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ABSTRACT 8 

This paper proposes the remote sensing time series approach WLMO (Water-Land MOnitor) to monitor 9 

spatiotemporal shoreline changes. The approach uses a hierarchical classification system based on 10 

temporal MNDWI-trajectories with the goal to accommodate typical uncertainties in remote sensing 11 

shoreline extraction techniques such as existence of clouds and geometric mismatches between images. 12 

Applied to a dense Landsat time series between 1984 and 2014 for the two Namibian coastal lagoons at 13 

Walvis Bay and Sandwich Harbour the WLMO was able to identify detailed accretion and erosion 14 

progressions at the sand spits forming these lagoons. For both lagoons a northward expansion of the sand 15 

spits of up to 1000m was identified, which corresponds well with the prevailing northwards directed ocean 16 

current and wind processes that are responsible for the material transport along the shore. At Walvis Bay 17 

we could also show that in the 30 years of analysis the sand spit’s width has decreased by more than a half 18 

from 750m in 1984 to 360m in 2014. This ongoing cross-shore erosion process is a severe risk for future 19 

sand spit breaching, which would expose parts of the lagoon and the city to the open ocean. One of the 20 

major advantages of WLMO is the opportunity to analyze detailed spatiotemporal shoreline changes. 21 

Thus, it could be shown that the observed long-term accretion and erosion processes underwent great 22 

variations over time and cannot a priori be assumed as linear processes. Such detailed spatiotemporal  23 

process patterns are a prerequisite to improve the understanding of the processes forming the Namibian 24 

shorelines. Moreover, the approach has also the potential to be used in other coastal areas, because the 25 

focus on MNDWI-trajectories allows the transfer to many multispectral satellite sensors (e.g. Sentinel-2, 26 

ASTER) available worldwide. 27 
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1 INTRODUCTION 29 

Globally, coastal areas are densely populated ecosystems of high ecological, economic, and social  30 

importance (Costanza et al., 1997; Martínez et al., 2007). Coastal lagoons in particular play an important  31 

role as productive ecosystems, species-rich habitats, and areas for storm protection and tourism (Anthony 32 

et al., 2009). Along Namibia’s west coast, the lagoons are separated from the Atlantic Ocean by sand spits 33 

formed along the shore. Two prominent Namibian lagoons are Walvis Bay and Sandwich Harbour 34 

(Glassom and Branch, 1997; Lass and Mohrholz, 2005; Miller and Becker, 2008) (Fig. 1). The sand spits 35 

forming the two lagoons are highly dynamic and are known to have altered their shape in historical time 36 

(DMC and CSIR, 2010; Schoonees et al., 1998; e.g. Wilkinson et al., 1989). Aeolian processes and longshore 37 

or cross-shore drifts are the main causes of these sand spit variations (Hughes et al., 1992; Schoonees et 38 



al., 1998). In the long run such processes can lead to a diminishing of the lagoons either by a sedimentation 39 

of the lagoons or by a breaching of the sand spits that exposes the lagoons to the open ocean (Schoonees 40 

et al., 1998). Since such changes endanger the important habitats as well as the shipping and the port at 41 

Walvis Bay, a detailed knowledge about the spatiotemporal variations in the sand spits is of high 42 

relevance. So far, only long-term changes are determined using historical maps and aerial photographs of 43 

several years or decades apart (Elfrink et al., 2003; Schoonees et al., 1998; Wilkinson et al., 1989), and single 44 

point-based measurement for a short period of month are conducted (Lass and Mohrholz, 2005). 45 

However, to enable the analysis of the relationship between forcing processes and actual sediment  46 

transports requires frequent assessments of the sand spits shoreline variations over longer periods. 47 

Traditional ground-survey techniques for shoreline extraction (Natesan et al., 2013) and techniques using 48 

airborne (i.e. platforms on planes and UAVs) data acquisitions of optical photographs (Cermakova et al., 49 

2016; Long et al., 2016), SAR-data (Bates et al., 2006), or LiDAR data (Stockdon et al., 2002) are accurate, 50 

but time-consuming, labor and cost intensive, and don’t allow past assessments due to missing data. 51 

Detailed reconstruction of past shoreline variations requires the availability of frequent past image 52 

acquisitions with sufficient spatial resolution. Satellite remote sensing images of high spatial resolution 53 

(e.g. Quickbird, Worldview) used by Lee (2016) and Mann and Westphal (2014) are sufficient in spatial  54 

resolution but lack temporal data frequency. Landsat images are globally freely available at 30m spatial  55 

resolution with a 16 day repeat rate, which are considered as suitable for large scale shoreline changes at 56 

a fairly high frequency. Thus, Landsat imagery was frequently used to investigate developments of oceanic 57 

coasts in general (Ghosh et al., 2015; Li and Damen, 2010; Maiti and Bhattacharya, 2009; Wang et al., 2017)  58 

and to map shoreline variations at coastal lagoons to analyze erosion and accretion processes (e.g. Ahmed 59 

et al., 2009; El-Asmar and Hereher, 2011; Kuleli, 2010). 60 

Regardless of the used satellite sensor, the assessment of shoreline changes is based on two major steps: 61 

(i) shoreline detection in each dataset and (ii) shoreline change estimation between subsequent images.  62 

The first step involves the binarization of images to distinguish between water and non-water pixels by 63 

techniques such as image thresholding, classification, and segmentation. The second step includes the 64 

change estimation along defined transects or the determination of overall changed areas based on the 65 

binarized images or shoreline vectors extracted from these binary results. For both steps an overview of 66 

techniques can be found in Aedla et al. (2015), Louati et al. (2015), and Wang et al. (2017). In general, the 67 

determination of overall change underlies uncertainties that get introduces during both steps. The ability 68 

and accuracy to extract the shoreline position in an image is influenced by the existence of clouds, 69 

turbidity, fog, tidal areas, wet surfaces, and mixed pixels at the water-land front (Ryu et al., 2002) . 70 

Moreover, finding a threshold or classification rule that applies to all images of a time series is almost  71 

impossible. The actual change estimate, the second step, is further influenced by geometric mismatches 72 

or tidal variations between the compared images. All these uncertainties play a varying role in each image 73 

and if using a large number of images they can lead to a large overestimation of the overall change rate 74 

determination. In fact, the overall accuracy of such post-classification comparisons is generally considered 75 

to be intrinsically low (Coppin et al., 2004), which is probably the main reason why shoreline change 76 

studies so far used only few images of years or even decades apart even if more imagery would have been 77 

available. 78 

 79 



In this paper we propose a shoreline change rate determination technique, which uses the high temporal  80 

information content of a dense Landsat time series with the goal to reduce the influence of uncertainty 81 

effects in remote sensing image shoreline change rate determination. Therefore, we use a time series 82 

change detection approach analyzing variations in the temporal domain and neglecting the shoreline 83 

position extraction for each image. This approach was named Water-Land MOnitor (WLMO) and applied 84 

for two of the most important Namibian lagoons at Walvis Bay and Sandwich Harbour to analyze how 85 

long-term (e.g. longshore drifts and main wind direction) and short-term processes (e.g. storm events)  86 

shape the sand spits at these lagoons and to evaluate potential hazards endangering the lagoons existence. 87 

2 STUDY SITES AND DATA 88 

2.1 Study Sites 89 

The study sites Walvis Bay and Sandwich Harbour are located at the western Namibian coast , south of 90 

Swakopmund (Fig. 1). The sand spits forming the coastal lagoons are several kilometers long and hundreds 91 

of meters wide. Both lagoons are part of the Ramsar convention, which is an international treaty for the 92 

conservation and sustainable use of internationally important wetlands (Ramsar, 2016). The Benguela 93 

current causes an upwelling of nutrient-rich deep ocean water, which results in a high biological 94 

production (DMC and CSIR, 2010). They are important habitats for large bird populations (e.g. flamingos 95 

and pelicans), fish populations (e.g. steenbras, kabeljou) and mammals (e.g. seals). The study sites are 96 

extremely dry with an annual rainfall of less than 20mm and due to the cold ocean water the area is subject  97 

to frequent formation of fog (Hughes et al., 1992; Roux, 1974; Schoonees et al., 1998). The sand spits present  98 

sandy and erodible land without any vegetation (Hughes et al., 1992) (Fig. 1c). Tides are semi-diurnal with 99 

a mean tide range of 1.42 m and 0.62 m for spring tides and neap tides, respectively (DMC and CSIR, 2010; 100 

Hughes et al., 1992). The prevailing winds are strong southwesterlies (Hughes et al., 1992; Roux, 1974). The 101 

dominant wave direction is from south to south-westerly with a median significant wave height of 1.1 m 102 

(Elfrink et al., 2003; Hughes et al., 1992; Schoonees et al., 1998). The sand spit of Walvis Bay protects a 103 

town with the main deep water port of Namibia and a salt mining company in the direct vicinity (DMC 104 

and CSIR, 2010; Elfrink et al., 2003; Schoonees et al., 1998). Sandwich Harbour was anchorage for whalers 105 

for many decades in the 19th century but since then no substantial development took place and today it is 106 

mainly used for occasional touristic activities (Wilkinson et al., 1989). 107 



 108 

Figure 1 Study sites: a) Location of the study sites, b) Landsat imagery showing the study sites of Walvis Bay and 109 
Sandwich Harbour. d) pictures of Walvis Bay mixed water-land landscape and rich fauna. 110 

2.2 Data 111 

The remote sensing database comprises Landsat images of the sensors TM, ETM+, and OLI covering 30 112 

year period between 1984 and 2014. The images are retrieved from the USGS EarthExplorer 113 

(http://earthexplorer.usgs.gov/) as orthorectified Level 1T data. Both lagoons are located in the 114 

overlapping area between two Landsat WRS2 paths (path/row: 179/76 and 180/76), which allows for a 115 

higher temporal data repetition rate than usual. Images were selected on the basis that at least a part of a 116 

lagoon was cloud- and fog-free. In total, 130 images for Walvis Bay and 147 images for Sandwich Harbour 117 

were available (Fig. 2), representing an annual average of more than 4 images. At Sandwich Harbour data 118 

gaps exist in 1985, 1988, 2011, and 2012. At Walvis Bay, acquisitions in two more years (1987 and 1995) are 119 

missing. The selected images have varying coverage of clouds, fog, flooded tidal areas, white spume on 120 

waves, and milky water due to Sulphur eruptions (Supplements 1, 2), which all have the potential to 121 

hamper the discrimination between water and land. 122 



 123 

Figure 2 Database of partially cloud.- and fog-free Landsat images available at the study sites. 124 

3 METHOD 125 

The WLMO (Water-Land MOnitor) is based on the analysis of temporal trajectories of the Modified 126 

Normalized Differenced Water Index (MNDWI) of Xu (2006). In the following the WLMO is described in 127 

terms of performed remote sensing data pre-processing (Sec 3.1), the developed MNDWI trajectory 128 

analysis method including its output parameters (Sec 3.2), and the validation procedure (Sec. 3.3) 129 

3.1 Pre-processing 130 

As a prerequisite for time series analysis the remote sensing images have to be comparable in their 131 

information content (Coppin et al., 2004). To meet the homogenization requiremnt, the Landsat images 132 

were converted from DN to Top of Atmosphere (TOA)-reflectance to adjust for radiometric scene 133 

variations caused by solar illumination differences, sensor specific gains and offsets, and differences in 134 

seasonality (Earth-Sun distance). Furthermore, relative image-to-image co-registration was performed to 135 

minimze artifact changes due to spatial misalignements. Therfore, the co-registration approach of Behling 136 

et al. (2014) was applied for each lagoon seperately resulting in sub-pixel image-to-image alignemnt.  137 

3.2 Analysis of erosion and accretion processes using temporal MNDWI trajectories 138 

For each Landsat image the MNDWI of Xu (2006) was calculated and stacked to a MNDWI temporal data 139 

cube (Fig. 3). The MNDWI represents a ratio of the green and mid-infrared (MIR) spectral bands, utilizing 140 

the extreme low infrared reflectance of liquid water to discriminate between water and land bodies. 141 



 142 

Figure 3 Temporal MNDWI trajectories as basis for the WLMO approach 143 

Each pixel of the MNDWI temporal data cube represents a temporal MNDWI trajectory (Fig. 3). Based on 144 

these temporal MNDWI trajectories the WLMO approach implements a hierarchical classification system 145 

(Fig. 4) for the detection of water-land transitions, which can be interpreted in terms of erosion and 146 

accretion processes. At top level, temporally stable and unstable areas are distinguished. The stable areas 147 

are subdivided into permanent water and permanent land. The unstable areas into single erosion, single 148 

accretion, or multiple land/water transitions.  149 

 150 

Figure 4 Concept for the detection and classification of changes based on temporal MNDWI trajectories. Arrows indicate 151 
the date of change in terms of erosion or accretion. 152 

The MNDWI trajectory-based classification of WLMO comprises four processing steps (Fig. 5). Step A: 153 

Smoothing of the MNDWI-trajectories using a temporal median filter (kernel size = 3) (Fig. 5a). This 154 

filtering removes outliers caused by cloud coverage, fog/haze, or temporally flooding. On the other hand 155 

it preserves longer-term variations such as erosion and accretion processes. Step B: Classification into sure 156 

pixels (water/land) and unsure pixels (mixture of both). Pixels are classified into sure open water 157 

(MNDWI>0.6) and sure land pixels (MNDWI<0.0) based on the median filtered MNDWI-trajectory (Fig. 158 

5b). The remaining non-classified pixels are interpreted as a mixed signal of water and land due to 159 

influences of haze, fog, moist surfaces, or sub-pixel mixtures at the shoreline between water and land. 160 

Thus, they either represent pixels with a disturbed signal or pixels during transition periods from land to 161 

water (erosion: te) or water to land (accretion: ta). Step C: Gap filling between the sure pixels and 162 

identification of transition periods. The identification of transition periods relies on the temporal adjacent  163 

classes of sure water or sure land. If the sure classes match, the acquisitions in between are classified 164 

accordingly, and if not, a transition period is identified (Fig. 5c). Step D: Determination of the date of 165 

change during each transition period (Fig. 5d). The date of change during transition is associated with the 166 

period between subsequent images (pre- and post-image) of highest MNDWI change.  167 



 168 

Figure 5 Processing steps for pixel-based MNDWI trajectory analysis in WLMO.  169 

The result of the WLMO is a pixel-based binary temporal trajectory classifying each acquisition in water 170 

or land. Based on the binary trajectory the following parameters are provided:  171 

 type of occurring transitions: erosion (te), accretion (ta) 172 

 date of transitions: period between subsequent images 173 

 total number of transitions (tNo): Σte/a 174 

 overall stability: 175 

 stable pixels (tNo == 0). Further classified in permanent water or permanent land 176 

 unstable pixels (tNo >0). Further characterized by change dominance: erosion (Σte > Σta), 177 

accretion (Σte < Σta), no dominance (Σte < Σta) 178 

3.3 Validation procedure 179 

Due to the lack of existing reference data for past spatiotemporal progression of accretion and erosion 180 

processes at Walvis Bay and Sandwich Harbour, a detailed quantitative accuracy assessment is not 181 

possible. Therefore, we evaluated the quality of the obtained results by comparing the results of the 182 

change detection analysis with visual assessments of randomly selected available Landsat acquisitions and 183 

with published knowledge in the area. Moreover, we assessed how tide variations influence shoreline 184 

positions and evaluated how they influence the shoreline change determination results of WLMO. 185 

4 RESULTS 186 

The WLMO approach was applied to the Landsat time series for Walvis Bay and Sandwich Harbour. This 187 

section shows the achieved results in increasing detail. Section 4.1 presents the general output parameters  188 

of WLMO that differentiate the stability and dominant change processes (i.e. erosion or accretion). 189 

Section 4.2 provides annual spatiotemporal change rates of erosion and accretion for sub-regions of major 190 

changes. Section 4.3 shows the temporal development of the shoreline along two transects to demonstrate 191 

the temporal details that is achieved. Section 4.4 evaluates the quality of the derived WLMO results. 192 



4.1 Detection and mapping of erosion and accretion processes 193 

Fig. 6 depicts the WLMO results for both study sites, discriminating stable areas into water and land and 194 

characterizing unstable areas by change dominance and number of transitions. Unstable areas with a low 195 

number of transitions represent distinct accretion or erosion processes, whereas many transitions indicate 196 

that these areas are very variable over time. Distinct erosion or accretion processes are prevalent at the 197 

western flank of the sand spits, which are exposed to the open ocean. At Walvis Bay the tip and the 198 

shoulder (i.e. donkey bay) of the western flank accreted and the north-western flank eroded over the 199 

analyzed 30-year period. At Sandwich Harbour the whole western flank and tip of the sand spit was 200 

steadily growing, whereas steady long-term erosion processes are not identified. Overall, both sand spits 201 

expanded in northern direction. with up to 950m at Walvis Bay and 1050m at Sandwich Harbour (Fig. 7). 202 

 203 

Figure 6 Results for both coastal lagoons in terms of temporal stability (stable vs. unstable). Temporal unstable pixels 204 
are differentiated in terms of a) overall dominant change process and b) number of overall water-land 205 
transitions. 206 



 207 

Figure 7 Interpretation of major change areas along with distances (number in meter) and directions (double headed 208 
arrows) of detected change. Left: Walvis Bay. Right: Sandwich Harbour (For color legend refer to Fig. 6A) 209 

In contrast to the western flanks, the eastern flanks of the sand spits are rather stable. In case of Walvis 210 

Bay, at the northern end of the sand spit, the combination of eroding western flank and stable eastern 211 

flank results in a decreasing width of the sand spit. At the thinnest location the sand spit has reduced its 212 

width by 390m from 750m in 1984 to 360m in 2014 (Fig. 7). This substantial erosion by more than a half of 213 

the sand spit’s width clearly reveals the risk of future breaching, which would expose the city and the port 214 

of Walvis Bay to the open ocean. 215 

The regions that are protected by the sand spits experienced various change processes. The most obvious 216 

change is the large “eroding” area at Walvis Bay, which is caused by the expansion of the ponds of the salt 217 

mining company (DMC and CSIR, 2010). In contrast to these anthropogenic changes, further regions of 218 

frequent land/water transitions exist in both lagoons. These are naturally caused changes representing 219 

tidal flats, where the fluctuating tides cause temporary flooding and drying (Fig. 7). 220 

At Sandwich Harbour two additional phenomena could be identified. Northeast of the main sand spit a 221 

variable development of small sand banks occurred. These sand banks grew from the sand spit in 222 

northeastern direction towards the mainland, but breached occasionally before they could totally cut off 223 

the lagoon from the open see water (Supplement 2). The second phenomenon is the beach decline from 224 

west to east at the main coast in the northern part of the studied subset (Fig. 6, 7). 225 

4.2. Annual spatiotemporal change patterns for selected regions with dominant change regions  226 

For a deeper insight in the dynamics of the observed processes we analyzed the obtained results regarding 227 

annual spatiotemporal change patterns (Fig. 8, 9). In general the derived change patterns reveal that the 228 

dominating erosion or accretion processes were not a linear process but were rather characterized by great 229 

variations over time. For example, the northeastern progression of the tip of the Walvis Bay sand spit (Fig. 230 



8A3) has resulted in a total expansion of 0.39km² over the last 30 years (Fig. 8B3), which represents a long-231 

term average accretion rate of 13,000m²/a. However, this overall steady accretion varied greatly and 232 

underlay strong phases of accretion (up to 103,500m²/a in 1989), but also phases of marginal accretion 233 

(e.g. 3600m²/a in 1994), and even years with dominant erosion (77,400m²/a in 1986) (Fig. 8B3). Another 234 

example is the erosion at the western flank of the Walvis Bay sand spit (Fig. 8 A1). In 30 years this eastern 235 

directed process eroded overall 1.86 km² of the western sand spit (Fig. 8 B1), which is almost five times the 236 

0.39km² accretion at the tip. The long-term annual average of erosion is 62,000m² and the annual erosion 237 

rate peaks in 1999 with 268,200m² exceeding the long-term average by more than four times. The largest 238 

observed changes are caused by the expansion of sea water pre-evaporation ponds used for salt mining 239 

(Fig. 8 A2). In 1989, 2000, and 2001 annual “erosion rates” of more than 3km² could be observed due to 240 

these pond expansions. 241 

 242 

Figure 8 Spatiotemporal change patterns at Walvis Bay. a) Spatiotemporal progression of either erosion or accretion 243 
processes (color represents the year the pixel was first eroded/accreted), b) annual net change rate of erosion 244 
and accretion pixels (each pixel covers 900m²). Missing data in 1987, 1988, 1995, 2011, and 2012 (see Fig. 2). Four 245 
sub-regions are shown with either dominating erosion or accretion: 1 - Accretion at tip of sand spit, 2 - Erosion 246 
of the western flank, 3 - Accretion at donkey bay, 4 “Erosion” caused by salt mining. 247 

At Sandwich Harbour the findings reveal that the “beach decline” at the northeastern part occurred in two 248 

separate periods (Fig. 9A2, 9B2). At first a strong erosion took place around 1990, followed by a more 249 

stable period of low erosion and even accretion phases. The tip of the Sandwich Harbour expanded 250 

constantly in northern direction by a total of 1.71km² over the 30 years (Fig. 9A1, 9B1), which is more than 251 

four times the expansion observed at the tip at Walvis Bay (0.39km²). 252 



 253 

Figure 9 Spatiotemporal change patterns at Sandwich Harbour. a) Spatiotemporal progression of either erosion or 254 
accretion processes (color represents the year the pixel was first eroded/accreted), b) annual net change rate of 255 
erosion and accretion pixels (each pixel covers 900m²). Missing data in 1988, 2011, and 2012 (see Fig. 2). Two 256 
sub-regions are shown of either dominating erosion or accretion: 1 Accretion at tip of sand spit. 2: Erosion of 257 
beaches NE of sand spit. 258 

4.3 Detailed erosion and accretion progression along transects 259 

We analyzed the progression of erosion and accretion processes along transects (Fig. 10) in two selected 260 

areas of major change: (i) for the northern expansion of Sandwich Harbour and (ii) for the shrinkage of 261 

the western flank of the sand spit at Walvis Bay. This analysis allows to reveal detailed temporal variations 262 

of the longer-term progressing erosion and accretion processes. Along the transect at Walvis Bay (Fig. 263 

10B) the sand spit has receded 420m during the 30 year period, representing a long-term average rate of 264 

14m/a. Until 2007 the sand spit receded constantly with an annual rate of 16.6m followed by a stable 265 

period. This stability in recent years could also be observed for the complete southern part of the western 266 

flank, whereas the northern part has been subject to a higher erosion intensity during this period (Fig. 267 

10B, left panel).  268 

At the tip of Sandwich Harbour (Fig. 10A) the intensity of accretion varies greatly over time. The first 269 

northwards expansion of ca. 150m until 1994 followed an intense and short phase of erosion back to the 270 

initial sand spit dimension of 1984. From that on the sand spit was growing constantly until 2006. In total, 271 

it expanded 630m in northern direction with a mean annual accretion rate of 55m/a. After anew erosion 272 

in 2006 the sand spit expanded to its final dimension in 2014 with a total growth of 780m along the 273 

transect. The total change of 2280m (i.e. sum of erosion and accretion) along the transect is approx. three 274 

times higher (292%) than the total accretion of 780m. At Walvis Bay the total change is only 157% (660m) 275 

of the total erosion of 420m. This difference in total change reveals a more irregular and variable process 276 

at the tip of Sandwich Harbour compared to the overall steady erosion of the Walvis Bay’s western flank 277 

(Fig. 10B). 278 



 279 

Figure 10 Detailed change along transects for the dominant accretion at the sand spit tip at Sandwich Harbour (A) and 280 
the dominant erosion of the sand spit’s western flank at Walvis Bay (B). Left: Transect location depicted on the 281 
subsets of Fig. 8A1 and 9A1. Right: Change along the transect. Y-Axis: Change in meter with 1984 as starting 282 
point 0; dots represent datasets of the Landsat time series; connectors between dots represent the occurred 283 
change between these datasets (blue: erosion, red: accretion, grey: stable). 284 

4.4 Validation 285 

4.4.1 Qualitative Evaluation 286 

The visual quality assessments of regions with dominating changes revealed that the WLMO approach 287 

detected the areas and the dates of changes correctly, which shows the robustness of the approach against 288 

temporary influencing factors such as clouds, fog, and small geometric shifts (see Supplements 1,2). In the 289 

highly variable tidal flats the approach occasionally has missed land/water transitions if the return period 290 

of sure water or sure land pixels was shorter than the median filter kernel of three temporal acquisitions 291 

(Fig. 5A) However, these rare misidentifications at the tidal flats have no influence for the evaluation of 292 

the spatiotemporal accretion and erosion processes at the sand spits of the coastal lagoons. According to 293 

Walvis Bay Salt Holdings (2017) and DMC and CSIR (2010) the approach has successfully identified the 294 

main expansions of the salt mining pre-evaporation ponds in 1988, 2000, and 2001 (Fig. 8). 295 

The identification of the inland water ponds (Fig. 7), unknown to the authors before, proofed the 296 

objectivity of the approach to detect land/water transitions of any kind. The fact that almost no changes 297 

were identified at the stable coast of Walvis Bay and the stable eastern flanks of both sand spits (Fig. 7) 298 

confirms a very low susceptibility of the approach to identify false positives. 299 

4.4.2 Influence of tides on the horizontal shoreline variations 300 

For Walvis Bay basic bathymetry information can be found in DMC and CSIR (2010), Elfrink et al. (2003), 301 

Hughes et al. (1992), and Schoonees et al. (1998). The western flank, exposed to the open ocean, is much 302 

steeper than the eastern flank of the sand spit towards the protected lagoon and Walvis Bay city. For 303 

Donkey Bay (Fig. 1B), the most gentle part of the sand spits western flank (e.g. Elfrink et al., 2003, Fig. 1), 304 



Schoones et al. (1998, Fig. 2) present an offshore slope of approximately 3.6°. At such a given slope of 3.6° 305 

and 30m spatial resolution of a Landsat pixel, the tide range between two images needs to exceed 1.89m 306 

to lead to an uncertainty in horizontal shoreline extraction of more than one Landsat pixel. 307 

According to DMC and CSIR (2010) and Hughes et al. (1992) the tides at the two lagoons are semi-diurnal  308 

with a mean tide range of 1.42m and 0.62m for spring tides and neap tides, respectively. Both, spring and 309 

neap tides, fall below the 1 pixel uncertainty limit of 1.89m, meaning that the uncertainty of shoreline 310 

extraction introduced by tide variations is within the sub-pixel range. Besides these two tide parameters 311 

given in the literature, we analyzed the actual time series of tide data at Walvis Bay tide gauge. This gauge 312 

is part of the Global Sea Level Observing System GLOSS (Caldwell et al., 2015) and tide data is available, 313 

with some data gaps, since 1959 (UHSLC, 2018). Fig. 11 shows the tide height variations at Walvis Bay, 314 

presenting a maximal tidal range (minimum and maximum of the whole time series) of approximately 315 

2.1m and highest tide frequencies at 0.7m and 1.3m for low and high tides, respectively. Considering the 316 

maximum tidal range of 2.1m by a given slope of 3.6° the horizontal  uncertainty amounts to 33m, 317 

representing an uncertainty of shoreline extractions of approx. one pixel if two subsequent Landsat images 318 

would had been acquired at the two long-term tidal extremes. Ninety percent of all tide heights are within 319 

a range of 1.3m (350mm-1630mm), resulting to 20m horizontal shoreline variations, which means subpixel  320 

uncertainty in Landsat-based shoreline extraction. Overall, the horizontal uncertainty at Donkey Bay can 321 

be expected to be less than one Landsat pixel. 322 

Compared to Donkey Bay, the rest of the sand spits western flank at Walvis Bay is much steeper (e.g. 323 

Elfrink et al., 2003, Fig. 1) and thus tide variations alter the horizontal shoreline position even less, which 324 

means that tides can be neglected for the Landsat-based analysis in these regions. The fact that the more 325 

gentle parts at the eastern flank (compared to Donkey Bay) are identified as stable (Figs. 6,7) shows further 326 

the robustness of the WLMO approach, against tidal variations even if the horizontal shoreline 327 

uncertainty might be higher than one pixel. 328 

 329 

Figure 11 – Tide height variation statistics at the Walvis Bay tide gauge since 1959.  330 



5 DISCUSSION 331 

This paper proposed the WLMO (Water-Land-MOnitor), suited for the reconstruction of spatiotemporal  332 

shoreline variations by utilizing dense Landsat time series data. It focusses on the robust change 333 

assessment based on temporal MNDWI trajectories without the necessity to entirely map the shoreline 334 

position in each image. Thus, the in other studies (e.g. Ghosh et al., 2015; Kuleli, 2010; Louati et al., 2015; 335 

Wang et al., 2017) typically needed binarization of an image in water and non-water pixel for extracting 336 

the shoreline position is not strictly needed. Instead the WLMO includes a third class representing unsure 337 

pixels which are not sure water and sure land pixels. This allows the WLMO to detect changes only if the 338 

sure classes are changing and not in uncertain cases (such as wet surfaces, fog, and mixed pixels at the 339 

water-land front), in which other algorithms have to decide in each image if its water or not. That 340 

robustness of the change algorithm allows the integration of many images and to densify the analyzed 341 

data time series, making it possible to detect short-term changes in addition to the long-term change rates 342 

between several years or even decades that are typical periods in studies using optical satellite remote 343 

sensing data (e.g. Ghosh et al., 2015; Kuleli, 2010; Li and Damen, 2010; Wang et al., 2017). The implemented 344 

median filtering to despike the MNDWI-trajectory makes the WLMO also robust against outliers such as 345 

cloud coverage. However, by eliminating outliers it is always possible to eliminate real changes looking 346 

alike. In case of the WLMO it means that if accretion and erosion happen during three subsequent images 347 

the approach is not able to detect it. However, accretion processes are usually slow, which means that 348 

such a cycle (water<->land) does usually not happen in quick succession. Thus, using a dense time series 349 

minimizes the probability of missing such temporally variable accretion or erosion processes. 350 

The results revealed that both sand spits at Walvis Bay and Sandwich Harbour expanded in northern 351 

direction along the shore. In the 30-year period between 1984 and 2014 the approach identified the 352 

maximum northern progression of the sand spit of 950 m (31.7m/a) at Walvis Bay and 1050m (35 m/a) at 353 

Sandwich Harbour. These northern longshore expansions correspond with the prevailing south and 354 

south-westerly wind, ocean current, and wave direction (see Section 2). This overall northern expansion 355 

for Sandwich Harbour has already been described in the literature (Wilkinson et al., 1989), nevertheless, 356 

it has never been quantified before. At Walvis Bay, Schoonees et al. (1998) and Hughes et al. (1992) 357 

determined an annual progression rate of 17m/a over the 20th century by examining nautical maps and 358 

aerial photographs. In comparison, our detected annual rate over the 30 year period of 1984-2014 of 359 

31.7m/a is almost twice as high. Our finding correlates well with higher change rates for the more recent 360 

times, such as found by Ward (1989) and Schoonees et al. (1998), who reported expansion rates of 26m/a 361 

(1932 - 1989) and 22.6m/a (1980 - 1996), respectively. Another identified dominant change at Walvis Bay 362 

is the eastern directed erosion at the western flank, which decreased the width of the northern sand spit  363 

(Fig. 7). In Schoonees et al. (1998) this shrinkage was qualitatively discussed and the authors stressed the 364 

risk of potential sand spit breaching. In our study we were able for the first time to quantify this erosion 365 

with an annual rate of up to 14 m/a from 1984 to 2014 (Fig. 10B). The thinnest and thus probably the most  366 

vulnerable part for breaching could be identified in the middle of the northern sand spit, where its width 367 

has reduced from 750m to 360m with an rate of 13m/a (Fig. 7). 368 

In contrast to previous studies at theses lagoons the developed WLMO approach derives not only long-369 

term change rates but also spatially explicit change rates as well as their variations over time. For example, 370 

it could be shown that the ocean-exposed sand spit at Walvis Bay is characterized by areas of dominant  371 



erosion and accretion, whereas in Sandwich Harbour dominant erosion is missing. This difference exists 372 

although both sand spits underlay mainly the same wind, wave, and ocean current processes (see Section 373 

2). Thus, the absence of steady erosion at Sandwich Harbour might instead be explained by a higher 374 

sediment supply from the nearby Namib (Holdt and Eckardt, 2017) or by a different shaped shelf with less 375 

destructive wave energy at the shoreline. The argument of higher sediment supply is also supported by 376 

the four times larger sand spit accretion at Sandwich Harbour compared to Walvis Bay (1.71km² vs. 377 

0.39km²). Moreover, this paper clearly demonstrated that the erosion and accretion processes at both 378 

lagoons greatly varied over time and thus cannot a priori be assumed as linear long-term processes. The 379 

tips of the sand spits for example underwent long-term longshore progradations but also short-term 380 

regressions (Fig. 8B3, 9B1, 10A) which are most likely caused by strong cross-shore wind and wave activity. 381 

In contrast to the longshore accretion the erosion at the western flank of Walvis Bay was a more constant 382 

process (Fig. 8B1, 10B), which implies no or negligible sediment transport in western direction. 383 

The observed spatiotemporal sand spit dynamics also allow the evaluation of the risk of the lagoon’s 384 

habitats to get destroyed. Overall, both sand spits have a stable eastern shoreline (Fig. 7) that shows that 385 

the lagoons are currently at a low risk to dry out because of silting. However, at Walvis Bay the ongoing 386 

erosion of the western flank increases the risk of future sand spit breaching, which has the potential to 387 

expose parts of the bay and the city to the open ocean. At Sandwich Harbour the frequent formation of 388 

sand barriers show the constant risk that the lagoon will be cut off from the open sea water, which could 389 

lead to a drying-out of the lagoon because of increased sedimentation. However, in the analyzed period 390 

these sandbanks were always eroded before they could connect the sand spit and the main coast , 391 

indicating a reduced risk after all. 392 

6 CONCLUSION 393 

This paper presents the WLMO (Water-Land MOnitor) approach for the mapping and monitoring of 394 

spatiotemporal changes of coastal shorelines using remote sensing time series data. It is based on pixel-395 

oriented analysis of temporal MNDWI trajectories to distinguish efficiently between land and water and 396 

to determine the period of their temporal variations, i.e. accretion (water to land) and erosion (land to 397 

water). With four implemented steps, the temporal MNDWI-trajectory analysis is designed to 398 

accommodate the uncertainties that arise in common mono-temporal shoreline extraction techniques 399 

from the existence of clouds, turbidity, fog, tidal areas, wet surfaces, mixed pixels at the water-land front, 400 

and geometric mismatches between compared images. 401 

Applied to the two Namibians coastal lagoons Walvis Bay and Sandwich Harbour, the approach revealed 402 

new qualitative and quantitative insights of the lagoon’s spatiotemporal dynamics between 1984 and 2014 403 

that go far beyond the long-term change rates that have been known before. It could be shown that long-404 

term erosion and accretion of the lagoon’s sand spits are non-linear processes that underwent great 405 

variations over time. Such variations were in detail demonstrated at the tips of the sand spits, which were 406 

characterized by overall longshore accretion that were occasionally interrupted by short-term regressions 407 

(erosion events) probably due to cross-shore wind and wave activity. The spatially explicit results of the 408 

approach also allowed a quantitative comparison of the occurred changes at the two coastal lagoons. At 409 

Sandwich Harbour the accretion at the sand spit was four times larger, indicating its higher supply of 410 

sediments from the nearby Namib Desert. Moreover, we were able to identify the main risks that threaten 411 



the habitats of the coastal lagoons. At Walvis Bay the ongoing eastern directed erosion reduced the width 412 

of the sand spit significantly, and thus increased the risk of sand spit breaching which would expose a part  413 

of the lagoon and city to the open ocean. At Sandwich Harbour the main risk could be found in the 414 

frequent sand barrier formations at the mouth of the lagoon, which could result in the separation of the 415 

lagoon from the open ocean and thus to an increased sedimentation. 416 

The approach builds solely on the use of the MNDWI for the differentiation between water and land, and 417 

could be directly transferred to other coastlines worldwide. This transfer might require adapting the 418 

threshold for sure land classification to different natural conditions, especially if coastal areas are 419 

vegetated and thus differ from the arid conditions of Namibian lagoons. Moreover, it can be extended to 420 

other multispectral sensors to condense the analyzed time series and thus shorten the intervals between 421 

which changes can be identified. Suitable data for such an extension would be the free of charge data of 422 

the sensor systems Sentinel-2 (Drusch et al., 2012) and ASTER both comprising the required spectral bands 423 

for the MNDWI used in this study. 424 
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