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Glossary 

AHD - Australian Height Datum 

AFGN - Australian Fundamental Gravity Network 

AGQG – Australian Gravimetric Quasigeoid 

ANGD - Australian National Gravity Database 

ANLN - Australian National Levelling Network  

DEM - Digital Elevation Model 

EGM2008 - Earth Geopotential Model 2008 

GGM - Global Geopotential Model 

GNSS - Global Navigation Satellite System 

GPS - Global Positioning System 

GSWA - Geological Survey of Western Australia  

MDT - Mean Dynamic Topography 

MSL - Mean Sea Level 

MSS - Mean Sea Surface  

NLS - National Levelling Survey 

NMC - National Mapping Council  

SRTM – Shuttle Radar Topography mission 

Notation 

𝐶 - Geopotential Numbers   

𝑔 - Gravity  

𝑔̅ - Integral mean gravity along the plumbline 

ℎ - Ellipsoidal height 

𝐻 - Physical height  

𝑚 - Metres 

mGal – A measure of acceleration (
10−5𝑚

𝑠2 ) 

𝑁 - Geoid height 

𝜌 – Density of the Earth 

𝑠 - Seconds 

Std - Standard Deviation 

𝑈 - Gravitational Potential Energy of the Earth Approximating Ellipsoid 

𝑊 - Gravitational Potential Energy of the Earth  

𝜁 - Quasigeoid Height Anomaly 

𝛾
0
 - Normal Gravity on the Ellipsoid Surface  
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1. Purpose and Scope 

The purpose of this study was to assess both the User Requirements (Part 2/3) for height determination 

and the Technical Options (Part 3/3) which could be implemented to meet the user requirements. 

The only other user requirements study of physical heights in Australia was undertaken in 1988 (Kearsley, 1988) 

which predates the widespread use of GNSS. Given the technological advances of the past two decades and the 

modern methods some now use to access physical heights, we felt it necessary to reach out to the user 

community to assess their needs for physical heights now and into the future.  

The results of the user requirements study should be reviewed in conjunction with this technical options report 

which reviews the height system and height datum options which could be implemented in Australia based on 

current and future data holdings.  

The objective is to identify what requirements users have for height datums in Australia and what can 

technically be developed to provide users with what they need. The Executive Summary (Part 1/3) brings 

the recommendations of both reports together to describe the preferred option to satisfy the needs of users for 

physical heights in Australia.  

2. Introduction 

2.1 Height system and Height datum 

A height system is the theoretical definition based on adopted conventions such as the internationally agreed 

geoid reference potential 𝑊0 value. The physical realisation of a height system is a height datum. Therefore, a 

height system could have many datums as new theories, computational process and data become available. 

Generally, each new height datum is a better (more accurate, reliable, robust and fit for purpose) realisation of 

the height system.  

2.2 Introduction to the AHD 

The Australian Height Datum (Roelse et al., 1971; AHD) is Australia’s first and only national height reference 

system. It was adopted by the National Mapping Council in 1971 based on a (staged) least squares adjustment 

of 97,320 km of ‘primary’ levelling (used in the original adjustment) and  approximately 80,000 km of 

‘supplementary’ levelling (included in a subsequent adjustment). Levelling observations ran between junction 

points (see Figure 1; Filmer et al., 2010) in the Australian National Levelling Network (ANLN), and were known 

as level sections. These level sections were created by combining levelling observations along level runs (usually 

following major roads). The interconnected network of level sections and junction points was fixed to mean sea 

level (MSL) observed for 1966-1968 at 30 mainland tide gauges, with MSL assigned a value of zero AHD at each 

gauge. The staged least squares adjustment propagated heights above 1966-1968 MSL (or defined AHD zero 

reference), across the ANLN. The ANLN contains systematic, gross and random errors which have propagated 

into the AHD as local and regional biases (e.g. Morgan 1992).    
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Figure 1: The Australian National Levelling Network (ANLN). First order levelling sections are in yellow, 
second order sections in light green, third order in fine grey, fourth order in dark green, one way (third order) 
in red and two-way (order undefined; Steed 2006, pers. comm.) in blue. The junction points are the 

intersection points of the levelling loops. Lambert projection (figure and description from Filmer et al., 2010). 

The Australian Height Datum (Tasmania) 1983 (AHD–TAS83) zero reference is fixed to MSL observed for 1972 

only at tides gauges in Hobart and Burnie.  It was propagated throughout Tasmania using mostly third order 

differential levelling over 72 sections between 57 junction points and computed via least-squares adjustment on 

17 October 1983.  Because AHD (mainland) and AHD (Tas) are referenced to MSL observed at different times 

and locations, there is a vertical offset between the two datums, which has been estimated (from various 

methodologies and data) to be ~10 cm (Rizos et al. 1991), between 12 cm and 26 cm (Featherstone, 2000), 

and ~1 cm (Filmer and Featherstone, 2012a). For the purposes of this document, AHD is used to refer to both 

the Australian Height Datum 1971 (AHD71; Australian mainland) and Australian Height Datum (Tasmania) 1983 

(AHD–TAS83).   

2.3 AHD Compatibility with GNSS observations 

Global Navigation Satellite System (GNSS) ellipsoidal heights (ℎ) can be converted to physical heights  by 

subtracting the geoid undulation (𝑁) or quasigeoid height anomaly (𝜁). This is advantageous since GNSS 

ellipsoidal heights are relatively cheap and easy to obtain in comparison to large-scale levelling campaigns. AHD 

heights (𝐻𝐴𝐻𝐷) can be determined by subtracting AUSGeoid model values (𝜁𝐴𝐻𝐷) from GNSS ellipsoidal height 

observations. The AHD height is approximated by Eq. (1). 

𝐻𝐴𝐻𝐷 = ℎ − 𝜁𝐴𝐻𝐷       (1) 
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The current AUSGeoid model, AUSGeoid2020 is composed of two components;  

1. A gravimetric quasigeoid (cf. Featherstone et al. 2018a) - computed from Global Geopotential Model 

EGM2008, a 1”x 1” grid of Faye gravity anomalies onshore (computed from the Australian national 

gravity database and digital elevation model derived terrain corrections), and satellite altimetry derived 

gravity anomalies offshore (Sandwell et al 2014). 

2. A geometric component (cf. Brown et al. 2018) – computed from 7,634 co-located GPS-levelling points 

across Australia by least squares prediction to interpolate the geometric offset between the GPS-

levelling AHD heights and the gravimetric quasigeoid. 

2.4 AHD biases and distortions 

AHD has the following biases and distortions which contribute to misalignment with heights determined by Eq. 

(1).  

1. Due to the ocean’s time-mean dynamic topography (MDT) and the short tide gauge observation periods, 

the zero reference of the AHD (MSL at 32 mainland tide gauges) is not coincident with an equipotential 

surface (e.g. the geoid).  The differences largely manifest in a north-south tilt of ~0.7 m in the AHD 

relative to the geoid across the continent (Featherstone and Filmer 2012a). This tilt can be eliminated by 

the use of MDT models (e.g., Filmer et al. 2018) at tide gauges to correct for the offset between the sea 

surface recorded at the tide gauges and the geoid (Filmer et al., 2014). 

2. The levelling derived heights contain local and regional distortions due to systematic and gross errors in 

the Australian National Levelling Network (ANLN) that propagated through the national network 

adjustments completed in 1971 (Morgan 1992; Filmer and Featherstone 2009; Filmer et al 2014).  

These attributes of the current official Australian Height Datum are problematic for many users of the datum. In 

particular, they have a noticeable impact on users requiring consistent heights over large distances (e.g. greater 

than 10 km) for engineering purposes (e.g. Snowy Hydro) and scientific studies (e.g. water flow over wide 

regions). For such cases, an alternative vertical height datum would be valuable presuming there is no strict 

requirements to align with AHD. 

3. Physical Height system options 

3.1 What is a physical height? 

Physical height systems are based on geopotential numbers 𝐶 = 𝑊 − 𝑊0 (𝑚2/𝑠2), where 𝑊 is the 

gravitational potential energy at a point on or above the Earth’s surface and 𝑊0 is the gravitational potential on 

some equipotential (i.e. the gravitational potential is constant) reference surface. Geopotential numbers are 

converted to meaningful heights 𝐻 by dividing them by some gravity value 𝑔.  

𝐻 =
𝐶

𝑔
         (2) 

Dimensionally, for the units in metres and seconds, gravity is shown in terms of 
𝑚

𝑠2 and 𝐶 is in 
𝑚2

𝑠2 , therefore 𝐻 is 

in terms of metres (Heiskanen and Moritz, 1967, Ch. 4; Jekeli, 2000, Featherstone and Kuhn, 2006).  

The equipotential surface which best agrees with mean sea level is called the geoid. The computation of geoid 

requires that the entire mass of the Earth is enclosed by the geoid. However, in reality the topographic surface 
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is typically outside/above of the geoid. Various computational procedures exist to navigate this dilemma, with 

some approximations. Molodensky (1945) introduced an alternative theoretical surface called the “quasigeoid” 

which preserves the position of the topographic surface of the Earth during computation. The quasigeoid agrees 

exactly with the geoid offshore and approximates to the geoid on-shore (cf. Appendix A for more details). 

In relation to equation (2), physical height systems differ from one another in two ways: 

1. Choice of zero reference (i.e. geoid or quasigeoid), and 

2. How the gravity value, 𝑔, is determined. 

A description of several different height system is given in Appendix A and is summarised below. 

3.2 Types of height systems 

In general, height systems can be classified as dynamic, rigorous orthometric (Tenzer et al. 2005; Santos et al. 

2006), Helmert orthometric (Helmert 1890), Mader orthometric (Mader 1954), Neithammer orthometric 

(Neithammer 1932), normal (Molodensky, 1945) and normal-orthometric (e.g., Rapp 1961).  

(i) Dynamic heights are impractical since they are not geometrically meaningful over long distances 

(Heiskanen and Moritz, 1967, Ch. 4, and Appendix A)  

(ii) Rigorous orthometric heights are extremely difficult to compute, requiring gravity values along the 

curved, torsioned, plumb line. This computation is dependent on knowledge of precise mass-density 

variation data through the topography which are currently unavailable in Australia (Appendix A).   

For these practical reasons, we discount the dynamic and rigorous orthometric height systems from further 

consideration.  

3.3 Which height systems can we realise in Australia? 

In practice, physical heights are typically observed or transferred by: 

 levelling, 

 converting GNSS observations to physical heights using a model, or 

 a combination of both methods.  

Below we describe how a user would typically observe or transfer height using these techniques to assist in 

determining which height system would be practical for use. 

3.3.1 Levelling  

Levelling is a relative method to determine height differences. Relative height observations are referenced to a 

“known” height value at, for example, a benchmark or MSL at a tide gauge, which is an approximation of the 

geoid. Height corrections must be applied to observed height differences to account for the non-parallelism of 

the equipotential surfaces. 

Helmert orthometric, Mader orthometric and Neithammer orthometric heights approximate the 

orthometric height with varying precision and complexity (cf. Appendix A). Their determination requires gravity 

values along levelling traverses derived from gravity measurements (cf. Appendix A) in order to compute the 

levelling corrections. Filmer et al. (2010) show that surface gravity values can be obtained from Global Gravity 

Models (GGM) such as EGM2008 or by interpolating the data from the existing Australian gravity database (cf. 

Appendix B).  
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Normal heights similarly require gravity values (normal gravity and surface gravity observations as described 

in Appendix A). Again, surface gravity data are available using GGM’s and/or interpolating values from the 

Australian National Gravity Database (ANGD) (Filmer and Featherstone 2011; Filmer et al 2010). 

Normal-orthometric heights can be determined analytically using a formula which approximates the Earth’s 

shape and subsequent gravity field with that of an ellipsoid (cf. Appendix A). 

3.3.2 GNSS  

A modern requirement of a height datum is for physical heights to be determined from GNSS observations. 

Ellipsoidal heights (ℎ) derived from GNSS can be approximately transformed to a physical height (𝐻) by 

subtracting either the, 

(i) modelled geoid value (𝑵) as an approximation for Helmert orthometric, Mader orthometric and 

Neithammer orthometric heights (i.e. 𝑯𝒐𝒓𝒕𝒉 = 𝒉 − 𝑵) or,  

(ii) modelled quasigeoid value (𝜻) for normal heights (i.e. 𝑯𝒏𝒐𝒓𝒎 = 𝒉 − 𝜻). 

Normal-orthometric heights are not strictly compatible with the geoid or the quasigeoid since they neglect 

the influence of local gravity variation. In practice, they are most closely aligned with normal heights and the 

differences are small (Fig. 4.1). 

It is possible to model both geoid and the quasigeoid from the existing data holdings over Australia (cf. 

Appendix B). However, the quasigeoid can be computed exactly whilst the geoid requires approximations for the 

integral mean of gravity along the plumbline within the topography. 

3.4 Summary  

Appendix A provides a detailed description and discussion of the variety of height systems and what is required 

to determine height values from Geopotential numbers. In the following table we have summarised this 

information. Those sections shown in green indicate a positive response, and those in yellow indicate that extra 

effort is required, or lower accuracy is achieved. Dynamic and Rigorous orthometric heights have been 

included in the table, but greyed out to indicate that we have discounted them. 

Table 3.1 Summary of height systems. 

Height System 

Requires gravity 

observations for 

levelling? 

Referenced to Geoid or 

Quasigeoid? 

Practical to 

implement? 

Dynamic No N/A No 

Rigorous Orthometric Yes Geoid No 

Helmert Orthometric Yes Geoid Yes 

Mader Orthometric Yes Geoid Yes 

Neithammer Orthometric Yes Geoid Yes 

Normal Yes Quasigeoid Yes 

Normal-orthometric No Approx. Quasigeoid Yes 
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4. Choice of Height System 

4.1 Height system precision evaluation 

4.1.1 In theory 

The three well-known approximations of orthometric height can be listed in terms of how difficult they are to 

compute and their rigour with regard to fluid flow (cf. Appendix A). 

1. Neithammer Orthometric: Most difficult to compute but most accurate. 

2. Mader Orthometric: Second most difficult to compute and second most accurate. 

3. Helmert Orthometric: Least difficult to compute but least accurate. 

The Neithammer gravity value is the most precise approximation (of those listed here) to the true integral mean 

gravity along the plumbline, but is more complex to compute than both the Mader and Helmert approximations 

(Dennis and Featherstone 2002, Appendix A). The gravity value is determined from surface gravity data, the 

normal gravity gradient, an assumed constant topographic density and terrain corrections values (at the surface 

of the Earth and at discrete points along the plumbline down to the geoid). All necessary data to compute these 

heights are available in Australia (Appendix A).  

For Mader orthometric heights the gravity value uses the second most precise approximation (of those listed 

here) to the integral mean gravity (Dennis and Featherstone 2002; Hwang and Hsiao 2003). Although, it is 

easier to compute than the Neithammer integral mean gravity, being derived from the normal gravity gradient, 

an assumed constant topographic density, surface gravity data and terrain correction values (at the surface of 

the Earth and on the geoid) are needed. Helmert orthometric heights apply the most simplistic approximation to 

the integral mean gravity, however, they are also the least precise (Dennis and Featherstone 2002, and 

Appendix A).  

These orthometric height systems are, in principle, referenced to the geoid. The geoid is possible to compute 

using Australian data holdings (albeit with some approximations regarding to the topographic density). With a 

precomputed geoid model, these heights are accessible to GNSS users.  

Normal heights similarly require gravity values (normal gravity and surface gravity observations; Appendix A). 

The surface gravity data are generally available at a high enough precision using GGM’s and/or interpolating 

values from the Australian National Gravity Database (ANGD) (Filmer and Featherstone 2011; Filmer et al 2010).  

However, these heights are referenced to the quasigeoid. The quasigeoid is an approximation to the geoid, and 

heights above it [theoretically] do not precisely model how water will flow. For this reason, it is theoretically an 

inferior reference surface to the geoid. However, it can be modelled without any approximations and has been 

computed with increasingly improved precision over the Australian continent for the last 20 years (e.g. 

AUSGeoid98, AGQG09 and AGQG2017). 

Normal-orthometric heights are currently used in Australia, being the height system of the AHD. Normal-

orthometric heights are the easiest of the height systems to establish, however they are also the most 

inaccurate with respect to fluid flow. They rely only on the normal gravity field so do not require gravity values 

in their computation (Appendix A), which is why they have been implemented in numerous national vertical 

datums where gravity observations were not available. However, they neglect the effect of variations in the 

Earth’s gravity field. This causes theoretical errors for heights established by relative methods (i.e. levelling) 

along differing paths (non-holonomic) and theoretical inconsistency with GNSS heights converted to physical 

heights using a quasigeoid model. 
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4.1.2 In practice 

Height determination is limited by the instrumentation and models used. Generally the precision of levelling is 

defined by 𝑐√𝑘 where 𝑘 is the length of the levelling traverse in kilometres and 𝑐 is in millimetres. High quality 

levelling is typically precise to 2√𝑘 mm along a traverse. Physical heights determined by transforming GNSS 

heights in Australia generally have an absolute accuracy of 5 – 6 cm at best; with ~2 cm of error in the GNSS 

ellipsoidal heights and ~5 cm of error at best for AGQG2017 (cf. Featherstone et al. 2018a). 

Filmer et al. (2010) demonstrate the difference between Helmert orthometric, normal and normal-

orthometric height differences over Australia. The difference between normal and Helmert orthometric 

heights are shown in Fig 4.1. Filmer et al. (2010) show the difference between the height systems has a 

standard deviation of ±1.7 cm (min: -2.9 cm; max: 26.3 cm) across Australia. The standard deviation increases 

to ±4.3 cm, over alpine regions (min: -0.9 cm; max: 26.3 cm). 

For levelling traverses longer than 100 km, first order leveling (precise to 2√𝑘) will give heights precise to 

around ±2 cm. This is larger than the typical difference between normal and Helmert orthometric heights in 

Australia (i.e. the standard deviation of ±1.7 cm across the whole of Australia). We therefore consider that the 

difference between the height systems is not significant for the majority of use cases, given the precision to 

which they can be measured (cf. Filmer and Featherstone 2011). 

 

Figure 4.1 Differences between Helmet Orthometric and Normal Heights (in m) over Australia. EGM2008-
derived gravity values at benchmarks were used for the levelling corrections (Fig. 6. Filmer et al, 2010). 

The difference between normal and normal-orthometric heights are shown in Fig 4.2. Filmer et al. (2010) show 

the height systems have differences with a nominal standard deviation of ±1.2 cm (min: -2.4 cm; max: 17.7 cm) 

and a greater standard deviation in alpine regions of ±2.9 cm (min: -2.4 cm; max: 17.7 cm).   
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Figure 4.2 (left) Difference between normal and normal-orthometric heights over Australia (from Filmer et al, 
2010), and (right) difference between normal and normal-orthometric heights over south east Australia 
showing maximum differences (from Filmer et al, 2010). 

4.2 Evaluation criteria 

The following criteria were used to assist in evaluating the strengths and weaknesses of the available height 

systems:  

1. Compatibility with GNSS  

2. Ease of access / use 

3. Accuracy 

We recognise that approximations to the orthometric height (e.g. Neithammer/ Helmert/ Mader) provide a more 

rigorous and theoretically accurate height system with respect to the direction of fluid flow than normal heights 

if implemented correctly. For this reason, the geoid may be considered preferable to the quasigeoid; however, 

modelling the geoid requires approximations of the distribution of the mass density within the topography. The 

quasigeoid on the other hand can be determined exactly without any approximations. The normal height 

system, referenced to the quasigeoid is preferable in this practical respect. 

The difference between normal and normal-orthometric heights is generally very small over Australia where 

heights are <1000 m. If a quasigeoid was chosen as the reference surface for the alternative height reference 

frame, then in theory, the frame would be a realisation of a normal height system. The distinction between 

normal and normal-orthometric heights would be less than measurement accuracy for most applications of GNSS 

in Australia, although users should be made aware of the distinction between height systems.  

For levelling users operating in a normal height system, Filmer et al. (2010) investigated 1,366 mostly third-

order levelling loop closures in Australia to assess the difference in misclosure achieved by applying either 

normal or normal-orthometric corrections. The results indicate there is negligible benefit to applying normal 

corrections compared to applying normal-orthometric corrections in Australia. This is most likely attributable to 

the errors in the third-order levelling at heights <1,000 m being of larger magnitude than the height corrections. 

This indicates that observing surface gravity values at benchmarks along the levelling traverse to apply normal 

corrections to levelling in Australia cannot be justified, certainly below heights of 1,000 m. 
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Table 4.1 Evaluating the strengths and weaknesses of the available height systems. 

 
Normal 

Neithammer 

orthometric 
Normal-orthometric 

Compatible with 

GNSS? 
Yes Yes Approximately 

Ease of Access / Use  Average Hard Easy 

Accuracy  Average Highest Lowest 

 

Based on this analysis, we believe that a normal height system should be adopted for the alternative height 

reference frame. It is directly compatible with GNSS, moderately easy for users to access with GNSS and there 

are no practical benefits (at heights <1000 m) to applying normal corrections over normal-orthometric 

corrections, meaning there is no extra work / effort required by those performing levelling.  

5. Recommendations 

If an alternative height reference frame was to be established in Australia, a realisation of a normal height 

system would be the best option. We recommend the Australian Gravimetric Quasigeoid 2017 (AGQG2017) 

model (Featherstone et. al. 2018a) is used as the initial release of an alternative height reference frame and 

refined over time as more data becomes available.  

AGQG2017 is the gravimetric component of the AUSGeoid2020 model and is based on EGM2008 enhanced with 

local gravity data (Appendix B). It is aligned with the internationally agreed 𝑊0(=62,636,856.0 m2s-2) value and 

provides a seamless physical reference surface onshore and offshore.  

Given that AGQG2017 is only a model and heights are not provided on benchmarks, levelling users will need 

GNSS heights to access the alternative height reference frame. They can use the quasigeoid model value to 

derive normal heights. These can then be used as reference heights / starting points for levelling surveys.  

Clear communication on the differences between derived normal heights from AGQG2017 and AHD heights will 

be critical given that existing AHD benchmarks are not coincident with normal heights derived from AGQG2017 

(having differences of up to approximately 0.5 m). Benchmark height values could potentially be provided at 

permanent GNSS antennas using a quasigeoid model to convert the GNSS heights to normal heights.  

  



 

 
12 Next Generation Height Reference Frame 

Appendix A – Height Systems 

Physical height systems are based on geopotential numbers 𝐶 = 𝑊 − 𝑊0 (𝑚2/𝑠2), where 𝑊 is the gravitational 

potential energy at a point on or above the Earth’s surface and 𝑊0 is the gravitational potential on some 

equipotential (i.e. the gravitational potential is the same) reference surface. Fluids flow from high geopotential 

numbers (in absolute value) to low ones. The geopotential numbers are converted to meaningful heights 𝐻 by 

dividing them by some gravity value 𝑔. (𝐻 =
𝐶

𝑔
)          

Dimensionally, for the units in metres and seconds, gravity is shown in terms of 
𝑚

𝑠2
 and 𝐶 is in 

𝑚2

𝑠2
, therefore 𝐻 is 

in terms of metres (Heiskanen and Moritz, 1967, Ch. 4; Jekeli, 2000, Featherstone and Kuhn, 2006).  

Physical height systems differ from one another in two ways: 

1. Choice of zero reference (i.e. geoid or quasigeoid), and 

2. How the gravity value, 𝑔, is determined. 

Dynamic heights  

Description: Dynamic heights are the most closely related to geopotential numbers. A single constant gravity 

value 𝛾̃
0
 is usedto transform the geopotential numbers to units of length. This is typically the gravity value 

generated by an Earth approximating ellipsoid at some preferred fixed latitude e.g. mean latitude local to the 

datum or 45 degrees. 

Strengths: Dynamic heights are simple to compute. By using a constant gravity value, variations in 

geopotential numbers are retained in the height values. They precisely map how water will flow and levelling 

loops will “close” perfectly in theory (Featherstone and Kuhn, 2006). 

𝐻𝐷 =
𝐶

𝛾̃0

       (A1) 

Weaknesses: Dynamic height differences are not geometrically meaningful. That is, for points on two different 

equipotential surfaces, the dynamic height between points on each surface is constant. However, due to 

gravitational variations, the equipotential surfaces will be geometrically closer or further apart in places. This is 

negligible over small scales but becomes problematic in terms of consistency over large scales (e.g. over a 

continent such as Australia).  

The correction added to levelling height differences, Δ𝑛𝐴𝐵, between two points A and B to obtain dynamic height 

differences is given by Heiskannen and Moritz (1967) as, 

𝐷𝐶𝐴𝐵 = ∫
𝑔−𝛾0

𝛾0
𝑑𝑛 =

𝐵

𝐴
∑

𝑔−𝛾0

𝛾0

𝐵
𝐴 𝑑𝑛    (A2) 

where 𝑔 are gravity values measured at the Earth’s surface (measured independently or interpolated from 

existing data or a GGM), 𝛾
0
 is the normal constant gravity value and 𝑑𝑛 is the levelled height increment along 

the route (Heiskanen and Moritz (1967, Ch. 4); Jekeli (2000)).  

Orthometric heights 

Description: The orthometric height (Fig. A1) is given by the geopotential number divided by the integral mean 

gravity value along the curved gravitational plumbline between the observation point and the geoid surface 𝑔̅ 
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(Heiskanen and Moritz, 1967 Ch. 4). The geoid is an equipotential surface which best agrees with mean sea 

level. 

𝐻𝑜 =
𝐶

𝑔̅
       (A3)   

 

Fig. A1 - Geometry of the orthometric height (Featherstone and Kuhn 2006). 

Strengths: This height system is based on the curved and torsioned distance from the equipotential surface 

which best agrees with MSL (namely, the geoid) to the observation point. Unlike the dynamic height, it is 

geometrically meaningful. The geoid surface extends everywhere so can be used as a common reference surface 

in all places and can be modelled with gravity data. These heights are referenced to an equipotential surface so 

they approximately model how fluids will flow locally. Levelling loops will “close” perfectly in theory. 

Weaknesses:  The rigorous orthometric correction applied to levelling height differences at points A and B, is 

given by, 

𝑂𝐶𝐴𝐵 = ∑
𝑔−𝛾0

𝛾0

𝐵
𝐴 𝑑𝑛 +

𝑔̅𝐴−𝛾0

𝛾0
𝐻𝐴

∗ −
𝑔̅𝐵−𝛾0

𝛾0
𝐻𝐵

∗    (A4) 

This formula requires the integral mean gravity values within the topography, 𝑔̅
𝐴

 and 𝑔̅
𝐵
, and the average of the 

surface gravity values at the two  benchmarks.  

In practice, the integral mean gravity values, 𝑔̅
𝐴

 and 𝑔̅
𝐵
,  along the curved gravitational plumb line are 

impossible to obtain without precise knowledge of the mass-density variations through the topography (cf. 

Tenzer et al. 2005; Strange 1982). This means it is not possible to calculate true orthometric heights. Instead, 

approximations to obtain the integral mean gravity have been formulated. However, these necessary 

approximations mean that levelling loops will not “close” perfectly i.e. levelling height differences will accumulate 

systematic errors (cf. Santos et. al 2006). 
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Helmert Orthometric Heights 

To approximate the integral mean gravity 𝑔̅  at the benchmarks, the Helmert (1890) approximation uses a 

gravity observation at the surface 𝑔
𝑠
, the normal gravity gradient and assumed constant density of 2.67 𝑀𝑔/𝑚3 

(Mega gram per metre cubed).  Formally, 𝑔̅ is approximated by the Poincare and Prey reduction using a Bouguer 

plate, (Heiskannen and Moritz, 1967, pg. 163-165) 

𝑔̅ = 𝑔
𝑠

+
1

2

𝜕𝛾

𝜕ℎ
𝐻𝑜𝑟𝑡ℎ − 2𝜋𝐺𝑀𝜌𝐻𝑜𝑟𝑡ℎ     (A5) 

Here, 𝛾 is the normal gravity, 𝐺𝑀 is the Earth gravity constant and 𝜌 is the standard rock density of 2.67 Mg/m3. 

2𝜋𝐺𝑀𝜌𝐻𝑜𝑟𝑡ℎ corresponds to the effect of an infinite slab of topography. It is possible to compute an 

approximation of mean gravity, however the gravitational effect of topography is assumed to be modelled 

adequately by an infinite slab and neglects the effect of topographic height and density variations.  

Neithammer Orthometric Heights 

To approximate the integral mean gravity at the benchmarks, Neithammer (1932) uses a gravity observation at 

the surface 𝑔
𝑠
, the normal gravity gradient and assumed constant density of 2.67 𝑀𝑔/𝑚3, and includes the 

effect of gravitational variations due to the topography differing from an infinite slab. Neithammer orthometric 

heights 𝑔̅ are given by the following equation (Neithammer, 1932) 

𝑔̅ = 𝑔
𝑠

+
1

2

𝜕𝛾

𝜕ℎ
𝐻𝑜𝑟𝑡ℎ − 2𝜋𝐺𝑀𝜌𝐻𝑜𝑟𝑡ℎ + 𝛿𝑔𝑇𝐶 −  𝛿𝑔𝑇𝐶̅̅ ̅̅ ̅̅    (A6) 

Here 𝛿𝑔𝑇𝐶 is the terrain correction at the surface of the Earth and 𝛿𝑔𝑇𝐶̅̅ ̅̅ ̅̅  is the integral mean terrain correction 

along the plumbline (evaluated in practice using discrete 𝛿𝑔𝑇𝐶̅̅ ̅̅ ̅̅   along the plumbline). The accurate computation 

of the terrain correction terms is dependent on adequately sampled topographic height variations.  

Mader Orthometric Heights 

To approximate the integral mean gravity at the benchmarks, the Mader (1954) orthometric heights use the 

following approximation to the integral mean gravity anomaly. 

𝑔̅ = 𝑔
𝑠

+
1

2

𝜕𝛾

𝜕ℎ
𝐻𝑜𝑟𝑡ℎ − 2𝜋𝐺𝑀𝜌𝐻𝑜𝑟𝑡ℎ +

𝛿𝑔𝑇𝐶− 𝛿𝑔0
𝑇𝐶

2
   (A7) 

Here 𝛿𝑔𝑇𝐶 is the terrain correction at the surface of the Earth. This accounts for variations in topography away 

from an infinite slab, again assuming constant density. 𝛿𝑔0
𝑇𝐶 is the terrain correction value at the surface of the 

geoid. The accurate computation of the terrain correction terms is dependent on adequately sampled 

topographic height variations. 

Normal heights 

Definition: Normal heights are reliant upon defining an Earth approximating reference ellipsoid, which has a 

defined gravity field. At the ellipsoid surface, the normal gravitational potential 𝑈0 agrees with the Earth’s 

gravitational potential at mean sea level 𝑊0. At a point 𝑃 on the surface of the Earth, a point 𝑄 is defined such 

that the true gravity potential of the actual Earth at the surface 𝑊𝑃 is equal to the normal potential at the 

point 𝑄 (i.e. 𝑊𝑃 = 𝑈𝑄). The points 𝑄 define a theoretical surface known as the telluroid. The normal height of 
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the point 𝑃 is given as the distance between 𝑄 and surface of the ellipsoid along the normal plumbline. The 

distance between the telluroid and the Earth’s surface is termed the height anomaly (Fig. A2) which can also be 

mapped to difference between the reference ellipsoid and the quasigeoid (Heiskanen and Moritz, 1967, 

Featherstone and Kuhn, 2006). Heights are determined by dividing the geopotential number by the mean 

normal gravity along the curved normal plumbline (𝛾̅). 

𝐻𝑁 =
𝐶

𝛾̅
      (A8) 

 

 

Figure A2 - The geometric interpretation of Normal and Normal-Orthometric heights (Featherstone and Kuhn 
2006). 

 

Strengths: This height system avoids the obstacle of computing integral mean gravity anomalies along the 

plumbline. The mean gravity value is determined from the normal gravity field so it is relatively simple to 

calculate since it only varies with latitude and height (Featherstone and Kuhn, 2006) i.e. these heights require 

no approximations of integral mean gravity within the topography. The normal correction applied to levelling 

height differences at points A and B, to convert them to normal heights, is given by, 

𝑁𝐶𝐴𝐵 = ∑
𝑔−𝛾0

𝛾0

𝐵
𝐴 𝑑𝑛 +

𝛾̅𝐴−𝛾0

𝛾0
𝐻𝐴 −

𝛾̅𝐵−𝛾0

𝛾0
𝐻𝐵   (A9) 

 

Where 𝑔 are surface gravity measurements between 𝐴 and 𝐵 and 𝛾̅
𝐴
and 𝛾̅

𝐵
 are the average normal gravity 

along the curved normal plumbline, between the ellipsoid and telluroid. 

Weaknesses: As with the discussed orthometric height approximations, normal heights require that gravity 

observations 𝑔 must be determined along the levelling traverse (Featherstone and Kuhn, 2006), although these 
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can be interpolated or derived from a GGM. Moreover, they are referenced to the quasigeoid rather than the 

geoid. The quasigeoid is only an approximation of an equipotential surface so normal heights do not predict how 

water will flow precisely. 

Normal-orthometric heights 

Definition:  Normal-orthometric heights are purely based on normal gravity. Geopotential numbers are 

replaced by normal potential differences and divided by the integral mean of the normal gravity between the 

Earth’s surface and the quasigeoid (Fig. A2). 

Strengths: This height system only requires the use of the normal gravity field. The mean gravity value is 

determined from the normal gravity field so there is no need to obtain gravity values along the levelling 

traverses. Only levelling data and 1D latitude positions are needed to establish the normal-orthometric height. 

The normal-orthometric correction (Rapp, 1961) (which must be applied to levelling data to get the normal-

orthometric height differences between points a and b) is not dependent on any gravity observations, so these 

heights are easier to establish with levelling than normal, or orthometric heights. 

The full Rapp (1961) normal-orthometric correction (NOC) formula (truncated version implemented in AHD71) is  

𝑁𝑂𝐶 = (𝐴𝐻 + 𝐵𝐻2 + 𝐶𝐻3)𝑑𝜙    (A10) 

Where 𝐻 is the mean difference between the normal-orthometric height at points a and b,  𝑑𝜙 is the difference 

in latitude between the two points in rads, 

𝐴 = 2 sin 2𝜙 𝛼′ (1 + cos 2 𝜙 (𝛼′ −
2𝐾

𝛼′ − 3𝐾𝑐𝑜𝑠22𝜙)) 𝑄  (A11) 

𝐵 = 2 sin 2𝜙 𝛼′𝑡2 (𝑡3 +
𝑡4

2𝛼′ + cos 2 𝜙 (
3

2
𝑡4 + 2𝛼′𝑡3 −

2𝐾𝑡3

𝛼′ )) 𝑄 (A12) 

Where 𝜙 is the mid latitude between the two points a and b, 

𝛼′ =
𝛽

2+𝛽+2𝜖
      (A13) 

𝐾 =
−2𝜖

2+𝛽+2𝜖
      (A14) 

𝑡2 =
2(1+𝛼+𝑐′)

𝑎(1+
𝛽

2
+𝜖)

      (A15) 

𝑡3 = 1 −
(3𝛼−2.5𝑐′)

2
     (A16) 

𝑡4 = 1 − 𝑡3      (A17) 

𝛽 and 𝜖 are the gravity formula constants and 𝛼 is the spheroid flattening. 𝑐′ = 𝜔2𝑎3/𝑘2𝑀 

where 𝜔 is the angular velocity of the Earth’s rotation, 𝑎 is the equatorial radius, 𝑘2 is the gravitational constant 

𝑀 is the mass of the Earth and 𝑄 is one arc minute in radians. 

Weaknesses: These heights do not predict how water will flow precisely, and they are not referenced to an 

equipotential surface, or any defined surface for that matter (Filmer et al 2010). Moreover since these heights 

are not based on geopotential number differences the levelling loops do not close perfectly. 
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Appendix B – Data Holdings 

Gravity data 

Surface gravity data are needed to determine the height correction value applied to levelling data, transform 

geopotential number to height values and for the computation of gravimetric geoid/quasigeoid models. This 

subsection evaluates the gravity data over Australia which are available for these computations. 

Absolute gravity 

The absolute gravity value refers to the vertical gradient of the Earth’s gravitational potential field corrected for 

the gravitational effect of the Sun, Moon and ocean tides.  

The Australian Fundamental Gravity Network (AFGN) was first established in the early 1950s with 59 stations 

and has grown to consist of around 950 gravity stations at over 250 locations throughout Australia as shown in 

Figure B1. Wellman et al (1984) suggest an accuracy of ±30 μgals from the 1980 adjustment. In 2001 

Geoscience Australia took delivery of an A10 portable absolute gravimeter for the purpose of refurbishing the 

AFGN. Measurements with the portable absolute gravimeter at 60 AFGN sites confirm 30 microgal accuracy. 

However the original network demonstrated a bias of ≈ 78 microgals relative to the A10 measurements, and so 

was subsequently readjusted. The re-adjustment resulted in a new gravity datum, the Australian Absolute 

Gravity Datum 2007 (Tracy et al. 2007). (cf. http://www.ga.gov.au/afgn/index.jsp) 

 

 

B1 - Absolute gravity sites (red triangles) included in the AFGN.  

Relative gravity 

Geoscience Australia maintains the Australian National Gravity Database (ANGD). The data have been collected 

since the 1930’s and by 1974 gravity observations had been made at 11km spacing over most of the continent 

(Murray 1997). The gravity data comprise AFGN absolute gravity values and relative gravity observations 

transformed to gravity values (by tying off relative gravity measurements to previously surveyed points or 

http://www.ga.gov.au/afgn/index.jsp
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directly to the AFGN absolute gravity values). All of these data points are in terms of the Australian Absolute 

Gravity Datum 2007.  Each gravity data-base entry has corresponding position data, determined by various 

means, earlier locations were scaled from 1:250,000 photocenter base maps so are no more accurate than ~ 

900m, (Fraser et al, 1976). Most contemporary data are positioned with GPS. All position and gravity data 

channels have a corresponding standard deviation estimate of their precision.  

There are 1,767,351 entries in the data base as of 11th December 2018. 

Data coverage:  

 

 Estimated surface area of the Australian continent: 7659861 km2 

 Number of gravity observations (on shore) over Australia: 1,767,351 

 Average spatial density: 1 gravity observation every 4.334 km2 

 Coverage varies markedly, cf. Fig. B2. 

 
Fig. B2 - Relative gravity data coverage. Average spatial density 1 data point every 4.334 𝒌𝒎𝟐.  

Following the methodology of Sproule et al. (2006), the normal-orthometric AHD height of each gravity station 

have been compared to the 1 second digital elevation model by bi-cubically interpolating the DEM to the location 

of the gravity sites. The distribution of the differences is shown in Fig. B3. Errors in the heights of the gravity 

sites will propagate into height correction formulas and gravity anomalies used to compute gravimetric 

geoids/quasigeoids.  
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Fig. B3- Empirical cumulative distribution function (cdf) plot of the heights residuals - [min:-652.34, max: 
683.92, mean:-0.25, std: 6.08] metres, x-axis in metres 

The majority of the older (pre 1990s) gravity observation heights have been determined from aneroid 

barometers (accurate to around 3-10 m) and horizontal positions were originally scaled from aerial photography 

which is typically accurate to a few hundred metres (Fraser et al 1976; Murray 1997). In steep topography 

errors in the marks horizontal positions will result in a larger discrepancy in the difference to the DEM derived 

height (cf. Filmer et al. 2013).  This is less of a problem for more modern sites which will have been located by 

GPS (Sproule et al, 2006). 

A second test has been performed to assess the internal consistency of the simple Bouguer gravity anomalies by 

cross validation (i.e. each gravity site is left out one at a time; the remaining data are then interpolated to the 

missing site location and then compared to the missing sites gravity value). The distribution of the differences is 

shown in figure B4.  The standard deviation of the cross validation residuals is 1.024 mGal.  
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Fig. B4 - Empirical cdf plot of the heights residuals - [min:-95.87, max: 127.82, mean:0.00, std:1.024] mGal, 
x-axis in mGal 

This brief assessment of the gravity database demonstrates that the large majority of the data are reliable 

although there are long tails on the distributions. The data were plotted but there did not appear to be any 

obvious spikes. The large residuals on the tails may be due to limitations of this evaluation method (i.e. in steps 

gravity/topographic gradients).  

Tide gauge data 

The Bureau of Meteorology (BoM) maintains a database of some tide gauge observations around the Australian 

coast. The Permanent Service for Mean Sea Level (PSMSL) also holds data for Australian tide gauges. The data 

base provides monthly mean sea level estimates, based on hourly sea level observations, at 98 tide gauges 

around the Australian mainland and Tasmania.  
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Fig. B5- 98 Tide gauge locations on Australian mainland and on Tasmania 

The full database can be downloaded from here. 

http://www.bom.gov.au/oceanography/projects/ntc/monthly/index.shtml 

MSL is the average of tide gauge sea level observations over a specified time period, and have often been used 

as the zero reference point for local vertical datums (e.g., AHD) as an approximation of the geoid.  However, 

MSL is dependent upon physical artefacts (such as the ocean temperature or salinity) which are unrelated to 

Earth’s gravity field, and it is now well known that MSL does not coincide with the geoid. Indeed, it has been 

shown that the AHD has a north-south tilt of ~0.7 m in the AHD relative to the geoid (Featherstone and Filmer 

2012).  

The difference between the mean sea surface and the geoid is referred to as the mean dynamic topography 

(MDT). To rigorously constrain a levelling network to multiple tide gauges, the MDT should be corrected. MDT 

can be estimated at the tide gauge by a number of methods (Woodworth et al. 2012; Filmer et al, 2018). For 

example, the geodetic approach uses (1) GNSS observations to express the MSL observation as an ellipsoidal 

height at the tide gauge, or (2) from altimetry-derived MSS at the tide gauge and then subtracting a geoid 

height derived from a geoid model at the tide gauge from (1) or (2). Alternatively, the ocean approach infers the 

local MDT from observations of surface currents, temperature and salinity, or from global models based on 

physics-based dynamical constraints, or a combination of both approaches (cf. Filmer et al, 2018). 

Filmer et al (2018) details the results of a number of MDT estimations at 32 tide gauges around Australia, 

specifically looking at data averaged over the 2003-2007 time period. The results indicate the MDT at the tide 

gauges can be determined to a precision of around 5 cm.  

http://www.bom.gov.au/oceanography/projects/ntc/monthly/index.shtml
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Australian National Levelling Network (ANLN) 

Over the course of many years, differential levelling has been used to establish heights at over 100,000 

benchmarks across the Australian continent (Fig. B6). The Australian levelling network was established for 

mapping geophysical exploration (Granger, 1972) and comprises largely of third order levelling, with first and 

second order levelling in more densely populated regions. Generally the levelling data are accurate to around 12 

mm √𝑘𝑚 along the levelling lines.  

The third order levelling was opted for so that large distances could be covered efficiently by using 90 m sight 

lengths compared to <50 m for first order standard. It was initially planned for the ANLN to include more first 

order levelling over time and to be subsequently readjusted (Lambert and Leppert 1975). However this has not 

been implemented despite some moderate updates and corrections (Morgan, 1992). The ANLN is mostly the 

same data which were used to establish the AHD.  

The ANLN contains many accumulated errors. These errors are particularly problematic in continent wide 

levelling adjustments since they propagate into the whole network and lead to regional distortions in the AHD. 

The distortions are particularly prominent in the centre of the continent where the size of the loop misclosures 

can by larger than 0.5 m (Filmer and Featherstone 2009). Levelling loops in regional areas sometimes exceeded 

2000 km in length, so a precision of 12 √𝑘𝑚, mm permitted misclosures due to random errors of up to 0.5 m. 

However, this was often due more to gross errors, systematic errors such as refraction, or magnetic effects on 

early automatic levels (Morgan 1992).  

The original levelling connections to the AHD tide gauges are contained within in the ANLN. Connections to later 

tide gauges (other than QLD) are fewer, and ideally the AHD tide gauge connections should be updated. This is 

something that can still be (and should be) done.  
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Fig. B6. The Australian National Levelling Network (ANLN). First order levelling sections are in yellow, second 
order section in light green, third order in fine grey, fourth order in dark green, one way (third order) in red 
and two-way (order undefined; Steed 2006, pers. comm.) in blue. The junction points are the intersection 
points of the levelling loops. Lambert projection (figure and description from Filmer, 2010). 

GNSS and levelling 

Global Navigation Satellite System (GNSS) observations have been made at many of the ANLN benchmarks to 

obtain ellipsoidal heights. These co-located AHD normal-orthometric heights and GNSS-derived ellipsoidal 

heights can be used to calculate the geometric separation between the ellipsoid and AHD. They were used for 

modelling the geometric layer of AUSGeoid2020.  As of August 2017, there are a total of 7,635 of these GNSS-

levelling data points (Fig B7). 

The GNSS data are static dual-frequency occupations of at least six hours’ duration. The ellipsoidal heights were 

computed using Bernese version 5.2 on the Geocentric Datum of Australia 2020 (GDA2020; GRS80 ellipsoid), 

that is a regional realisation of ITRF2014 (Altamimi et al., 2016), projected to epoch 2020.0 using Australian 

station velocities.  The GDA2020 ellipsoidal heights were output from a least squares adjustment (LSA) along 

with the associated positional uncertainty (one sigma).  

The GNSS-levelling data include some of Australia’s offshore territories, which are technically on separate 

vertical datums, as is the AHD on Tasmania.  Though they are all termed AHD heights, they refer to mean sea 

level observed at a tide gauge on each island.  These comprise: Lord Howe Island (1 point), Cocos/Keeling 

Islands (14 points), Christmas Island (20 points), Tasmania (76 points) and coastal islands close to the 

Australian mainland (138 points). (Featherstone et al., 2018a) 

The data are currently available from: https://github.com/icsm-au 

https://github.com/icsm-au
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Fig. B7 - Spatial coverage of the May 2017 Australian GNSS-levelling data. Black dots are points on the 
Australian mainland (a single vertical datum). Blue dots are the separate vertical datums on Tasmania and 

coastal islands near the mainland. Featherstone et al. (2018b) 

  

These data are predominately isolated to populated lowland areas where the sites are more accessible. The data 

are sparse in the less populated remote areas of central and north-west Australia. This causes difficulties when 

modelling the AUSGeoid geometric layer, and evaluating the gravimetric component over the whole continent, in 

particular where the gravity field is susceptible to high frequency changes (e.g. in rough topography where data 

is sparse). 

Digital elevation model 

The gravitational effect of topography is not always well captured by surface gravity data. Digital elevation 

models (DEM’s) can be used to reinforce the gridding/interpolation process of surface gravity anomalies needed 

for gravimetric geoid/quasigeoid computations and gravity values for levelling height corrections (Featherstone 

and Kirby, 2000). 

Geoscience Australia has produced a 1 second resolution (~ 30 m) DEM-H model (Gallant et al., 2011) (Figure 

16).  It is derived from SRTM, has vegetation removed to convert the digital surface model to a DEM, adaptively 

smoothed depending on the roughness of the topography and noise in the SRTM, and hydrological connectivity 

enforced using the ANUDEM software (Hutchinson, 1989).  The 1” DEM-H file size is approximately 100 times 

larger than the previous 9” GEODATA DEM. (McCubbine et al., 2017) 
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Fig. B8 - 1 second resolution digital elevation model. Scale is in metres 

The elevation error in the DEM-H model, assessed by Gallant et al. (2011), indicates that 90% of the DEM 

elements are within 9.8 m of leveled heights.  Although, Gallant et al. (2011) also report that “significant 

changes to elevation have occurred due to the smoothing and drainage enforcement processes, … errors as 

large as 200 m occur in some areas”.  

Gravimetric terrain corrections 

The gravimetric quasigeoid computation processing chain for the gravimetric component of AUSGeoid2020 used 

gridded gravimetric terrain corrections values (at the same resolution of the gridded gravity data). A 1 arc 

second resolution grid of gravimetric terrain corrections were determined from the 1 second digital elevation 

model using the fast Fourier transform method (McCubbine et al.  2017). These data were block averaged to 1 

arc minute and algebraically added to the gridded free air anomaly to obtain gridded Faye gravity anomalies for 

AGQG2017. The terrain corrections (block averaged to 1 arc minute) can be seen in Fig. B9.  
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Fig. B9- Gravimetric terrain corrections, block averaged to 1 arc minute. In mGal. 

These data are suitable for to be used as the 𝛿𝑔𝑇𝐶  values in Eqs (A6) and (A7) Neithammer and Mader height 

correction formulas. However, further computations would have to be performed to obtain the mean terrain 

correction value 𝛿𝑔𝑇𝐶̅̅ ̅̅ ̅̅  along the plumbline (for Eq (A7)) and the terrain correction value at the geoid surface 

𝛿𝑔0
𝑇𝐶 . Both of these additional quantities can be obtained using the DEM. 

Topographic density models 

Stokes integral is used to compute the geoid surface separation from the ellipsoid. The integral is a convolution 

between Gravity anomalies and Stokes kernel function. These gravity anomalies must be on the surface of the 

geoid and this requires the complete remove of the gravitational effect of topography outside of the geoid. 

Standard terrain corrections assume a constant rock density of 2670 kg/m3 however this can vary from 

2.22 kg/m3 for sandstone through to 2.9 kg/m3 for dolerite (Washington et al, 1917). This means the standard 

rock density assumption can cause >10% error in the derived topographic correction values. For precise geoid 

and levelling height correction computations, a more accurate estimate of rock density should be used.  

Kuhn (2003) describes a method to determine a 3D model from seismic reflection data, borehole data and 

geological maps; although these models are normally only 2D determined from surface geology maps (e.g. 

Huang et. al. 2001, , Foroughi et. al. 2017). At present, no digital topographic density map currently formally 

exists for Australia. Nation-wide surface geology maps are available through the GA website, although these 

alone are not sufficient to produce a 3 dimensional model. 
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