragraphs and sec-

tion titles from the fulltext body; captions from the figure and table parts; and finally footnotes from themain segmentation).

applied to sequences of Layout Tokens, identifying relevant soft-
ware names and attributes. This sequence labeling model is added
to the GROBID cascade, applied to a selection of relevant structures
identified by upstream GROBID models. Figure 2 presents the cas-
cading process and which structures are considered for software
recognition. We call this approach structure-aware document anno-
tation, in contrast to the large majority of text mining approaches
for scientific literature which ignore the document structure and
its related semantics. Tokens are propagated to downstream mod-
els with information about the structures where they appear and
layout attributes, allowing the pipeline to exploit more contextual
information than usual approaches.

4.3.1 Undersampling, holdout set, and training set. In section 3.2,
we stressed the very challenging nature of the Imbalance Ratio
for this NER application. In ML, the CIP is usually addressed by
sampling strategies used either for removing data from the major-
ity class (undersampling) or adding data to the minority class via
artificially generated examples or Active Learning (oversampling).
With these sampling techniques, the training data is viewed as a
working resource which is crafted to maximize the accuracy of the
trained model. An n-fold cross evaluation or any random splitting
on this working set is here misleading because the distribution
of the classes is artificially modified to boost the accuracy of the
less frequent classes. For evaluating a model, in particular against
the CIP effects, we need to create a stable holdout set as close as
possible to the observed class distribution and data diversity.

Holdout set. The Holdout set is defined at document-level in
order to allow document-level evaluation. We selected 20% of the
Softcite Dataset full-texts (994 articles), reproducing the overall
distribution of documents with annotation (29.0%), the distribution
between Biomedicine and Economics fields, and we used a stratified
sampling to reproduce the overall distribution of mentions per
document.

Training set. The remaining 80% of documents (3,977 articles)
was then divided at paragraph-level into positive (1,886 paragraphs
with at least one manual annotation) and negative (612,597 para-
graphs without manual annotations). Negative examples here are
viewed as a pool of possible negative samples to be added to the
positives examples, depending on the undersampling strategies.

Undersampling methods. In this work, we focused on adapting
undersampling approaches to NER where undersampling being the
most commonly used approach for addressing CIP in classification
problems [21]. We experimented with two different approaches to
reducing the weight of the negative majority class:

• Random negative sampling. Different ratio of random
negative paragraph examples are used in combination with
all the positive paragraph examples to create training sets.
We considered ratio from 1 to 50 and selected the best ratio
using a validation set. We identified the best ratio at 15, with
overall accuracy decreasing beyond 20, the positive samples
becoming too diluted in comparison with the negative ones.

• Active negative sampling. A model trained only with pos-
itive examples was first created. This model was then applied
to all the paragraphs without manual annotations, and we
selected those where amention is wrongly predicted, comple-
mented with random sampling to reach the experimentally
defined ratio. With this approach, we suppose that negative
examples where such errors occur can better contribute to
the improvement of the models for controlling false posi-
tives.

As baseline (noted none), we also ran NER models trained only
on positive paragraphs, which corresponds to the Softcite Dataset,
without any sampling.

Sequence labeling algorithms. The labeling is done paragraph
by paragraph, as extracted by the GROBID upstream models. The
following sequence labeling algorithms have been benchmarked:

Table 3: Summary of scores (P: Precision, R: Recall, F: F1-score) at span level (exactmatch) against the holdout set (994 complete

articles). no sampling refers to a training with only paragraphs containing at least one annotation from the 80% remaining

articles. Paragraphs without annotations (negative sampling) are then added to the training data via random sampling or active
sample. Bold indicates the best scores for a given field. Reported scores for DL models are averaged over 5 training/runs.

model under- software name publisher version URL F1 micro

sampling P R F P R F P R F P R F average

CRF (custom none 29.2 58.5 38.9 41.5 76.6 53.8 51.9 84.9 64.4 18.2 68.6 28.7 45.8
features) random 66.9 53.7 59.6 70.4 75.1 72.7 79.8 83.6 81.6 34.8 45.7 39.5 66.3

active 69.0 52.8 59.8 70.3 73.7 72.0 80.9 82.7 81.8 32.6 42.9 37.0 66.2
BiLSTM-CRF none 21.9 68.5 33.2 45.3 82.8 58.5 53.6 90.5 67.3 16.7 57.1 25.8 41.9

random 57.1 71.9 63.7 67.4 85.2 75.3 73.0 88.7 80.1 51.0 74.3 60.5 69.0
active 62.7 68.5 65.5 69.0 85.2 76.2 63.5 92.6 75.4 63.2 68.6 65.8 69.8

BiLSTM-CRF none 20.9 74.5 32.7 45.7 85.7 59.6 58.4 91.8 71.4 14.5 48.6 22.4 41.4
+features random 54.1 73.6 62.4 68.5 84.2 75.5 72.2 92.2 81.0 50.0 65.7 56.8 68.3

active 54.5 73.3 62.5 68.2 85.2 75.7 79.5 92.2 85.4 47.5 80.0 59.6 69.3
BiLSTM-CRF none 35.6 74.9 48.2 71.6 79.4 75.3 72.9 88.3 79.8 11.6 80.0 20.3 54.5
+Elmo random 67.4 63.0 65.1 63.9 83.7 72.5 83.1 84.9 83.9 54.8 48.6 51.5 70.2

active 61.9 70.4 65.9 74.1 84.7 79.0 77.7 90.5 83.6 48.0 68.6 56.5 71.6
Bert-base none 15.1 74.2 25.1 40.2 79.4 53.4 42.1 87.9 56.9 04.5 71.4 08.5 30.4
-CRF random 52.8 67.8 59.3 61.6 79.0 69.2 65.9 85.3 74.3 15.0 54.3 23.5 61.9

active 56.9 67.9 61.9 66.1 78.5 71.8 73.5 85.3 79.0 19.0 54.3 28.2 65.3
SciBert-CRF none 25.7 80.4 39.0 44.1 84.7 58.0 71.7 92.2 80.7 27.8 71.4 40.0 47.6

random 60.5 77.0 67.8 68.1 82.8 74.7 75.4 91.3 82.6 40.3 71.4 51.6 71.4
active 69.3 72.8 71.0 75.6 82.8 79.0 80.2 87.9 83.9 45.3 68.6 54.6 74.6

• linear chain CRF: Conditional Random Fields with custom
feature engineering [17],

• BiLSTM-CRF: Bidirectional LSTM-CRF with Gloves static
embeddings [18],

• BiLSTM-CRF + features: Bidirectional LSTM-CRF with
Glove static embeddings including a feature channel,

• BiLSTM-CRF+Elmo: Bidirectional LSTM-CRF with Gloves
static embeddings and Elmo dynamic embeddings [28]

• Bert-base-CRF: fine-tuned Bert base model [7] with CRF
activation layer, pre-trained on general English text

• SciBert-CRF: fine-tuned Bert base model pre-trained on
scientific text [3] with CRF activation layer,

The CRF implementation is based on a custom optimized fork of
Wapiti9 [19]. The other algorithms rely on theDeep Learning library
DeLFT10 built on top of TensorFlow and Keras. All are natively
integrated in GROBID JVM to optimize runtime. Transformers use
CRF as final activation layer, which provides a stable improvement
of 0.3 to 0.5 points in F1-score as compared to a softmax layer.

All these models take exactly the same input sequence, associ-
ated with the same features, and use strictly the same evaluation
method, avoiding some common experimental biases related to pre-
processing and evaluation. Hyperparameters of the Deep Learning
models have been set experimentally on a validation set part of the
training data and an early stop is used.

The different implemented sequence labeling algorithms give
a comprehensive picture of the best named entity recognition ap-
proaches available today. In order to select the most adapted to

9https://github.com/kermitt2/wapiti
10https://github.com/kermitt2/delft

our application, we evaluated them against three criteria: accuracy,
runtime, and domain portability.

4.3.2 Accuracy. We observe with Table 3 that CIP is indeed a ma-
jor concern for software mention recognition. Training models
without consideration of CIP can lead to models two times less
accurate. SciBert-CRF, which is pretrained on scientific texts, per-
forms better than the general-purpose Bert-base or BiLSTM-CRF
with Gloves embeddings. BiLSTM-CRF+Elmo, although pre-trained
on general language, provides solid F1-score but benefits less from
the negative sampling than SciBert-CRF. In general, we observe
that DL models benefit significantly more from the undersampling
than CRF only. We further observe that additional custom features
has no significant impact when used by the DL models.

4.3.3 Runtime. Given the scaling constraint of scientific text min-
ing, the accuracy of the models must be considered in balance with
their runtime. Table 5 shows that the runtimes can differ extremely
from one model to another one. CRF scales particularly well on
commodity hardware, running more than three times faster than
the fastest DL approach with GPU, BiLSTM-CRF. Although accu-
rate, BiLSTM-CRF+Elmo is more than 250 times slower than CRF,
which makes impossible a usage for mining scientific literature
at scale. SciBert-CRF combines a strong accuracy with a more
acceptable runtime, 14 times faster than BiLSTM-CRF+Elmo.

4.3.4 Domain portability. One aspect often neglected in the evalu-
ation of information extraction models is the capacity of a model
to perform well on a domain different from the one it has been
trained on. As mentioned in section 3.5, this is particularly relevant
in science, a mosaic of different highly specialized languages.

https://github.com/kermitt2/wapiti
https://github.com/kermitt2/delft

Table 4: Evaluation of domain portability. The models have been trained on the PMC sub-collection and are evaluated on the

Economics domain. The numbers are F1-scores, averaged over 5 training for the indicated DL models.

Trained on Biomedicine Evaluated on Economics

micro-

models software publisher version URL average

CRF (custom features) 37.9 13.7 48.6 16.0 35.9
BiLSTM-CRF 51.0 22.0 57.8 58.3 49.1

BiLSTM-CRF+Elmo 53.4 19.1 57.1 53.3 51.2
Bert-base-CRF 45.6 17.0 66.7 17.0 42.6
SciBert-CRF 58.6 34.8 80.7 46.2 57.9

Table 5: Average runtimes of different sequence labeling

models. The runtimes were obtained on a Ubuntu 18.04

server Intel i7-4790 (4 CPU), 4.00 GHz with 16 GB memory.

The runtimes for the Deep Learning architectures are based

on the same machine with an Nvidia GPU GeForce 1080Ti

(11 GB). Runtime can be reproduced with a python script in

the project GitHub repository.

model best modality layout tokens/s

CRF CPU threads: 8 100,879
BiLSTM-CRF GPU batch size: 200 30,520

BiLSTM-CRF+Elmo GPU batch size: 7 365
SciBert-CRF GPU batch size: 6 5,060

For evaluating domain portability, we have trained the models
on the PubMed Central collection (1,109 documents with at least
one software mention for a total of 6,096 annotations), covering
the biomedical domain, and performed an evaluation on articles in
Economics, a notably different domain (119 articles with at least
one software mention for a total of 538 annotations). Results are
summarized by Table 4.

While we see that covering a new domain is challenging, Deep
Learning models all show a much stronger average recognition ac-
curacy than CRF on all the fields, in particular for SciBert-CRF, the
difference of accuracy being significantly amplified in the unseen
domain. The capacity to recognize new, unseen software informa-
tion in a variety of domains is critical for the creation of knowledge
bases. SciBert-CRF shows the best portability, while combining
best accuracy and a manageable scalability. This model appears
today as the best choice for large-scale text mining and entity dis-
covery in scientific literature.

4.4 Attachment of software attributes and

reference markers

We use simple proximity rules to attach the software attributes
(version, publisher, URL) to their corresponding software name men-
tion and to attach a bibliographical reference marker to a software
mention. These rules were experimentally developed and evaluated
against the Softcite Dataset, where the relations between attributes
and software names are manually encoded.

4.4.1 Attachment of software attributes. Software attributes can be
attached to a software name (viewed as head of the full software

Table 6: Evaluation of attribute attachment to the correct

software name, for a total of 2,537 expected attachments.

attribute fields precision recall F1-score

version 99.6 98.5 99.1
publisher 99.5 98.3 98.9

URL 98.7 95.4 97.0
biblio. reference 97.5 100 98.7
all (micro-avg) 99.4 98.2 98.8

component) only if they occur in the same paragraph. We did not
observe attachment beyond a paragraph in the Softcite Dataset.

Attachment of a software attributewith character offsets a_start
and a_end is as follow:

(1) attribute is discarded if no software name is present in the
paragraph,

(2) attribute 𝑎 is attached to the software name 𝑛 at position
offsets (n_start, n_end) minimizing the following distance
function 𝑑 :

𝑑 (𝑎, 𝑛) =
{
(n_start − a_end) × 2, if a_end ≤ n_start

a_start − n_end, otherwise

4.4.2 Attachment of bibliographical reference markers. Given a soft-
ware component (composed of a software name plus zero or several
software attributes), we note 𝑛_𝑒𝑛𝑑 the end character offset of
the software name and 𝑔_𝑒𝑛𝑑 the end character offset of the com-
plete component (maximum offsets of all the software attributes
and name positions of the software component, so if no attribute
present n_end = g_end). A bibliographical reference marker is at-
tached to a software mention group if it is overlapping the chunk
[n_end, g_end + 𝑘], where 𝑘 is set experimentally. Based on the
Softcite Dataset, we use 𝑘 = 5.

4.4.3 Evaluation of the attachment rules. Table 6 presents the accu-
racy of attaching software attributes to the correct software names
in the Softcite Dataset. Given that these simple rules perform ac-
curately in the case of software mentions, we did not investigate
more sophisticated approaches.

4.5 Software usage detection

Whether or not a software mentioned in an article was in fact used
in the research is important to understand why a software is cited
and to better credit research developers for the actual impact of

Table 7: Evaluation of the usage prediction for mentioned

software. Annotated examples are from the Softcite Dataset

and the scores (P: Precision, R: Recall, F: F1-score) are micro-

average average over 10-folds. Implementations are realized

with DeLFT, a library based on Keras/TensorFlow.

software annot. BidGRU × 10 SciBERT

usage count P R F P R F

used 3736 96.5 99.2 97.9 95.6 99.5 97.5
not used 357 86.4 57.6 69.1 88.2 45.4 60.0

their contributions. To explore the feasibility of an ML approach
to this task, complementary binary Deep Learning classifiers have
been trained to predict if the mentioned software is used or not
in the research work described in a publication. Usage informa-
tion are encoded in the Softcite Dataset with a silver-level quality
(annotation by possibly several annotators with majority vote, but
no final reconciliation by a an expert). We hypothesize here that
the wording used to introduce and describe a software mention
can characterize its possible usage. The sentences containing the
mentions are used as classifier input, without additional features.

Results are shown in Table 7. We found that a BidGRU archi-
tecture with Glove embeddings in a 10-classifiers ensemble (com-
bination of 10 classifiers trained on 10 different partitions of the
training data), the best RNN model we have experimented, sur-
passes SciBert significantly. This result is relatively unexpected
because SciBert provides the best performance in many classifica-
tion tasks related to scientific text [3]. However, the accuracy of the
minority class not used is low for a practical usage. We will address
the performance of the models by developing more training data
and by increasing the data labeling quality to gold-standard.

4.6 Software Candidates and Entity

disambiguation

Entity disambiguation, or entity linking, is the task of matching a
rawmention to the concept it references.We consider hereWikidata
as the reference set of entities. Wikidata currently contains around
13K entities corresponding to software (excluding video games),
but also several million other scientific entities that can be used to
detect false positives.

We use entity-fishing11 [23] as the entity disambiguation library
for the following reasons: the library is able to match in-context
mentions (exploiting wording around the mention) against the com-
plete Wikidata, is very fast in comparison to all other alternatives
(full linking up to 4800 tokens/s on a 4-core server), it does not
require a GPU, is highly memory-efficient as compared to other
existing systems, and is designed to disambiguate any terms (not
just Named Entities). It provides an accuracy close to the state of
the art. For instance, in the overall unnormalized accuracy scenario
for AIDA-CONLL-testb, it performs at 76.5 F1-score, compared to
80.27 for the recent BLINK system [34], a fine-tuned Bert consid-
erably more resource-hungry and slower, limited to the English
Wikipedia—and surpasses this system for the AQUAINT (89.1 vs.
85.88) and MSNBC (86.7 vs. 85.09) evaluation sets.
11https://github.com/kermitt2/entity-fishing

Table 8: Comparison between paragraph-level (default,

noted ¶) and document-level (noted doc.) processing with

and without entity disambiguation filtering (F1-scores on

holdout set, average of 5 train/runs).

fields SciBERT-CRF SciBERT-CRF +

entity disambiguation

¶ doc. ¶ doc.

software 71.0 74.1 (+3.1) 74.3 (+3.3) 76.7 (+5.7)
publisher 79.0 76.2 (−2.8) 81.9 (+2,9) 78.3 (−0.7)
version 83.9 84.7 (+0.8) 87.1 (+3.2) 88.3 (+4.4)
URL 54.6 64.9 (+10.3) 55.4 (+0.8) 66.7 (+12,1)
micro-avg 74.6 76.4 (+1.8) 77.7 (+3.1) 79.1 (+4.5)

The disambiguation is realized with an ensemble approach (Gra-
dient Tree Boosting) using a variety of features, including semantic
vector similarity [4] and graph-based relatedness measure [24]. The
context to be disambiguated is defined as the paragraph where a
candidate mention occurs. The amount of text to be disambiguated
is thus limited on average to a few paragraphs per document and
remains scalable.

The first usage of the entity disambiguation is to filter out false
positives. If a candidate software mention is likely a known scien-
tific entity other than software in its context of usage, we discard
the candidate. Table 8 shows the corresponding improvement of
software mention recognition with a disambiguation score thresh-
old of 0.4 (any non-software entities predicted above this threshold
is considered as false positive software mention). We think that
these results are encouraging and could be further improved by
additional custom training of the disambiguation, the selection of
improved contexts and extending Wikidata to cover more research
software entities from other curated sources.

The second usage is more traditional entity linking. The men-
tions successfully disambiguated are enriched with Wikidata and
English Wikipedia page identifiers. These identifiers and related
information can help to further deduplicate mentions correspond-
ing to the same software across different publications. Although
entity-fishing is comprehensively benchmarked for general-domain
texts, we do not currently have data manually annotated at entity
level to evaluate the particular case of software entity linking.

4.7 Document-level processing

When processing a complete document, it is frequent that only some
instances of mentions of the same software are identified, while
others remained unlabeled. Thewording around somementions and
the presence of other software attributes impact the performance of
recognition. To address this, we apply a propagation of the matched
software names to other unlabeled occurrences of the same term
in the same document.

To avoid propagating a mention to spurious common and short
strings, we apply a TF-IDF threshold to the software names to be
propagated, keeping only those which are significant given the
background full Softcite corpus. Table 8 presents an evaluation of
this step with a TF-IDF threshold experimentally set at 0.001 using
a validation set of the training data.

https://github.com/kermitt2/entity-fishing

Table 9: Results of a re-harvested version of CORD-19 using

the metadata file dated 2021-03-22.

total count

total Open Access full texts 211,213
- with at least one annot. 76,448

software names 295,609
- with linked Wikidata ID 117,193

publishers 61,804
versions 104,199

URL 27,916
- with biblio. references 49,184

references with DOI 15,931
references with PMID 10,611

5 APPLICATION TO CORD-19

We applied the Softcite software recognizer with a SciBert-CRF
model trained on the complete Softcite Dataset, to the CORD-19
publications [32], see Table 9. The CORD-19 corpus contains partial
full-texts as JSON files. However, we started with the CORD-19
metadata file only and carried out a new and complete harvesting
of the Open Access documents, in order to be able to use the PDF
versions and more complete structured full-texts. Our full-text har-
vester is available online12 and relies on the Unpaywall dataset [29]
to identify URL of full-text papers based on metadata and DOI.

Our harvesting retrieved around 41K full-texts more than the offi-
cial CORD-19 document set, allowing us to exploit more PDFs for ex-
tracting annotations coordinates and more accurate text structures.
As indicated in Figure 1, PDF are processed via pdfalto and GROBID
components while XML JATS files are processed by Pub2TEI13, a
collection of style sheets developed over 12 years able to transform
a variety of publisher XML format to the same TEI XML format as
produced by GROBID. This common format, which supersedes a
dozen of publisher formats and many of their variants, centralizes
further processing across PDF and heterogeneous XML sources.

Figure 3 shows how annotations can be visualized on the har-
vested PDF. When successful, entity linking allows users to access
Wikidata and Wikipedia descriptions of the software. Similarly,
when a bibliographical reference has been associated with a soft-
ware in the document, users can visualize the metadata information
of the publication, and, when available, directly access its Open
Access full-text via Unpaywall.

A single 4-core server with one GPU (GeForce 1080Ti) and 16
GB RAM can process an average of 0.53 PDFs per second. The
processing includes the full PDF processing, document structuring,
the software recognition with the best SciBert-CRF model, entity
disambiguation of the candidates software, additional document-
level propagation and finally the resolution against 105M CrossRef
records of possible bibliographical references attached to the soft-
ware mentions. This runtime makes it possible to process 20 million
articles (an estimate of the total available Open Access research
articles) in one month with around 15 similar servers, a reasonable
setting with today’s scientific computing capacities.

12https://github.com/kermitt2/article-dataset-builder
13https://github.com/kermitt2/Pub2TEI

Figure 3: Augmented PDF using the Softcite textmining tool:

mentions of software and their attributes are display on top

of the PDF asHTML dynamic layout, via the standard PDF.js

library (left part). The user can interact directly in situ with

the annotations, opening info boxes with Wikidata disam-

biguated information and local consolidated bibliographical

reference relevant to the software.

6 CONCLUSION

In this work, we addressed several practical challenges often ne-
glected when applying state-of-the-art NLP techniques to scientific
literature: processing of raw PDF documents, rich text, specialized
vocabularies, extremely imbalance NER, and scalability require-
ments. In addition, we developed a “layout-aware” text mining
approach for scientific documents, where layout information can
be propagated throughout the entire pipeline, making possible
for users to directly interact with annotations on PDF and access
entity-level information. We think that this approach can enable
novel applications to value research software as first-class scientific
contributions and more generally better credit research software.

We are currently applying the Softcite software mention rec-
ognizer on a set of 15 million Open Access articles to create a
Knowledge Base of research software in combination with curated
resources14. We hope that this Knowledge Base and our data-driven
approach will help to better understand the impact of software in
scientific research, support reuse and collaboration around open
source development, and ultimately benefit the dissemination of
science and technologies across society.

ACKNOWLEDGMENTS

We would like to acknowledge the support of the Alfred P. Sloan
Foundation, Grant/Award Number: 2016-7209, and of the Gordon
and Betty Moore Foundation, Grant Number: 8622.
14https://github.com/softcite/softcite_kb

https://github.com/kermitt2/article-dataset-builder
https://github.com/kermitt2/Pub2TEI
https://github.com/softcite/softcite_kb

REFERENCES

[1] K. Ahmad and S. Collingham. 1996. POINTER Project Final Report. Technical Re-
port. University of Surrey. http://www.computing.surrey.ac.uk/ai/pointer/report.

[2] Abbas Akkasi, Ekrem Varoğlu, and Nazife Dimililer. 2018. Balanced undersam-
pling: a novel sentence-based undersampling method to improve recognition of
named entities in chemical and biomedical text. Applied Intelligence 48, 8 (01 Aug
2018), 1965–1978. https://doi.org/10.1007/s10489-017-0920-5

[3] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language
Model for Scientific Text. arXiv:1903.10676 [cs.CL]

[4] Roi Blanco, Giuseppe Ottaviano, and Edgar Meij. 2015. Fast and Space-Efficient
Entity Linking inQueries. In Proceedings of the Eight ACM International Conference
on Web Search and Data Mining (Shanghai, China) (WSDM 15). ACM, 10 pages.

[5] C Boettiger, S Chamberlain, E Hart, and K Ram. 2015. Building Software, Build-
ing Community: Lessons from the rOpenSci Project. Journal of Open Research
Software 3, 1 (2015), e8. https://doi.org/10.5334/jors.bu

[6] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. [n.d.]. NeuroNER: an
easy-to-use program for named-entity recognition based on neural networks.
([n. d.]). arXiv:1705.05487 http://arxiv.org/abs/1705.05487

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[8] Caifan Du, Johanna Cohoon, Patrice Lopez, and James Howison. 2021. Softcite
dataset: A dataset of software mentions in biomedical and economic research
publications. Journal of the Association for Information Science and Technology
(2021). https://doi.org/10.1002/asi.24454

[9] Geraint Duck, Aleksandar Kovacevic, David L Robertson, Robert Stevens, and
Goran Nenadic. 2015. Ambiguity and variability of database and software names
in bioinformatics. Journal of biomedical semantics 6, 1 (2015), 29.

[10] Geraint Duck, Goran Nenadic, Michele Filannino, Andy Brass, David L Robertson,
and Robert Stevens. 2016. A survey of bioinformatics database and software
usage through mining the literature. PloS one 11, 6 (2016).

[11] Daniel Garijo, Maximiliano Osorio, Deborah Khider, Varun Ratnakar, and Yolanda
Gil. 2019. OKG-Soft: AnOpenKnowledge GraphwithMachine Readable Scientific
Software Metadata. In 2019 15th International Conference on eScience (eScience).
IEEE, San Diego, CA, USA, 349–358. https://doi.org/10.1109/eScience.2019.00046

[12] Martin Gerner, Goran Nenadic, and Casey M. Bergman. [n.d.]. LINNAEUS: A
species name identification system for biomedical literature. 11, 1 ([n. d.]), 85.
https://doi.org/10.1186/1471-2105-11-85

[13] Maryam Habibi, LeonWeber, Mariana Neves, David Luis Wiegandt, and Ulf Leser.
[n.d.]. Deep learning with word embeddings improves biomedical named entity
recognition. 33, 14 ([n. d.]), i37–i48. https://doi.org/10.1093/bioinformatics/
btx228

[14] James Howison and Julia Bullard. 2016. Software in the Scientific Literature:
Problems with Seeing, Finding, and Using Software Mentioned in the Biology
Literature. Journal of the Association for Information Science and Technology 67, 9
(2016), 2137–2155. https://doi.org/10.1002/asi.23538

[15] Daniel S. Katz, Daina Bouquin, Neil P. Chue Hong, Jessica Hausman, Catherine
Jones, Daniel Chivvis, Tim Clark, Mercè Crosas, Stephan Druskat, Martin Fenner,
Tom Gillespie, Alejandra Gonzalez-Beltran, Morane Gruenpeter, Ted Habermann,
Robert Haines, Melissa Harrison, Edwin Henneken, Lorraine Hwang, Matthew B.
Jones, Alastair A. Kelly, David N. Kennedy, Katrin Leinweber, Fernando Rios,
Carly B. Robinson, Ilian Todorov, Mingfang Wu, and Qian Zhang. 2019. Software
Citation Implementation Challenges. arXiv:1905.08674 [cs] (May 2019). http:
//arxiv.org/abs/1905.08674 arXiv: 1905.08674.

[16] Frank Krüger and David Schindler. 2020. A Literature Review on Methods for
the Extraction of Usage Statements of Software and Data. Computing in Science
Engineering 22, 1 (Jan. 2020), 26–38. https://doi.org/10.1109/MCSE.2019.2943847

[17] John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.

(2001).
[18] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition.
arXiv:1603.01360 [cs.CL]

[19] Thomas Lavergne, Olivier Cappé, and François Yvon. 2010. Practical Very Large
Scale CRFs. In Proceedings the 48th Annual Meeting of the Association for Com-
putational Linguistics (ACL) (Uppsala, Sweden). Association for Computational
Linguistics, 504–513. http://www.aclweb.org/anthology/P10-1052

[20] Jaebeen Lee and Lea Deleris. 2020. Sequencing, Combining and Sampling Classi-
fiers to Help Find Needles in Haystacks. In 24th European Conference on Artificial
Intelligence, ECAI (Santiago de Compostela, Spain).

[21] Joffrey L. Leevy, Taghi M. Khoshgoftaar, Richard A. Bauder, and Naeem Seliya.
2018. A survey on addressing high-class imbalance in big data. Journal of Big
Data 5, 1 (01 Nov 2018), 42. https://doi.org/10.1186/s40537-018-0151-6

[22] Patrice Lopez. 2009. GROBID: Combining automatic bibliographic data recogni-
tion and term extraction for scholarship publications. In International conference
on theory and practice of digital libraries. Springer, 473–474.

[23] Patrice Lopez. 2017. entity-fishing. In WikiDataCon. Berlin, Germany. https:
//upload.wikimedia.org/wikipedia/commons/5/50/Entity-fishing.pdf

[24] David Milne and Ian H. Witten. 2013. An open-source toolkit for mining
Wikipedia. Artificial Intelligence 194 (2013), 222–239. https://doi.org/10.1016/
j.artint.2012.06.007 Artificial Intelligence, Wikipedia and Semi-Structured Re-
sources.

[25] Mark Neumann, Daniel King, Iz Beltagy, andWaleed Ammar. 2019. ScispaCy: Fast
and Robust Models for Biomedical Natural Language Processing. In Proceedings
of the 18th BioNLP Workshop and Shared Task. Association for Computational
Linguistics, Florence, Italy, 319–327. https://doi.org/10.18653/v1/W19-5034

[26] J.M. Nicholson, M. Mordaunt, P. Lopez, A. Uppala, D. Rosati, N.P. Rodrigues,
P. Grabitz, and S.C. Rife. 2021. scite: a smart citation index that displays the
context of citations and classifies their intent using deep learning. bioRxiv (2021).
https://doi.org/10.1101/2021.03.15.435418

[27] IB Ozyurt, JS Grethe, ME Martone, and AE Bandrowski. 2016. Resource Dis-
ambiguator for the Web: Extracting Biomedical Resources and their Citations
from the Scientific Literature. PLoS ONE 11, 1 (2016), e0146300. https:
//doi.org/10.1371/journal.pone.0146300

[28] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of NAACL-HLT. 2227–2237.

[29] Heather Piwowar, Jason Priem, and Richard Orr. 2019. The Fu-
ture of OA: A large-scale analysis projecting Open Access publica-
tion and readership. bioRxiv (2019). https://doi.org/10.1101/795310
arXiv:https://www.biorxiv.org/content/early/2019/10/09/795310.full.pdf

[30] Tim Rocktäschel, Michael Weidlich, and Ulf Leser. [n.d.]. ChemSpot: a hybrid
system for chemical named entity recognition. 28, 12 ([n. d.]), 1633–1640. https:
//doi.org/10.1093/bioinformatics/bts183

[31] Katrin Tomanek and Udo Hahn. 2009. Reducing class imbalance during active
learning for named entity annotation. In Proceedings of the fifth international
conference on Knowledge capture. 105–112.

[32] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang,
Darrin Eide, Kathryn Funk, Rodney Michael Kinney, Ziyang Liu, William. Merrill,
Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen,
Brandon Stilson, Alex D. Wade, Kuansan Wang, Christopher Wilhelm, Boya Xie,
Douglas M. Raymond, Daniel S. Weld, Oren Etzioni, and Sebastian Kohlmeier.
2020. CORD-19: The Covid-19 Open Research Dataset. ArXiv (2020).

[33] David Westergaard, Hans-Henrik Stærfeldt, Christian Tønsberg, Lars Juhl Jensen,
and Søren Brunak. 2017. Text mining of 15 million full-text scientific articles.
(jul 2017). https://doi.org/10.1101/162099

[34] LedellWu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer.
2020. Zero-shot Entity Linking with Dense Entity Retrieval. In EMNLP.

https://doi.org/10.1007/s10489-017-0920-5
https://arxiv.org/abs/1903.10676
https://doi.org/10.5334/jors.bu
https://arxiv.org/abs/1705.05487
http://arxiv.org/abs/1705.05487
https://arxiv.org/abs/1810.04805
https://doi.org/10.1002/asi.24454
https://doi.org/10.1109/eScience.2019.00046
https://doi.org/10.1186/1471-2105-11-85
https://doi.org/10.1093/bioinformatics/btx228
https://doi.org/10.1093/bioinformatics/btx228
https://doi.org/10.1002/asi.23538
http://arxiv.org/abs/1905.08674
http://arxiv.org/abs/1905.08674
https://doi.org/10.1109/MCSE.2019.2943847
https://arxiv.org/abs/1603.01360
http://www.aclweb.org/anthology/P10-1052
https://doi.org/10.1186/s40537-018-0151-6
https://upload.wikimedia.org/wikipedia/commons/5/50/Entity-fishing.pdf
https://upload.wikimedia.org/wikipedia/commons/5/50/Entity-fishing.pdf
https://doi.org/10.1016/j.artint.2012.06.007
https://doi.org/10.1016/j.artint.2012.06.007
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.1101/2021.03.15.435418
https://doi.org/10.1371/journal.pone.0146300
https://doi.org/10.1371/journal.pone.0146300
https://doi.org/10.1101/795310
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/10/09/795310.full.pdf
https://doi.org/10.1093/bioinformatics/bts183
https://doi.org/10.1093/bioinformatics/bts183
https://doi.org/10.1101/162099

	Abstract
	1 Introduction
	2 The Softcite Dataset
	3 Task description
	3.1 Heterogeneity of software citations
	3.2 Sparsity of mentions
	3.3 Document-level information
	3.4 PDF processing
	3.5 Specialized domains

	4 Document processing as a cascade of Machine Learning models
	4.1 Document structuring
	4.2 Layout tokens, not text
	4.3 Identification of Candidate Mentions
	4.4 Attachment of software attributes and reference markers
	4.5 Software usage detection
	4.6 Software Candidates and Entity disambiguation
	4.7 Document-level processing

	5 Application to CORD-19
	6 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.25, 70.80 Width 252.25 Height 90.57 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.2492 70.8009 252.2503 90.5731

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 0
 1

 1

 HistoryList_V1
 qi2base

