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Summary methods are widely used to estimate species trees from genome-scale data. However, they can fail to produce ac-

curate species trees when the input gene trees are highly discordant because of estimation error and biological processes,

such as incomplete lineage sorting. Here, we introduce TREE-QMC, a new summary method that offers accuracy and scal-

ability under these challenging scenarios. TREE-QMC builds upon weighted Quartet Max Cut, which takes weighted quar-

tets as input and then constructs a species tree in a divide-and-conquer fashion, at each step forming a graph and seeking its

max cut. The wQMCmethod has been successfully leveraged in the context of species tree estimation by weighting quartets

by their frequencies in the gene trees; we improve upon this approach in twoways. First, we address accuracy by normalizing

the quartet weights to account for “artificial taxa” introduced during the divide phase so subproblem solutions can be com-

bined during the conquer phase. Second, we address scalability by introducing an algorithm to construct the graph directly

from the gene trees; this gives TREE-QMC a time complexity of O(n3k ), where n is the number of species and k is the number

of gene trees, assuming the subproblem decomposition is perfectly balanced. These contributions enable TREE-QMC to be

highly competitive in terms of species tree accuracy and empirical runtime with the leading quartet-based methods, even

outperforming them on some model conditions explored in our simulation study. We also present the application of these

methods to an avian phylogenomics data set.

[Supplemental material is available for this article.]

Estimating the evolutionary history for a collection of species is a
fundamental problem in evolutionary biology. Increasingly, spe-
cies trees are estimated from multilocus data sets, with molecular
sequences partitioned into (recombination-free) regions of the ge-
nome (referred to as loci or genes). A popular approach to species
tree estimation involves concatenating the alignments for individ-
ual loci together and then estimating a phylogeny under standard
models of molecular sequence evolution, like the generalized time
reversible (GTR) model (Tavaré 1986).

Such models assume the genes have a shared evolutionary
history; however, this is not necessarily the case. The evolutionary
histories of individual genes (referred to as gene trees) can differ
from each other because of biological processes (Maddison
1997). Incomplete lineage sorting (ILS), one of themost well-stud-
ied sources of gene tree discordance, is an outcome of genes evolv-
ing within populations of individuals, as modeled by the
multispecies coalescent (MSC) (Pamilo and Nei 1988; Rosenberg
2002; Degnan and Salter 2005). Concatenation-based approaches
to species tree estimation can be statistically inconsistent under
the MSC (Roch and Steel 2015). Moreover, simulation studies
have shown concatenation can perform poorly when the amount
of ILS is high (e.g., Kubatko and Degnan 2007). ILS is expected to
impactmanymajor groups, including birds (Jarvis et al. 2014), pla-
cental mammals (McCormack et al. 2012), and land plants (Wick-
ett et al. 2014). Thus, species tree estimationmethods that account
for ILS, either explicitly or implicitly, are of interest.

An alternative to concatenation involves estimating gene
trees (typically one per locus) and then applying a summarymeth-
od. The most popular summary method to date, ASTRAL (Mirarab

et al. 2014b), is a heuristic for the NP-hard maximum quartet sup-
port species tree (MQSST) problem (Lafond and Scornavacca
2019), which can be framed as weighting quartets (four-leaf trees)
by their frequencies in the input gene trees and then seeking a spe-
cies tree T that maximizes the total weight of the quartets dis-
played by T. The optimal solution to MQSST is a statistically
consistent estimator of the (unrooted) species tree under the
MSC model (Mirarab et al. 2014b), which is why heuristics for
this problem are widely used in the context of multilocus species
tree estimation. Proofs of consistency typically assume the input
gene trees are error-free (Roch et al. 2018); however, this is unlikely
in practice. An analysis of gene trees published for several recent
systematic studies found low bootstrap support values on average
(Table 1 in Molloy and Warnow 2018), suggesting that gene tree
estimation error (GTEE) may be pervasive across modern phyloge-
nomics data sets. GTEE can negatively impact the accuracy of sum-
mary methods, as shown by simulation (e.g., Xi et al. 2015) and
systematic studies (e.g., Meiklejohn et al. 2016). Overall, GTEE
and ILS present significant challenges to species tree estimation.

A third challenge is scalability. ASTRAL executes an exact (dy-
namic programming) algorithm for MQSST within a constrained
version of the solution space constructed from the input gene
trees. There have been many improvements to ASTRAL, with the
latest version ASTRAL-III (Zhang et al. 2018) having a time com-
plexity of O((nk)1.726x), where n is the number of species (also
called taxa), k is the number of gene trees, and x=O(nk) is the
size of the constrained solution space. Because x depends on the
amount of gene tree heterogeneity, a recent method FASTRAL
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(Dibaeinia et al. 2021) runs ASTRAL-III in an aggressively con-
strained solution space to speed up species tree estimation.

The other popular quartetmethods, wQMC (Avni et al. 2014)
and wQFM (Mahbub et al. 2021), take weighted quartets as input
and then execute a divide-and-conquer approach to phylogeny re-
construction. A recent study found wQFM to be more accurate
than ASTRAL-III on challenging model conditions characterized
by high ILS andhighGTEE (Mahbub et al. 2021). In these analyses,
wQFM was given Θ(n4) quartets as input, with each quartet
weighted by the number of gene trees that displayed it. The related
input processing step limits the scalability of this approach. Here,
we enable improved accuracy and scalability by introducing TREE-
QMC.

Results

Overview of TREE-QMC method

TREE-QMC builds upon the first widely used quartet method,
wQMC, which reconstructs the species tree in a divide-and-con-
quer fashion. At each step in the divide phase, an internal branch
in the output species tree is identified; this branch splits the taxa
into two disjoint subsets (Fig. 1). The algorithm continues by re-
cursion on the subproblems implied by the two subsets of taxa.
“Artificial taxa” are introduced to represent the species on the op-
posite of the branch so that solutions to subproblems can be com-
bined during the conquer phase. The recursion terminates when
the subproblem has three or fewer taxa, as there is only one possi-
ble tree that can be returned. At each step in the conquer phase,
trees for complementary subproblems are connected at the related
artificial taxa, until there is a single tree on the original set of spe-
cies (Supplemental Fig. S1).

Central to wQMC’s approach is a graph built from weighted
quartets. This graph is constructed in such a way that its max cut
should correspond to a branch in the output species tree (Snir
andRao 2010, 2012; Avni et al. 2014). Our observation is that quar-
tets on artificial taxa can have higher weights than quartets on
only nonartificial taxa (called singletons) when looking at a single
gene tree (Fig. 1). As wewill show, normalizing the quartet weights
so that each gene tree gets one vote for every subset of four species
improves accuracy. The best performing normalization scheme
(n2) weights quartets based on the subproblem decomposition; es-
sentially, quartets are upweighted if their taxa are more closely re-

lated to the current subproblem (note: n1 denotes uniform
normalization and n0 denotes no normalization). Moreover, we
provide an algorithm to build the (normalized) quartet graph
directly from the input gene trees, enabling TREE-QMC to have a
time complexity ofO(n3k) if the subproblem decomposition is per-
fectly balanced (Theorem 3 in the Supplemental Materials). This
analysis is for a highly idealized setting and ignores large constant
factors (Theorem 2 in the Supplemental Materials).

Beyond time complexity, methods can differ from each other
in terms of data locality, code optimizations, and other theoretical
guarantees (e.g., ASTRAL is guaranteed to find an optimal solution
within its constrained solution space, whereas TREE-QMC has no
such guarantee). Thus, in the remainder of this paper, we focus on
evaluating the empirical performance of TREE-QMC (and its differ-
ent normalization schemes) against the leading quartet-based
summary methods on simulated and biological data.

Experimental evaluation

We now give an overview of our simulation study; details are pro-
vided in the Supplemental Materials.

Methods benchmarking

TREE-QMC is compared against four leading quartet methods:
wQMC v1.3, wQFM v3.0, ASTRAL v5.5.7 (denoted ASTRAL-III or
ASTRAL3), and FASTRAL. Two of these methods, wQMC and
wQFM, take weighted quartets instead of gene trees as input (the in-
put processing step is performed using the script distributed with
wQFM). All methods are run in default mode. The current version
of TREE-QMC requires binary gene trees as input so polytomies in
the estimated gene trees are refined arbitrarily before running
TREE-QMC (the same refinements are used in all runs of TREE-
QMC to ensure a fair comparison across the normalization schemes).

Evaluation criteria

All methods are compared in terms of species tree error, quartet
score, and runtime. Species tree error is the percent Robinson-
Foulds (RF) error (i.e., normalized RF distance between the true
and estimated species trees multiplied by 100). Because the true
and estimated species trees are both binary, the RF error rate is
equivalent to false negative error rate (i.e., the fraction of the inter-
nal branches in the true species tree that are missing from the esti-
mated species tree). Two-sidedWilcoxon signed-rank tests are used

Figure 1. At each step in the divide phase, taxa are split into two disjoint subsets and then artificial taxa are introduced to represent the species on the
other side of the split. To compute the quartet weights for a given subproblem, the leaves of each gene tree are relabeled by the artificial taxa. Without
normalization (column n0), quartet 1, 2|Y, Z gets zero votes and the alternative quartets get six votes each (note: quartet 1, Y|2, Z gets six votes by taking
either species 5, 3, or 4 for label Y and either species 0 or 9 for label Z). With normalization, each gene tree gets one vote for each subset of four labels,
although this vote can be split across the three possible quartets. In the uniform normalization scheme (column n1), we simply divide column n0 by
the total number of votes cast in the unnormalized case. In the nonuniform normalization scheme (column n2), we leverage that structure implied by
the divide phase of the algorithm; the idea is that species should have lesser importance each time they are relabeled by artificial taxa.
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to evaluate differences between TREE-QMC-n2 versus FASTRAL as
well as TREE-QMC-n2 versus ASTRAL3 (TREE-QMC-n2 is also com-
pared against wQFM when possible).

We report the difference in the quartet scores between the es-
timated and true species trees (scores are computed using the same
set of gene trees). The quartet score is the number of quartets in the
input gene trees that are displayed by the output species tree (di-
vided by the total number of quartets in the gene trees). This quan-
tity is simply the (normalized) MQSST objective function, so
higher quartet scores imply a better solution to MQSST.

The runtime is the wall clock time, which for wQFM and
wQMC includes the time to weight quartets based on the input
gene trees (the fraction of time spent on input processing phase
is reported in the Supplemental Materials). All methods are run
on the same data set on the same compute node on our cluster;
the maximum wall clock time is 18 h.

Simulated data sets

Our benchmarking study uses data simulated in prior studies, spe-
cifically the ASTRAL-II simulated data sets (Mirarab and Warnow
2015) as well as the avian and mammalian simulated data sets
(Mirarab et al. 2014a). These data are generated by (1) taking a
model species tree, (2) simulating gene trees within the species
tree under the MSC, (3) simulating sequences down each gene
tree under the GTR model, and (4) estimating a tree from set of
gene sequences. Either the true gene trees from step 2 or the esti-
mated gene trees from step 4 can be given as input to methods.
This process is repeated for various parameter settings.

The ASTRAL-II data sets are generated frommodel species trees
simulated under the Yulemodel given three parameters: species tree
height, speciation rate, andnumber of taxa. The speciation rate is set
so that speciation events are clustered near the root (deep) or near
the tips (shallow) of the species tree. There are 50 replicates for
eachmodel condition (note that a newmodel species tree is simulat-
ed for each replicate data set). The avian andmammalian simulated

data sets are generated from published species trees estimated for 48
birds (Jarvis et al. 2014) and 37mammals (Song et al. 2012), respec-
tively. The species tree branches are scaled tovary the amount of ILS,
and the sequence length is changed to vary the amount of GTEE.
There are 20 replicates for each model condition.

The data properties (ILS and GTEE levels) are summarized in
Supplemental Tables S1 and S2. The ILS level is the percent RF error
(between the true species tree and the true gene tree) averaged across
all gene trees, and GTEE level is the percent RF error (between the
true and estimated gene trees) averaged across all gene trees. Overall,
these data sets cover a rangeofmodel conditions. The results are pre-
sented in four experiments looking at the impact of varying the
number of taxa, the species tree scale/height (proxy for ILS), the se-
quence length (proxy for GTEE), and the number of genes.

Experimental results

Number of taxa

Figure 2, A and B, shows the impact of varying the number of taxa.
The pipelines that need weighted quartets to be given as input
(wQFM and wQMC) run on the order of seconds for 10 taxa, min-
utes for 50 taxa, and hours for 100 taxa. The runtime of these pipe-
lines is dominated by the time to weight Θ(n4) quartets by their
frequency in the input gene trees (Supplemental Table S3). This in-
put processing step does not complete on our compute nodes
within our maximum wall clock time of 18 h for most data sets
with 200 taxa. Therefore, we could not run wQMC and wQFM
on data sets with 200, 500, or 1000 taxa. In contrast, TREE-QMC
implements a similar approach to wQMC but bypasses the input
processing step, scaling to 1000 taxa and 1000 genes. For these
data sets, FASTRAL, TREE-QMC-n2, and ASTRAL-III complete on
average in 32 min, 64 min, and 5.3 h, respectively (note: AS-
TRAL-III fails to complete on 3/50 replicates within our maximum
wall clock time of 18 h). Thus, TREE-QMC-n2 is much faster than
ASTRAL-III and is not much slower than FASTRAL. TREE-QMC-n2

A

B

Figure 2. Impact of number of taxa. (A) Percent species tree error across replicates (bars represent medians; triangles represent means; outliers are not
shown). The symbols ∗, ∗∗, and ∗∗∗ indicate significance at P<0.05, 0.005, and 0.0005, respectively (all but one test survives Bonferroni multiple compar-
ison correction; see Supplemental Table S4 for details). (B) Mean runtime across replicates (shaded region indicates standard error). All data sets have spe-
cies tree height 1×, shallow speciation, and 1000 estimated gene trees. The ILS level is 17%–35%, and GTEE level is 19%–30%. Note: The input processing
for wQMC and wQFM does not run within our maximum wall clock time of 18 h for data sets with 200 or more taxa.
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is significantly more accurate than either FASTRAL or ASTRAL-III
when the number of taxa is 200 or greater. For these same condi-
tions, quartet weight normalization, and especially the nonuni-
form (n2) scheme, improves TREE-QMC’s accuracy. Results for
methods given true gene trees as input or only 250 (out of 1000)
gene trees as input are shown in Supplemental Figs. S7–S9).

Incomplete lineage sorting (ILS)

ASTRAL-II data (200 taxa, 1000 estimated gene trees)

Figure 3, A and B, shows the impact of varying the species tree
height and thus the amount of ILS for the ASTRAL-II data sets.
TREE-QMC-n2, FASTRAL, and ASTRAL-III produce highly accurate
species trees, with median species tree error at or below 6% for all
model conditions (note: the input processing for wQMC and
wQFM does not run within our maximum wall clock time of 18
h for these 200-taxon data sets). For some conditions, TREE-
QMC-n2 is significantly more accurate than FASTRAL or AS-
TRAL-III; otherwise, there are no significant differences between
these pairs of methods. Quartet weight normalization improves
the accuracy of TREE-QMC; this effect is most pronounced when
the amount of ILS was very high (species tree height: 0.5×). On
these same conditions, ASTRAL-III is much slower than the other
methods, taking 73 min on average for the highest amount of
ILS (species tree height: 0.5×) compared to 5 min on average for
the lowest amount of ILS (species tree height: 5×). In contrast,
both TREE-QMC-n2 and FASTRAL are quite fast, taking on average
<3 min for model conditions with 200 or fewer taxa. Results for
methods given true gene trees as input or only 250 (out of 1000)
gene trees as input are shown in Supplemental Figs. S10–S12.

Avian simulated data (48 taxa, 1000 estimated gene trees)

Figure 4, A–C, shows the impact of varying the species tree scale
and thus the amount of ILS on the avian simulated data sets.

wQMC is the least accurate method and is even less accurate
than TREE-QMC-n0 (no normalization). Normalization improves
the performance of TREE-QMC for these data, enabling TREE-
QMC-n2 to be among the most accurate methods when the
amount of ILS is high (species tree scales: 0.5× and 1×). Testing
for differences between TREE-QMC-n2 versus the other three lead-
ingmethods (wQFM, FASTRAL, and ASTRAL-III) reveals that either
TREE-QMC-n2 is significantly better or else there are no significant
differences between these pairs of methods. All methods finish
quickly: wQMC and wQFM complete in <13 min on average,
ASTRAL-III completes in <4 min on average, and the other meth-
ods finish in <1 min on average.

Figure 4, D–F, shows the difference in quartet score between
estimated and true species trees. We find that most methods typi-
cally recover species trees with higher quartet scores than the true
species tree, indicating that the true species tree is not the optimal
solution to MQSST. Moreover, the relative performance of meth-
ods for quartet score is different than the relative performance of
methods for species tree error for many model conditions. These
two trends are especially pronounced when gene trees are estimat-
ed (mean error: 60%–62%).

Mammalian simulated data (37 taxa, 200 estimated gene trees)

All methods have similar performance for the mammalian data,
although these data sets represent easier model conditions in
terms of ILS and GTEE levels (Supplemental Fig. S3; Supplemental
Table S7).

Gene tree estimation error (GTEE)

Avian simulated data (48 taxa, 1000 gene trees)

Figure 4, A–C, also shows the impact of GTEE for each species tree
scale (ILS level). For each ILS level, methods are given true gene
trees or estimated gene trees (mean error: 60%–62%). The trends

B

A

Figure 3. Impact of the amount of ILS. (A) Percent species tree error across replicates (bars represent medians; triangles represent means; outliers are not
shown). The symbols ∗, ∗∗, and ∗∗∗ indicate significance at P<0.05, 0.005, and 0.0005, respectively (three tests survive multiple comparison corrections;
see Supplemental Table S5 for details). (B) Mean runtime across replicates (shaded region indicates standard error). All data sets have 200 taxa and 1000
estimated gene trees. Onemodel condition with species tree height 1× and shallow speciation is repeated from Fig. 2. For species tree heights 0.5×, 1×, and
5×, the ILS level is 68%–69%, 34%, and 9%–21%, respectively, and the GTEE level is 44%, 27%–34%, and 21%–28%, respectively.
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for estimated gene trees are discussed above. For true gene trees,
there are no significant differences between TREE-QMC-n2 versus
the other leading methods (wQFM, FASTRAL, and ASTRAL-III),
and all versions of TREE-QMC perform similarly so the utility of
normalization is diminished. Moreover, these methods find spe-
cies trees with similar quartet scores to the true species tree, unlike
the case of estimated gene trees. Lastly, the performance of wQMC
is in line with the other methods when there is very little gene tree
heterogeneity because of ILS or GTEE (Fig. 4C).

Mammalian simulated data (37 taxa, 200 gene trees)

Similar trends betweenmethods are observed formammalian sim-
ulated data sets when varying the sequence lengths (Supplemental
Fig. S4; Supplemental Table S8). TREE-QMC is significantly more
accurate than FASTRAL and ASTRAL-III for the shortest sequence
length (250 bp; GTEE level 43%); there are no differences in accu-
racy between these pairs of methods otherwise.

Number of genes

Similar trends between methods are observed when varying the
number of genes (e.g., Supplemental Fig. S5; Supplemental
Tables S9, S10).

Reanalysis of avian phylogenomics data set

We also reanalyze the avian data set from Jarvis et al. (2014) with
3679 ultraconserved elements (UCEs). This data set includes the
best maximum likelihood tree and the set of 100 bootstrapped
trees for each UCE. Although the true species tree is unknown,
we discuss the presence and absence of strongly corroborated

clades, such as Passerea and six of themagnificent seven clades ex-
cluding clade IV (Braun and Kimball 2021). We also compare
methods to the published concatenation tree estimated by run-
ning RAxML (Stamatakis 2014) on UCEs only (Jarvis et al. 2014);
thus the comparison between concatenation and the quartet-
based summary methods is on the same data set. Branch support
is computed for the estimated species trees using ASTRAL-III’s local
posterior probability (Sayyari and Mirarab 2016) as well as using
multilocus bootstrapping (MLBS) (Seo 2008). We repeat this anal-
ysis (exceptMLBS) on the TENT data (14,446 gene trees), which in-
cludes gene trees estimated on UCEs as well as exons and introns.
In this case, methods are compared to the published TENT concat-
enation tree estimated by running ExaML (Kozlov et al. 2015).

UCE data

For the UCE data (48 taxa, 3679 gene trees), ASTRAL-III completes
in 65 min, making it the most time consuming method. All other
methods run in less than a minute; however, the preprocessing
step to weight quartets for wQFM takes 41 min.

Both FASTRAL and ASTRAL-III produce the same species tree
(Fig. 5C), and both TREE-QMC-n2 and wQFM produce the same
species tree (Fig. 5A). We compare these two trees to the published
concatenation tree for UCEs (Fig. 5B). There are many similarities
between these three trees, as all contain the magnificent seven
clades. The TREE-QMC-n2 and FASTRAL trees differ from the con-
catenation tree by seven and nine branches, respectively, putting
the TREE-QMC-n2 tree slightly closer to the concatenation tree
than the FASTRAL tree. The TREE-QMC-n2 tree recovers Passerea
andAfroaves and fails to recover Columbea, like the concatenation
tree and unlike the ASTRAL-III tree (note that Passerea was

A B C

D E F

Figure 4. Impact of ILS and GTEE. (A), (B), and (C) Percent species tree error for the avian data set with 1000 estimated or true gene trees and species tree
scales 0.5×, 1×, and 2×, respectively. Two-sided Wilcoxon signed-ranked tests were used to evaluate differences between TREE-QMC-n2 versus wQFM,
FASTRAL, and ASTRAL3 (nine tests per subfigure). The symbols ∗, ∗∗, and ∗∗∗ indicate significance at P<0.05, 0.005, and 0.0005, respectively (for 0.5×
species tree scale with estimated gene trees, the difference between TREE-QMC-n2 and ASTRAL-II survives Bonferroni multiple comparison correction;
see Supplemental Table S6 for details). (D), (E), and (F ) show the difference in quartet score between the estimated and true species tree times 1000
for species tree scales 0.5×, 1×, and 2×, respectively (positive values indicate the estimated tree is a better solution toMQSST than the true tree). For species
tree heights 0.5×, 1×, and 2×, the ILS level is 60%, 47%, and 35%, respectively, and the GTEE level is 60%, 60%, and 62%, respectively. Results for wQMC
are cut off because otherwise the trends cannot be observed (see Supplemental Fig. S2 for full y-axes).
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considered to be strongly corroborated, after accounting for data
type effects, by Braun and Kimball 2021). Overall, there are only
five branches that differ between the TREE-QMC-n2 tree and the
FASTRAL tree; all of these branches have nearly equal quartet sup-
port for their alternative resolutions so that both trees represent
reasonable hypotheses.

TENT data

For the TENT data (48 taxa, 14,446 gene trees), TREE-QMC-n2
and FASTRAL complete in <3 min, whereas it takes 2.35 h to
weight quartets. wQFM completes in less than a minute
after this preprocessing phase. We do not run ASTRAL-III as
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Figure 5. Avian UCE data. (A) Tree estimated from UCE gene trees using TREE-QMC-n2/wQFM. (B) Tree estimated from concatenated UCE alignment
using RAxML. (C) Tree estimated fromUCE gene trees using ASTRAL-III/FASTRAL. Above the branch,we show support values X, Y, whereX is estimated using
ASTRAL’s local posterior probability (multiplied by 100) and Y is computed using RAxML’s bootstrap support for B and using MLBS for A and C. Support
values are only shown when X is <100. Below the branch, we show the quartet support (the two values below it correspond to quartet support for the two
alternative resolutions of the branch). Taxa outside of Neoaves are not shown as all methods recovered the same topology outside of Neoaves.
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this analysis was reported to take over 30 h (Dibaeinia et al.
2021).

All threemethods produce a different tree, which is compared
to the published concatenation tree for TENT data (Supplemental
Fig. S6). None of the trees recover Passera, and only the concatena-
tion and wQFM trees recover Afroaves, although this branch has
very low local support (local posterior probability of 0.0) in the
wQFM tree. Once again, the TREE-QMC-n2 and wQFM trees are
closest to the concatenation tree, with the TREE-QMC-n2,
wQFM, and FASTRAL trees differing from it by 8, 8, and 10 branch-
es, respectively. There are five branches that differ between the
wQFM tree and the TREE-QMC-n2 tree (two of these branches in
the wQFM have very low support: local posterior probability of
0.03 and 0.0). There are only three branches that differ between
the TREE-QMC-n2 tree and the FASTRAL tree; as with the UCE
data, these branches are reasonable based on quartet support for
their alternative resolutions.

Discussion

Our method TREE-QMC builds upon the algorithmic framework
of wQMC (Avni et al. 2014) by introducing the normalized quartet
graph and showing that it can be computed directly from gene
trees. These contributions together enable our new method
TREE-QMC to be highly competitive with the leading quartet-
based summarymethods in terms of species tree accuracy and em-
pirical runtime, even outperforming them on some simulated data
sets. Specifically, TREE-QMC (with nonuniform normalization) is
competitivewithwQFM in terms of species tree accuracy but scales
to much larger data sets. Moreover, TREE-QMC is at least as accu-
rate, and often more accurate, than the dominant method
ASTRAL-III (and its improvement FASTRAL), while being highly
competitive in terms of empirical runtime.

The model conditions where TREE-QMC outperforms
ASTRAL-III are characterized by large numbers of species or high
amounts of gene tree heterogeneity because of ILS and GTEE. For
the latter scenario, the true species tree was typically not the opti-
mal solution to MQSST (note: this observation is not out of line
with the statistical theory because the proof of consistency as-
sumes infinite error-free gene trees). Therefore, better heuristics
to MQSST may not translate to more accurate species trees when
GTEE is high.

A major goal is to develop summary methods that are robust
to GTEE. One approach is weighting quartets not just by their fre-
quency in the input gene trees. A new version of ASTRAL, dubbed
weightedASTRAL (Zhang andMirarab 2022), whichwas published
during our study, adjusts quartet weights based on the branch sup-
port and branch lengths in the estimated gene trees. TREE-QMC’s
nonuniform normalization scheme adjusts the quartet weights
based on the subproblem division (i.e., quartets are upweighted
if they are on species in more closely related subproblems, which
ideally reflects closeness in the true species tree). In the future, it
would be interesting to compare TREE-QMC to weighted
ASTRAL as well as to implement other quartet weighting schemes
within TREE-QMC.

There are several other opportunities for future work worth
mentioning. First, the version of TREE-QMC presented here re-
quires binary gene trees as input. Thus, TREE-QMC was given
gene trees that are randomly refined in our experimental study,
whereas all other methods were given gene trees with polytomies.
This did not have a negative impact on TREE-QMC’s performance
relative to the other methods; however, it would be worth explor-

ing this issue further. Ultimately, this inherent limitation of TREE-
QMC could be addressed by devising an efficient algorithm for
computing the “edges” in the quartet graph (seeMethods section),
although this would come at the cost of increased runtime.
Second, the experimental study presented here only evaluates
TREE-QMC in the context of multilocus species tree estimation
where gene tree can be discordant with the species tree because
of ILS and/or GTEE. Our study does not address the use of TREE-
QMC as a more general quartet-based supertree method, and fu-
ture work should explore whether quartet weight normalization
is beneficial in this context. Lastly, TREE-QMC’s algorithm oper-
ates on gene trees that are multilabeled because of artificial taxa,
so the algorithms presented here can be applied to gene trees
that are multilabeled because of other causes, such as multiple in-
dividuals being sampled per species (Rabiee et al. 2019) or genes
evolving via duplications (Zhang et al. 2020; Legried et al. 2021;
Yan et al. 2021; Smith et al. 2022). Future work should explore
the effectiveness of TREE-QMC under these conditions as well as
those characterized by missing data because of gene loss or other
causes (Nute et al. 2018).

Methods

Wenowpresent the TREE-QMCmethod. To begin,we define some
terminology for phylogenetic trees and the notation used through
this section and the Supplemental Materials.

Terminology and notation

A phylogenetic tree T is a triplet (g, L, f), where g is a connected acy-
clic graph, L is a set of labels (species), and f maps leaves in g to
labels in L. If f is a bijection, we say that T is singly labeled; other-
wise, we sayT ismultilabeled. Treesmay be either unrooted or rooted.
Edges in an unrooted tree are undirected, whereas edges in a rooted
tree are directed away from the root, a special vertexwith in-degree
0 (all other vertices have in-degree 1). To transform an unrooted
tree T into a rooted tree Tr, we select an edge in T, subdivide it
with a new vertex r (the root), and then orient the edges of T
away from the root. Conversely, we transform a rooted tree Tr

into an unrooted treeT by undirecting its edges and then suppress-
ing any vertex with degree 2.

For a tree T, we denote its edge set as E(T), its internal vertex
set as V(T), and its leaf set as L(T). Sometimes we consider a phy-
logenetic tree T restricted to a subset of its leaves R ⊆ L(T). Such a
tree, denoted T|R, is created by deleting leaves in L(T)\R and sup-
pressing any vertex with degree 2 (while updating branch lengths
in the natural way). Henceforth, all trees are binary, meaning that
nonleaf, nonroot vertices (referred to as internal vertices) have de-
gree 3.

To present TREE-QMC, we need two additional concepts: bi-
partitions and quartets. A bipartition splits a set L of labels into two
disjoint sets: E and F = L\E. Each edge in a (singly labeled,
unrooted) treeT induces a bipartition because deleting an edge cre-
ates two rooted subtrees whose leaf labels form the bipartition
p(e) = E|F . A given bipartition is displayed by T if it is in the set
{π(e):e∈E(T)}. The bipartition is trivial if |E| or |F | is 1; otherwise,
it is nontrivial.

A quartet q is an unrooted, binary treewith four leaves a, b, c, d
labeled by A, B, C, D, respectively. It is easy to see that there are
three possible quartet trees given by their one nontrivial biparti-
tion: (1) a,b|c,d; (2) a,c|b,d; and (3) a,d|b,c (note that we typically
use lower case letters to denote leaf vertices and capital letters to
denote leaf labels, although this distinction is only necessary
when trees are multilabeled). A set of quartets can be defined by
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an unrooted tree T by restricting T to every possible subset of four
leaves in L(T); the resulting setQ(T) is referred to as the quartet en-
coding of T. If T is multilabeled, then some of the quartets in Q(T)
will have multiple leaves labeled by the same label. Lastly, we say
that T displays a quartet q if q∈Q(T).

Review of wQMC

As previously mentioned, our new method TREE-QMC builds
upon the divide-and-conquer method wQMC (Avni et al. 2014).
To produce a bipartition on X , wQMC constructs a graph from
Q, referred to as thequartet graph, and then seeks its maximum
cut (Snir and Rao 2010, 2012; Avni et al. 2014). The quartet
graph is formed from two complete graphs, B and G, both on ver-
tex setV (i.e., there exists a bijection betweenV andX ). All edges in
B and G are initialized to weight zero. Then, each quartet
q = A, B|C, D [ QX contributes its weight wT (q) to two “bad” edg-
es inB and four “good” edges inG, wherewT (q) corresponds to the
number of gene trees in the input set T that display q. The bad edg-
es are based on sibling pairs: (A, B) and (C, D). The good edges are
based on nonsibling pairs: (A, C), (A, D), (B, C), and (B, D). We do
not want to cut bad edges because siblings should be on the same
side of the bipartition; conversely, we want to cut good
edges because nonsiblings should be on different sides of the
bipartition. Ultimately, we seek a cut C to maximize∑

(X,Y)[C(G[X, Y]− aB[X, Y]), where α>0 is a hyperparameter
that can be optimized using binary search. Although MaxCut is
NP-complete (Karp 1972), fast and accurate heuristics have been
developed (Dunning et al. 2018). The cut gives a bipartition in
the output species tree and the wQMCmethod proceeds by recur-
sion on the two subsets of species on each side of the bipartition.
Artificial taxa are introduced to represent the species on the other
side of the bipartition.

TREE-QMC: quartet weight normalization

Our key observation in developing TREE-QMC is that artificial taxa
change the quartet weights so that a single gene tree will votemul-
tiple times for quartets on artificial taxa and only once for quartets
on only nonartificial taxa (called singletons). As shown in Fig. 1,
the weight of quartet M, N|O, P is

f0(M, N|O, P) =
∑
m[M

∑
n[N

∑
o[O

∑
p[P

wT (m, n|o, p), (1)

whereM , L denotes the set of leaves (i.e., species) in T associated
with labelM (and similarly forN,O, P). When labelsM,N, O, P are
all singletons, each gene tree casts exactly one vote for one of the
three possible quartets: M, N|O, P or M, O|N, P or M, P|N, O
(assuming no missing data). Otherwise, each gene tree casts
|M| · |N| · |O| · |P| votes (again assuming no missing data) and
thus can vote for more than one topology.

We propose to normalize the quartet weights so that each gene
tree casts onevote for each subset of four labels, although itmay split
its vote across the possible quartet topologies in the case of artificial
taxa. To get this outcome, we can simply divide by the number of
votes cast so that the weight of M, N|O, P becomes

f1(M, N|O, P) = f0(M, N|O, P)
|M| · |N| · |O| · |P| . (2)

This can be implemented efficiently by assigning an im-
portance value I(x) to each species x [ S and then computing the
weight as

f (M,N|O,P)=
∑

m[M,n[N,o[O,p[P
I(m,n, o,p) ·wT (m,n|o,p),

(3)

where I(m, n, o, p) = I(m) · I(n) · I(o) · I(p). Specifically, Equation 3 re-
duces to Equation 2 when I(m) = |M|−1 for all m∈M (and similarly
forN,O,P). Because all specieswith the same label are assigned the
same importance value, we refer to this approach as uniform nor-
malization (n1). More broadly, the quartet weights will be normal-
ized whenever Equation 3 corresponds to a weighted average,
meaning that

∑
m[M,n[N,o[O,p[P

I(m,n,o,p)=1. (4)

It is easy to see that this will be the case whenever
∑

m[MI(m)=1
(and similarly for N, O, P). In unnormalized (n0) case, we assign
all species an importance value of 1 so that Equation 3 reduces
to Equation 1.

We now describe how to normalize quartet weights while le-
veraging the hierarchical structure implied by artificial taxa by as-
signing importance values to species with the same label. The idea
is that species should have lesser importance each time they are re-
labeled by an artificial taxon. In Fig. 1, artificial taxon Z represents
speciesZ= {0, 6, 7, 9} but species 0 and 9were previously labeled by
artificial taxon X. This relationship can be represented as the root-
ed “phylogenetic” tree TZ given by Newick string: (6, 7, (0, 9)X)Z.
We use TZ to assign importance values to all species z∈Z, specifi-
cally

I(z) =
∏

v[path(TZ ,z)

1
outdegree(v)

, (5)

where outdegree(v) is the out-degree of vertex v and path(TZ, z) con-
tains the vertices on the path in TZ from the root to the leaf labeled

z, excluding the leaf. Continuing the example, I(6) = I(7) = 1
3
and

I(0) = I(9) = 1
3
· 1
2
= 1

6
. By construction,

∑
z[ZI(z) = 1 so this ap-

proach normalizes the quartet weights. Because different species
with the same label can have different weights, we refer to this ap-
proach as nonuniform normalization (n2). In our simulation study,
normalizing the quartet weights in this fashion improved species
tree accuracy for challenging model conditions.

TREE-QMC: efficient quartet graph construction

Another key development in TREE-QMC is an efficient algorithm
for constructing the quartet graph directly from k gene trees, each
on n species. Our approach breaks down computing the weights
for good and bad edges into three cases:

• Case 1: taxa X, Y are both nonartificial taxa (called singletons).
• Case 2: taxa X is a singleton and Y is an artificial taxon (or vice
versa).

• Case 3: taxa X, Y are both artificial taxa.

For one gene tree,G[X, Y ] andB[X, Y ] can be computed for all pairs
X, Y in case 1, case 2, and case 3 in O(a2) time, O(abn) and O(b2n)
time, respectively, where a is the number of singletons and b is the
number of artificial taxa. Thus, for a subproblemwith s= a+ b taxa,
the quartet graph can be constructed in O(s2nk) time by applying
this algorithm to all gene trees (Theorem 1 in the Supplemental
Materials).

After quartet graph construction, we seek a max cut. Our
high-level approach is the same as wQMC. However, we differ in
our binary search for α (interval and precision) and our max-cut
heuristic, instead using the one proposed by Burer et al. (2002)
and implemented in the open-source package MQLib by
Dunning et al. (2018). Our approach for cutting the quartet graph
runs in O(s2) time (Theorem 2 in the Supplemental Materials), so
the time complexity for each subproblem is dominated by quartet
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graph construction. Overall, the divide-and-conquer algorithm
runs in O(n3k) time (Theorem 3 in the Supplemental Materials) if
the division into subproblems is perfectly balanced.We do not ex-
pect subproblem division to be perfectly balanced in practice, and
moreover the time complexity analysis hides large constant factors
(Theorem 2 in the Supplemental Materials). That being said, we
find TREE-QMC is sufficiently fast, at least on the specific inputs
in our study.

Idea behind efficient quartet graph construction

We now provide the idea behind our approach by considering the
simplest case where there are no artificial taxa in gene tree Twith n
leaves (i.e., T is singly labeled). For TREE-QMC, the weight of bad
edges between taxa X and Y, denoted B[X, Y ], is the number of
quartets displayed by T with X, Y as siblings and similarly for
G[X, Y ] but nonsiblings. This means that we can easily compute
the weight of the good edges if given the weight of the bad edges

by applying G[X, Y] = n− 2
2

)
− B[X, Y]

(
.

To compute B efficiently, we observe that there is exactly one
leaf associated with label X (denoted x) and one leaf associated
with label Y (denoted y), so there is a unique path connecting
leaves x and y in T (Fig. 6A). Deleting the edges on this path (and
their end points) produces a forest of K rooted subtrees, denoted
{t1, t2, …, tK}. Let w and z be two leaves of subtrees ti and tj, respec-
tively. Then,T displays quartet x,w|z, y for i< j, quartet x, y|w, z for i
= j, and quartet x, z|w, y for i> j. To summarize, x, y are siblings if
and only if leaves w, z are in the same subtree off the path from
x to y. It follows that B[X, Y ] can be computed by considering all
ways of selecting twoother leaves from the same subtree for all sub-
trees on the path from x to y.

This observation can be used to count the quartets efficiently
when gene trees are singly labeled. However, we need to be more
careful when T is multilabeled, which is typically the case because
of artificial taxa. Following our example, suppose that we want to
count the number of bad edges between 0 and 17 contributed by
the subtree with leaves 4, 5, and 6. However, if leaves 4 and 5 are
both relabeled by artificial taxon M, the quartet on 0, 17|4, 5
corresponds to quartet 0, 17|M, M has no topological informa-

tion and should not be counted. The other quartets 0, 17|4, 6 and
0, 17|5, 6 correspond to 0, 17|M, 6 and thus should be counted.

Computing the bad edges given a singly labeled gene tree

We now present an algorithm for computing the number of bad
edges given a singly labeled gene tree T (later we will extend it to
themore general case of amultilabeled gene tree). After rootingT ar-
bitrarily, we again consider the path between x and y, which now
goes through their lowest common ancestor, denoted lca(x, y) (Fig.
6B). This allows us to break the computation into three parts

B[X, Y] = A[X, Y]+ L[X, Y]+ R[X, Y], (6)

whereA[X,Y] is the number of ways of selecting two leaves from the
subtree above lca(x, y), L[X, Y] the number of ways of selecting two
leaves from the same subtree for all subtrees off the path from lca(x,
y) to leaf in its left subtree (say x), andR[X, Y] the number of ways of
selecting two leaves from the same subtree for all subtrees off the
path from lca(x, y) to the leaf in its right (say y). As we will show,
each of these quantities can be computed in constant time, after
an O(n) preprocessing phase, in which we compute two values for
each vertex v in T. The first value c[v] is the number taxa below ver-
tex v. The second value p[v], which we refer to as the “prefix” of v, is
the number of ways to select two taxa from the same subtree for all
subtrees off the path from the root to vertex v (Fig. 6C). It is easy to
see that c can be computed in O(n) time via a postorder traversal.
After which, p can be computed inO(n) via a preorder traversal, set-
ting

p[v] = p[v.parent]+ c[v.sibling]
2

( )
, (7)

after initializing p[root] =0. Now we can compute the quantities:

A[X, Y] = n− c[lca(x, y)]
2

( )
, (8)

L[X, Y] = p[x]− p[lca(x, y).left], (9)

R[X, Y] = p[y]− p[lca(x, y).right], (10)

where v.left denotes the left child of v and v.right denotes the right
child of v (see Fig. 6C). It is possible to access lca(x, y) in constant
time after O(n) preprocessing step (Gusfield 1997), although we im-
plemented this implicitly by computing the entries of B during a

LCA(0, 17)
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Figure 6. To count the quartets induced by Twith 0 and 17 as siblings, we consider the path between them (shown in blue in panel A). The deletion of
the path produces six rooted subtrees (highlighted in gray). Because 0 and 17 are siblings in a quartet if and only if the other two taxa are drawn from the

same subtree, the number of bad edges can be computed as
3
2

( )
+ 3

2

( )
+ 2

2

( )
+ 4

2

( )
+ 3

2

( )
+ 1

2

( )
= 16. Herewe showhow to compute the num-

ber of quartets induced by Twith 0 and 17 as siblings after rooting T arbitrarily. Panel B shows that we need to consider the number of ways of selecting two
taxa from the same subtree for three cases: (1) the subtree above the lca(0, 17) (highlighted in green), (2) all subtrees off the path from the lca(0, 17) to the
left taxon 0 (highlighted in red), and (3) all subtrees off the path from the lca(0, 17) to the right taxon 17 (highlighted in pink). Case 1 can be computed in
constant time if we know the number of leaves below the LCA, that is, A[0, 17] = 6 (Eq. 8). Cases 2 and 3 can also be computed in constant time as follows.
Panel C shows the prefix of the left child of the lca(0, 17), denoted p[lca(0, 17).left]. This quantity is the number of ways of selecting two taxa from the same
subtree for all subtrees off the path from the root to this vertex (circled in red). Similarly, the prefix of taxon 0, denoted p[0], is the number of ways of se-
lecting two taxa from the same subtree for all subtrees off the path from the root to 0 (circled in purple). Therefore, the number of ways of selecting two taxa
from all subtrees in case 2 (i.e., subtrees highlighted in red in B) isL[0, 17] = p[0]− p[lca(0, 17).left] = 7 (Eq. 9). Case 3 can be computed in a similar fashion as
R[0, 17] = p[17]− p[lca(0, 17).right] = 3 (Eq. 10). Putting this all together gives B[0, 17] = 16 (Eq. 6).
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postorder traversal of T. Thus, we can compute B inO(n2) time, pro-
vided that T is singly labeled.

Computing the bad edges given a multilabeled gene tree

We now present an algorithm for computing the number of bad
edges B[X, Y ] given a multilabeled gene tree T. As previously men-
tioned, this breaks down into three cases. Case 1 (where taxa X, Y
are both singletons) is presented below and cases 2 and 3 are pre-
sented in the Supplemental Materials.

As before, we focus on the number of ways to select two leaves
w, z from a collection of subtrees; however, now that T is multila-
beled, it is possible for two leaves w, z to have the same label.
Therefore, we now need to count the number of ways to select
two leaves z, w below vertex u so that they are uniquely labeled
Z≠W (note that we use capital letters W and Z to denote the cur-
rent labels of leavesw and z, respectively). This modified binomial
is computed by revising the preprocessing phase. We now let c0[v]
denote the number of leaves labeled by singletons below vertex v
and let cD[v] denote the number of leaves labeled by artificial taxon
D below vertex v. Thus, for each vertex v, we store a vector c[v] of
length b+1, where b is the number of artificial taxa in T. As before,
we can compute c inO(bn) time via a postorder traversal. However,
the number of ways to select two leaves with different labels is now
broken into three cases:

• the number of ways to select two singletons, which equals
c0[v]
2

( )
,

• the number of ways to select one singleton and one artificial
taxa, which equals c0[v] ·

∑
D[A(v)cD[v], where A(v) is the set of

artificial taxa below vertex v, and
• the number of ways to select two artificial taxa, which equals∑

D=E[A(v)cD[v] · cE[v].
Putting this all together gives the modified binomial coeffi-
cient:

g0[v] = c0[v]
2

( )
+ c0[v] ·G1[v]+G1[v]

2 − G2[v]
2

, (11)

where G1[v] =
∑

D[A(v)cD[v] and G2[v] =
∑

D[A(v)cD[v]
2. At each

vertex, the calculation of G1[v] and G2[v] takes O(b) time, after
which we can compute g0[v] in constant time. Thus, g0 can
be computed in O(bn) time. Note that we also need to compute
modified binomial coefficient for the subtree “above” vertex v, de-
noted g0[v.above]. This can be computed in a similar fashion by
noting that number of singletons above v is a− c0[v] and that the
number of leaves above v labeled by each artificial taxon D is |D|
− cD[v].

Using the modified binomial, we can apply our algorithm for
singly labeled trees by redefining prefix sum:

p0[v] = p0[v.parent]+ g0[v.sibling] (12)

and then redefining the quantities from which we can compute B
[x, y] in constant time, that is,A[X, Y ] = g0[lca(x, y).above], and L[X,
Y ] = p0[x]− p0[lca(x, y).left], and R[X, Y ] = p0[y]− p0[lca(x, y).right].
As there are a2 pairs of singletons in the subproblem, the total run-
time is O(a2 + bn).

Normalizing quartet weights while computing the bad edges

To normalize the quartet weights, B[X, Y ] becomes the weighted
sum of quartets with X, Y are siblings, where each quartet x, y|z,
w is weighted by I(x, y, z, w) = I(x)I(y)I(z)I(w), where I(x) is the im-
portance value assigned to leaf x (which corresponds to a species

in the singly labeled gene tree). When X, Y are singletons,

B[X, Y] = I(x)I(y)
∑

w,z [ L(T):Z = W = X = Y,
q(x,y,z,w) = x,y|z,w

I(z)I(w), (13)

where the importance values of singletons are set to 1 so we know
that I(x) = I(y) = 1. Note that all of the importance values are set to 1
in the unnormalized case.

To compute the normalized version of B[X, Y ] using the
previous algorithm, we set cD[v] to be the sum of the importance
values of the leaves below v that are labeled by D (i.e.,
cD[v] =

∑
m[L(v),M=DI(m), where L(v) denotes the set of leaves below

v). The proof of correctness follows from Lemma 1, in which we
show that the total weight of selecting two uniquely labeled leaves
below vertex u equals g0[u]. This is because all other quantities (p,
A, L, R) are computed from g0[u].

Lemma 1. The total weight of all taxon pairs in the subtree rooted at
internal vertex u

∑
z,w [ L(u):
Z = W

I(z)I(w) = g0[u], (14)

where L(u) is the set of leaves below vertex u.
See Supplemental Materials for proof.
Lastly, we need to compute the good edgesG[X, Y ], which is the

total weight of quartets in which X, Y are not siblings. This can be
performed in constant time, following Lemma 2.

Lemma2. Let T be amultilabeled gene tree, and let X,Y be singletons.
Then,

G[X,Y]+B[X,Y]= c0[r]−2
2

( )
+ (c0[r]−2) ·G1[r]+G1[r]

2−G2[r]
2

,

(15)

where r is the root vertex of T.
See Supplemental Materials for proof.
This concludes our treatment of case 1, in which X, Y are both

singletons. To compute all entries of B andG, we also need to con-
sider the other two cases. In case 2, X is a singleton and Y is an ar-
tificial taxon or vice versa (Supplemental Fig. S13), and in case 3,
bothX andY are artificial taxa (Supplemental Fig. S14). These cases
are more complicated because the naive approach would consider
all paths in the tree between a leaf labeled X and a leaf labeled Y,
which is not efficient. The algorithms and proofs for these cases
are provided in the Supplemental Materials.

Software availability

TREE-QMC is available at GitHub (https://github.com/molloy-lab/
TREE-QMC) and as Supplemental Code.
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