Un article de Wikipédia, l'encyclopédie libre.
En analyse, les fonctions de Bessel sphériques sont des fonctions spéciales construites à partir des fonctions de Bessel classiques et qui interviennent dans certains problèmes possédant une symétrie sphérique.
Elles sont définies par :
En particulier, correspond à la fonction sinus cardinal :
On peut également définir, sur le même principe, les fonctions de Hankel sphériques :
On peut définir les fonctions de Bessel sphériques par la formule de Rayleigh :
Les fonctions génératrices des fonctions de Bessel sphériques sont :
Ces fonctions sont les solutions de la partie radiale de l'équation de Helmholtz en coordonnées sphériques, obtenue par séparation des variables :