Skip to content

mikarant/arctic-amplification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Arctic amplification

This repository contains python- and R-scripts to calculate Arctic amplification metrics and figures presented in Rantanen et al. (2022) manuscript "The Arctic has warmed nearly four times faster than the globe since 1979"

The dataset for producing the charts and graphs of the manuscript is reposited in public repository at http://doi.org/10.23728/fmi-b2share.5d81ded56e984072a5f7162a18b60cb9. The instructions to produce the data are below.

Post process the observational data

With these instructions you can post-process the observational datasets to calculate the Arctic amplification diagnostics. You need CDO software (https://code.mpimet.mpg.de/projects/cdo) and python version 3+. You can calculate the datasets by yourself by following these steps, or just download them from links given below.

1. Download manually each observational dataset from their sources

BEST: http://berkeleyearth.lbl.gov/auto/Global/Gridded/Land_and_Ocean_LatLong1.nc
HadCRUT5: https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/analysis/HadCRUT.5.0.1.0.analysis.anomalies.ensemble_mean.nc
GISTEMP: https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz
ERA5 1950-1978: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means-preliminary-back-extension?tab=overview
ERA5 1979-2021: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview \

2. Merge ERA5 into one file

cdo -mergetime input1 input2 output

3. Regrid the datasets into 0.5° horizontal resolution (this will take couple of hours for all the datasets!):

cdo -remapcon,r720x360 input output

4. Calculate anomalies relative to some baseline (1981-2010) period

a. Calculate climatology
cdo -ymonmean -selyear,1981/2010 input input-clim
b. Subtract the climatology to get the departures
cdo -sub input test-clim test-anom

5. Fix Berkeley Earth data time axis

python fix_berkeley_earth_timeaxis.py

6. Calculate average of the observational datasets

cdo -L -b F32 -ensmean -selyear,1950/2021 -selvar,temperature BEST-regridded-retimed-anom.nc -selyear,1950/2021 -selvar,tas_mean hadcrut5-regridded-anom.nc -selyear,1950/2021 -selvar,tempanomaly GISTEMP-regridded-anom.nc -selyear,1950/2021 -selvar,t2m ERA5-regridded-anom.nc OBSAVE.nc

Calculate the observed AA ratios and trends

1. Calculate the observed values

Run calculate_observed_aa_trends.py

2. Caclulate the bootstrap confidence intervals

Run calc_bootstrapCI_temps_obs.R. Inputs arctic_temps_obs.csv and reference_temps_obs.csv, output bootstrapCI_temps_obs.csv.

Calculate the CMIP6-simulated AA ratios and trends

1. Merge historical and scenario runs

Run merge_hist_scen_cmip6.py

2. Calculate area-mean temperatures in the Arctic and globally

Run calculate_temps_cmip6.py

3. Calculate AA ratios and trends

Run calculate_trends_and_aa_cmip6.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published