Aller au contenu

« Racine carrée de deux » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Sharayanan (discuter | contributions)
m +ortho (!)
JerGer (discuter | contributions)
m Dénomination : sortie de 2 de l'italique ; légère reformulation
 
(688 versions intermédiaires par plus de 100 utilisateurs sont masquées)
Ligne 1 : Ligne 1 :
{{En-tête label|BA|année=2007}}
[[Image:Square_root_of_2_triangle.png|thumb|right|L'[[hypoténuse]] d'un [[triangle rectangle]] isocèle de côté 1 vaut √2.]] La '''[[racine carrée]] de deux''', notée <math>\sqrt{2}</math> ou <math>2^{\frac{1}{2}}</math>, est un [[nombre réel]] remarquable en [[mathématiques]] et valant approximativement 1,4142. <math>\sqrt{2}</math> est défini comme étant le seul [[nombre réel]] [[Nombre positif|positif]] qui, lorsqu'il est multiplié par lui-même, donne le nombre [[2 (nombre)|2]], autrement dit <math>\sqrt{2} \times \sqrt{2} = 2</math>.
{{Redirect confusion|Constante de Pythagore|Nombre de Pythagore|Nombre premier de Pythagore}}
La '''racine carrée de deux''', notée <math>\sqrt{2}</math> (ou parfois 2{{exp|1/2}}), est le seul [[nombre réel]] [[Nombre positif|positif]] qui, lorsqu’il est multiplié par lui-même, donne le nombre [[2 (nombre)|2]], autrement dit {{math|1={{racine|2}} × {{racine|2}} = 2}}. C’est un [[nombre irrationnel]], dont une [[valeur approchée]] à 10{{exp|–9}} près est :
: {{math|1={{racine|2}} ≈ 1,414 213 562}}.


[[Fichier:Square root of 2 triangle.svg|vignette|L’[[hypoténuse]] d’un [[triangle rectangle]] isocèle de côté 1 vaut {{math|{{sqrt|2}}}}.]]
Il est possible que <math>\sqrt{2}</math> ait été le premier nombre reconnu comme [[nombre irrationnel|irrationnel]], c'est-à-dire ne pouvant être exprimé comme une [[fraction]] de [[nombre entier|nombres entiers]]. La découverte des [[nombre irrationnel|nombres irrationnels]] est généralement attribuée à l'école de [[Pythagore]], dont l'un des membres aurait produit la toute première démonstration d'irrationalité. Sans pouvoir affirmer avec certitude que celle-ci concernait <math>\sqrt{2}</math>, le fait que les propriétés de ce nombre soient connues et étudiées depuis très longtemps, et aussi qu'il est particulièrement simple d'en démontrer l'irrationalité, est un argument pour faire de <math>\sqrt{2}</math> « le premier irrationnel ».
Le calcul d’une valeur approchée de {{math|{{sqrt|2}}}} a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les [[Algorithmique|algorithmes]] de calculs d’extraction de [[Racine carrée|racines carrées]]. En informatique, ces recherches se sont poursuivies afin d’optimiser ces algorithmes en réduisant les [[temps de calcul]] et la consommation de [[Mémoire (informatique)|mémoire]].


Géométriquement, {{math|{{sqrt|2}}}} est le rapport de la [[diagonale]] d'un [[carré]] sur son côté, c'est-à-dire le rapport de l’[[hypoténuse]] d’un [[triangle rectangle]] isocèle sur l'un des côtés de l'angle droit, ce qui est un cas particulier du [[théorème de Pythagore]].
Le nombre intervient dans des applications de la vie courante :
*les feuilles de papier européennes au standard ([[format de papier|format A4]]) ont une [[Notion de module|proportion]] longueur/largeur égale à √2 ;
*en [[musique]], le rapport des fréquences de la [[quarte]] augmentée de la [[gamme tempérée]] vaut √2 ;
*en [[électricité]], la [[tension électrique|tension]] maximale du [[courant alternatif]] domestique vaut √2 de la [[tension efficace]] indiquée (généralement 110 ou 220 V) ;
*en photographie, la suite des valeurs d'[[Ouverture (photographie)|ouverture]] du diaphragme sont les valeurs approchées d'une [[suite géométrique]] de [[Raison d'une suite|raison]] √2.


Le nombre {{math|{{sqrt|2}}}} est connu depuis longtemps : en [[Mathématiques mésopotamiennes|Mésopotamie]], les [[scribe]]s savaient déjà en calculer une valeur approchée très précise, dans le premier tiers du [[IIe millénaire av. J.-C.|second millénaire avant notre ère]]. Vraisemblablement vers le {{-s-|V}}, les [[Mathématiques grecques|mathématiciens grecs]] ont montré que la diagonale d'un carré et son côté étaient [[commensurabilité (mathématiques)|incommensurables]], ce qui revient à dire que {{math|{{sqrt|2}}}} est un [[nombre irrationnel|irrationnel]]. L'étude de l'incommensurabilité a joué un rôle important dans le développement des mathématiques grecques. Pour les Grecs, ni les fractions, ni les irrationnels ne sont des nombres. Ce pas est franchi par les [[Mathématiques arabes|mathématiciens arabes]] à l'origine de l'[[algèbre]].
== Éléments introductifs ==
{{article détaillé|Racine carrée (mathématiques élémentaires)}}


Ce nombre intervient dans des applications de la vie courante :
=== Définition, notation et prononciation ===
* les feuilles de papier au [[Format de papier#Norme internationale : formats A, B et C|format international]] ([[ISO 216]]) ont une [[Notion de module|proportion]] longueur/largeur approchée à {{math|{{sqrt|2}}}} ;
*√2 se prononce ''racine carrée de 2'' ; se prononçait aussi "radical de deux".
* en [[musique]], le rapport des fréquences de la [[Quarte (musique)|quarte]] augmentée de la [[gamme tempérée]] vaut {{math|{{sqrt|2}}}} ;
*√2 est le [[nombre réel]] [[positif]]<ref>Dans R : (-√2)²=2.</ref> qui multiplié par lui même donne 2. Autrement dit, le nombre x tel que x²=2. (√2)²=√2 x √2=2.
* en [[électricité]], la [[tension électrique|tension]] maximale du [[courant alternatif]] [[monophasé]] domestique vaut {{math|{{sqrt|2}}}} fois la [[tension efficace]] indiquée (généralement 110 ou {{nombre|230|[[Volt|V]]}}) ;
*√2 se note également 2{{exp|1/2}} : ''deux puissance un demi''. (notation Unicode : 2<sup>½</sup>)
* en photographie, la suite des valeurs d’[[Ouverture (photographie)|ouverture]] du [[Diaphragme (optique)|diaphragme]] sont les valeurs approchées d’une [[suite géométrique]] de [[Raison d'une suite|raison]] {{math|{{sqrt|2}}}}.


== Dénomination ==
=== Premières propriétés ===
[[Image:Structure of a root.svg|vignette|droite| Légende : 1. Indice ; 2. Radical ; 3. Radicande]]
Si les mécanismes<ref>Il s'agit du [[Produit mathématique|produit]], du [[2 (nombre)|nombre deux]], et du concept d'[[égalité (mathématiques)|égalité]]</ref> entrant en jeu dans la définition de la ''racine carrée'' de deux peuvent être compris très tôt, l'évaluation de la solution est bien plus complexe.
L’expression « [[racine carrée]] » est issue de la notation géométrique européenne qui prévalait avant la notation [[algèbre|algébrique]], et plus particulièrement de l’une des constructions de {{racine|2}} qui sera présentée à la [[#Histoire|section consacrée à l'historique]] ; en effet, les problèmes mathématiques ont souvent été présentés sous forme géométrique avant d’être ramenés à des expressions algébriques.


Le nombre 2 ayant exactement deux [[Racine carrée#Définition algébrique d'une racine carrée|racines carrées réelles]], {{sqrt|2}} et –{{sqrt|2}}, {{sqrt|2}} pourrait se lire ''racine carrée positive de'' 2, ou [[Détermination d'une fonction multivaluée#Racine carrée complexe|racine carrée principale]] de 2. On le prononce simplement ''racine carrée de'' 2, voire ''racine de'' 2 pour simplifier. Une autre expression correcte, faisant référence au symbole {{sqrt| }}, est « radical de deux », mais elle est peu courante.
La recherche d'une valeur de √2 sous forme de [[fraction]] (''ratio'') est [[Racine carrée de deux#Irrationalité|vaine]]. Ce constat est à l'origine d'un des problèmes [[Nombre réel#Problèmes d'incomplétude|fondamentaux des mathématiques]]. √2 est un nombre '''[[irrationnel]]'''. C'est en outre le premier nombre dont l'irrationalité a été prouvée.


On trouve parfois {{racine|2}} appelé '''constante de Pythagore''', peut-être à cause d'une légende attribuant la découverte de l'irrationalité de {{racine|2}} à l'[[école pythagoricienne]]<ref>Voir {{MathWorld|nom_url=PythagorassConstant|titre=Pythagoras’s Constant}}.</ref>.
=== Existence et construction ===
Quelques constructions classiques de √2.


Le symbole a été vu pour la première fois en version imprimée sans la barre horizontale au-dessus des nombres à l’intérieur de la racine en 1525 dans ''Die Coss'' de [[Christoff Rudolff]], un mathématicien allemand.
#Le '''[[Théorème de Pythagore]]''' énonce que dans un triangle ABC rectangle en C, AB²=AC²+BC². Si ce triangle est un carré coupé en diagonale, la mesure de ses côtés peut être ramenée à l'unité, AC=BC=1, d'où AB²=1+1=2 => AB=√2.
#Dans un carré, la diagonale est multiple de √2 par rapport aux côtés.
#On peut construire un carré de surface 2. L'aire d'un carré est égale au produit de ses côtés (x.x=x²). La ''racine'' de sa surface du carré est son côté et par construction, celui-ci est égal à √2. x²=2 => x=√2~1,4142. Cette construction est à l'origine de l'expression ''racine '''carrée'''''.
#La [[#Duplication du carré|duplication du carré]] est une construction géométrique qui vérifie l'existence du nombre √2.


== {{racine|2}} dans la vie courante ==
=== Étymologie ===
=== Format de papier ===
L'expression ''racine '''carrée''''' est issue de la notation géométrique européenne qui prévalait avant la notation [[algèbre|algébrique]], et plus particulièrement de l'une des constructions de √2 présentée au paragraphe précédant.
{{article détaillé|format de papier}}
[[Fichier:A size illustration.svg|vignette|Le rapport longueur/largeur d’une feuille de format A est une bonne approximation de {{racine|2}}.]]
Les formats de papier A, B et C de la norme [[ISO 216]], d’emploi courant hors de l’[[Amérique du Nord]], ont été conçus pour vérifier une propriété remarquable : une feuille coupée en deux parties égales par la largeur, produit deux feuilles [[similitude (géométrie)|semblables]] à l’original ; c’est-à-dire avec le même rapport longueur/largeur. L’aire étant diminuée d’un {{nobr|facteur 2}}, ceci n’est possible que si ce rapport vaut {{racine|2}} ; dans la pratique, les dimensions sont arrondies<ref>On peut cependant remarquer que pour le format A4, et si le petit côté vaut exactement 21 cm, le grand côté (29,7 cm) ne diffère de 21 {{racine|2}} cm que de 15 [[micron]]s.</ref>.


Ci-dessous sont données les valeurs approximatives des formats A0 à A5 en fonction de {{racine|2}}.
Les problèmes mathématiques ont souvent été présentés sous forme géométriques avant d'être rammenés à des expressions algébriques.
::{| class="wikitable centre"

|+ ''Valeurs approximatives des dimensions des formats A0 à A5 exprimées en fonction de {{racine|2}}. Dans la pratique, les dimensions sont arrondies.''
=== Valeur approchée ===

√2 vaut [[Racine carrée de deux#Méthodes numériques d'approximation|approximativement]] 1,414&thinsp;213&thinsp;562&thinsp;373&thinsp;09.

Le calcul d'une valeur approchante de √2 a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les [[algorithme]]s de calculs d'extraction de racines carrées. En informatique, ces recherches se sont poursuivies afin d'optimiser ces algorithmes : réduire les temps de calcul et la consommation de mémoire<ref>La plupart des logiciels mathématiques, sur ordinateurs ou sur machines à calculer, utilisent des approximations pré-établies de cette constante - au moins jusqu'à un certain rang.</ref> afin d'utiliser ces outils dans des domaines aussi variés que l'animation vectorielle, [[Racine carrée de deux#Musique|la musique]] ou les statistiques<ref>√2 intervient dans la [[loi normale]]</ref> .

==√2 dans la vie courante==
===Format de papier===
[[Image:A size illustration.svg|thumb|right|Le rapport longueur/largeur d'une feuille de format A est une bonne approximation de √2.]] {{article détaillé|format de papier}}

Les formats de papier A, B et C de la norme [[ISO 216]], d'emploi courant hors de l'[[Amérique du Nord]], ont été conçus pour vérifier une propriété remarquable : une feuille coupée en deux parties égales par la largeur, produit deux feuilles [[homothétie|homothétiques]] à l'original ; c'est-à-dire avec le même rapport longueur/largeur. L'aire étant diminuée d'un facteur 2, ceci n'est possible que si ce rapport vaut √2 ; dans la pratique, les dimensions sont arrondies.

Ci-dessous sont données les valeurs approximatives des formats A0 à A5 en fonction de <math>\sqrt{2}</math>.
::{| class="wikitable"
|+ ''Valeurs approximatives des dimensions des formats A0 à A5 exprimées en fonction de √2. Dans la pratique, les dimensions sont arrondies.''
|-
|-
| format || longueur (m) || largeur (m) || aire (m²)
! scope="col"| format !! scope="col"| longueur (m) !! scope="col"| largeur (m) !! scope="col"| aire (m{{exp|2}})
|-
|-
| A0 || {{racine|{{racine|2}}}} || {{fraction|{{racine|{{racine|2}}}}|{{racine|2}}}} || 1
| A0 || √√2 || √√2/√2 || 1
|-
|-
| A1 || {{fraction|{{racine|{{racine|2}}}}|{{racine|2}}}} || {{fraction|{{racine|{{racine|2}}}}|2}} || {{fraction|1|2}}
| A1 || √√2/√2 || √√2/2 || 1/2
|-
|-
| A2 || {{fraction|{{racine|{{racine|2}}}}|2}} || {{fraction|{{racine|{{racine|2}}}}|(2{{racine|2}})}} || {{fraction|1|4}}
| A2 || √√2/2 || √√2/(2√2) || 1/4
|-
|-
| A3 || {{fraction|{{racine|{{racine|2}}}}|2{{racine|2}}}} || {{fraction|{{racine|{{racine|2}}}}|4}} || {{fraction|1|8}}
| A3 || √√2/(2√2) || √√2/4 || 1/8
|-
|-
| A4 || {{fraction|{{racine|{{racine|2}}}}|4}} || {{fraction|{{racine|{{racine|2}}}}|4{{racine|2}}}} || {{fraction|1|16}}
| A4 || √√2/4 || √√2/(4√2) || 1/16
|}
|}
Dans la pratique les dimensions sont arrondies. Les séries B et C diffèrent de la série A respectivement d'un facteur <math>\sqrt{\sqrt{2}}</math> et <math>\sqrt{\sqrt{\sqrt{2}}}</math>.
Les séries B et C diffèrent de la série A respectivement d’un facteur {{racine|{{racine|2}}}} (~ 1,19) et {{racine|{{racine|{{racine|2}}}}}} (~ 1,09).


Les facteurs d'agrandissement de 200%, 141%, 71%, 50% proposés par les [[photocopieuse]]s sont des approximations de <math>(\sqrt{2})^n</math> qui permettent le passage à des formats de papier supérieurs ou inférieurs — que ce soit physiquement ou par impression de 2<sup>''n''</sup> pages par feuille.
Les facteurs d’agrandissement de 200 %, 141 %, 71 %, 50 % proposés par les [[photocopieuse]]s sont des approximations de ({{racine|2}}){{exp|''n''}} qui permettent le passage à des formats de papier supérieurs ou inférieurs — que ce soit physiquement ou par impression de 2{{exp|''n''}} pages par feuille.


Notons qu'en mathématiques, on note plus volontiers <math display=inline>\sqrt{\sqrt{2}} = \sqrt[4]{2} = 2^{1/4}</math> et <math display=inline>\sqrt{\sqrt{\sqrt{2}}} = \sqrt[8]{2} = 2^{1/8}</math>.
===Musique===

=== Musique ===
{{article détaillé|gamme tempérée}}
{{article détaillé|gamme tempérée}}
La gamme du tempérament égal se construit ainsi : le rapport de [[fréquence]]s entre les notes extrêmes de l’[[octave (musique)|octave]] est 2 ; et la gamme est divisée en douze demi-tons de rapports de fréquence égaux ƒ. Le rapport de fréquences entre la note la plus haute et la plus basse est donc ƒ<sup>&nbsp;12</sup>, qui vaut, comme indiqué précédemment, 2. Le [[demi-ton]] a ainsi un rapport ƒ = 2<sup>1/12</sup>.
En [[1691]], l'Allemand [[Andreas Werckmeister]] eut l'idée de créer une [[gamme musicale|gamme]] à [[intervalle (musique)|intervalles]] égaux, connue sous le nom [[gamme tempérée]]. Cette gamme résolvait quelques problèmes de la [[gamme pythagoricienne]], en particulier la fausseté flagrante de certains [[intervalle (musique)|intervalle]]s ([[loup (musique)|quinte du loup]], [[Tierce (musique)|tierce]]) ; de fait un tempérament proche du tempérament égal devait être utilisé sur les instruments à clavier et à frettes vers le {{XVIe siècle}}.

La gamme se construit de cette manière : le rapport de [[fréquence]]s entre les notes extrêmes de l'[[octave (musique)|octave]] est 2 ; et la gamme est divisée en douze-demi tons
de rapports de fréquence égaux ''f''. Le rapport de fréquences entre la note la plus haute et la
plus basse est donf <math>f^{12}</math>, qui vaut, comme indiqué précédemment, 2. Le demi-ton a ainsi un rapport <math>f = 2^{\frac{1}{12}}</math>. Dans ce système, la [[triton|quarte augmentée]] (do–fa#) et la [[quinte]] diminuée (do-sol♭), égaux et valant six demi-tons, ont un rapport de fréquences de <math>\sqrt{2}</math>.

::{| class="wikitable"
::{| class="wikitable"
|+ ''Rapports de fréquences des notes de la gamme tempérée par rapport à la note la plus basse.''
|+ ''Rapports de fréquences des notes de la gamme tempérée par rapport à la note la plus basse.''
|-
|-
|style="width: 3em"|do
|style="width: 3em"| ''do''
|style="width: 3em"|do#
|style="width: 3em"| ''do''♯
|style="width: 3em"|ré
|style="width: 3em"| ''''
|style="width: 3em"|ré#
|style="width: 3em"| ''''♯
|style="width: 3em"|mi
|style="width: 3em"| ''mi''
|style="width: 3em"|fa
|style="width: 3em"| ''fa''
|style="width: 3em"|fa#
|style="width: 3em"| ''fa''♯
|style="width: 3em"|sol
|style="width: 3em"| ''sol''
|style="width: 3em"|sol#
|style="width: 3em"| ''sol''♯
|style="width: 3em"|la
|style="width: 3em"| ''la''
|style="width: 3em"|la#
|style="width: 3em"| ''la''♯
|style="width: 3em"|si
|style="width: 3em"| ''si''
|style="width: 3em"|do
|style="width: 3em"| ''do''
|-
|-
|1
|1
Ligne 106 : Ligne 89 :
|2
|2
|}
|}
Dans ce système, la [[quarte (musique)|quarte]] augmentée (''do''–''fa''♯) et la [[quinte]] diminuée (do-sol♭) sont égales et valent six demi-tons ; elles ont un rapport de fréquences de √2. Le [[chant grégorien]] utilise cet intervalle, le [[triton (musique)|triton]], mais à la fin du [[Moyen Âge]] celui-ci est systématiquement évité car jugé trop dissonant. Il reçoit alors le surnom de « {{langue|la|''Diabolus in Musica''}}».

=== Électricité ===
[[Fichier:sin.svg|vignette|Tension sinusoïdale : valeur efficace.]]


===Électricité===
[[Image:sin.svg|thumb|right|Tension sinusoïdale : valeur efficace.]]
{{article détaillé|tension efficace}}
{{article détaillé|tension efficace}}

En [[électricité]], la [[tension efficace]] ''U''<sub>eff</sub> d'un [[courant alternatif]] [[sinusoïde|sinusoïdal]] — par exemple les 110 V ou 220 V du courant domestique — est reliée à l'amplitude de la tension ''U''<sub>max</sub> par
En [[électricité]], la [[tension efficace]] {{math|U<sub>eff</sub>}} d’un [[courant alternatif]] [[sinusoïde|sinusoïdal]] [[monophasé]] — par exemple les {{nombre|110|V}} ou {{nombre|220|V}} du courant domestique — est reliée à l’amplitude de la tension {{math|U<sub>max</sub>}} par
:''U''<sub>max</sub> = ''U''<sub>eff</sub>√2, noté aussi Û=U√2,
:<math>\mathrm{U}_\max = \mathrm{U}_\mathrm{eff}\sqrt{2}</math>, noté aussi <math>\widehat{\mathrm{U}} = \mathrm{U}\sqrt{2}</math>,
soit, dans la plupart des applications courantes :
soit, dans la plupart des applications courantes :
:''U''<sub>eff</sub> &cong; 0,7 ''U''<sub>max</sub>.
:<math> \mathrm{U}_\mathrm{eff} = 0,7\, \mathrm{U}_\max\sqrt{2}.</math>

Cela est valable plus généralement pour la valeur efficace des grandeurs linéaires d’une [[onde]] sinusoïdale.
On remarquera aussi que
:<math>20 \log (\mathrm{U}/\sqrt{2}) = 20 \log \mathrm{U} - 20 \log\sqrt{2} = 20 \log \mathrm{U} - \log(\sqrt{2}^{20}) = 20 \log \mathrm{U} - \log(2^{10}) = 20 \log \mathrm{U} - \log(1024) \simeq 20 \log \mathrm{U} - 3.</math>
On parle de [[bande passante]] à {{nombre|-3|décibels}}.


Cela est valable plus généralement pour la valeur efficace des grandeurs linéaires d'une [[onde]] sinusoïdale.
{{clr}}
{{clr}}


===Photographie===
=== Photographie ===
[[Image:Jdd_diaphragme_photo.jpg|thumb|right|Diaphragme contrôlant l'ouverture d'un appareil photo.]]
[[Fichier:Jdd diaphragme photo.jpg|vignette|Diaphragme contrôlant l’ouverture d’un appareil photo.]]
{{article détaillé|Ouverture (photographie)}}
{{article détaillé|Ouverture (photographie)}}
Les [[ouverture (photographie)|ouvertures]] des [[appareil photographique|appareils photographiques]] suivent la séquence normalisée f/1,4, f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22, f/32{{etc.}} Le rapport entre deux ouvertures consécutives est une valeur proche de {{racine|2}}, qui a été choisie de sorte que le rapport de [[flux lumineux]] soit dans un rapport 2 (flux = diamètre{{2}}). En diminuant d’un « cran » l’ouverture on double le [[temps de pose]] nécessaire ou diminue d’un facteur 2 la sensibilité de la [[pellicule photographique|pellicule]] requise<ref>{{Lien web|langue=en|url=http://www.uscoles.com/fstop.htm|titre=A Tedious Explanation of the f/stop|auteur=Matthew Cole|année=2005}}<!--(visité le 29 août 2006)-->.</ref>.


Dans la pratique, l’ouverture indiquée est un arrondi ; l’ouverture réelle peut coller au plus proche de {{racine|2}}<ref>{{Lien web|langue=en|url=http://tangentsoft.net/fcalc/help/|titre=ƒ/Calc Manual}}.</ref>. Il existe des subdivisions sur les appareils modernes, souvent dans des rapports <math>\sqrt{\sqrt{2}}</math> ou {{racine|2}}{{exp|1/3}}.
Les [[ouverture (photographie)|ouverture]]s des [[appareil photographique|appareils photographiques]] suivent la séquence normalisée f/1,4, f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22, f/32, etc. Le rapport entre deux ouvertures consécutives est une valeur proche √2, qui a été choisie de sorte à ce que le rapport de [[flux lumineux]] soit dans un rapport 2 (flux = diamètre²) . En diminuant d'un « cran » l'ouverture on double le temps de pose nécessaire ou diminue d'un facteur 2 la sensibilité de la [[pellicule photographique|pellicule]] requise.<ref>{{en}} ''[http://www.uscoles.com/fstop.htm A Tedious Explanation of the f/stop]'', Matthew Cole, [[2005]] <small>(visté le [[29 août]] 2006)</ref>

Dans la pratique, l'ouverture indiquée est un arrondi ; l'ouverture réelle peut coller au plus proche de <math>\sqrt{2}</math><ref>{{en}} ''[http://tangentsoft.net/fcalc/help/ f/Calc Manual]''</ref>. Il existe des subdivisions sur les appareils modernes, souvent dans des rapports <math>\sqrt{\sqrt{2}}</math> ou <math>\sqrt{2}^{\frac{1}{3}}</math>.


{{clr}}
{{clr}}
::{| class="wikitable" style="text-align: center"
::{| class="wikitable" style="text-align: center"
|+ ''Lien entre ouverture, diamètre du diaphrage et flux lumineux reçu à pose et sensibilités fixés.''
|+ ''Lien entre ouverture, diamètre du diaphragme et flux lumineux reçu à pose et sensibilités fixés.''
! style="text-align: left" | Ouverture
! style="text-align: left" | Ouverture
| f/1,4 || f/2 || f/2,8 || f/4 || f/5,6 || f/8 || f/11 || f/16 || f/22 || f/32
| f/1,4 || f/2 || f/2,8 || f/4 || f/5,6 || f/8 || f/11 || f/16 || f/22 || f/32
|-
|-
! style="text-align: left" | Diamètre
! style="text-align: left" | Diamètre
| ''d'' || ''d''/√2 || ''d''/2 || ''d''/2√2 || ''d''/4 || ''d''/4√2 || ''d''/8 || ''d''/8√2 || ''d''/16 || ''d''/16√2
| ''d'' || ''d''/{{racine|2}} || ''d''/2 || ''d''/2{{racine|2}} || ''d''/4 || ''d''/4{{racine|2}} || ''d''/8 || ''d''/8{{racine|2}} || ''d''/16 || ''d''/16{{racine|2}}
|-
|-
! style="text-align: left" | Flux
! style="text-align: left" | Flux
| ''I'' || ''I''/2 || ''I''/4 || ''I''/8 || ''I''/16 || ''I''/32 || ''I''/64 || ''I''/128 || ''I''/256 || ''I''/512
| ''I'' || ''I''/2 || ''I''/4 || ''I''/8 || ''I''/16 || ''I''/32 || ''I''/64 || ''I''/128 || ''I''/256 || ''I''/512
|}
|}


== Dupliquer un carré ==
==Histoire==
[[Fichier:DoublingTheSquareV1.svg|vignette|gauche|Construction d'un carré d'aire 2.]]
===Babylone===
La question de la duplication d'un carré correspond à la construction d'un carré d'aire double de celle d'un carré donné. On suppose que l'on dispose d'un carré d'aire 1 et l'on cherche à construire un carré d'aire 2. Par définition, le carré d'aire 1 possède un côté de longueur 1 et le carré d'aire 2 possède la même aire que celle de deux carrés d'aire 1.
[[Image:YBC 7289 sketch.svg|thumb|right|Schéma de la tablette [[YBC 7289]].]] {{article détaillé|YBC 7289}}


Il existe deux méthodes simples pour s'en persuader. La plus directe consiste à étudier la figure de gauche<ref>Cette démonstration est proposée par Socrate dans Platon, ''Ménon'' 82.</ref>. Le carré de côté 1 est composé de deux triangles, celui de côté noté {{racine|2}} est formé d'exactement quatre triangles du même type, il est donc d'aire double. Une autre manière de se rendre compte du rapport deux entre les aires des carrés de la figure est l'usage du [[théorème de Pythagore]]. Un triangle [[Triangle isocèle|isocèle]] [[triangle rectangle|rectangle]] de petit côté de longueur 1 possède une [[hypoténuse]] de carré égal à 1&nbsp;+&nbsp;1&nbsp;=&nbsp;2. Cette hypoténuse est la diagonale d'un carré de côté de longueur 1.
La première représentation connue de ce nombre date du début du {{IIe millénaire av. J.-C.}}. Il apparaît sur la [[tablette]] [[Babylone|babylonienne]] [[YBC 7289]] datant de -1700 ± 100. Il s'agit du tracé d'un carré avec ses diagonales, avec les mesures des segments et accompagné d'une valeur approchée de √2 écrite en [[système sexagésimal]] [[cunéiforme]] :
[[Fichier:DoublingTheSquarev2.svg|vignette|Duplication du carré grâce au cercle|droite]]
:{{Nombre babylonien|1|24|51|10}},
L'aire d'un carré s'obtient par multiplication de la longueur du côté par lui-même. La longueur du côté du carré d'aire 2 multiplié par lui-même est donc égal à 2. Par définition de {{racine|2}}, la longueur de ce côté est {{racine|2}}.
ce qui signifie très probablement 1 + 24/60 + 51/60² + 10/60³ — l'absence de [[zéro]] et de [[virgule]] dans la [[numération babylonienne]] rend la [[notation positionnelle]] ambiguë — soit environ 1,41421296. Il s'agit d'une valeur approchée au six dix-millionièmes de <math>\sqrt{2}</math>, ce qui indique qu'elle avait été obtenue de manière [[algorithme|algorithmique]], car une telle précision de mesure leur était hors de portée.


Il est en outre possible, à l'aide d'un cercle, de dupliquer le carré sans en changer l'orientation. Dans la figure ci-contre le grand carré a une surface double du petit carré. Il suffit pour s'en convaincre de faire pivoter le petit carré d'un huitième de tour. Le rapport des côtés des deux carrés est donc de {{racine|2}}. La figure de gauche illustrera, pour les mathématiciens futurs la présence de la racine carrée de deux dans le sinus et le cosinus du huitième de tour.
On sait d'ailleurs que les Babyloniens savaient extraire des racines carrées d'entiers non [[nombre carré|carrés]] en exploitant des formules du type de la [[méthode de Héron]].<ref name="RF">{{en}} {{pdf}}Eleanor Robson & David Fowler, ''[http://www.hps.cam.ac.uk/dept/robson-fowler-square.pdf Square root approximations in Old Babylonian mathematics : YBC 7289 in context]'', Historia Mathematica, 25, pp. 366-378, 1998.</ref> (Ces formules sont un cas particulier de la [[méthode de Newton]]).
:<math>\cos(45^\circ) = \sin(45^\circ) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}</math>


Plus tard, ce tracé séduit de nombreux architectes comme [[Andrea Palladio]] dans sa [[Villa Rotonda]] ou dans l’''Église ronde'' de [[Preslav]]. On le retrouve dans le cloître de la [[cathédrale de Cahors]] où la surface de la cour intérieure est égale à la surface de la galerie qui l'entoure<ref>Guillaume Reuiller, ''[http://www.palais-decouverte.fr/fileadmin/fichiers/infos_sciences/mathematiques/textes/formes_matematiques_revue/351_oct_2k7.pdf L'aire de RIEN]'', Palais de la découverte, mesure vérifiable sur un [http://archive.wikiwix.com/cache/?url=http://www.mairie-cahors.fr/patrimoine/inventaire/imagcen/img06/ple/1_0560_P.jpg&title=plan%20de%201841 plan de 1841].</ref> ou dans les carnets de [[Villard de Honnecourt]]<ref>{{citation|Par ce moyen on fait un cloître, en donnant autant aux voies qu’au jardin}} in {{Article|auteur1=[[Dominique Raynaud]]|périodique=Arquitetura Revista|volume=1|année=2008|pages=15-32|url=http://halshs.archives-ouvertes.fr/docs/00/37/65/72/PDF/Scheme_operateur2-AR.pdf|titre=Le schème, opérateur de la conception architecturale}}, {{p.|23}}.</ref>.
===Grèce antique===
{{article détaillé|mathématiques de la Grèce antique|École pythagoricienne|mode=approfondir}}
Les [[École pythagoricienne|pythagoriciens]] attribuèrent une grande importance à la notion de grandeurs [[Commensurabilité (mathématiques)|commensurables]] et s'y tinrent longtemps comme à un principe philosophique. Ils ne pouvaient concevoir qu'un nombre ne soit pas un rapport d'entiers, le rapportant le plus souvent à des figures géométriques. Mais d'après [[Aristote]] ({{IVe siècle av. J.-C.}}), ce sont les pythagoriciens eux-mêmes qui démontrèrent pour la première fois que <math>\sqrt{2}</math> est irrationnel, à la fin du {{Ve siècle av. J.-C.}}, à savoir qu'il ne peut s'écrire comme le rapport de deux grandeurs commensurables. Cette démonstration de l'incommensurabilité de <math>\sqrt{2}</math>, supposée pour une grande part géométrique, est souvent attribuée à [[Pythagore]], mais elle aurait en fait été rédigée par l'un de ses disciples. Une légende rapporte que, parce que contraire aux pensées de [[Pythagore]] sur le caractère absolu des nombres, la découverte d'un nombre irrationnel jeta un trouble au sein de l'école et la démonstration fut dissimulée. Une autre légende mise en doute par [[Proclus]] raconte qu'[[Hippase de Métaponte]] fut jeté à la mer et mourut noyé pour avoir révélé l'existence de cette démonstration.
Beaucoup de doutes subsistent sur ces récits. D'ailleurs certains émettent l'hypothèse qu'il ne s'agissait pas de <math>\sqrt{2}</math> mais plutôt du [[nombre d'or]] <math>(1+\sqrt{5})/2</math>. [[Platon]] rapporte dans son [[Théétète (Platon)|Théétète]], que [[Théodore de Cyrène|Théodore]] utilisait une méthode générale pour démontrer l'incommensurabilité à un des racines carrées de 3, 5, ... 17 mais sans nous la révéler. Ainsi l'incommensurabilité de <math>\sqrt{2}</math> à 1, pourrait bien avoir tout de même été établie par les pythagoriciens.
La plus ancienne preuve de l'incommensurabilité de <math>\sqrt{2}\,</math> avec 1 qui ait traversé le temps, figure dans les textes d'[[Aristote]] (Aristote, Analytiques Postérieurs I), qui affirme que si la diagonale du carré était commensurable avec le côté, alors un même nombre serait pair et impair. Une autre démonstration se trouve dans le livre 10 des ''[[Éléments]]'' d'[[Euclide]] et repose sur la méthode d'antiphérèse, aussi appelée méthode de soustraction réciproque.


== Preuves d'irrationalité ==
On suppose que l'algorithme de [[Théon de Smyrne]], inspiré de la méthode d'antiphérèse, aurait été utilisé à l'époque pour calculer des valeurs approchées de <math>\sqrt{2}</math>. Il permet, en considérant les rapports de termes des deux suites introduites par Théon et en utilisant le principe de l'encadrement, d'obtenir des valeurs approchées de <math>\sqrt{2}</math> comme 3/2, 7/5, ou 17/12.
Il existe de nombreuses démonstrations<ref>{{Lien web|langue=en|url=http://www.cut-the-knot.org/proofs/sq_root.shtml|titre=Square root of 2 is irrational|auteur=Alexander Bogomolny|site=[[Cut The Knot]]}} en recense 27.</ref> du fait que {{racine|2}} est [[Nombre irrationnel|irrationnel]]. Plusieurs d'entre elles n'utilisent que des connaissances arithmétiques très minimales, d'autres se généralisent en remplaçant {{racine|2}} par {{racine|''n''}} où l'[[entier naturel]] ''n'' n'est pas un [[carré parfait]] (voir l'article « [[Irrationnel quadratique]] »). Certaines sont des reformulations, avec les concepts et le langage mathématiques actuels, de preuves antiques ou supposées telles ({{cf.}} [[#Histoire|§ Histoire]]).


Elles procèdent souvent en utilisant simplement la [[Négation logique|définition de la négation]]{{Note|texte=Contrairement à ce qu’on lit souvent, il ne s’agit pas d’un véritable [[raisonnement par l’absurde]] ; se reporter à cet article pour une analyse soignée de la différence.}}, en supposant que {{racine|2}} est, au contraire, [[Nombre rationnel|rationnel]], c'est-à-dire qu'il peut s'écrire sous la forme ''p''/''q'' pour certains [[Entier naturel|entiers]] ''q'' > 0 et ''p'', puis en déduisant une contradiction de cette hypothèse {{racine|2}} = ''p''/''q'', qui s'écrit aussi ''p''{{2}} = 2''q''{{2}}.
Précisons qu'il faudra attendre [[Diophante]] pour que <math>\sqrt{2}</math> et les autres irrationnels, ainsi que les [[nombre rationnel|rationnels]] soient considérés comme des nombres à part entière, algébriquement parlant.


===Monde indien===
=== Par parité ===
Soit ''p'' [[Raisonnement par récurrence#Bon ordre|le plus petit entier]] strictement positif tel que ''p''{{2}} soit le double d'un carré, et soit ''q'' l'entier positif tel que ''p''{{2}} = 2''q''{{2}}. Alors, {{nobr|1=''p'' > ''q''}} (puisque ''p''{{2}} > ''q''{{2}}) et ''p'' est [[Parité (arithmétique)#Produit|pair (puisque son carré l'est)]]. En notant {{nobr|1=''p'' = 2''r''}} et en simplifiant par 2, l'équation se réécrit ''q''{{2}} = 2''r''{{2}}, avec {{nobr|1=0 < ''q'' < ''p''}}, ce qui contredit la minimalité dans le choix de ''p''.
{{Article détaillé|Mathématiques indiennes|mode=approfondir}}


Une variante consiste à pratiquer une [[descente infinie]] à partir d'une (hypothétique) solution ''p''{{2}} = 2''q''{{2}} : on construit ''r'' comme ci-dessus, puis ''s'', ''t''{{etc.}} tels que ''p''{{2}} = 2''q''{{2}}, ''q''{{2}} = 2''r''{{2}}, ''r''{{2}} = 2''s''{{2}}… et {{nobr|''p'' > ''q'' > ''r'' > ''s'' > … }}, ce qui est absurde puisqu'il n'existe pas de [[Suite (mathématiques)|suite infinie]] [[Suite monotone|strictement décroissante]] d'entiers positifs.
On peut trouver dans le ''Śulbasutra'' de Baudhayana une approximation de <math>\sqrt{2}\,</math> antérieure au {{Ve siècle av. J.-C.}} <ref>Voir
{{fr}} Quelques aspects arithmétiques du commentaire de Dvarakanatha sur la géométrie du Sulbasutra, Jean-Michel Delire, Oriens-Occidens, n°4 (2002) ; {{en}} ''[http://www.math.cornell.edu/~dwh/papers/sulba/sulba.html Square Roots in the Sulbasutra]'', avid W. Henderson ; {{fr}} ''[http://www.enseignement.be/@librairie/documents/ressources/100/diagonalecarre.pdf La Diagonale du carré]'', 5.2
</ref>.


=== Par soustractions réciproques ===
===Monde arabo-musulman===
Soient à nouveau ''p'' et ''q'' entiers > 0 tels que ''p''/''q'' = {{racine|2}} avec ''pq'' le plus petit possible ou, ce qui revient au même, ''q'' le plus petit possible. On déduit de ''p''{{2}} = 2''q''{{2}} que {{nobr|1=''p''(''p – q'') = ''p''{{2}} – ''pq'' = 2''q''{{2}} – ''pq'' = (2''q – p'')''q'',}} d'où en posant<ref>{{harvsp|Gardner|2001|p=16}}. A. Bogomolny, sur ''Cut The Knot'' (Proof 8), signale également la note, dès l'édition de 1920, de {{Ouvrage|langue=en|auteur1=[[Edmund Taylor Whittaker|E. T. Whittaker]]|auteur2=[[George Neville Watson|G. N. Watson]]|titre=A Course of Modern Analysis|éditeur=[[Cambridge University Press|CUP]]|année=1996|pages totales=608|passage=5|isbn=978-0-521-58807-2|lire en ligne=https://books.google.fr/books?id=ULVdGZmi9VcC&pg=PA5}}.</ref>
{{article détaillé|mathématiques arabes|mode=approfondir}}
:''r = p – q'' et ''s'' = 2''q – p'' :
''p''/''q'' = ''s''/''r'', ce qui contredit la minimalité de ''q'', puisque 0 < ''r'' < ''q''.


En résumé : soit ''q'' le plus petit entier > 0 tel que ''q''{{racine|2}} est entier, alors ''q''{{racine|2}} – ''q'' est encore un tel entier qui est strictement inférieur à ''q'', d'où une contradiction<ref>{{harvsp|Gardner|2001|p=18}}, présente cette reformulation pour la variante 2''r''/''s'' (égale à 2/{{racine|2}} = {{racine|2}} et dont le dénominateur ''s'' vérifie ''r'' < ''s'' < ''q'').</ref>.
Le monde arabo-musulman connaissait l'irrationalité √2, au moins par traduction des textes grecs. Les travaux de [[Muhammad ibn Musa al-Khwarizmi]] introduisent la notation algébrique la généralise les problèmes et [[équation]]s du [[second ordre]] [http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Al-Khwarizmi.html]. Un de ses successeurs, [[Abu Kamil]] systématise la manipulation des irrationnels. Ces deux mathématiciens développent et perfectionnent les algorithmes d'approximation des irrationnels, dont √2.


(On peut, comme précédemment, transformer ce raisonnement en une descente infinie.)
===Occident===
==Géométrie==
=== Duplication du carré ===
[[Image:Duplication.svg|thumb|right|En rouge le carré initial<br/> En pointillé, les tracés de Socrate <br/> En bleu, la réponse de l'esclave]]
<math>\sqrt{2}</math> intervient dans la duplication du carré. C'est à dire la résolution du problème :
: Un carré étant donné, comment construire un carré dont la surface est double ?
Ce problème, dont la résolution géométrique est relativement simple, offre un double intérêt historique : d'une part, il a servi de base à une démarche [[pédagogie|pédagogique]] célèbre racontée dans le ''[[Ménon]]'' de [[Platon]] (vers 400 avant l'ère commune). D'autre part, il a poussé les mathématiciens à s'intéresser à un problème qui semblait similaire mais qui se révéla insoluble dans le cadre de la [[construction à la règle et au compas]] : la [[duplication du cube]].


=== Par un argument géométrique ===
Dans le Ménon de Platon, [[Socrate]] cherche à prouver à Ménon que la vertu ne s'enseigne pas mais est intrinsèque. Il pose à un [[esclave]] le problème de la duplication du carré et va l'amener à trouver « seul » la solution du problème. La démarche de l'esclave suit une voie assez classique. Il propose de multiplier le côté par deux. Socrate l'amène à trouver qu'alors l'aire est multipliée par 4. L'esclave propose ensuite de considérer un carré dont le côté est la moyenne arithmétique du côté initial et de son double. Socrate l'amène à trouver que l'aire vaut alors les 9/4 de l'aire initiale. L'esclave arrive à une impasse : il ne peut trouver un nombre solution du problème. Socrate le guide alors vers la voie géométrique, il reproduit 3 carrés semblables au premier et trace une diagonale. L'esclave poursuit le raisonnement et construit enfin la solution au problème. D'après Socrate, l'esclave a retrouvé en lui une vérité qu'il possédait ; la démarche employée ressortit à la [[maïeutique]].
[[Fichier:Sqrt2 is irrational.svg|vignette|Si le triangle ABC est isocèle rectangle avec ses côtés de longueurs entières, alors c'est aussi le cas du triangle A'B'C, qui est de dimensions plus petites.]]
Démontrer l'irrationalité de √2 revient à démontrer que, pour une unité donnée, il n'existe pas de [[triangle isocèle rectangle]] dont les côtés sont chacun de longueur un nombre entier d'unité.


Si un tel triangle existe, alors il en existe nécessairement un plus petit dont les côtés sont aussi de longueur entière (sa construction est donnée sur le dessin ci-contre et détaillée ci-dessous). Or si un tel triangle existe, il en existe nécessairement un minimal ayant cette propriété (celui dont le côté de l'angle droit, par exemple, est [[élément minimal|minimal]]) d'où une contradiction.
On peut donc affirmer :
:Le rapport entre le côté et la diagonale d'un carré est <math>\sqrt{2}</math>


Soit ABC un triangle isocèle rectangle en B et de côtés entiers. Alors, le [[cercle]] centré en A de rayon la longueur du petit côté AB coupe l'hypoténuse [AC] en un point B' tel que B'C soit encore de longueur entière, puisque AC et AB' le sont. La perpendiculaire menée en B' à l'hypoténuse [AC] coupe le côté [BC] en A'. Le triangle A'B'C est isocèle rectangle en B', puisque l'angle en B est droit et l'angle en C est celui du triangle d'origine. Les droites (A'B) et (A'B') sont les tangentes issues de A' au cercle de centre A et de rayon AB = AB', et donc A'B = A'B', donc A'B = A'B' = B'C, et A'C est de longueur entière<ref>Cette démonstration, reprise de {{harvsp|Apostol|2000}}, est inspirée selon lui d'une preuve géométrique de l'époque grecque classique. On la trouve sous une forme proche dans un manuel russe de géométrie dû à A. P. Kiselev dans de 1892 et très utilisé selon [http://www.cut-the-knot.org/proofs/sq_root.shtml Alexander Bogomolny - Cut the Knot]. Une variante est donnée dans {{harvsp|Gardner|2001|p=12}}.</ref>. On peut aussi interpréter la construction comme le pliage du triangle ABC dans lequel on ramène le côté [AB] sur l'hypoténuse<ref>La démonstration par pliage, menée en partant d'un carré est proposée par {{Ouvrage|auteur1=J. H. Conway|auteur2=R. K. Guy|titre=The Book of Numbers|éditeur=Copernicus|année=1996}} {{p.|183-184}}.</ref>.
Autrement dit, si ''d'' est la longueur de la diagonale et ''c'' celle du côté


On peut, en explicitant les calculs des côtés du triangle, donner une version purement arithmétique de cette preuve qui est alors celle du paragraphe précédent (prendre ''p'' = AC et ''q'' = AB = BC).
: <math>d = c \sqrt{2}</math>


=== Par le lemme de Gauss ===
{{clr}}
{{article détaillé|Lemme d'Euclide}}
Soit ''q'' [[Minimum|le plus petit]] entier > 0 tel que le nombre ''p'' := ''q''{{racine|2}} soit entier, alors ''q'' est [[premier avec]] ''p'', or il divise ''p''{{2}}. Il est donc égal à 1, et ''p''{{2}} = 2, ce qui est impossible. C'est, particularisé à 2, un argument général qui montre que la racine carrée d'un entier qui n'est pas un [[carré parfait]] est irrationnelle.


=== Par le théorème fondamental de l'arithmétique ===
===Triangle rectangle isocèle===
{{article détaillé|Théorème fondamental de l'arithmétique}}
Le couple (''p'', ''q'') tel que ''p''{{2}} = 2''q''{{2}} étant cette fois arbitraire (i.e. ''q'' non nécessairement minimum), la contradiction vient de ce que dans la [[décomposition en produit de facteurs premiers]], ''p''{{2}} a un nombre pair de facteurs et 2''q''{{2}} un nombre impair. Une variante est de compter seulement les facteurs égaux à 2. Cet argument, là encore, s'adapte immédiatement à la racine carrée d'un entier qui n'est pas un carré parfait.


=== Par les congruences ===
[[Image:Isosceles right triangle.svg|thumb|right|Triangle rectangle isocèle de côté 1.]]
{{article détaillé|Congruence sur les entiers}}
Dans un [[triangle rectangle]], si les deux côtés adjacents à l'angle droit ont une longueur égale à l'unité, l'hypoténuse a pour longueur de √2. Ce résultat est un cas particulier du [[théorème de Pythagore]].
Avec ''p'' et ''q'' premiers entre eux comme plus haut, donc non tous deux [[divisible]]s par 3, ''p''{{2}} – 2''q''{{2}} ne peut pas être nul puisque<ref name="CtK14'">{{lien web |lang=en |auteur=A. Bogomolny |titre=Square root of 2 is irrational |url=https://www.cut-the-knot.org/proofs/sq_root.shtml |site=Cut The Knot}} Proof 14'.</ref> modulo 3, il est congru à 0{{2}} – 2 × (±1){{2}} ou (±1){{2}} – 2 × 0{{2}} ou {{nobr|(±1){{2}} – 2 × (±1){{2}},}} c'est-à-dire à ±1. (En utilisant la notion d'[[inverse modulaire]], on peut, dans cette méthode, remplacer<ref name="CtK14'"/> 3 par n'importe quel [[nombre premier]] ''P'' tel que 2 n'est pas un [[Résidu quadratique|carré modulo]] ''P'', [[Symbole de Legendre|{{càd}} ''P'' congru à 3 ou 5 modulo 8]]).


== Constructions géométriques ==
La [[théorème de Pythagore]] affirme en effet que dans un [[triangle rectangle]], le carré de l'[[hypoténuse]] — côté opposé à l'[[angle droit]] — est égal à la somme des carrés des côtés adjacents à l'angle droit. Sur la figure ci-contre, cela se traduit par
=== Construction de {{racine|2}} à la règle et au compas ===
: <math>a^2 + b^2 = c^2</math>
[[Fichier:Square root of two with ruler and compass.svg|vignette|Construction à la règle et au compas]] Comme toute racine carrée de nombre entier, {{racine|2}} est [[nombre constructible|constructible à la règle et au compas]] ; ''a contrario'', ce n’est pas le cas de la [[racine cubique]] de 2 (c'est le problème de la [[duplication du cube]].


Étant donné un [[Segment (mathématiques)|segment]] AB de longueur unité, voici les différentes étapes pour construire un segment de longueur {{racine|2}} avec une [[règle (instrument de géométrie)|règle non graduée]] et un [[compas (géométrie)|compas]] :
Sur le triangle ci-contre cela donne ainsi
# Tracer le symétrique B′ de B par rapport à A
: <math>1^2 + 1^2 = c^2</math>.
#* Tracer le cercle C<sub>1</sub> de centre A et de rayon AB, il coupe la [[demi-droite]] [BA) en B′

# Tracer la médiatrice (AH) de [BB′]
Cela veut dire que le carré de l'hypoténuse <math>c^2</math> vaut 2. On en déduit que l'hypoténuse elle-même est de longueur
: <math>c = \sqrt{2}</math>.

=== Trigonométrie ===
[[Image:Trigonometry_45_degrees.svg|thumb|right|√2/2 = sin 45° = cos 45°]]
La moitié de √2 est une quantité commune en géométrie et en trigonométrie, car le vecteur unitaire qui fait un angle de 45° avec l'axe des abscisses, dans un [[repère orthonormé]], a pour coordonnées :
:<math>\left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) </math>

Ce nombre satisfait cette relation :
:√2/2 = 1/√2 = cos 45° = sin 45°
<!--
Cette propriété est une conséquence du [[théorème de Pythagore]] dans le cercle trigonométrique. Soit le triangle rectangle de sommets o, l'origine du repère, c, l'intersection du rayon r avec le cercle, et x' l'intersection de la perpendiculaire y avec l'axe horizontal. xyr est un triangle rectangle, donc x²+y²=r=1. Par définition x=cos
-->
{{clr}}

===Construction de √2 à la règle et au compas===
[[Image:Square root of two with ruler and compass.svg|right|thumb|Construction à la règle et au compas.]] Comme toutes les racines carrées de nombre entier, <math>\sqrt{2}</math> est [[construction à la règle et au compas|constructible à la règle et au compas]] ; ''a contrario'', ce n'est pas le cas de la [[racine cubique]] de 2, par exemple.

Étant donné un [[Segment (mathématiques)|segment]] AB de longueur unité, voici les différentes étapes pour construire un segment de longueur <math>\sqrt{2}</math> avec une [[règle (instrument de géométrie)|règle non graduée]] et un [[compas (géométrie)|compas]] :
# Tracer le symétrique B' de B par rapport à A
#* Tracer le cercle C<sub>1</sub> de centre A et de rayon AB, il coupe la [[demi-droite]] ]BA) en B'
# Tracer la médiatrice (AH) de [BB']
#* Tracer le cercle C<sub>2</sub> de centre B et de rayon ''r'' > AB
#* Tracer le cercle C<sub>2</sub> de centre B et de rayon ''r'' > AB
#* Tracer le cercle C<sub>3</sub> de centre B' et de rayon ''r'', il coupe C<sub>2</sub> en deux points, H et H'
#* Tracer le cercle C<sub>3</sub> de centre B′ et de rayon ''r'', il coupe C<sub>2</sub> en deux points, H et H′
#* Tracer le segment [AH] il intersecte C<sub>1</sub> en un point C.
#* Tracer le segment [AH] il intersecte C<sub>1</sub> en un point C.


À cette étape le segment [BC] de longueur <math>\sqrt{2}</math> est construit.
À cette étape le segment [BC] de longueur {{racine|2}} est construit.


=== Construction de {{racine|2}} au compas seul ===
{{clr}}
[[Fichier:Square root of two with compass only.svg|vignette|Construction au compas seul de {{racine|2}}]]
Comme tout nombre constructible à la règle et au compas, {{racine|2}} est [[Théorème de Mohr-Mascheroni|constructible au compas seul]].
Les étapes d’une construction possible sont :
# Tracer quatre sommets consécutifs B, G, H, I de l’hexagone régulier de centre A et de sommet B ; ceci permet de construire {{racine|3}}, l’unité étant la longueur AB.
#* Tracer le cercle C<sub>1</sub> de centre A et de rayon AB ;
#* Tracer le cercle C<sub>2</sub> de centre B et de rayon AB, il coupe C<sub>1</sub> en deux points, soit G l’un d’entre eux ;
#* Tracer le cercle C<sub>3</sub> de centre G et de rayon AB, il coupe C<sub>1</sub> en B et H ;
#* Tracer le cercle C<sub>4</sub> de centre H et de rayon AB, il coupe C<sub>1</sub> en G et I ;
# Construire un triangle rectangle ABC d’hypoténuse BC = {{racine|3}} (AB = 1) ; C est l’un des deux points tel qu'IC = IG et BC = BH (sachant que {{nobr|IG {{=}} BH {{=}} {{racine|3}} > IB/2 {{=}} 1}}).
#* Tracer le cercle C<sub>5</sub> de centre I et de rayon IG ;
#* Tracer le cercle C<sub>6</sub> de centre B et de rayon BH (= IG), il coupe C<sub>5</sub> en C.


À cette étape le segment [AC] de longueur {{racine|2}} est construit.
===Construction de √2 au compas seul===
[[Image:Square root of two with compass only.svg|right|thumb|Construction au compas seul]] Comme tout nombre constructible à la règle et au compas, <math>\sqrt{2}</math> est constructible au compas seul. Les étapes sont
# Tracer des sommets consécutifs B, G, H, I de l'hexagone régulier de centre A et de sommet B
#* Tracer le cercle C<sub>1</sub> de centre A et de rayon AB
#* Tracer le cercle C<sub>2</sub> de centre B et de rayon AB, il coupe C<sub>1</sub> en deux points, soit G l'un d'entre eux
#* Tracer le cercle C<sub>3</sub> de centre G et de rayon AB, il coupe C<sub>1</sub> en B et H
#* Tracer le cercle C<sub>4</sub> de centre H et de rayon AB, il coupe C<sub>1</sub> en G et I
# Construire C tel que IC = IG = BH
#* Tracer le cercle C<sub>5</sub> de centre I et de rayon IG
#* Tracer le cercle C<sub>6</sub> de centre B et de rayon BH (= IG), il coupe C<sub>5</sub> en C


<small>Éléments de démonstration : IC = IG = {{racine|3}}, car d’après le [[théorème de Pythagore]], les hauteurs en I et G des triangles équilatéraux de côté 1, IHA et HAG, qui sont portées par la médiatrice de (H, A), ont pour longueur {{racine|3}}/2. Par construction (A et C sur la médiatrice de BI) (AC) est perpendiculaire à (AI) et le [[théorème de Pythagore]] dans IAC donne AC{{2}} = 2.</small>.
À cette étape le segment [AC] de longueur <math>\sqrt{2}</math> est construit.


== Histoire ==
<small>Éléments de démonstration : IC² = IG² = 3 d'après le [[théorème d'Al-Kashi]] dans le triangle IAG avec  = 120°. Par construction (C sur la médiatrice de AI) AC est perpendiculaire à AI et le [[théorème de Pythagore]] dans IAC donne AC² = 2.</small>.
=== La période paléo-babylonienne ===
[[Fichier:YBC 7289 sketch.svg|vignette|Schéma de la tablette [[YBC 7289]].]]
{{article détaillé|YBC 7289}}
La culture mathématique de la [[période paléo-babylonienne]] est avant tout algorithmique. Elle dispose d'un système de [[Numération mésopotamienne|numération]] en [[notation positionnelle]]<ref>{{Article|prénom=Christine|nom=Proust|lien auteur=Christine Proust|url=http://www.math.ens.fr/culturemath/histoire%20des%20maths/pdf/chrono_mesopotamie.pdf|titre=Mathématiques en Mésopotamie|revue=CultureMath|éditeur=[[École normale supérieure (Paris)|éditeur=ENS Ulm]]/DGESCO|année=2006}}.</ref>. Certaines tablettes, comme celle notée [[BM 13901]], montrent une bonne connaissance des [[équation du second degré|questions du second degré]], probablement traitées à partir de méthodes géométriques simples, par copié-collé d'aires rectangulaires<ref>Cette conclusion est émise par [[Jens Høyrup]]. Des éléments de traduction de la tablette sont disponibles à : ''[http://akira.ruc.dk/~jensh/Selected%20themes/Mesopotamian%20mathematics/Handout.PDF La pensée algébrique]'', {{12e}} Colloque Inter-[[IREM]], 1998.</ref>. En plus de disposer de méthodes de résolution, les Babyloniens savent calculer des approximations de racines carrées. La tablette [[YBC 7289]], rédigée dans le premier tiers du second millénaire avant notre ère, donne une approximation de {{racine|2}}, interprétée comme le rapport de la diagonale du carré au côté, sous la forme suivante{{sfn|Fowler|Robson|1998}} :
<center>
{{Nombre babylonien|1|24|51|10}}
</center>
Cette écriture correspond à la meilleure approximation possible de {{racine|2}} avec quatre [[Chiffre significatif|chiffres significatifs]] en numération babylonienne ([[Base (arithmétique)|base]] 60). L'approximation est précise au millionième. Elle dénote la connaissance d'un [[algorithme d'approximation]] de racine carrée, mais on ignore lequel. Il pourrait être de type [[méthode de Héron]]{{sfn|Fowler|Robson|1998}}, encore aujourd'hui l'une des plus efficaces<ref name=RittaudBibnum>{{Lien web|auteur=Benoît Rittaud|url=http://www.bibnum.education.fr/sites/default/files/RITTAUD_YBC7289.pdf|titre=À un mathématicien inconnu !|site=[[Bibnum]]}}.</ref>.


=== L'Inde védique ===
==Propriétés mathématiques principales==
Les [[Śulba-Sūtras]], des textes rituels [[inde|indiens]] de l'[[époque védique]] énoncent des règles géométriques pour la construction d'autels sacrificiels. La date de leur composition est difficile à déterminer, les plus anciens pourraient avoir été composés entre 800 et 500 {{av JC}}<ref>{{harvsp|Plofker|2009|p=17-18}}.</ref>. Ils donnent un énoncé de ce que nous appelons maintenant le [[théorème de Pythagore]], y compris le cas particulier de la diagonale du carré, qui permet de doubler son aire<ref name=plofker2021>{{harvsp|Plofker|2009|p=20-21}}.</ref>. Ils fournissent également une règle pour le calcul de la longueur de cette diagonale en fonction du côté, qui équivaut à une approximation [[nombre rationnel|rationnelle]] de {{racine|2}} remarquablement précise :
===Irrationalité===
:<math>\sqrt{2} \simeq 1 + \dfrac{1}{3} + \dfrac{1}{3 \times 4} - \dfrac{1}{3 \times 4 \times 34}</math><ref name=plofker2021/>,
{{article détaillé|nombre irrationnel}}
soit environ {{nobr|1,4142157}}, une valeur précise à un peu plus de 2 millionièmes près. L'un des Śulba-Sūtras, celui de Kātyāyana, précise qu'il ne s'agit que d'une valeur approchée<ref>{{harvsp|Plofker|2009|p=21}}.</ref>.
Les traités ne donnent aucune indication sur la façon dont a été dérivée cette formule<ref>{{harvsp|Plofker|2009|p=28}}.</ref>, même si plusieurs méthodes ont été proposées par les historiens<ref>{{harvsp|Plofker|2009|p=28}} qui donne des références pour certaines d'entre elles note 16 de la même page. Voir aussi l'une de ces reconstructions dans le rapport sur les recherches en éducations de la fédération Wallonie-Bruxelles de 2004 « [http://www.enseignement.be/index.php?page=25074 Pour une culture mathématique accessible à tous] », chapitre 20 [http://www.enseignement.be/download.php?do_id=3020&do_check= La Diagonale du carré], p.549-551.</ref>.


=== Grèce antique ===
<math>\sqrt{2}</math> est un [[nombre irrationnel]], c'est-à-dire qu'il n'est pas possible de l'écrire <math>\sqrt{2} = \frac{p}{q}</math>, c'est-à-dire sous la forme d'une [[fraction]] de deux [[nombres entiers]] ''p'' et ''q''.
Les mathématiciens de la Grèce antique ont découvert et démontré l'irrationalité de {{racine|2}} à une époque qu'il est difficile de déterminer, au plus tard dans les premières décennies du {{-s|IV}}, et vraisemblablement pas avant le {{-s|V}}<ref name="Caveing75">{{harvsp|Caveing|1998|p=75}}</ref>. Ils ne l'exprimaient pas de cette façon : pour eux il n'est pas question d'un nombre {{racine|2}}, mais de rapport (au sens d'une relation) entre la diagonale et le côté du carré, et ils montrent que ceux-ci sont ''incommensurables'', c'est-à-dire que l'on ne peut trouver de segment unité, aussi petit soit-il avec lequel mesurer de façon exacte ces deux longueurs.


La découverte de l'irrationalité, sa date, les circonstances qui ont amené à celle-ci, ses conséquences, la nature des premières démonstrations… tout ceci a suscité beaucoup de travaux chez les historiens<ref name="Caveing75"/>, sans pour autant que ceux-ci arrivent à un consensus<ref>{{harvsp|Berggren|1984|}}</ref>.
Anciennement, on parlait d'[[commensurabilité (mathématiques)|incommensurabilité]] de <math>\scriptstyle{\sqrt{2}}</math> et 1 : il n'existe pas d'unité ''u'' permettant de mesurer à la fois le côté d'un carré et sa diagonale ; ce qui se traduit mathématiquement par la proposition suivante : il n'existe pas ''p'' et ''q'' entiers tels que :


On ne possède pas de témoignages archéologiques analogues aux [[tablette d'argile|tablettes d'argile]] des Babyloniens, pour les mathématiques de la [[Grèce antique]], mais de textes transmis par la tradition, par copie et recopie. Les premiers à nous être parvenus datent du {{-s-|IV}}, dans des œuvres dont les mathématiques ne sont pas l'objectif premier, les écrits de [[Platon]], puis ceux d'[[Aristote]].
::<math>\sqrt{2} = pu </math> et <math>1 = qu</math>.


==== Platon et Aristote ====
Ces deux formulations sont équivalentes.
Dans un passage très connu du ''[[Ménon]]'', [[Platon]] met en scène [[Socrate]] faisant découvrir à un jeune esclave la [[#Dupliquer un carré|duplication du carré]], par la construction d'un carré sur la diagonale. Socrate veut convaincre Ménon que le jeune esclave retrouve une connaissance qui est déjà en lui. Mais, pour [[David Fowler]] qui date le texte de 385 {{av JC}}, c'est aussi le premier témoignage substantiel direct de la pratique des mathématiques grecques<ref>{{Harvsp|Fowler|1999|p=7-8}}, une traduction en français du {{s-|XIX}} est [http://remacle.org/bloodwolf/philosophes/platon/cousin/menon.htm accessible en ligne], voir {{p.|173-191}}.</ref>.


La première mention connue de l'incommensurabilité est également due à Platon, dans une œuvre plus tardive, le ''[[Théétète (Platon)|Théétète]]''{{sfn|Fowler|1999|p=359}}, où il décrit [[Théodore de Cyrène]] exposant ce qui correspond à l'irrationalité des racines carrées des nombres de 3 à 17 qui ne sont pas des carrés parfaits{{sfn|Knorr|1975|p=64}}{{,}}<ref>Une édition bilingue du {{s-|XIX}} est [http://remacle.org/bloodwolf/philosophes/platon/cousin/theetete2.htm accessible en ligne]. Une traduction de ce passage dont les choix sont longuement discutés et justifiés {{harvsp|Caveing|1998|p=172-176}}, est donnée par {{harvsp|Caveing|1998|p=176-177}}, qui discute ensuite son interprétation {{harvsp|Caveing|1998|p=177-186}}.</ref>. On déduit de ce passage que l'irrationalité de {{racine|2}} est bien connue à l'époque où Platon écrit, voire à celle où Théodore est censé enseigner<ref>{{harvsp|Caveing|1998|p=133}}.</ref>, soit les premières décennies du {{-s|IV}}.
Il existe de multiples démonstrations de l'irrationalité ; de part leur simplicité, elles sont souvent utilisées à des fins pédagogiques comme introduction à la [[théorie des nombres]]. Elles procèdent le plus souvent par l'[[démonstration par l'absurde|absurde]]. L'incohérence typique est l'existence d'une [[descente infinie]] d'[[entier naturel|entiers naturels]] ou la simplification d'une [[fraction irréductible]]. La forme de la preuve peut utiliser des arguments purement arithmétiques ou utiliser une représentation géométrique.


Dans l{{'}}''[[Organon]]'', [[Aristote]] prend pour exemple de [[apagogie|raisonnement par contradiction]] celui qui conduit à l'incommensurabilité de la diagonale<ref name="Fowler302">{{harvsp|Fowler|1999|p=302}} remarque qu'Aristote, alors qu'il cite souvent cet exemple de l'incommensurabilité de la diagonale au côté, ne précise jamais de quel polygone il s'agit.</ref>, et précise (à deux endroits) que l'hypothèse de la commensurabilité conduit à ce qu'un nombre pair soit égal à un nombre impair<ref>Aristote, ''[[Analytiques postérieurs]]'', I,23,41 a 26-32 et I,44,50 a 36-38 cité d'après {{harvsp|Caveing|1998|p=132}}, une édition bilingue du {{s-|XIX}} est accessible en ligne [http://remacle.org/bloodwolf/philosophes/Aristote/analyt1994.htm I, 23] et [http://remacle.org/bloodwolf/philosophes/Aristote/analyt144.htm I, 44].</ref>. L'indication est imprécise, mais c'est la plus ancienne que l'on ait d'une démonstration. Aristote prend par ailleurs régulièrement pour exemple dans ses œuvres l'incommensurabilité de la diagonale au côté<ref name="Fowler302"/>{{,}}<ref>Par exemple dans la ''[[Métaphysique (Aristote)|Métaphysique]]'', A, 2, ''Métaphysique, Livres A à E'', trad. Bernard Sichère, Paris, Pocket, 2007, {{p.|35}} : {{citation|[les hommes] s'étonnent [...] de ce qu'on ne peut mesurer la diagonale du carré, puisqu'il semble tout à fait merveilleux à tous ceux qui n'en ont pas encore envisagé la raison qu'une chose ne puisse pas être mesurée par la plus petite unité.}} Mais cette traduction ajoute forcément des précisions à l'original, cf. la note citée précédemment, et note 18 de la traduction [http://remacle.org/bloodwolf/philosophes/Aristote/metaphysique1pierron.htm#18 Pierron et Zevort], voir aussi [http://remacle.org/bloodwolf/philosophes/Aristote/metaphysique1fr.htm la traduction plus littérale de Victor Cousin] du même passage qui ne mentionne pas de carré.</ref>.
[[Image:Right isosceles triangle with integer sides.svg|thumb|right|Triangle isocèle rectangle à côtés entiers si <math>\sqrt{2}</math> est rationel : une étape de descente infinie.]]


==== Démonstration géométrique ====
==== Euclide ====
Dans les ''[[Éléments d'Euclide|Éléments]]'' d'[[Euclide]] — le premier traité mathématique qui nous soit parvenu, écrit vers -300 — le traitement de l'incommensurabilité est déjà très élaboré. L'incommensurabilité est définie et traitée au [[Livre X des Éléments d'Euclide|livre X]], et la proposition 2 en donne une caractérisation par un procédé de soustractions alternées, l'[[anthyphérèse]], analogue à ce que nous appelons aujourd'hui [[algorithme d'Euclide]] en [[Entier naturel|arithmétique]] (une division peut être vue comme une suite de soustractions) et [[fraction continue]] pour les [[nombre réel|nombres réels]]<ref>{{harvsp|Caveing|1998|p=219-223}}, voir aussi l'entrée fraction continue dans l'index.</ref> (les grandeurs sont incommensurables s'il y a toujours un reste, le procédé continue indéfiniment). La proposition 9 permet le rapport avec les propriétés arithmétiques traitées aux [[Livre VII des Éléments d'Euclide|livre VII]] et [[Livre VIII des Éléments d'Euclide|livre VIII]]<ref>{{harvsp|Caveing|1998|p=245-253}}, section 3.2 ''Y a-t-il une preuve générale dans les livres Arithmétiques ?''.</ref>. Certaines éditions anciennes du livre X donnent bien en appendice une proposition (parfois numérotée 117) qui traite directement l'irrationalité de {{racine|2}} (l'incommensurabilité de la diagonale du carré et de son côté) par un argument de parité et une descente infinie. Mais celle-ci ne s'intègre pas au reste du texte, elle a pu être ajoutée pour son intérêt historique, et très possiblement après Euclide<ref>{{harvsp|Knorr|1975|p=22}} et note 15 {{p.|52}}. La proposition est rejetée en annexe de l'édition Heilberg, édition de référence des Éléments, et donc absente du livre X, dans les traductions réalisées à partir de celle-ci.</ref>. Elle semble être postérieure<ref>Voir {{harvsp|Fowler|1999|p=294-295}} et {{harvsp|Knorr|1975}} VII.3 pour le détail de l'argumentation : la démonstration d'Alexandre d'Aphrodise utilise les Éléments, pourtant bien que reposant sur le même principe, elle est différente de la proposition X,117.</ref> d'une autre démonstration, toujours reposant sur un argument de parité, donnée en commentaire de l'un des passages d'Aristote cité ci-dessus par [[Alexandre d'Aphrodise]] au {{s-|II}} ({{ap JC}})<ref>{{harvsp|Knorr|1975|p=52}} note 15.</ref>, la plus ancienne complète et vraiment datable qui nous soit parvenue (pour l'incommensurabilité de la diagonale du carré et de son côté)<ref>{{harvsp|Fowler|1999|p=294-295}}.</ref>.
On suppose <math>\textstyle{\sqrt{2} = \frac{q}{p}}</math> avec ''p'' et ''q'' entiers.


==== Hypothèses et reconstructions ====
On construit un triangle AOB rectangle isocèle en O de côté ''OA'' = ''OB'' = ''p'', son hypoténuse est ainsi ''AB'' <math>= \scriptstyle{OA\sqrt{2}}</math> <math>= q</math>.
Ce que l'on peut savoir au sujet de la découverte de l'irrationalité dépend, en plus de ces éléments, de fragments de textes anciens chez des auteurs plus tardifs, en particulier ceux d'une histoire (perdue) d'un élève d'Aristote, [[Eudème de Rhodes]], et plus généralement de textes historiques tardifs, dont la fiabilité n'est pas évidente.


Aussi existe-t-il plusieurs thèses tant pour, le contexte, et les causes de la découverte de l'incommensurabilité, que pour sa ou ses premières démonstrations, les historiens en étant réduits à reconstituer celles-ci, de façon cohérente avec les connaissances (supposées) de l'époque. Ces reconstructions spéculatives développées à la fin du {{s-|XIX}} et au {{s-|XX}}<ref name="Saito189">{{harvsp|Saito|2004|p=189}}.</ref>, sont loin d'être convergentes et font toujours l'objet de débats<ref>{{harvsp|Saito|2004|p=187-189}} ; pour un historique très synthétique, voir aussi {{harvsp|Berggren|1984}}, et {{harvsp|Caveing|1998}}.</ref>.
On construit un cercle de centre A et de rayon ''AO'' ; il intersecte l'hypoténuse ''[AB]'' en B'. On construit un cercle de centre A et de rayon ''AB'', il intersecte ''[AO)'' en C. On pose A' = B. On définit enfin le point O' comme le point d'intersection des droites ''(B'C)'' et ''(A'O)''. On obtient :
===== Le pair et l'impair =====
* ''A'B''' = ''AB'' - ''AO'' = ''q'' - ''p'',
Le plus souvent, {{racine|2}} (la diagonale du carré) tient le premier rôle, en particulier car une démonstration par parité (le principe en est celui de la première démonstration d'irrationalité ci-dessus) demande pour seule connaissance arithmétique la dichotomie entre nombres pairs et impairs, et peut se reconstituer à partir des connaissances arithmétiques que les historiens jugent pouvoir être celles des mathématiciens grecs du {{-s-|V}}<ref>Une telle reconstitution a été donnée par [[Oskar Becker]] en 1957, décrite par {{harvsp|Caveing|1998|p=134-135}}, elle s'appuie sur une représentation géométrique des nombres, en l'occurrence des quadrillages ou des points disposés en carré, arithmétique des [[nombre figuré|nombres figurés]] attribuée aux pythagoriciens, dont il faut alors admettre qu'elle est pratiquée par des mathématiciens grecs du {{-s-|V}}, [[école pythagoricienne|pythagoriciens]] ou autres, cf. Caveing.</ref>. Ce serait alors à celle-ci que fait allusion Aristote.
* Donc on a : ''CO'' = ''AC'' - ''AO'' = ''AB'' - ''AO'' = ''q'' - ''p'',
* les points A, O et C jouent un rôle symétrique par rapport à A, B', A', de sorte que ''(AO')'' est un axe de symétrie ;
** <math>\scriptstyle{\widehat {A'B'O'}}</math> est droit, <math>\scriptstyle{\widehat {O'A'B'} =\widehat {ABO} = 45^\circ} </math>, donc A'B'O' est isocèle rectangle.
* ''<nowiki>B'O'</nowiki>'' = ''<nowiki>A'B'</nowiki>'' = ''q'' - ''p'' ,
* Par symétrie, ''OO''' = ''q'' - ''p'',
* ''<nowiki>A'O'</nowiki>'' = ''OB'' - ''<nowiki>OO'</nowiki>'' = ''p'' - (''q'' - ''p'') = 2''p'' - ''q''.


===== L'anthyphérèse =====
Le triangle A'B'O' est rectangle isocèle en B' de côté ''q'' - ''p'' et d'hypoténuse 2''p'' - ''q'', tous les deux entiers.
Une autre possibilité est de s'appuyer sur la proposition X,2 d'Euclide (citée ci-dessus) qui pourrait témoigner d'anciennes démonstrations particulières d'irrationalité par [[anthyphérèse]]<ref>{{harvsp|Caveing|1998|p=111-112}}.</ref> (soustractions alternées à la façon de l'algorithme d'Euclide). Cependant de telles démonstrations n'apparaissent pas dans Euclide, ni dans aucun texte grec ancien qui nous soit parvenu<ref>{{harvsp|Knorr|1975|p=31}}.</ref>. Mathématiquement le principe en est celui exposé ci-dessus à la [[#Par soustractions réciproques|seconde (version arithmétique)]] et la [[#Par un argument géométrique|troisième démonstration (version géométrique)]]<ref>À la différence de la figure ci-dessus, celles des historiens font apparaître explicitement les carrés, par exemple {{harvsp|Caveing|1998|p=124}}.</ref>. Le fait de retrouver la même figure dans la version géométrique, montre que le procédé de soustractions réciproques continue indéfiniment donc de conclure par la proposition X,2. Il faut cependant admettre qu'un segment est divisible à l'infini, et pour cela Euclide appuie sa proposition X,2 sur la proposition X,1 (qui traite de la [[Méthode de dichotomie|dichotomie]]), et utilise l'« [[axiome d'Archimède]] », attribué à [[Eudoxe de Cnide|Eudoxe]] et présent dans les Éléments<ref>{{harvsp|Caveing|1998|p=229}}.</ref>. Une telle répétition se produit pour tout [[irrationnel quadratique]], elle correspond au [[Fraction continue d'un irrationnel quadratique|développement périodique de sa fraction continue]]. Cette périodicité rend la caractérisation d'Euclide opératoire pour les rapports correspondant à ces nombres<ref>{{harvsp|Caveing|1998|p=230}} et {{p.|157-164}}.</ref>. Dans le cas de {{racine|2}}, elle est immédiate, en une étape, et s'illustre facilement géométriquement. C'est le cas aussi pour la proportion en extrême et moyenne raison (notre [[nombre d'or]]), qui est le rapport entre une diagonale et le côté du [[pentagone]], ce qui a conduit certains historiens à envisager que ce rapport, plutôt que {{racine|2}}, ait conduit à la découverte de l'irrationalité<ref>[[Kurt von Fritz]] s'appuie pour cette hypothèse et sur des auteurs tardifs comme [[Jamblique]] et sur la figure du [[pentagramme]], dans un article paru en 1945, ''The discovery of irrationality by Hippasus of Metapontum''. L'article a fait date, même si ses conclusions sont depuis contestées {{harvsp|Saito|2004|p=189}}, voir pour des discussions à ce sujet {{harvsp|Knorr|1975|p=29-36}}, {{harvsp|Caveing|1998|p=99-119}}.</ref>.


Ces possibilités ne sont pas nécessairement contradictoires, la découverte de l'irrationalité ayant pu se faire à propos de la diagonale du carré et/ou de celle du pentagone par un procédé semblable à l'anthyphérèse et la ou les premières démonstrations procéder par le pair et l'impair<ref>{{harvsp|Caveing|1998|p=145}}.</ref>.
En continuant ainsi de suite, on obtient une descente infinie de triangles à côtés entiers
AOB, A'O'B', etc. ce qui est absurde.


=== Vers le nombre {{racine|2}} ===
Donc <math>\scriptstyle{\sqrt{2}}</math> ne peut pas s'écrire <math>\textstyle{\frac{q}{p}}</math> avec ''p'' et ''q'' entiers.
[[Fichier:Dedekind.jpeg|vignette|[[Richard Dedekind]] propose une construction ''rigoureuse'' des [[nombre réel|nombres réels]] à la fin du {{s-|XIX}}.]]
L'histoire de la racine de deux se confond alors avec celle de la racine carrée et plus généralement des irrationnels, en quelques lignes :
* les Grecs, avec le livre V des ''Éléments'', conçoivent ce que nous appelons les rationnels ou les réels comme des proportions, et non pas des nombres<ref>Pour se faire une idée des concepts que les Grecs utilisaient, voir {{harvsp|Knorr|1975|p=14-17}} (Introduction, §III. ''Indispensable definitions'') en particulier [https://books.google.fr/books?id=K1kK9zsD3LMC&pg=PA15 {{p.|15}}].</ref>, théorie « subtile mais non directement opératoire »<ref>{{Harvsp|DahanPeiffer|p=101}}.</ref> ;
* alors que la tradition arithmético-algébrique, de [[Diophante]] à [[Al-Khawarizmi]], au début du {{s-|IX}}, est restreinte aux [[nombre rationnel|nombres rationnels positifs]], les mathématiciens du monde arabo-musulman comme [[Abu Kamil]] dès le {{s-|X}}, puis [[Al-Karaji]] et [[Al-Samaw'al]], développent une algèbre et un calcul qui comprend les nombres irrationnels, ce dernier et [[Al-Kashi]] utilisent des approximations décimales dans le cas des irrationnels<ref>{{Harvsp|DahanPeiffer|p=102}}.</ref> ;
* [[Omar Khayyam]] développe au {{s-|XI}} une théorie des proportions où celles-ci sont des nombres, même si les incommensurables sont encore appelées impropres, travail que prolonge [[Nasir al-Din al-Tusi]] au {{s-|XIII}}<ref>{{Harvsp|DahanPeiffer|p=102-103}}.</ref> ;
* L'Europe n'assimile ces notions que tardivement, les travaux des mathématiciens du monde arabo-musulman, en particulier ceux d'Al-Tusi, sont connus en Europe au {{s-|XVI}}, qui est une période de polémique pour savoir si les irrationnels méritent le statut de nombre<ref>{{Harvsp|DahanPeiffer|p=103}}.</ref>, c'est à cette époque que l'usage du symbole √ se répand<ref>le signe √ est introduit, sous une forme proche, par [[Christoff Rudolff]] en 1525 : {{Harvsp|DahanPeiffer|p=104}}.</ref> ;
* même si le débat se poursuit au {{s-|XVII}}, il finit par se régler avec le développement du [[calcul algébrique]] et du [[calcul infinitésimal]], le cadre théorique ne sera cependant défini que dans la seconde moitié du {{s-|XIX}}, concurremment par plusieurs mathématiciens, [[Richard Dedekind|Dedekind]], [[Weierstrass]], [[Georg Cantor|Cantor]] et [[Charles Méray|Méray]] (voir [[construction des nombres réels]])<ref>{{Harvsp|DahanPeiffer|p=103-104}}.</ref>.
Dedekind pourra ainsi affirmer en 1872 quand il publiera son traité sur la construction des réels, que jusqu'alors, jamais l'égalité {{math|{{racine|2}} × {{racine|3}} {{=}} {{racine|6}}}} n'avait été démontrée rigoureusement<ref>Dans {{Ouvrage|langue=de|auteur1=[[Richard Dedekind]]|titre=Stetigkeit und irrationale Zahlen|année=1872|lire en ligne=https://archive.org/stream/stetigkeitundir00dedegoog#page/n30/mode/2up}} {{p.|27}}, voir {{harvsp|Fowler|1992}}.</ref>.


== Autres propriétés ==
<small>Note : une autre version de la preuve ne nécessite pas l'argument de la descente infinie. On prend comme hypothèse la fraction irréductible <math>\textstyle{\frac{p}{q}}</math> ; le triangle A'O'B' donne (2''p'' &minus; q)/(''q'' &minus; ''p'') de plus petits numérateurs et dénominateurs, ce qui est également absurde. Il faut toutefois noter que la possibilité de choisir une fraction sous forme irréductible repose sur la propriété de [[théorème fondamental de l'arithmétique|factorialité]] et donc ''in fine'' sur un argument de descente infinie.</small>


==== Démonstration arithmétique ====
=== Normalité ===
La [[nombre normal|normalité]] est un concept se basant sur la distribution des chiffres du [[développement décimal]] d’un nombre irrationnel, à savoir si tous les chiffres de 0 à 9 apparaissent dans ce développement et avec la même fréquence. En ce qui concerne {{racine|2}}, on ignore s’il est normal dans le [[système décimal]] ou dans toute autre [[base (arithmétique)|base de numération]].
On suppose <math>\textstyle{\sqrt{2} = \frac{p}{q}}</math> avec ''p'' et ''q'' [[Nombres premiers entre eux|entiers premiers entre eux]].
=== Degré algébrique et degré d'irrationalité ===
{{racine|2}} est un [[nombre algébrique]] de degré 2, dit [[entier quadratique]], car solution de l’équation [[polynôme|polynomiale]] du second degré à coefficients entiers {{nobr|''x''{{2}} − 2 {{=}} 0}} et de monôme dominant de coefficient égal à 1, mais d’aucune de degré 1 de par son irrationalité. On sait ainsi qu’il est difficilement approchable par une suite rationnelle ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> ; l’erreur est au mieux en
:<math>\left|\sqrt{2}-\frac{p_n}{q_n}\right|\sim\frac{1}{{q_n}^2}</math>


[[Théorème de Roth|Comme pour tout nombre algébrique irrationnel]], sa [[mesure d'irrationalité]] est 2.
Dans ce cas on peut écrire <math>\scriptstyle{\sqrt{2}}</math> sous forme de fraction irréductible, c'est-à-dire que ''p'' et ''q'' n'ont pas de [[premiers entre eux|facteur premier commun]]. Il en est donc de même pour <math>p^2</math> et <math>q^2</math>, ce qui signifie que <math>\textstyle{\frac{p^2}{q^2}}</math> est une fraction sous sa forme irréductible. Une telle forme étant unique, l'égalité <math>\textstyle{\frac{p^2}{q^2}}=\frac21</math> entraîne <math>p^2=2</math> et <math>q^2=1</math>. La première de ces deux égalités est impossible pour <math>p</math> entier ; on a donc abouti à une contradiction.


=== Développement en fraction continue ===
Il en résulte que <math>\sqrt{2}</math> ne peut pas s'écrire <math>\textstyle{\frac{p}{q}}</math> avec ''p'' et ''q'' entiers premiers entre eux, c'est-à-dire que <math>\sqrt{2}</math> est irrationnel.
La [[Partie entière et partie fractionnaire|partie entière]] de {{racine|2}} est 1 et sa partie décimale est donc {{nobr|{{racine|2}} – 1}}, soit encore {{sfrac|1|1 + {{racine|2}}}}. On peut écrire ce résultat sous la forme :
<center><math>\sqrt 2 = 1 + \frac 1{1+\sqrt2}</math></center>
En remplaçant {{racine|2}} dans le membre de droite par {{nobr|1 + {{sfrac|1|1 + {{racine|2}}}}}}, on obtient successivement
<center><math>\sqrt 2 = 1+\frac {1}{{\color{red}2} + \frac 1{1+\sqrt2}} = 1+\frac {1}{{\color{red}2} + \frac 1{{\color{red}2} + \frac 1{1+\sqrt2}}} = 1+\frac {1}{{\color{red}2} + \frac 1{{\color{red}2} + \frac 1{{\color{red}2} + \frac 1{1+\sqrt2}}}}= \cdots </math></center>


Ceci fournit le développement en fraction continue périodique de {{racine|2}}
===Normalité===
<center><math>\sqrt2=[1 ;2,2,2\ldots],</math></center>
{{article détaillé|nombre normal}}
[[Fichier:FB-Visual sequence of ratios approximating √2.png|centré|sans_cadre|800x800px|Visualisation de la suite des ratios approximant {{racine|2}} (selon la fraction continue)]]
La [[nombre normal|normalité]] est un concept se basant sur la distribution des chiffres du développement décimal d'un nombre irrationnel, à savoir si tous les chiffres de 0 à 9 apparaissent dans ce développement et avec la même fréquence. En ce qui concerne <math>\sqrt{2}\,</math>, on ignore s'il est normal dans le [[système décimal]] ou dans toute autre [[base (arithmétique)|base de numération]].
ainsi que quelques valeurs approchées de ce nombre : 3/2, 7/5, 17/12


{{racine|2}} est relié à un certain nombre de développements en [[fraction continue|fractions continues]] périodiques, par propriété des [[entier quadratique|entiers quadratiques]].
===Degré algébrique et degré d'irrationalité===
{{article détaillé|irrationnel quadratique}}
<math>\sqrt{2}\,</math> est un [[nombre algébrique]] de degré 2, dit [[irrationnel quadratique]], car solution de l'équation [[polynôme|polynômiale]] du second degré à coefficients entiers ''x''² &minus; 2 = 0, mais d'aucune de degré 1 de par son irrationalité. On sait ainsi qu'il est difficilement approchable par une suite rationnelle ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> ; l'erreur est en mieux en
:|√2 &minus; ''p''<sub>''n''</sub>/''q''<sub>''n''</sub>| ~ 1/''q''<sub>''n''</sub>².


Pour ''a'', ''b'' entiers strictement positifs tels que {{nobr|''a''{{2}} − 2''b''{{2}} {{=}} –1}}, on a le développement suivant
Comme pour tout nombre algébrique irrationnel, son [[degré d'irrationalité]] est 2.
:<math>b\sqrt2-a=\cfrac1{2a+ \cfrac1{2a+ \cfrac1{2a+ \cdots}}}\,</math>
Ce développement se note couramment de manière plus concise :
:''b''{{racine|2}} = [''a'' ; 2''a'', 2''a'', 2''a''…].
On en tire les valeurs suivantes de {{racine|2}} :
:{{racine|2}} = 1/5 × [7 ; 14, 14, 14…],
:{{racine|2}} = 1/29 × [41 ; 82, 82, 82…].


Plus généralement, pour ''a'', ''b'' entiers strictement positifs tels que ''a''{{2}} − 2''b''{{2}} = ''k'', on a la [[fraction continue généralisée]] suivante :
===Proportion d'argent===
:<math>b\sqrt2-a=\cfrac{-k}{2a+ \cfrac{-k}{2a+\cfrac{-k}{2a+ \cdots}}}\,</math>
{{article détaillé|proportion d'argent}}
que l'on note sous forme plus concise
La [[proportion d'argent]] est une constante mathématique obtenue à partir de <math>\sqrt{2}\,</math> :
: ''b''{{racine|2}} = [''a'' ; −''k'', 2''a'' ; −''k'', 2''a'' ; −''k'', 2''a'' ;…]
: <math>\Delta = 1 + \sqrt{2} = (1 - \sqrt{2})^{-1}\,</math>
On en déduit les quelques développements de {{racine|2}} suivants :
:{{racine|2}} = 1/2 × [3 ; −1, 6 ; −1, 6 ; −1, 6 ;…]
:{{racine|2}} = 1/12 × [17 ; −1, 34 ; −1, 34 ; −1, 34;…]
:{{racine|2}} = 1/70 × [90 ; −1, 180 ; −1, 180 ; −1, 180;…]


Éléments de démonstration : soit la suite (''u{{ind|n}}'') définie par la relation de récurrence {{nobr|''u''{{ind|''n''+1}} {{=}} –''k''/(2''a'' + ''u{{ind|n}}'')}} et soit {{nobr|''ε{{ind|n}}'' {{=}} {{!}}''u{{ind|n}}'' − (''b''{{racine|2}} − ''a''){{!}}}}. Alors on peut montrer que {{nobr|''ε''{{ind|''n''+1}} < ''Kε{{ind|n}}''}}, avec {{nobr|1/{{!}}1 + 2''a''/(''b''{{racine|2}} − ''a''){{!}} < ''K'' < 1}} si ''u{{ind|n}}'' est suffisamment proche de {{nobr|''b''{{racine|2}} − ''a''}}.
Elle peut aussi être écrite comme une [[fraction continue]] :
:&Delta; = [2; 2, 2, 2, …]


=== Développements en série et produit infini ===
On peut écrire les puissance de la proportion d'argent ainsi :

: <math>\Delta^{n + 1} = u_{n}\Delta + u_{n - 1}\,</math>

où la suite (''u''<sub>''n''</sub>) est définie par récurrence :

: <math>u_{n + 2} = 2 u_{n + 1} + u_n\,</math>

<small>Note : il y a une ressemblance avec les propriétés de la [[proportion dorée]], dont les puissances successives s'expriment en fonction de &phi; et 1/&phi; et d'une suite récurrente double.</small>

===Développement en fraction continue===
{{article détaillé|fraction continue}}
√2 est relié à un certain nombre de développements en [[fraction continue|fractions continues]] périodiques, par propriété des [[irrationnel quadratique|irrationnels quadratiques]].

√2 est relié au développement en [[fraction continue]] suivant
:<math>a\sqrt{2} - b = \frac1{2b + \frac1{2b + \frac1{2b + \cdots}}}\,</math>
pour 2''a''² &minus; ''b''² = 1, (''a'', ''b'') entiers strictement positifs. On notera ce développement de manière plus concise :
:''a''√2 &minus; ''b'' = [0; 2''b'', 2''b'', 2''b'', …]
On en tire les valeurs suivantes de √2 :
: √2 = [1; 2, 2, 2, …].
: √2 = 1/5 &times; [7; 14, 14, 14, …]
: √2 = 1/29 &times; [41; 82, 82, 82, …]

Plus généralement, <math>\sqrt{2}</math> se relie à la fraction continue généralisée suivante :
:<math>a\sqrt{2} - b = \frac k{2b + \frac k{2b + \frac k{2b + \cdots}}}\,</math>
notée sous forme plus concise
: ''a''√2 &minus; ''b'' = [0; ''k'', 2''b''; ''k'', 2''b''; ''k'', 2''b''; …]
avec ''k'' = 2''a''² &minus; ''b''², et (''a'', ''b'') entiers strictement positifs. On en déduit les quelques développements de <math>\sqrt{2}\,</math> suivants :
:√2 = 1/2 &times; [3; -1, 6; -1, 6; -1, 6; …]
:√2 = 1/12 &times; [17; -1, 34; -1, 34, -1, 34; …]
:√2 = 1/70 &times; [90; -1, 180; -1, 180, -1, 180; …]

<small>Éléments de démonstration : soit la suite (''u''<sub>''n''</sub>) définie par la relation de récurrence ''u''<sub>''n'' + 1</sub> = &minus;k/(2''b'' + ''u''<sub>''n''</sub>) et ''&epsilon;''<sub>''n''</sub> = |''u''<sub>''n''</sub> &minus; (''a''√2 &minus; ''b'')|. Alors on peut montrer que ''&epsilon;''<sub>''n'' + 1</sub> < ''K&epsilon;''<sub>''n''</sub>, avec 1/|1 + 2''b''/(''a''√2 &minus; ''b'')| < ''K'' < 1 dans un voisinage de ''a''√2 &minus; ''b''.</small>

===Développements en série et produit infini===
==== Produits infinis ====
==== Produits infinis ====
L'identité cos(π/4) = sin(π/4) = 1/√2 et la représentation en [[produit infini]] du [[Fonction trigonométrique|sinus]] et du [[Fonction trigonométrique|cosinus]] mènent aux développements suivants
L’identité {{math|cos(π/4) {{=}} sin(π/4) {{=}} 1/{{racine|2}}}} et la représentation en [[produit infini]] du [[Fonction trigonométrique|sinus]] et du [[Fonction trigonométrique|cosinus]] mènent aux développements suivants
:<math>\sqrt 2 = 2\prod_{k=0}^\infty
:<math>\sqrt 2 = 2\prod_{k=0}^\infty
\frac{(4k+1)(4k+3)}{(4k+2)^2} =
\frac{(4k+1)(4k+3)}{(4k+2)^2} =
Ligne 362 : Ligne 327 :
\left(\frac{14 \cdot 14}{13 \cdot 15}\right) \cdots</math>
\left(\frac{14 \cdot 14}{13 \cdot 15}\right) \cdots</math>


Le dernier produit peut s'écrire de manière équivalente :
Le dernier produit peut s’écrire de manière équivalente :
:<math>\sqrt{2} =
:<math>\sqrt{2} =
\prod_{k=0}^\infty
\prod_{k=0}^\infty
Ligne 374 : Ligne 339 :


==== Séries ====
==== Séries ====
Le nombre peut aussi être évalué sous forme de [[Série (mathématiques)|série]] en utilisant le [[développement de Taylor]] d’une fonction trigonométrique en <math>\left({\pi}/{4}\right)</math> :

Le nombre peut aussi être évalué sous forme de [[Série (mathématiques)|série]] par le [[développement de Taylor]] d'une fonction trigonométrique en <math>\left({\pi}/{4}\right)</math> :
:<math>\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k}}{(2k)!}.</math>
:<math>\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k}}{(2k)!}.</math>
:<math>\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k+1}}{(2k+1)!}.</math>
:<math>\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k+1}}{(2k+1)!}.</math>


On peut aussi utiliser la fonction <math>\sqrt{1+x}\,</math> en 1:
On peut aussi utiliser la [[Racine carrée#Fonction réelle|fonction {{racine|1 + ''x''}}]] en 1 :
:<math>\sqrt{2} = \sum_{k=0}^\infty (-1)^{k+1} \frac{\prod_{n=1}^{n=k-1} (2n-1)}{\prod_{n=1}^{n=k} 2n} =
:<math>\sqrt{2} =1+\sum_{k=1}^\infty (-1)^{k+1} \frac{\prod_{0<n<k} (2n-1)}{\prod_{n=1}^{n=k}(2n)} =
1 + \frac{1}{2} - \frac{1}{2\cdot4} + \frac{1\cdot3}{2\cdot4\cdot6} -
1 + \frac{1}{2} - \frac{1}{2\cdot4} + \frac{1\cdot3}{2\cdot4\cdot6} -
\frac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8} + \cdots.</math>
\frac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8} + \cdots.</math>


La convergence de la dernière série peut être accélérée par la biais d'une [[transformation d'Euler]] pour donner :
La convergence de la dernière série peut être accélérée par le biais d’une [[Transformation d'Euler|transformation d’Euler]] pour donner :
:<math>\sqrt{2} = \sum_{k=0}^\infty \frac{(2k+1)!}{(k!)^2 2^{3k+1}} = \frac{1}{2} +\frac{3}{8} +
:<math>\sqrt{2} = \sum_{k=0}^\infty \frac{(2k+1)!}{(k!)^2 2^{3k+1}} = \frac{1}{2} +\frac{3}{8} +
\frac{15}{64} + \frac{35}{256} + \frac{315}{4096} + \frac{693}{16384} + \cdots.</math>
\frac{15}{64} + \frac{35}{256} + \frac{315}{4096} + \frac{693}{16384} + \cdots.</math>


==== Développement en série de Engel ====
==Méthodes numériques d'approximation==
Le [[développement en série de Engel]] est :
Les [[calcul numérique|méthodes numériques]] d'approximation présentées ci-dessous sont destinées au calcul d'un nombre important de décimales. Elles se basent généralement sur une [[suite (mathématiques)|suite]] convergente de [[nombre rationnel|nombres rationnels]] ; ainsi l'itération s'affranchit du coût de calcul sur des [[nombre à virgule flottante|nombres à virgule flottante]] — dont il faudrait en plus connaître la précision ''a priori''. Les meilleures approximations par une suite rationnelle ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> donnent une erreur en 1/''q''<sub>''n''</sub>², une propriété de l'[[approximation diophantienne]] des [[irrationnel quadratique|irrationnels quadratiques]].
:<math>\sqrt2=1+\frac13+\frac1{3\times5}+\frac1{3\times5\times5}+\cdots</math>, voir la {{OEIS|A028254}}.


==== Développement en cotangente continue de Lehmer ====
===Méthodes à convergence linéaire===
Le [[développement en cotangente continue de Lehmer]] est :
==== Méthode de Théon de Smyrne ====
:<math>\sqrt{2} = \cot(\arccot(1) - \arccot(5) + \arccot(36)-\arccot(3406)+\arccot(14694817)-\dots)</math>, voir la {{OEIS|A002666}}.
On doit à [[Théon de Smyrne]] ces deux suites (''p''<sub>''n''</sub>) et (''q''<sub>''n''</sub>) définies par les relations de récurrence :
: ''p''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub> + 2''q''<sub>''n''</sub>
: ''q''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub> + ''q''<sub>''n''</sub>
Ces suites vérifient
:''p''<sub>''n''</sub>² &minus; 2''q''<sub>''n''</sub>² = (&minus;1)<sup>''n''</sup>(''p''<sub>0</sub>² &minus; 2''q''<sub>0</sub>²)
de sorte que ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> tend vers √2.


== Méthodes numériques d'approximation ==
On ne sait pas si l'intention de Théon de Smyrne était de calculer une valeur approchée de √2.
{{Racine|2}} vaut approximativement 1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737. Pour plus de décimales, voir la {{OEIS|id=A002193}}.

Le calcul d’une valeur approchée de {{Racine|2}} a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les [[Algorithmique|algorithmes]] de calculs d’extraction de racines carrées. En informatique, ces recherches se sont poursuivies afin d’optimiser ces algorithmes en réduisant les temps de calcul et la consommation de mémoire<ref name="appro">{{refnec|La plupart des logiciels mathématiques, sur ordinateurs ou sur machines à calculer, utilisent des approximations préétablies de cette constante, au moins jusqu’à un certain rang.}}</ref>.

À l'exclusion de l'[[algorithme de la potence]], les [[calcul numérique|méthodes numériques]] d’approximation présentées ci-dessous sont destinées au calcul d’un nombre important de décimales. Elles se basent généralement sur une [[suite (mathématiques)|suite]] convergente de [[nombre rationnel|nombres rationnels]] ; ainsi l’itération s’affranchit du coût de calcul sur des [[nombre à virgule flottante|nombres à virgule flottante]] — dont il faudrait en plus connaître la précision ''a priori''. Les meilleures approximations par une suite rationnelle ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> donnent une erreur en 1/''q''<sub>''n''</sub>², une propriété de l’[[approximation diophantienne]] des [[entier quadratique|entiers quadratiques]].

=== Méthodes à convergence linéaire ===
==== [[Algorithme de la potence]] ====
Cette méthode ancienne (on la trouve en [[Chine]] dans ''[[Les Neuf Chapitres sur l'art mathématique]]''<ref>{{ChemlaShuchun}}, {{p.|322-329}}</ref> au {{s-|III}} et en Inde dans l'''[[Āryabhaṭīya]]''<ref>W. E. Clark, Aryabatha, ''Aryabhatiya of Aryabhata'', {{p.|24}} et suivantes, [https://archive.org/stream/The_Aryabhatiya_of_Aryabhata_Clark_1930#page/n53/mode/2up lire en ligne]</ref> au {{s-|V}}) permet de déterminer ''à la main'' les décimales successives d'une racine carrée, mais les divisions à effectuer augmentent rapidement de taille. Ci-dessous, l'algorithme de la potence pour le calcul des 5 premières décimales de {{Racine|2}}.

{|border ="0" cellspacing = "0"
|- style="text-align:center"
| ||2|| || || || || || || || || || ||style="text-align:left;border-left:thin solid black"|1,41421
|- style="text-align:center"
|–||1|| || || || || || || || || || ||style="text-align:left;border-top:thin solid black;border-left:thin solid black"|{{rouge|1}}×{{rouge|1}}=1
|- style="text-align:center"
| ||1||0||0|| || || || || || || || ||style="text-align:left;border-left:thin solid black"|&nbsp;
|- style="text-align:center"
| ||–||9||6|| || || || || || || || ||style="text-align:left;border-left:thin solid black"|2{{rouge|4}}×{{rouge |4}}=96
|- style="text-align:center"
| || || ||4||0 ||0|| || || || || || ||style="text-align:left;border-left:thin solid black"|&nbsp;
|- style="text-align:center"
| || ||–||2||8||1|| || || || || || ||style="text-align:left;border-left:thin solid black"|28{{rouge|1}}×{{rouge |1}}=281
|- style="text-align:center"
| || || ||1||1||9||0||0|| || || || ||style="text-align:left;border-left:thin solid black"|&nbsp;
|- style="text-align:center"
| || ||–||1||1||2||9||6|| || || || ||style="text-align:left;border-left:thin solid black"|282{{rouge|4}}×{{rouge |4}}=11296
|- style="text-align:center"
| || || || || ||6||0||4||0||0|| || ||style="text-align:left;border-left:thin solid black"|&nbsp;
|- style="text-align:center"
| || || || ||–||5||6||5||6||4|| || ||style="text-align:left;border-left:thin solid black"|2828{{rouge|2}}×{{rouge |2}}=56564
|- style="text-align:center"
| || || || || || ||3||8||3||6||0||0||style="text-align:left;border-left:thin solid black"|&nbsp;
|- style="text-align:center"
| || || || || ||–||2||8||2||8||4||1||style="text-align:left;border-left:thin solid black"|28284{{rouge|1}}×{{rouge |1}}=282841
|- style="text-align:center"
| || || || || || ||1||0||0||7||5||9||style="text-align:left;border-left:thin solid black"|&nbsp;
|}

==== Méthode de Théon de Smyrne ====
On doit à [[Théon de Smyrne]] ces deux suites (''p<sub>n</sub>'') et (''q<sub>n</sub>'') définies par récurrence :
: ''p''<sub>''n'' + 1</sub> = ''p<sub>n</sub>'' + 2''q<sub>n</sub>'', ''p''<sub>0</sub> = 1 ;
: ''q''<sub>''n'' + 1</sub> = ''p<sub>n</sub>'' + ''q<sub>n</sub>'', ''q''<sub>0</sub> = 1.
Ces suites sont à valeur entière strictement positive, donc strictement croissantes par récurrence, et vérifient
:''p<sub>n</sub>''{{2}} − 2''q<sub>n</sub>''{{2}} = (−1)<sup>''n''</sup>(''p''<sub>0</sub>{{2}} − 2''q''<sub>0</sub>{{2}})
de sorte que ''p<sub>n</sub>''/''q<sub>n</sub>'' tend vers {{racine|2}}.


On ne sait pas si l’intention de Théon de Smyrne était de calculer une valeur approchée de {{racine|2}}.
==== Solutions de l'équation diophantienne ''a''²&minus; 2''b''² <nowiki>=</nowiki> ''k'' ====


Les solutions entières de l'équation 2''a''² &minus; ''b''² = ''k'' sont générées par récurrence
==== Solutions de l'équation diophantienne ''a''² 2''b''² <nowiki>=</nowiki> ''k'' ====
Les solutions entières de l’équation ''a''² − 2''b''² = ''k'' sont engendrées par récurrence
:''a''<sub>''k'' + 1</sub> = 3''a''<sub>''k''</sub> + 2''b''<sub>''k''</sub>
:''b''<sub>''k'' + 1</sub> = 4''a''<sub>''k''</sub> + 3''b''<sub>''k''</sub>
:''a''<sub>''m'' + 1</sub> = 3''a''<sub>''m''</sub> + 4''b''<sub>''m''</sub>
à partir des valeurs initiales (''a''<sub>0</sub>, ''b''<sub>0</sub>) = (1, 1) pour ''k'' = +1 et (2, 3) pour ''k'' = &minus;1.
:''b''<sub>''m'' + 1</sub> = 2''a''<sub>''m''</sub> + 3''b''<sub>''m''</sub>
à partir des valeurs initiales (''a''<sub>0</sub>, ''b''<sub>0</sub>) = (1, 1) pour ''k'' = −1 et (3, 2) pour ''k'' = 1.


Cette méthode est déduite de celle de Théon : chaque itération de la présente correspond à deux itérations de celle-là. Ainsi, ''a''<sub>''n''</sub>/''b''</sub>''n''</sub> tend linéairement vers √2.
Cette méthode se déduit de celle de Théon : chaque itération de la présente correspond à deux itérations de celle-là. Ainsi, ''a''<sub>''n''</sub>/''b''<sub>''n''</sub> tend linéairement vers √2.


Les premières solutions sont :
Les premières solutions sont :
* ''k'' = 1 : (1, 1), (5, 7), (29, 41), (169, 239), (985, 1393).
* ''k'' = −1 : (1, 1), (7, 5), (41, 29), (239, 169), (1393,985),
* ''k'' = -1 : (2, 3), (12, 17), (70, 90), (408, 577),
* ''k'' = 1 : (3, 2), (17, 12), (99, 70), (577, 408), (3363, 2378).


==== Méthode de Théon généralisée ====
==== Méthode de Théon généralisée ====


On se donne (''a'', ''b'') solutions de l'[[équation diophantienne]] ''2a''² = '''' + ''k'' = ''K'', avec ''k'' = ±1. On peut alors écrire
On se donne (''a'', ''b''), obtenu par la méthode de Théon, qui est donc solution de l’une des deux [[équation diophantienne|équations diophantiennes]] précédentes ''2b''{{2}} = ''a''{{2}} ''k'' = K, avec ''k'' = ±1 et K > 1. On peut alors écrire
:√2 = ''a''/''b'' √[''K''/(''K'' &minus; ''k'')]
: √2 = (''a''/''b''){{racine|K/(K + ''k'')}}
La suite (''p''<sub>''n''</sub>/''q''<sub>''n''</sub>) donnée par
Les suites ''p''<sub>''n''</sub> et ''q''<sub>''n''</sub> définies par
: ''p''<sub>''n'' + 1</sub> = (2''K'' &minus; ''k'')''p''<sub>''n''</sub> + 2''Kq''<sub>''n''</sub>
: ''p''<sub>''n'' + 1</sub> = (2K + ''k'')''p''<sub>''n''</sub> + 2K''q''<sub>''n''</sub>, ''p''<sub>0</sub> = 1 ;
: ''q''<sub>''n'' + 1</sub> = (2''K'' &minus; 2''k'')''p''<sub>''n''</sub> + (2''K'' &minus; ''k'')''q''<sub>''n''</sub>
: ''q''<sub>''n'' + 1</sub> = (2K + 2''k'')''p''<sub>''n''</sub> + (2K + ''k'')''q''<sub>''n''</sub>, ''q''<sub>0</sub> = 1.
vérifient
converge vers √[''K''/(''K'' &minus; 1)].
: (K + ''k'')''p''<sub>''n'' + 1</sub><sup>2</sup> – K''q''<sub>''n'' + 1</sub><sup>2</sup> = (K + ''k'')''p''<sub>''n''</sub><sup>2</sup> – K''q''<sub>''n''</sub><sup>2</sup> =… = ''k'',
et donc, de la même façon que ci-dessus, la suite ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> converge vers {{racine|K/(K + ''k'')}} = (''b''/''a''){{racine|2}}. De plus, si ''k'' = 1, cette suite est croissante donc approche cette valeur par défaut, et si ''k'' = –1, elle est décroissante donc approche cette valeur par excès.


On peut utiliser cette relation pour estimer l’erreur :
L'erreur vérifie
:''&epsilon;''<sub>''n'' + 1</sub> < ''&epsilon;''<sub>''n''</sub> 1/4(5''K'' &minus; ''k'')² .
: ''ε''<sub>''n'' + 1</sub> {{≃}} ''ε''<sub>''n''</sub> (4K + 3''k'')<sup>−2</sup>
et c’est une majoration si ''k'' = 1.
La [[convergence]] est donc linéaire : elle fait gagner un certain nombre de décimales à chaque itération.
La [[Limite d'une suite|convergence]] est donc [[Vitesse de convergence|linéaire]] : elle fait gagner un nombre à peu près constant de décimales à chaque itération.


Cette méthode correspond à une généralisation de la méthode de Théon au radical √[''K''/(''K'' &minus; ''k'') ; de plus, chaque itération correspond à deux itérations de la méthode de Théon.
Cette méthode correspond à une généralisation de la méthode du paragraphe précédent au radical {{racine|K/(K + ''k'')}}. Pour K plus grand, la suite (''q<sub>n</sub>'') croit plus rapidement, donc la convergence est accélérée.


::{| class="wikitable"
::{| class="wikitable"
|+ ''Premières approximations de √2 = 17/12 √(288/289) par approximation linéaire de √(288/289). Les paramètres sont a = 17, b = 12, K = 288, k = &minus;1, &epsilon;<sub>n + 1</sub> < 7,5 &times; 10<sup>-7</sup>&epsilon;<sub>n</sub>.''
|+ ''Premières approximations de √2 = 17/12 √(288/289) par approximation linéaire de √(288/289). Les paramètres sont a = 17, b = 12, K = 288, k = 1. On a <br> ε<sub>n + 1</sub> < 7,5 × 10<sup>-7</sup>ε<sub>n</sub> (avant approximation décimale des quotients).''
|-style="text-align: center"<small></small>
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 1 || 1
| 0 || 1 || 1
|-
|-
| 1 || 19601/13860 || 1,41421356
| 1 || {{formatnum:19601}}/{{formatnum:13860}} || 1,414 213 56
|-
|-
| 2 || 22619537/15994428 || 1,41421356237309
| 2 || {{formatnum:22619537}}/{{formatnum:15994428}} || 1,414 213 562 373 09
|-
|-
| 3 || 26102926097/18457556052 || 1,41421356237309504880
| 3 || {{formatnum:26102926097}}/{{formatnum:18457556052}} || 1,414 213 562 373 095 048 80
|-
|-
| 4 || 30122754096401/21300003689580 || 1,41421356237309504880168872
| 4 || {{formatnum:30122754096401}}/{{formatnum:21300003689580}} || 1,414 213 562 373 095 048 801 688 72
|}
|}


==== Développement en fraction continue ====
==== Développement en fraction continue ====


Une autre méthode consiste à approcher ''a''√2 &minus; ''b'' par sa [[fraction continuée]] généralisée pour (''a'', ''b'') solutions de l'équation diophantienne 2''a''² = ''b''² + ''k'', avec ''k'' = ± 1 :
Une autre méthode consiste à approcher ''b''{{racine|2}} ''a'' par sa [[fraction continue]] généralisée pour (''a'', ''b'') solution de l’équation diophantienne 2''b''{{2}} = ''a''{{2}} ''k'', avec ''k'' = ± 1 :
:''a''√2 &minus; ''b'' = [0; ''k'', 2''b''; ''k'', 2''b''; ''k'', 2''k'', …].
:''b''{{racine|2}} ''a'' = [0; ''k'', 2''a''; ''k'', 2''a''; ''k'', 2''a''…] est approximé à l’aide de la suite (''p<sub>n</sub>''/''q<sub>n</sub>'') déterminée par la relation de récurrence
''m''√2 &minus; ''n'' est approximé à l'aide de la suite (''p''<sub>''n''</sub>/''q''<sub>''n''</sub>) déterminée par la relation de récurrence
: ''p''<sub>''n'' + 1</sub> = ''q''<sub>''n''</sub>
: ''p''<sub>''n'' + 1</sub> = ''q''<sub>''n''</sub>
: ''q''<sub>''n'' + 1</sub> = 2''aq''<sub>''n''</sub> + ''kp''<sub>''n''</sub>
L’erreur vérifie [[asymptote|asymptotiquement]]
: ''q''<sub>''n'' + 1</sub> = 2''bq''<sub>''n''</sub> + ''kp''<sub>''n''</sub>
:''ε''<sub>''n'' + 1</sub> < |''b''√2 − ''a''|/(2''a'' − 1) ''ε''<sub>''n''</sub>
L'erreur vérifie [[asymptote|asymptotiquement]]
:''&epsilon;''<sub>''n'' + 1</sub> < |''a''√2 &minus; ''b''|/(2''b'' &minus; 1) ''&epsilon;''<sub>''n''</sub>


::{| class="wikitable"
::{| class="wikitable"
|+ ''Premières approximations de √2 par approximation linéaire de 169√2 &minus; 239. Les paramètres sont a = 169, b = 239, k = 1, &epsilon;<sub>n + 1</sub> ~ 4 &times; 10<sup>&minus;6</sup> &epsilon;<sub>n</sub>.''
|+ ''Premières approximations de {{racine|2}} par approximation linéaire de 169{{racine|2}} 239. Les paramètres sont b = 169, a = 239, k = 1, ε<sub>n + 1</sub> ~ 4 × 10<sup>−6</sup> ε<sub>n</sub>.''
|-style="text-align: center"<small></small>
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 1 || 1
| 0 || 1 || 1
|-
|-
| 1 || 114243/80782 || 1,414213562
| 1 || {{formatnum:114243}}/{{formatnum:80782}} || 1,414 213 562
|-
|-
| 2 || 54608393/38613965 || 1,41421356237309
| 2 || {{formatnum:54608393}}/{{formatnum:38613965}} || 1,414 213 562 373 09
|-
|-
| 3 || 26102926097/18457556052 || 1,41421356237309504880
| 3 || {{formatnum:26102926097}}/{{formatnum:18457556052}} || 1,414 213 562 373 095 048 80
|-
|-
| 4 || 12477253282759/8822750406821 || 1,4142135623730950488016887
| 4 || {{formatnum:12477253282759}}/{{formatnum:8822750406821}} || 1,414 213 562 373 095 048 801 688 7
|}
|}


==== Développement de Taylor ====
==== Développement en série entière ====


On se donne (''a'', ''b'') solutions de l'[[équation diophantienne]] ''2a''² = '''' + ''k'' = ''K'', avec ''k'' = ±1. On peut alors écrire le [[développement de Taylor]] de √[''K''/(''K'' &minus; ''k'')]
On se donne (''a'', ''b'') solution de l’[[équation diophantienne]] ''2b''{{2}} = ''a''{{2}} ''k'' = K, avec ''k'' = ±1. On peut alors écrire {{racine|K/(K + ''k'')}} comme somme d'une [[série (mathématiques)|série]] via le développement en [[série entière]] de (1+''z'')<sup>-½</sup> (ou la [[formule du binôme généralisée]], simple variante d'exposition).
: <math>\sqrt{ \frac{\mathrm{K}}{\mathrm{K}+k} } = 1-\frac{1}{2} \frac{k}{\mathrm{K}}+\frac{1\times 3}{2\times 4} \left(\frac{k}{\mathrm{K}}\right)^2
:√[''K''/(''K'' &minus; ''k'')] = 1 + 1/2 (k/K) + (1&times;3)/(2­&times;4) (k/K)² + (1&times;3&times;5)/(2&times;4&times;6) (k/K)³ + …
-\frac{1\times 3\times 5}{2\times 4\times 6} \left(\frac{k}{\mathrm{K}}\right)^3 + \dots</math>
et utiliser √2 = ''a''/''b'' √[''K''/(''K'' &minus; ''k'')]
et utiliser √2 = (''a''/''b''){{racine|K/(K + ''k'')}}.


Avec ''a'' = 7, ''b'' = 5 (soit ''K'' = 50, ''k'' = -1) et donc √2 = (7/5){{racine|50/49}}, les premiers termes de la série sont particulièrement simples, comme l’a fait remarquer [[Leonhard Euler]] en [[1755]]<ref>{{Ouvrage|langue=la|nom1=Euler|titre=Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum|volume=II|passage=292|lire en ligne=http://eulerarchive.maa.org/docs/originals/E212sec2ch4.pdf|numéro chapitre=4|titre chapitre=De conversione functionum in series}}.</ref> :
Dans le cas √2 = 17/12 √(49/50), ce développement se simplifie de façon remarquable comme l'a fait remarquer [[Leonhard Euler]] en [[1755]] :
:√2 = 7/5 [1 + 1/100 + (1&times;3)(1&times;2) + (1&times;3&times;5)/(1&times;2&times;3) + ]
: <math>\sqrt{2} = \frac{7}{5} \left( 1 + \frac{1}{100} + \frac{1\times 3}{1 \times 2} 10^{-4} + \frac{1\times 3\times 5}{1\times 2\times 3} 10^{-6} + \dots \right)=1,4+0,014+0,00021+0,0000035+\dots </math>


::{| class="wikitable"
::{| class="wikitable"
|+ ''Approximation √2 = 239/169 √(57122/57121) par le [[développement de Taylor]] du radical fractionnaire. Les paramètres sont a = 239, b = 169, K = 57122, k = 1.''
|+ ''Approximation √2 = (239/169){{racine|57122/57121}} par le développement en série entière du radical fractionnaire. Les paramètres sont b = 239, a = 169, K = 57122, k = –1.''
|-style="text-align: center"<small></small>
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 1 || 1
| 0 || 1 || 1
|-
| 1 || 239/169 || 1,4142
|-
|-
| 2 || 27304077/19306898 || 1,414213562
| 1 || 239/169 || 1,414 2
|-
|-
| 2 || {{formatnum:6238763163557}}/{{formatnum:4411471739168}} || {{Unité|1,414 213 562 373 09}}
| 3 ||26102697611/18457394488 || 1,41421356237309
|-
|-
| 3 || {{formatnum:712741258857407103}}/{{formatnum:503984177369508992}} || {{Unité|1,414 213 562 373 095 048}}
| 4 ||2982024380475863/ 2108609661098096 || 1,41421356237309505880
|-
| 4 || {{unité|325705649507622468308893}}/{{unité|230308673437608741128192}} || {{Unité|1,414 213 562 373 095 048 801 688}}
|}
|}


==== Dichotomie ====
==== Dichotomie ====


Il est possible d'approcher √2 par [[méthode de dichotomie|bissection]]. Cette méthode est de convergence linéaire lente : on gagne trois décimales à chaque dizaine d'itérations.
Il est possible d’approcher √2 par [[méthode de dichotomie|bissection]]. Cette méthode est de convergence linéaire lente : on gagne trois décimales à chaque dizaine d’itérations.


===Méthode à convergence quadratique===
=== Méthode à convergence quadratique ===
La [[méthode de Newton]] appliquée à la fonction racine carrée permet de calculer une valeur approchée de √2 de manière itérative avec une convergence quadratique, c’est-à-dire doublant le nombre de décimales à chaque itération. La récurrence a la forme
{{article détaillé|méthode de Héron|méthode de Newton}}
La [[méthode de Newton]] appliquée à la fonction racine carrée permet de calculer une valeur approchée de √2 de manière itérative avec une convergence quadratique, c'est-à-dire doublant le nombre de décimales à chaque itération. La récurrence a la forme
:''u''<sub>''n'' + 1</sub> = ''u''<sub>''n''</sub>/2 + 1/''u''<sub>''n''</sub>
:''u''<sub>''n'' + 1</sub> = ''u''<sub>''n''</sub>/2 + 1/''u''<sub>''n''</sub>


Cet algorithme s'appelle [[méthode de Héron]] ou méthode babylonienne car il semble que ce soit celle utilisée par les babyloniens pour trouver des valeurs approchées de racines carrées. .
Cet algorithme s’appelle [[méthode de Héron]] ou méthode babylonienne car il semble que ce soit celle utilisée par les Babyloniens pour trouver des valeurs approchées de racines carrées.


Si l'on s'intéresse aux fractions successives à partir d'une valeur initiale ''p''<sub>0</sub> et ''q''<sub>0</sub>, la récurrence sur le numérateur et le dénominateur sont
Si l’on s’intéresse aux fractions successives à partir d’une valeur initiale ''p''<sub>0</sub> et ''q''<sub>0</sub>, la récurrence sur le numérateur et le dénominateur sont
:''p''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub>² + 2''q''<sub>''n''</sub>²
:''p''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub>² + 2''q''<sub>''n''</sub>²
:''q''<sub>''n'' + 1</sub> = 2''p''<sub>''n''</sub>''q''<sub>''n''</sub>
:''q''<sub>''n'' + 1</sub> = 2''p''<sub>''n''</sub>''q''<sub>''n''</sub>
Ligne 515 : Ligne 524 :
|+ ''Premières approximations de √2 données par la méthode de Newton''.
|+ ''Premières approximations de √2 données par la méthode de Newton''.
|-style="text-align: center"
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 1 || 1
| 0 || 1 || 1
|-
|-
| 1 || 3/2 || 1
| 1 || 3/2 || 1
|-
|-
| 2 || 17/12 || 1,41
| 2 || 17/12 || 1,41
|-
|-
| 3 || 577/408 || 1,41421
| 3 || 577/408 || {{Unité|1,414 21}}
|-
|-
| 4 || 665857/470832 || 1,41421356237
| 4 || {{formatnum:665857}}/{{formatnum:470832}} || {{Unité|1,414 213 562 37}}
|-
|-
| 5 || 886731088897/627013566048 || 1,41421356237309504880168
| 5 || {{formatnum:886731088897}}/{{formatnum:627013566048}} || {{Unité|1,414 213 562 373 095 048 801 68}}
|}
|}


===Méthodes cubiques===
=== Méthodes cubiques ===
{{article détaillé|méthode de Halley|itération de Householder}}


==== Méthode de Halley ====
==== Méthode de Halley ====


Un exemple de méthode cubique s'obtient par l'[[itération de Halley]]. Elle cherche le zéro de ''f''(''x'') = ''x''² &minus; 2 en utilisant les deux premières [[dérivée]]s. La solution itérative est
La [[méthode de Halley]] est un exemple de méthode cubique. Elle cherche le zéro de ƒ(''x'') = ''x''² 2 en utilisant les deux premières [[dérivée]]s. La solution itérative est
:''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> &times; (''x''<sub>''n''</sub>² + 6)/(3''x''<sub>''n''</sub>² + 2)
:''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> × (''x''<sub>''n''</sub>² + 6)/(3''x''<sub>''n''</sub>² + 2)
soit en posant ''x''<sub>''n''</sub> = ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> :
soit en posant ''x''<sub>''n''</sub> = ''p''<sub>''n''</sub>/''q''<sub>''n''</sub> :
:''p''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub>(''p''<sub>''n''</sub>² + 6''q''<sub>''n''</sub>²)
:''p''<sub>''n'' + 1</sub> = ''p''<sub>''n''</sub>(''p''<sub>''n''</sub>² + 6''q''<sub>''n''</sub>²)
:''q''<sub>''n'' + 1</sub> = ''q''<sub>''n''</sub>(3''p''<sub>''n''</sub>² + 2''q''<sub>''n''</sub>²)</sub>
:''q''<sub>''n'' + 1</sub> = ''q''<sub>''n''</sub>(3''p''<sub>''n''</sub>² + 2''q''<sub>''n''</sub>²)
Cette méthode est de convergence cubique : le nombre de décimales exactes triple à chaque itération.
Cette méthode est de convergence cubique : le nombre de décimales exactes triple à chaque itération.


Ligne 545 : Ligne 553 :
|+ ''Premières approximations de √2 données par la méthode cubique''.
|+ ''Premières approximations de √2 données par la méthode cubique''.
|-style="text-align: center"
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 1 || 1
| 0 || 1 || 1
|-
|-
| 1 || 75 || 1,4
| 1 || 7/5 || 1,4
|-
|-
| 2 || 1393/985 || 1,414213
| 2 || {{formatnum:1393}}/985 || {{Unité|1,414213}}
|-
|-
| 3 || 10812186007/7645370045 || 1,414213562373095048
| 3 || {{formatnum:10812186007}}/{{formatnum:7645370045}} || {{Unité|1,414 213 562 373 095 048}}
|-
|-
| 4 || — || {{Unité|1.414 213 562 373 095 048}}<br>{{unité|801688724209698078569}}<br>{{unité|671875376948073176679}} 7
| 4 || — || 1,4142135623730950488<br />016887242096980785696<br />718753769480731766797
|}
|}


==== Méthode de Householder ====
==== Méthode de Householder ====


L'[[itération de Householder]] appliquée à f(x) = 1/x² &minus; 1/√2 donne une suite convergeant vers 1/√2 :
L’[[itération de Householder]] appliquée à ƒ(''x'') = 1/''x'' ² 1/√2 donne une suite convergeant vers 1/√2 :
:''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> + ''x''<sub>''n''</sub>/8 &times; (2''x''<sub>''n''</sub>² − 1)(6''x''<sub>''n''</sub>² − 7)
: ''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> + ''x''<sub>''n''</sub>/8 × (2''x''<sub>''n''</sub>² − 1)(6''x''<sub>''n''</sub>² − 7)


===Méthodes d'ordre supérieur===
=== Méthodes d'ordre supérieur ===

On utilise une [[méthode de Newton]] modifiée<ref name="GOU01a">{{en}} ''[http://numbers.computation.free.fr/Constants/Algorithms/newton.html Newton's iteration]'', Xavier Gourdon & Pascal Sebah, [[2001]], visité le [[24 août]] [[2006]]</ref> pour trouver le zéro de ''f''(''x'') = 1/''x''² &minus; 1/2. Cela donne la suite récurrente :
On utilise une [[méthode de Newton]] modifiée<ref name="GOU01a">{{en}} [http://numbers.computation.free.fr/Constants/Algorithms/newton.html {{langue|en|''Newton's method and high order iterations''}}], Xavier Gourdon et Pascal Sebah, 2001<!--, visité le 24 août 2006-->.</ref> pour trouver le zéro de ƒ(''x'') = 1/''x'' ² − 1/2. Cela donne la suite récurrente :
:''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> + ''x''<sub>''n''</sub>/16 &times; (8''h''<sub>''n''</sub> + 6''h''<sub>''n''</sub>² + 5''h''<sub>''n''</sub>³)
: ''x''<sub>''n'' + 1</sub> = ''x''<sub>''n''</sub> + ''x''<sub>''n''</sub>/16 × (8''h''<sub>''n''</sub> + 6''h''<sub>''n''</sub>² + 5''h''<sub>''n''</sub>³)
avec
avec
:''h''<sub>''n''</sub> = 1 &minus; ''x''<sub>''n''</sub>²/2
: ''h''<sub>''n''</sub> = 1 ''x''<sub>''n''</sub>²/2
Cette méthode est de convergence quartique, i.e. d'ordre 4 : le nombre de décimales exactes quadruple à chaque itération.
Cette méthode est de [[Vitesse de convergence des suites|convergence quartique]], c’est-à-dire d’ordre 4 : le nombre de chiffres significatifs corrects quadruple (asymptotiquement) à chaque itération.


::{| class="wikitable"
::{| class="wikitable"
|+ ''Premières approximations de √2 données par la méthode quartique''.
|+ ''Premières approximations de √2 données par la méthode quartique''.
|-style="text-align: center"
|-style="text-align: center"
| itération || valeur fractionnaire || décimales exactes
| itération || valeur fractionnaire || décimales exactes
|-
|-
| 0 || 3/2 || 1
| 0 || 3/2 || 1
|-
|-
| 1 || 23169/2<sup>14</sup> || 1,414
| 1 || {{formatnum:23169}}/2<sup>14</sup> || 1,414
|-
|-
| 2 ||57367317478181003155381859082363/2<sup>105</sup> || 1,41421356237309
| 2 || {{formatnum:57367317478181003155381859082363}}/2<sup>105</sup> || {{Unité|1,414 213 562 373 09}}
|-
|-
| 3 || — || 1,41421356237309<br />5048801688724209<br />6980785696718753<br />76948073176679737
| 3 || — || {{Unité|1,414 213 562 373 09}}<br>{{formatnum:5048801688724209}}<br>{{formatnum:6980785696718753}}<br>{{formatnum:76948073176679737}}
|}
|}


Il existe des méthodes d'ordre supérieur<ref name="GOU01b">{{en}} ''[http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html Pythagoras' Constant √2]'', Xavier Gourdon & Pascal Sebah, [[2001]], visité le [[24 août]] [[2006]]</ref>, notamment parmi les méthodes de Householder.
Il existe des méthodes d’ordre supérieur<ref name="GOU01b">{{Lien web|langue=en|url=http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html|titre=Pythagoras’ Constant √2|auteur=Xavier Gourdon et Pascal Sebah|année=2001}}<!--, visité le 24 août 2006-->.</ref>, notamment parmi les méthodes de Householder.

== Notes et références ==
{{Références}}

== Bibliographie ==
* {{Article|langue=en|lien auteur=Tom M. Apostol|nom=Apostol|prénom=Tom M.|date=novembre 2000|titre=Irrationality of The Square Root of Two — A Geometric Proof|périodique=[[The American Mathematical Monthly]]|volume=107|numéro=9|pages=841-842|url=http://www-fourier.ujf-grenoble.fr/~marin/une_autre_crypto/articles_et_extraits_livres/irationalite/Apostol_T._irationality...-.pdf}}
* {{DahanPeiffer}}
* {{Article|langue=en|auteur1=[[David Fowler]]|titre=Dedekind's theorem {{nobr|1={{racine|2}} × {{racine|3}} = {{racine|6}}}}|périodique=[[The American Mathematical Monthly]]|volume=99|numéro=8|année=1992|pages=725-733|url=https://books.google.fr/books?id=WwFMjsym9JwC&pg=PA185}}
* {{Ouvrage|langue=en|auteur1=[[Martin Gardner]]|titre=A Gardner's Workout|sous-titre=Training the Mind and Entertaining the Spirit|éditeur=[[A K Peters]]|année=2001|pages totales=319|passage=9-19|isbn=978-1-56881-120-8}}.
* {{Ouvrage|prénom1=Benoît|nom1=Rittaud|titre=Le Fabuleux Destin de √2|éditeur=[[Le Pommier]]|année=2006|ISBN=2746502755|pages totales=456}}

=== Mathématiques en Mésopotamie ===
* {{Article|langue=en|auteur1=[[David Fowler]]|auteur2=[[Eleanor Robson]]|url=http://www.hps.cam.ac.uk/people/robson/fowler-square.pdf|titre=Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context|périodique=[[Historia Mathematica]]|volume=25|année=1998|pages=366-378}}

=== Mathématiques indiennes ===
* {{Chapitre|langue=en|auteur1=David Henderson|titre=Square Roots in the Sulbasutra|titre ouvrage=Geometry at Work: Papers in Applied Geometry|auteurs ouvrage=C. A. Gorini|collection=MAA Notes|numéro dans collection=53|page=39-45|année=2000}}, [http://www.math.cornell.edu/~dwh/papers/sulba/sulba.html en ligne] sur le site de l’auteur
* {{ouvrage|lang=en|prénom1=Kim|nom1=Plofker|lien auteur1=Kim Plofker|titre=Mathematics in India|éditeur= Princeton University Press (Princeton)|année=2009|isbn=978-0-691-12067-6}}.


=== Mathématiques grecques ===
==Voir aussi==
* {{article|auteur1=[[John Lennart Berggren|J. L. Berggren]]|titre=History of Greek mathematics: A survey of recent research|date=novembre 1984|revue=[[Historia Mathematica]]|volume=11|numéro=4|lang=en|doi=10.1016/0315-0860(84)90024-7|pages=394-410}}
===Liens internes===
* {{Ouvrage|auteur=[[Maurice Caveing]]|titre=La constitution du type mathématique de l'idéalité dans la pensée grecque|volume=3|titre volume=L’irrationalité dans les Mathématiques grecques jusqu’à Euclide|éditeur=[[Presses universitaires du Septentrion]]|année=1998|pages totales=343|isbn=2-85939-539-3|bnf=36971590m|présentation en ligne={{Google Livres|ZycSoMNgL2YC}}}}
* [[racine carrée]]
* Denis Daumas, « Sur la démonstration de l’irrationalité chez les grecs », in ''La démonstration mathématique dans l’histoire'', [[Institut de recherche sur l'enseignement des mathématiques|IREM]] de Lyon
* [[nombre irrationnel]]
* {{Ouvrage|langue=en|auteur1=[[David Fowler]]|titre=The Mathematics of Plato’s Academy|sous-titre=A New Reconstruction|lieu=Oxford|éditeur=Clarendon Press (Oxford Science Publications)|année=1999|numéro d'édition=2|pages totales=441|isbn=0-19-850258-3}}
* [[nombre algébrique]]
* {{Ouvrage|langue=en|auteur1=[[Wilbur Knorr]]|titre=The Evolution of the Euclidean elements|sous-titre=a study of the theory of incommensurable magnitudes and its significance for early Greek geometry|lieu=Dordrecht/Boston|éditeur=D. Reidel Publishing Company|année=1975|pages totales=374|isbn=90-277-0509-7|lire en ligne=https://books.google.fr/books?id=K1kK9zsD3LMC}}
===Liens externes===
* {{chapitre|auteur1=Ken Saito|année=2004|langue=en|titre=Studies on proportion theory and incommensurability (introduction)|passage=187-189|titre ouvrage=Classics in the History of Greek Mathematics|auteur ouvrage=Jean Christianidis (ed.)|éditeur=Springer|isbn=978-90-481-5850-8}}.
* {{fr}} ''[http://www.math.univ-paris13.fr/~rittaud/RacineDeDeux Racine de 2]'', Benoît Rittaud <small>(ressources en ligne autour du livre ''Le Fabuleux destin de √2'', visité le [[24 août]] [[2006]])
* {{en}} Árpád Szabó, ''[https://archive.org/details/TheBeginningsOfGreekMathematics The Beginnings of Greek Mathematics]'', Springer, 1978 {{ISBN|978-9027708199}}.
* {{fr}} ''[http://www.reunion.iufm.fr/Recherche/irem/histoire/pythagore_de_samos.htm Pythagore de Samos]''
* {{fr}} ''[http://www.lille.iufm.fr/pages/cream/ressources/Histoire/I/Irrationnel/irrationnel.html Les irrationnels]''
* {{en}} ''[http://www.cut-the-knot.org/proofs/sq_root.shtml Square root of 2 is irrational]'', Alexander Bogomolny <small>(9 démonstrations de l'irrationalité de √2, visité le [[23 août]] [[2006]])
* {{en}} ''[http://numbers.computation.free.fr/Constants/Sqrt2/sqrt2.html Pythagoras' Constant √2]'', Xavier Goudon et Pierre Sebah <small>(diverses approximations rationnelles de 2, visité le [[23 août]] [[2006]])
* {{en}} ''[http://http://mathworld.wolfram.com/PythagorassConstant.html Pythagoras's Constant on Math World]'' <small>(visité le [[23 août]] [[2006]])
* {{en}} ''[http://www.math.cornell.edu/~dwh/papers/sulba/sulba.html Square Roots in the Sulbasutra]'', David Henderson <small>(visité le [[23 août]])


===Bibliographie===
== Voir aussi ==
=== Articles connexes ===
* Benoît Rittaud, ''Le fabuleux destin de √2'', Le Pommier, 2006, ISBN 2746502755.
* Nicolas Bourbaki, ''Éléments d'histoire des mathématiques'', Hermann, 1974, ISBN 978-2705657789
* [[Livre X des Éléments d'Euclide|Livre X des Éléments d’Euclide]]
* [[Duplication du cube]], [[racine cubique de deux]]
* Bertrand Hauchecorne et Daniel Suratteau, ''Des mathématiciens de A à Z.'', Ellipses, ISBN 978-2729846831.
* [[Proportion d'argent]] (<math>1+\sqrt2</math>)
* Denis Daumas, ''Sur la démonstration de l'irrationalité chez les grecs'' , in La démonstration mathématique dans l'histoire - [[IREM]] de Lyon.
* [[Racine douzième de deux]]
* {{en}} Eleanor Robson & David Fowler, [http://www.hps.cam.ac.uk/dept/robson-fowler-square.pdf ''Square root approximations in Old Babylonian mathematics : YBC 7289 in context''], Historia Mathematica, 25, pp. 366-378, 1998.
* [[Racine carrée d'un entier naturel]]


=== Liens externes ===
==Références==
{{Liens}}
<references />
* {{Lien web|url=http://www.math.univ-paris13.fr/~rittaud/RacineDeDeux|titre=Racine de 2|prénom1=Benoît|nom1=Rittaud|site=université Paris 13|consulté le=24 août 2006}} (ressources en ligne autour du livre ''Le Fabuleux Destin de √2'')
* {{MathWorld|nom_url=PythagorassConstant|titre=Pythagoras’s Constant}}<!-- (consulté le 23 août 2006)-->


=== Bibliographie ===
{{Portail mathématiques}}
* {{Ouvrage|auteur1=Ludmila Duchêne|auteur2=Agnès Leblanc|titre=Rationnel mon Q|lieu=Paris|éditeur=[[Hermann (éditions)|Hermann]]|année=2009|présentation en ligne=http://a.leblanc5.free.fr/}} (démonstrations de l'irrationalité de √{{Surligner|2}})


{{Palette|Notion de nombre}}
{{Article potentiellement bon | oldid=14878623 | date=4 avril 2007 }}


{{Portail|nombre}}
[[Catégorie:Nombre remarquable]]
{{Bon article|vote=BA|oldid=15994985|date=19 avril 2007}}


[[Catégorie:Racine carrée|2]]
[[da:Irrationale tal#Irrationaliteten_af_kvadratrod_2]]
[[Catégorie:2 (nombre)]]
[[de:Wurzel 2]]
[[Catégorie:Constante mathématique]]
[[en:Square root of 2]]
[[es:Raíz cuadrada de 2]]
[[it:Numero irrazionale#Irrazionalit.C3.A0_della_radice_quadrata_di_2]]
[[ja:2の平方根]]
[[ko:2의 제곱근]]
[[nl:Bewijs dat wortel 2 irrationaal is]]
[[no:Kvadratroten av 2]]
[[sv:Kvadratroten ur 2]]

Dernière version du 11 novembre 2024 à 17:13

La racine carrée de deux, notée (ou parfois 21/2), est le seul nombre réel positif qui, lorsqu’il est multiplié par lui-même, donne le nombre 2, autrement dit 2 × 2 = 2. C’est un nombre irrationnel, dont une valeur approchée à 10–9 près est :

2 ≈ 1,414 213 562.
L’hypoténuse d’un triangle rectangle isocèle de côté 1 vaut 2.

Le calcul d’une valeur approchée de 2 a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées. En informatique, ces recherches se sont poursuivies afin d’optimiser ces algorithmes en réduisant les temps de calcul et la consommation de mémoire.

Géométriquement, 2 est le rapport de la diagonale d'un carré sur son côté, c'est-à-dire le rapport de l’hypoténuse d’un triangle rectangle isocèle sur l'un des côtés de l'angle droit, ce qui est un cas particulier du théorème de Pythagore.

Le nombre 2 est connu depuis longtemps : en Mésopotamie, les scribes savaient déjà en calculer une valeur approchée très précise, dans le premier tiers du second millénaire avant notre ère. Vraisemblablement vers le Ve siècle av. J.-C., les mathématiciens grecs ont montré que la diagonale d'un carré et son côté étaient incommensurables, ce qui revient à dire que 2 est un irrationnel. L'étude de l'incommensurabilité a joué un rôle important dans le développement des mathématiques grecques. Pour les Grecs, ni les fractions, ni les irrationnels ne sont des nombres. Ce pas est franchi par les mathématiciens arabes à l'origine de l'algèbre.

Ce nombre intervient dans des applications de la vie courante :

Dénomination

[modifier | modifier le code]
Légende : 1. Indice ; 2. Radical ; 3. Radicande

L’expression « racine carrée » est issue de la notation géométrique européenne qui prévalait avant la notation algébrique, et plus particulièrement de l’une des constructions de 2 qui sera présentée à la section consacrée à l'historique ; en effet, les problèmes mathématiques ont souvent été présentés sous forme géométrique avant d’être ramenés à des expressions algébriques.

Le nombre 2 ayant exactement deux racines carrées réelles, 2 et –2, 2 pourrait se lire racine carrée positive de 2, ou racine carrée principale de 2. On le prononce simplement racine carrée de 2, voire racine de 2 pour simplifier. Une autre expression correcte, faisant référence au symbole , est « radical de deux », mais elle est peu courante.

On trouve parfois 2 appelé constante de Pythagore, peut-être à cause d'une légende attribuant la découverte de l'irrationalité de 2 à l'école pythagoricienne[1].

Le symbole a été vu pour la première fois en version imprimée sans la barre horizontale au-dessus des nombres à l’intérieur de la racine en 1525 dans Die Coss de Christoff Rudolff, un mathématicien allemand.

2 dans la vie courante

[modifier | modifier le code]

Format de papier

[modifier | modifier le code]
Le rapport longueur/largeur d’une feuille de format A est une bonne approximation de 2.

Les formats de papier A, B et C de la norme ISO 216, d’emploi courant hors de l’Amérique du Nord, ont été conçus pour vérifier une propriété remarquable : une feuille coupée en deux parties égales par la largeur, produit deux feuilles semblables à l’original ; c’est-à-dire avec le même rapport longueur/largeur. L’aire étant diminuée d’un facteur 2, ceci n’est possible que si ce rapport vaut 2 ; dans la pratique, les dimensions sont arrondies[2].

Ci-dessous sont données les valeurs approximatives des formats A0 à A5 en fonction de 2.

Valeurs approximatives des dimensions des formats A0 à A5 exprimées en fonction de 2. Dans la pratique, les dimensions sont arrondies.
format longueur (m) largeur (m) aire (m2)
A0 2 22 1
A1 22 22 12
A2 22 2(22) 14
A3 222 24 18
A4 24 242 116

Les séries B et C diffèrent de la série A respectivement d’un facteur 2 (~ 1,19) et 2 (~ 1,09).

Les facteurs d’agrandissement de 200 %, 141 %, 71 %, 50 % proposés par les photocopieuses sont des approximations de (2)n qui permettent le passage à des formats de papier supérieurs ou inférieurs — que ce soit physiquement ou par impression de 2n pages par feuille.

Notons qu'en mathématiques, on note plus volontiers et .

La gamme du tempérament égal se construit ainsi : le rapport de fréquences entre les notes extrêmes de l’octave est 2 ; et la gamme est divisée en douze demi-tons de rapports de fréquence égaux ƒ. Le rapport de fréquences entre la note la plus haute et la plus basse est donc ƒ 12, qui vaut, comme indiqué précédemment, 2. Le demi-ton a ainsi un rapport ƒ = 21/12.

Rapports de fréquences des notes de la gamme tempérée par rapport à la note la plus basse.
do do mi fa fa sol sol la la si do
1 21/12 21/6 21/4 21/3 25/12 √2 27/12 22/3 23/4 25/6 211/12 2

Dans ce système, la quarte augmentée (dofa♯) et la quinte diminuée (do-sol♭) sont égales et valent six demi-tons ; elles ont un rapport de fréquences de √2. Le chant grégorien utilise cet intervalle, le triton, mais à la fin du Moyen Âge celui-ci est systématiquement évité car jugé trop dissonant. Il reçoit alors le surnom de « Diabolus in Musica».

Électricité

[modifier | modifier le code]
Tension sinusoïdale : valeur efficace.

En électricité, la tension efficace Ueff d’un courant alternatif sinusoïdal monophasé — par exemple les 110 V ou 220 V du courant domestique — est reliée à l’amplitude de la tension Umax par

, noté aussi ,

soit, dans la plupart des applications courantes :

Cela est valable plus généralement pour la valeur efficace des grandeurs linéaires d’une onde sinusoïdale. On remarquera aussi que

On parle de bande passante à −3 décibels.

Photographie

[modifier | modifier le code]
Diaphragme contrôlant l’ouverture d’un appareil photo.

Les ouvertures des appareils photographiques suivent la séquence normalisée f/1,4, f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22, f/32, etc. Le rapport entre deux ouvertures consécutives est une valeur proche de 2, qui a été choisie de sorte que le rapport de flux lumineux soit dans un rapport 2 (flux = diamètre2). En diminuant d’un « cran » l’ouverture on double le temps de pose nécessaire ou diminue d’un facteur 2 la sensibilité de la pellicule requise[3].

Dans la pratique, l’ouverture indiquée est un arrondi ; l’ouverture réelle peut coller au plus proche de 2[4]. Il existe des subdivisions sur les appareils modernes, souvent dans des rapports ou 21/3.

Lien entre ouverture, diamètre du diaphragme et flux lumineux reçu à pose et sensibilités fixés.
Ouverture f/1,4 f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22 f/32
Diamètre d d/2 d/2 d/22 d/4 d/42 d/8 d/82 d/16 d/162
Flux I I/2 I/4 I/8 I/16 I/32 I/64 I/128 I/256 I/512

Dupliquer un carré

[modifier | modifier le code]
Construction d'un carré d'aire 2.

La question de la duplication d'un carré correspond à la construction d'un carré d'aire double de celle d'un carré donné. On suppose que l'on dispose d'un carré d'aire 1 et l'on cherche à construire un carré d'aire 2. Par définition, le carré d'aire 1 possède un côté de longueur 1 et le carré d'aire 2 possède la même aire que celle de deux carrés d'aire 1.

Il existe deux méthodes simples pour s'en persuader. La plus directe consiste à étudier la figure de gauche[5]. Le carré de côté 1 est composé de deux triangles, celui de côté noté 2 est formé d'exactement quatre triangles du même type, il est donc d'aire double. Une autre manière de se rendre compte du rapport deux entre les aires des carrés de la figure est l'usage du théorème de Pythagore. Un triangle isocèle rectangle de petit côté de longueur 1 possède une hypoténuse de carré égal à 1 + 1 = 2. Cette hypoténuse est la diagonale d'un carré de côté de longueur 1.

Duplication du carré grâce au cercle

L'aire d'un carré s'obtient par multiplication de la longueur du côté par lui-même. La longueur du côté du carré d'aire 2 multiplié par lui-même est donc égal à 2. Par définition de 2, la longueur de ce côté est 2.

Il est en outre possible, à l'aide d'un cercle, de dupliquer le carré sans en changer l'orientation. Dans la figure ci-contre le grand carré a une surface double du petit carré. Il suffit pour s'en convaincre de faire pivoter le petit carré d'un huitième de tour. Le rapport des côtés des deux carrés est donc de 2. La figure de gauche illustrera, pour les mathématiciens futurs la présence de la racine carrée de deux dans le sinus et le cosinus du huitième de tour.

Plus tard, ce tracé séduit de nombreux architectes comme Andrea Palladio dans sa Villa Rotonda ou dans l’Église ronde de Preslav. On le retrouve dans le cloître de la cathédrale de Cahors où la surface de la cour intérieure est égale à la surface de la galerie qui l'entoure[6] ou dans les carnets de Villard de Honnecourt[7].

Preuves d'irrationalité

[modifier | modifier le code]

Il existe de nombreuses démonstrations[8] du fait que 2 est irrationnel. Plusieurs d'entre elles n'utilisent que des connaissances arithmétiques très minimales, d'autres se généralisent en remplaçant 2 par n où l'entier naturel n n'est pas un carré parfait (voir l'article « Irrationnel quadratique »). Certaines sont des reformulations, avec les concepts et le langage mathématiques actuels, de preuves antiques ou supposées telles (cf. § Histoire).

Elles procèdent souvent en utilisant simplement la définition de la négation[9], en supposant que 2 est, au contraire, rationnel, c'est-à-dire qu'il peut s'écrire sous la forme p/q pour certains entiers q > 0 et p, puis en déduisant une contradiction de cette hypothèse 2 = p/q, qui s'écrit aussi p2 = 2q2.

Par parité

[modifier | modifier le code]

Soit p le plus petit entier strictement positif tel que p2 soit le double d'un carré, et soit q l'entier positif tel que p2 = 2q2. Alors, p > q (puisque p2 > q2) et p est pair (puisque son carré l'est). En notant p = 2r et en simplifiant par 2, l'équation se réécrit q2 = 2r2, avec 0 < q < p, ce qui contredit la minimalité dans le choix de p.

Une variante consiste à pratiquer une descente infinie à partir d'une (hypothétique) solution p2 = 2q2 : on construit r comme ci-dessus, puis s, tetc. tels que p2 = 2q2, q2 = 2r2, r2 = 2s2… et p > q > r > s > … , ce qui est absurde puisqu'il n'existe pas de suite infinie strictement décroissante d'entiers positifs.

Par soustractions réciproques

[modifier | modifier le code]

Soient à nouveau p et q entiers > 0 tels que p/q = 2 avec pq le plus petit possible ou, ce qui revient au même, q le plus petit possible. On déduit de p2 = 2q2 que p(p – q) = p2pq = 2q2pq = (2q – p)q, d'où en posant[10]

r = p – q et s = 2q – p :

p/q = s/r, ce qui contredit la minimalité de q, puisque 0 < r < q.

En résumé : soit q le plus petit entier > 0 tel que q2 est entier, alors q2q est encore un tel entier qui est strictement inférieur à q, d'où une contradiction[11].

(On peut, comme précédemment, transformer ce raisonnement en une descente infinie.)

Par un argument géométrique

[modifier | modifier le code]
Si le triangle ABC est isocèle rectangle avec ses côtés de longueurs entières, alors c'est aussi le cas du triangle A'B'C, qui est de dimensions plus petites.

Démontrer l'irrationalité de √2 revient à démontrer que, pour une unité donnée, il n'existe pas de triangle isocèle rectangle dont les côtés sont chacun de longueur un nombre entier d'unité.

Si un tel triangle existe, alors il en existe nécessairement un plus petit dont les côtés sont aussi de longueur entière (sa construction est donnée sur le dessin ci-contre et détaillée ci-dessous). Or si un tel triangle existe, il en existe nécessairement un minimal ayant cette propriété (celui dont le côté de l'angle droit, par exemple, est minimal) d'où une contradiction.

Soit ABC un triangle isocèle rectangle en B et de côtés entiers. Alors, le cercle centré en A de rayon la longueur du petit côté AB coupe l'hypoténuse [AC] en un point B' tel que B'C soit encore de longueur entière, puisque AC et AB' le sont. La perpendiculaire menée en B' à l'hypoténuse [AC] coupe le côté [BC] en A'. Le triangle A'B'C est isocèle rectangle en B', puisque l'angle en B est droit et l'angle en C est celui du triangle d'origine. Les droites (A'B) et (A'B') sont les tangentes issues de A' au cercle de centre A et de rayon AB = AB', et donc A'B = A'B', donc A'B = A'B' = B'C, et A'C est de longueur entière[12]. On peut aussi interpréter la construction comme le pliage du triangle ABC dans lequel on ramène le côté [AB] sur l'hypoténuse[13].

On peut, en explicitant les calculs des côtés du triangle, donner une version purement arithmétique de cette preuve qui est alors celle du paragraphe précédent (prendre p = AC et q = AB = BC).

Par le lemme de Gauss

[modifier | modifier le code]

Soit q le plus petit entier > 0 tel que le nombre p := q2 soit entier, alors q est premier avec p, or il divise p2. Il est donc égal à 1, et p2 = 2, ce qui est impossible. C'est, particularisé à 2, un argument général qui montre que la racine carrée d'un entier qui n'est pas un carré parfait est irrationnelle.

Par le théorème fondamental de l'arithmétique

[modifier | modifier le code]

Le couple (p, q) tel que p2 = 2q2 étant cette fois arbitraire (i.e. q non nécessairement minimum), la contradiction vient de ce que dans la décomposition en produit de facteurs premiers, p2 a un nombre pair de facteurs et 2q2 un nombre impair. Une variante est de compter seulement les facteurs égaux à 2. Cet argument, là encore, s'adapte immédiatement à la racine carrée d'un entier qui n'est pas un carré parfait.

Par les congruences

[modifier | modifier le code]

Avec p et q premiers entre eux comme plus haut, donc non tous deux divisibles par 3, p2 – 2q2 ne peut pas être nul puisque[14] modulo 3, il est congru à 02 – 2 × (±1)2 ou (±1)2 – 2 × 02 ou (±1)2 – 2 × (±1)2, c'est-à-dire à ±1. (En utilisant la notion d'inverse modulaire, on peut, dans cette méthode, remplacer[14] 3 par n'importe quel nombre premier P tel que 2 n'est pas un carré modulo P, c.-à-d. P congru à 3 ou 5 modulo 8).

Constructions géométriques

[modifier | modifier le code]

Construction de 2 à la règle et au compas

[modifier | modifier le code]
Construction à la règle et au compas

Comme toute racine carrée de nombre entier, 2 est constructible à la règle et au compas ; a contrario, ce n’est pas le cas de la racine cubique de 2 (c'est le problème de la duplication du cube.

Étant donné un segment AB de longueur unité, voici les différentes étapes pour construire un segment de longueur 2 avec une règle non graduée et un compas :

  1. Tracer le symétrique B′ de B par rapport à A
    • Tracer le cercle C1 de centre A et de rayon AB, il coupe la demi-droite [BA) en B′
  2. Tracer la médiatrice (AH) de [BB′]
    • Tracer le cercle C2 de centre B et de rayon r > AB
    • Tracer le cercle C3 de centre B′ et de rayon r, il coupe C2 en deux points, H et H′
    • Tracer le segment [AH] il intersecte C1 en un point C.

À cette étape le segment [BC] de longueur 2 est construit.

Construction de 2 au compas seul

[modifier | modifier le code]
Construction au compas seul de 2

Comme tout nombre constructible à la règle et au compas, 2 est constructible au compas seul. Les étapes d’une construction possible sont :

  1. Tracer quatre sommets consécutifs B, G, H, I de l’hexagone régulier de centre A et de sommet B ; ceci permet de construire 3, l’unité étant la longueur AB.
    • Tracer le cercle C1 de centre A et de rayon AB ;
    • Tracer le cercle C2 de centre B et de rayon AB, il coupe C1 en deux points, soit G l’un d’entre eux ;
    • Tracer le cercle C3 de centre G et de rayon AB, il coupe C1 en B et H ;
    • Tracer le cercle C4 de centre H et de rayon AB, il coupe C1 en G et I ;
  2. Construire un triangle rectangle ABC d’hypoténuse BC = 3 (AB = 1) ; C est l’un des deux points tel qu'IC = IG et BC = BH (sachant que IG = BH = 3 > IB/2 = 1).
    • Tracer le cercle C5 de centre I et de rayon IG ;
    • Tracer le cercle C6 de centre B et de rayon BH (= IG), il coupe C5 en C.

À cette étape le segment [AC] de longueur 2 est construit.

Éléments de démonstration : IC = IG = 3, car d’après le théorème de Pythagore, les hauteurs en I et G des triangles équilatéraux de côté 1, IHA et HAG, qui sont portées par la médiatrice de (H, A), ont pour longueur 3/2. Par construction (A et C sur la médiatrice de BI) (AC) est perpendiculaire à (AI) et le théorème de Pythagore dans IAC donne AC2 = 2..

La période paléo-babylonienne

[modifier | modifier le code]
Schéma de la tablette YBC 7289.

La culture mathématique de la période paléo-babylonienne est avant tout algorithmique. Elle dispose d'un système de numération en notation positionnelle[15]. Certaines tablettes, comme celle notée BM 13901, montrent une bonne connaissance des questions du second degré, probablement traitées à partir de méthodes géométriques simples, par copié-collé d'aires rectangulaires[16]. En plus de disposer de méthodes de résolution, les Babyloniens savent calculer des approximations de racines carrées. La tablette YBC 7289, rédigée dans le premier tiers du second millénaire avant notre ère, donne une approximation de 2, interprétée comme le rapport de la diagonale du carré au côté, sous la forme suivante[17] :

1  204  501  10

Cette écriture correspond à la meilleure approximation possible de 2 avec quatre chiffres significatifs en numération babylonienne (base 60). L'approximation est précise au millionième. Elle dénote la connaissance d'un algorithme d'approximation de racine carrée, mais on ignore lequel. Il pourrait être de type méthode de Héron[17], encore aujourd'hui l'une des plus efficaces[18].

L'Inde védique

[modifier | modifier le code]

Les Śulba-Sūtras, des textes rituels indiens de l'époque védique énoncent des règles géométriques pour la construction d'autels sacrificiels. La date de leur composition est difficile à déterminer, les plus anciens pourraient avoir été composés entre 800 et 500 av. J.-C.[19]. Ils donnent un énoncé de ce que nous appelons maintenant le théorème de Pythagore, y compris le cas particulier de la diagonale du carré, qui permet de doubler son aire[20]. Ils fournissent également une règle pour le calcul de la longueur de cette diagonale en fonction du côté, qui équivaut à une approximation rationnelle de 2 remarquablement précise :

[20],

soit environ 1,4142157, une valeur précise à un peu plus de 2 millionièmes près. L'un des Śulba-Sūtras, celui de Kātyāyana, précise qu'il ne s'agit que d'une valeur approchée[21]. Les traités ne donnent aucune indication sur la façon dont a été dérivée cette formule[22], même si plusieurs méthodes ont été proposées par les historiens[23].

Grèce antique

[modifier | modifier le code]

Les mathématiciens de la Grèce antique ont découvert et démontré l'irrationalité de 2 à une époque qu'il est difficile de déterminer, au plus tard dans les premières décennies du IVe siècle av. J.-C., et vraisemblablement pas avant le Ve siècle av. J.-C.[24]. Ils ne l'exprimaient pas de cette façon : pour eux il n'est pas question d'un nombre 2, mais de rapport (au sens d'une relation) entre la diagonale et le côté du carré, et ils montrent que ceux-ci sont incommensurables, c'est-à-dire que l'on ne peut trouver de segment unité, aussi petit soit-il avec lequel mesurer de façon exacte ces deux longueurs.

La découverte de l'irrationalité, sa date, les circonstances qui ont amené à celle-ci, ses conséquences, la nature des premières démonstrations… tout ceci a suscité beaucoup de travaux chez les historiens[24], sans pour autant que ceux-ci arrivent à un consensus[25].

On ne possède pas de témoignages archéologiques analogues aux tablettes d'argile des Babyloniens, pour les mathématiques de la Grèce antique, mais de textes transmis par la tradition, par copie et recopie. Les premiers à nous être parvenus datent du IVe siècle av. J.-C., dans des œuvres dont les mathématiques ne sont pas l'objectif premier, les écrits de Platon, puis ceux d'Aristote.

Platon et Aristote

[modifier | modifier le code]

Dans un passage très connu du Ménon, Platon met en scène Socrate faisant découvrir à un jeune esclave la duplication du carré, par la construction d'un carré sur la diagonale. Socrate veut convaincre Ménon que le jeune esclave retrouve une connaissance qui est déjà en lui. Mais, pour David Fowler qui date le texte de 385 av. J.-C., c'est aussi le premier témoignage substantiel direct de la pratique des mathématiques grecques[26].

La première mention connue de l'incommensurabilité est également due à Platon, dans une œuvre plus tardive, le Théétète[27], où il décrit Théodore de Cyrène exposant ce qui correspond à l'irrationalité des racines carrées des nombres de 3 à 17 qui ne sont pas des carrés parfaits[28],[29]. On déduit de ce passage que l'irrationalité de 2 est bien connue à l'époque où Platon écrit, voire à celle où Théodore est censé enseigner[30], soit les premières décennies du IVe siècle av. J.-C..

Dans l'Organon, Aristote prend pour exemple de raisonnement par contradiction celui qui conduit à l'incommensurabilité de la diagonale[31], et précise (à deux endroits) que l'hypothèse de la commensurabilité conduit à ce qu'un nombre pair soit égal à un nombre impair[32]. L'indication est imprécise, mais c'est la plus ancienne que l'on ait d'une démonstration. Aristote prend par ailleurs régulièrement pour exemple dans ses œuvres l'incommensurabilité de la diagonale au côté[31],[33].

Dans les Éléments d'Euclide — le premier traité mathématique qui nous soit parvenu, écrit vers -300 — le traitement de l'incommensurabilité est déjà très élaboré. L'incommensurabilité est définie et traitée au livre X, et la proposition 2 en donne une caractérisation par un procédé de soustractions alternées, l'anthyphérèse, analogue à ce que nous appelons aujourd'hui algorithme d'Euclide en arithmétique (une division peut être vue comme une suite de soustractions) et fraction continue pour les nombres réels[34] (les grandeurs sont incommensurables s'il y a toujours un reste, le procédé continue indéfiniment). La proposition 9 permet le rapport avec les propriétés arithmétiques traitées aux livre VII et livre VIII[35]. Certaines éditions anciennes du livre X donnent bien en appendice une proposition (parfois numérotée 117) qui traite directement l'irrationalité de 2 (l'incommensurabilité de la diagonale du carré et de son côté) par un argument de parité et une descente infinie. Mais celle-ci ne s'intègre pas au reste du texte, elle a pu être ajoutée pour son intérêt historique, et très possiblement après Euclide[36]. Elle semble être postérieure[37] d'une autre démonstration, toujours reposant sur un argument de parité, donnée en commentaire de l'un des passages d'Aristote cité ci-dessus par Alexandre d'Aphrodise au IIe siècle (apr. J.-C.)[38], la plus ancienne complète et vraiment datable qui nous soit parvenue (pour l'incommensurabilité de la diagonale du carré et de son côté)[39].

Hypothèses et reconstructions

[modifier | modifier le code]

Ce que l'on peut savoir au sujet de la découverte de l'irrationalité dépend, en plus de ces éléments, de fragments de textes anciens chez des auteurs plus tardifs, en particulier ceux d'une histoire (perdue) d'un élève d'Aristote, Eudème de Rhodes, et plus généralement de textes historiques tardifs, dont la fiabilité n'est pas évidente.

Aussi existe-t-il plusieurs thèses tant pour, le contexte, et les causes de la découverte de l'incommensurabilité, que pour sa ou ses premières démonstrations, les historiens en étant réduits à reconstituer celles-ci, de façon cohérente avec les connaissances (supposées) de l'époque. Ces reconstructions spéculatives développées à la fin du XIXe siècle et au XXe siècle[40], sont loin d'être convergentes et font toujours l'objet de débats[41].

Le pair et l'impair
[modifier | modifier le code]

Le plus souvent, 2 (la diagonale du carré) tient le premier rôle, en particulier car une démonstration par parité (le principe en est celui de la première démonstration d'irrationalité ci-dessus) demande pour seule connaissance arithmétique la dichotomie entre nombres pairs et impairs, et peut se reconstituer à partir des connaissances arithmétiques que les historiens jugent pouvoir être celles des mathématiciens grecs du Ve siècle av. J.-C.[42]. Ce serait alors à celle-ci que fait allusion Aristote.

L'anthyphérèse
[modifier | modifier le code]

Une autre possibilité est de s'appuyer sur la proposition X,2 d'Euclide (citée ci-dessus) qui pourrait témoigner d'anciennes démonstrations particulières d'irrationalité par anthyphérèse[43] (soustractions alternées à la façon de l'algorithme d'Euclide). Cependant de telles démonstrations n'apparaissent pas dans Euclide, ni dans aucun texte grec ancien qui nous soit parvenu[44]. Mathématiquement le principe en est celui exposé ci-dessus à la seconde (version arithmétique) et la troisième démonstration (version géométrique)[45]. Le fait de retrouver la même figure dans la version géométrique, montre que le procédé de soustractions réciproques continue indéfiniment donc de conclure par la proposition X,2. Il faut cependant admettre qu'un segment est divisible à l'infini, et pour cela Euclide appuie sa proposition X,2 sur la proposition X,1 (qui traite de la dichotomie), et utilise l'« axiome d'Archimède », attribué à Eudoxe et présent dans les Éléments[46]. Une telle répétition se produit pour tout irrationnel quadratique, elle correspond au développement périodique de sa fraction continue. Cette périodicité rend la caractérisation d'Euclide opératoire pour les rapports correspondant à ces nombres[47]. Dans le cas de 2, elle est immédiate, en une étape, et s'illustre facilement géométriquement. C'est le cas aussi pour la proportion en extrême et moyenne raison (notre nombre d'or), qui est le rapport entre une diagonale et le côté du pentagone, ce qui a conduit certains historiens à envisager que ce rapport, plutôt que 2, ait conduit à la découverte de l'irrationalité[48].

Ces possibilités ne sont pas nécessairement contradictoires, la découverte de l'irrationalité ayant pu se faire à propos de la diagonale du carré et/ou de celle du pentagone par un procédé semblable à l'anthyphérèse et la ou les premières démonstrations procéder par le pair et l'impair[49].

Vers le nombre 2

[modifier | modifier le code]
Richard Dedekind propose une construction rigoureuse des nombres réels à la fin du XIXe siècle.

L'histoire de la racine de deux se confond alors avec celle de la racine carrée et plus généralement des irrationnels, en quelques lignes :

  • les Grecs, avec le livre V des Éléments, conçoivent ce que nous appelons les rationnels ou les réels comme des proportions, et non pas des nombres[50], théorie « subtile mais non directement opératoire »[51] ;
  • alors que la tradition arithmético-algébrique, de Diophante à Al-Khawarizmi, au début du IXe siècle, est restreinte aux nombres rationnels positifs, les mathématiciens du monde arabo-musulman comme Abu Kamil dès le Xe siècle, puis Al-Karaji et Al-Samaw'al, développent une algèbre et un calcul qui comprend les nombres irrationnels, ce dernier et Al-Kashi utilisent des approximations décimales dans le cas des irrationnels[52] ;
  • Omar Khayyam développe au XIe siècle une théorie des proportions où celles-ci sont des nombres, même si les incommensurables sont encore appelées impropres, travail que prolonge Nasir al-Din al-Tusi au XIIIe siècle[53] ;
  • L'Europe n'assimile ces notions que tardivement, les travaux des mathématiciens du monde arabo-musulman, en particulier ceux d'Al-Tusi, sont connus en Europe au XVIe siècle, qui est une période de polémique pour savoir si les irrationnels méritent le statut de nombre[54], c'est à cette époque que l'usage du symbole √ se répand[55] ;
  • même si le débat se poursuit au XVIIe siècle, il finit par se régler avec le développement du calcul algébrique et du calcul infinitésimal, le cadre théorique ne sera cependant défini que dans la seconde moitié du XIXe siècle, concurremment par plusieurs mathématiciens, Dedekind, Weierstrass, Cantor et Méray (voir construction des nombres réels)[56].

Dedekind pourra ainsi affirmer en 1872 quand il publiera son traité sur la construction des réels, que jusqu'alors, jamais l'égalité 2 × 3 = 6 n'avait été démontrée rigoureusement[57].

Autres propriétés

[modifier | modifier le code]

La normalité est un concept se basant sur la distribution des chiffres du développement décimal d’un nombre irrationnel, à savoir si tous les chiffres de 0 à 9 apparaissent dans ce développement et avec la même fréquence. En ce qui concerne 2, on ignore s’il est normal dans le système décimal ou dans toute autre base de numération.

Degré algébrique et degré d'irrationalité

[modifier | modifier le code]

2 est un nombre algébrique de degré 2, dit entier quadratique, car solution de l’équation polynomiale du second degré à coefficients entiers x2 − 2 = 0 et de monôme dominant de coefficient égal à 1, mais d’aucune de degré 1 de par son irrationalité. On sait ainsi qu’il est difficilement approchable par une suite rationnelle pn/qn ; l’erreur est au mieux en

Comme pour tout nombre algébrique irrationnel, sa mesure d'irrationalité est 2.

Développement en fraction continue

[modifier | modifier le code]

La partie entière de 2 est 1 et sa partie décimale est donc 2 – 1, soit encore 1/1 + 2. On peut écrire ce résultat sous la forme :

En remplaçant 2 dans le membre de droite par 1 + 1/1 + 2, on obtient successivement

Ceci fournit le développement en fraction continue périodique de 2

Visualisation de la suite des ratios approximant √2 (selon la fraction continue)
Visualisation de la suite des ratios approximant 2 (selon la fraction continue)

ainsi que quelques valeurs approchées de ce nombre : 3/2, 7/5, 17/12

2 est relié à un certain nombre de développements en fractions continues périodiques, par propriété des entiers quadratiques.

Pour a, b entiers strictement positifs tels que a2 − 2b2 = –1, on a le développement suivant

Ce développement se note couramment de manière plus concise :

b2 = [a ; 2a, 2a, 2a…].

On en tire les valeurs suivantes de 2 :

2 = 1/5 × [7 ; 14, 14, 14…],
2 = 1/29 × [41 ; 82, 82, 82…].

Plus généralement, pour a, b entiers strictement positifs tels que a2 − 2b2 = k, on a la fraction continue généralisée suivante :

que l'on note sous forme plus concise

b2 = [a ; −k, 2a ; −k, 2a ; −k, 2a ;…]

On en déduit les quelques développements de 2 suivants :

2 = 1/2 × [3 ; −1, 6 ; −1, 6 ; −1, 6 ;…]
2 = 1/12 × [17 ; −1, 34 ; −1, 34 ; −1, 34;…]
2 = 1/70 × [90 ; −1, 180 ; −1, 180 ; −1, 180;…]

Éléments de démonstration : soit la suite (un) définie par la relation de récurrence un+1 = –k/(2a + un) et soit εn = |un − (b2a)|. Alors on peut montrer que εn+1 < n, avec 1/|1 + 2a/(b2a)| < K < 1 si un est suffisamment proche de b2a.

Développements en série et produit infini

[modifier | modifier le code]

Produits infinis

[modifier | modifier le code]

L’identité cos(π/4) = sin(π/4) = 1/2 et la représentation en produit infini du sinus et du cosinus mènent aux développements suivants

Le dernier produit peut s’écrire de manière équivalente :

Le nombre peut aussi être évalué sous forme de série en utilisant le développement de Taylor d’une fonction trigonométrique en  :

On peut aussi utiliser la fonction 1 + x en 1 :

La convergence de la dernière série peut être accélérée par le biais d’une transformation d’Euler pour donner :

Développement en série de Engel

[modifier | modifier le code]

Le développement en série de Engel est :

, voir la suite A028254 de l'OEIS.

Développement en cotangente continue de Lehmer

[modifier | modifier le code]

Le développement en cotangente continue de Lehmer est :

, voir la suite A002666 de l'OEIS.

Méthodes numériques d'approximation

[modifier | modifier le code]

2 vaut approximativement 1,414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737. Pour plus de décimales, voir la suite A002193 de l'OEIS.

Le calcul d’une valeur approchée de 2 a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées. En informatique, ces recherches se sont poursuivies afin d’optimiser ces algorithmes en réduisant les temps de calcul et la consommation de mémoire[58].

À l'exclusion de l'algorithme de la potence, les méthodes numériques d’approximation présentées ci-dessous sont destinées au calcul d’un nombre important de décimales. Elles se basent généralement sur une suite convergente de nombres rationnels ; ainsi l’itération s’affranchit du coût de calcul sur des nombres à virgule flottante — dont il faudrait en plus connaître la précision a priori. Les meilleures approximations par une suite rationnelle pn/qn donnent une erreur en 1/qn², une propriété de l’approximation diophantienne des entiers quadratiques.

Méthodes à convergence linéaire

[modifier | modifier le code]

Cette méthode ancienne (on la trouve en Chine dans Les Neuf Chapitres sur l'art mathématique[59] au IIIe siècle et en Inde dans l'Āryabhaṭīya[60] au Ve siècle) permet de déterminer à la main les décimales successives d'une racine carrée, mais les divisions à effectuer augmentent rapidement de taille. Ci-dessous, l'algorithme de la potence pour le calcul des 5 premières décimales de 2.

2 1,41421
1 1×1=1
1 0 0  
9 6 24×4=96
4 0 0  
2 8 1 281×1=281
1 1 9 0 0  
1 1 2 9 6 2824×4=11296
6 0 4 0 0  
5 6 5 6 4 28282×2=56564
3 8 3 6 0 0  
2 8 2 8 4 1 282841×1=282841
1 0 0 7 5 9  

Méthode de Théon de Smyrne

[modifier | modifier le code]

On doit à Théon de Smyrne ces deux suites (pn) et (qn) définies par récurrence :

pn + 1 = pn + 2qn, p0 = 1 ;
qn + 1 = pn + qn, q0 = 1.

Ces suites sont à valeur entière strictement positive, donc strictement croissantes par récurrence, et vérifient

pn2 − 2qn2 = (−1)n(p02 − 2q02)

de sorte que pn/qn tend vers 2.

On ne sait pas si l’intention de Théon de Smyrne était de calculer une valeur approchée de 2.

Solutions de l'équation diophantienne a²− 2b² = k

[modifier | modifier le code]

Les solutions entières de l’équation a² − 2b² = k sont engendrées par récurrence

am + 1 = 3am + 4bm
bm + 1 = 2am + 3bm

à partir des valeurs initiales (a0, b0) = (1, 1) pour k = −1 et (3, 2) pour k = 1.

Cette méthode se déduit de celle de Théon : chaque itération de la présente correspond à deux itérations de celle-là. Ainsi, an/bn tend linéairement vers √2.

Les premières solutions sont :

  • k = −1 : (1, 1), (7, 5), (41, 29), (239, 169), (1393,985),
  • k = 1 : (3, 2), (17, 12), (99, 70), (577, 408), (3363, 2378).

Méthode de Théon généralisée

[modifier | modifier le code]

On se donne (a, b), obtenu par la méthode de Théon, qui est donc solution de l’une des deux équations diophantiennes précédentes 2b2 = a2k = K, avec k = ±1 et K > 1. On peut alors écrire

√2 = (a/b)K/(K + k)

Les suites pn et qn définies par

pn + 1 = (2K + k)pn + 2Kqn, p0 = 1 ;
qn + 1 = (2K + 2k)pn + (2K + k)qn, q0 = 1.

vérifient

(K + k)pn + 12 – Kqn + 12 = (K + k)pn2 – Kqn2 =… = k,

et donc, de la même façon que ci-dessus, la suite pn/qn converge vers K/(K + k) = (b/a)2. De plus, si k = 1, cette suite est croissante donc approche cette valeur par défaut, et si k = –1, elle est décroissante donc approche cette valeur par excès.

On peut utiliser cette relation pour estimer l’erreur :

εn + 1 εn (4K + 3k)−2

et c’est une majoration si k = 1. La convergence est donc linéaire : elle fait gagner un nombre à peu près constant de décimales à chaque itération.

Cette méthode correspond à une généralisation de la méthode du paragraphe précédent au radical K/(K + k). Pour K plus grand, la suite (qn) croit plus rapidement, donc la convergence est accélérée.

Premières approximations de √2 = 17/12 √(288/289) par approximation linéaire de √(288/289). Les paramètres sont a = 17, b = 12, K = 288, k = 1. On a
εn + 1 < 7,5 × 10-7εn (avant approximation décimale des quotients).
itération valeur fractionnaire décimales exactes
0 1 1
1 19 601/13 860 1,414 213 56
2 22 619 537/15 994 428 1,414 213 562 373 09
3 26 102 926 097/18 457 556 052 1,414 213 562 373 095 048 80
4 30 122 754 096 401/21 300 003 689 580 1,414 213 562 373 095 048 801 688 72

Développement en fraction continue

[modifier | modifier le code]

Une autre méthode consiste à approcher b2a par sa fraction continue généralisée pour (a, b) solution de l’équation diophantienne 2b2 = a2k, avec k = ± 1 :

b2a = [0; –k, 2a; –k, 2a; –k, 2a…] est approximé à l’aide de la suite (pn/qn) déterminée par la relation de récurrence
pn + 1 = qn
qn + 1 = 2aqn + kpn

L’erreur vérifie asymptotiquement

εn + 1 < |b√2 − a|/(2a − 1) εn
Premières approximations de 2 par approximation linéaire de 1692 − 239. Les paramètres sont b = 169, a = 239, k = 1, εn + 1 ~ 4 × 10−6 εn.
itération valeur fractionnaire décimales exactes
0 1 1
1 114 243/80 782 1,414 213 562
2 54 608 393/38 613 965 1,414 213 562 373 09
3 26 102 926 097/18 457 556 052 1,414 213 562 373 095 048 80
4 12 477 253 282 759/8 822 750 406 821 1,414 213 562 373 095 048 801 688 7

Développement en série entière

[modifier | modifier le code]

On se donne (a, b) solution de l’équation diophantienne 2b2 = a2k = K, avec k = ±1. On peut alors écrire K/(K + k) comme somme d'une série via le développement en série entière de (1+z) (ou la formule du binôme généralisée, simple variante d'exposition).

et utiliser √2 = (a/b)K/(K + k).

Avec a = 7, b = 5 (soit K = 50, k = -1) et donc √2 = (7/5)50/49, les premiers termes de la série sont particulièrement simples, comme l’a fait remarquer Leonhard Euler en 1755[61] :

Approximation √2 = (239/169)57122/57121 par le développement en série entière du radical fractionnaire. Les paramètres sont b = 239, a = 169, K = 57122, k = –1.
itération valeur fractionnaire décimales exactes
0 1 1
1 239/169 1,414 2
2 6 238 763 163 557/4 411 471 739 168 1,414 213 562 373 09
3 712 741 258 857 407 100/503 984 177 369 509 000 1,414 213 562 373 095 048
4 325 705 649 507 622 468 308 893/230 308 673 437 608 741 128 192 1,414 213 562 373 095 048 801 688

Il est possible d’approcher √2 par bissection. Cette méthode est de convergence linéaire lente : on gagne trois décimales à chaque dizaine d’itérations.

Méthode à convergence quadratique

[modifier | modifier le code]

La méthode de Newton appliquée à la fonction racine carrée permet de calculer une valeur approchée de √2 de manière itérative avec une convergence quadratique, c’est-à-dire doublant le nombre de décimales à chaque itération. La récurrence a la forme

un + 1 = un/2 + 1/un

Cet algorithme s’appelle méthode de Héron ou méthode babylonienne car il semble que ce soit celle utilisée par les Babyloniens pour trouver des valeurs approchées de racines carrées.

Si l’on s’intéresse aux fractions successives à partir d’une valeur initiale p0 et q0, la récurrence sur le numérateur et le dénominateur sont

pn + 1 = pn² + 2qn²
qn + 1 = 2pnqn
Premières approximations de √2 données par la méthode de Newton.
itération valeur fractionnaire décimales exactes
0 1 1
1 3/2 1
2 17/12 1,41
3 577/408 1,414 21
4 665 857/470 832 1,414 213 562 37
5 886 731 088 897/627 013 566 048 1,414 213 562 373 095 048 801 68

Méthodes cubiques

[modifier | modifier le code]

Méthode de Halley

[modifier | modifier le code]

La méthode de Halley est un exemple de méthode cubique. Elle cherche le zéro de ƒ(x) = x² − 2 en utilisant les deux premières dérivées. La solution itérative est

xn + 1 = xn × (xn² + 6)/(3xn² + 2)

soit en posant xn = pn/qn :

pn + 1 = pn(pn² + 6qn²)
qn + 1 = qn(3pn² + 2qn²)

Cette méthode est de convergence cubique : le nombre de décimales exactes triple à chaque itération.

Premières approximations de √2 données par la méthode cubique.
itération valeur fractionnaire décimales exactes
0 1 1
1 7/5 1,4
2 1 393/985 1,414 213
3 10 812 186 007/7 645 370 045 1,414 213 562 373 095 048
4 1,414 213 562 373 095 048
801 688 724 209 698 078 569
671 875 376 948 073 176 679 7

Méthode de Householder

[modifier | modifier le code]

L’itération de Householder appliquée à ƒ(x) = 1/x ² − 1/√2 donne une suite convergeant vers 1/√2 :

xn + 1 = xn + xn/8 × (2xn² − 1)(6xn² − 7)

Méthodes d'ordre supérieur

[modifier | modifier le code]

On utilise une méthode de Newton modifiée[62] pour trouver le zéro de ƒ(x) = 1/x ² − 1/2. Cela donne la suite récurrente :

xn + 1 = xn + xn/16 × (8hn + 6hn² + 5hn³)

avec

hn = 1 − xn²/2

Cette méthode est de convergence quartique, c’est-à-dire d’ordre 4 : le nombre de chiffres significatifs corrects quadruple (asymptotiquement) à chaque itération.

Premières approximations de √2 données par la méthode quartique.
itération valeur fractionnaire décimales exactes
0 3/2 1
1 23 169/214 1,414
2 57 367 317 478 181 000 000 000 000 000 000/2105 1,414 213 562 373 09
3 1,414 213 562 373 09
5 048 801 688 724 209
6 980 785 696 718 753
76 948 073 176 679 740

Il existe des méthodes d’ordre supérieur[63], notamment parmi les méthodes de Householder.

Notes et références

[modifier | modifier le code]
  1. Voir (en) Eric W. Weisstein, « Pythagoras’s Constant », sur MathWorld.
  2. On peut cependant remarquer que pour le format A4, et si le petit côté vaut exactement 21 cm, le grand côté (29,7 cm) ne diffère de 21 2 cm que de 15 microns.
  3. (en) Matthew Cole, « A Tedious Explanation of the f/stop », .
  4. (en) « ƒ/Calc Manual ».
  5. Cette démonstration est proposée par Socrate dans Platon, Ménon 82.
  6. Guillaume Reuiller, L'aire de RIEN, Palais de la découverte, mesure vérifiable sur un plan de 1841.
  7. « Par ce moyen on fait un cloître, en donnant autant aux voies qu’au jardin » in Dominique Raynaud, « Le schème, opérateur de la conception architecturale », Arquitetura Revista, vol. 1,‎ , p. 15-32 (lire en ligne), p. 23.
  8. (en) Alexander Bogomolny, « Square root of 2 is irrational », sur Cut The Knot en recense 27.
  9. Contrairement à ce qu’on lit souvent, il ne s’agit pas d’un véritable raisonnement par l’absurde ; se reporter à cet article pour une analyse soignée de la différence.
  10. Gardner 2001, p. 16. A. Bogomolny, sur Cut The Knot (Proof 8), signale également la note, dès l'édition de 1920, de (en) E. T. Whittaker et G. N. Watson, A Course of Modern Analysis, CUP, , 608 p. (ISBN 978-0-521-58807-2, lire en ligne), p. 5.
  11. Gardner 2001, p. 18, présente cette reformulation pour la variante 2r/s (égale à 2/2 = 2 et dont le dénominateur s vérifie r < s < q).
  12. Cette démonstration, reprise de Apostol 2000, est inspirée selon lui d'une preuve géométrique de l'époque grecque classique. On la trouve sous une forme proche dans un manuel russe de géométrie dû à A. P. Kiselev dans de 1892 et très utilisé selon Alexander Bogomolny - Cut the Knot. Une variante est donnée dans Gardner 2001, p. 12.
  13. La démonstration par pliage, menée en partant d'un carré est proposée par J. H. Conway et R. K. Guy, The Book of Numbers, Copernicus, p. 183-184.
  14. a et b (en) A. Bogomolny, « Square root of 2 is irrational », sur Cut The Knot Proof 14'.
  15. Christine Proust, « Mathématiques en Mésopotamie », CultureMath, éditeur=ENS Ulm/DGESCO,‎ (lire en ligne).
  16. Cette conclusion est émise par Jens Høyrup. Des éléments de traduction de la tablette sont disponibles à : La pensée algébrique, 12e Colloque Inter-IREM, 1998.
  17. a et b Fowler et Robson 1998.
  18. Benoît Rittaud, « À un mathématicien inconnu ! », sur Bibnum.
  19. Plofker 2009, p. 17-18.
  20. a et b Plofker 2009, p. 20-21.
  21. Plofker 2009, p. 21.
  22. Plofker 2009, p. 28.
  23. Plofker 2009, p. 28 qui donne des références pour certaines d'entre elles note 16 de la même page. Voir aussi l'une de ces reconstructions dans le rapport sur les recherches en éducations de la fédération Wallonie-Bruxelles de 2004 « Pour une culture mathématique accessible à tous », chapitre 20 La Diagonale du carré, p.549-551.
  24. a et b Caveing 1998, p. 75
  25. Berggren 1984
  26. Fowler 1999, p. 7-8, une traduction en français du XIXe siècle est accessible en ligne, voir p. 173-191.
  27. Fowler 1999, p. 359.
  28. Knorr 1975, p. 64.
  29. Une édition bilingue du XIXe siècle est accessible en ligne. Une traduction de ce passage dont les choix sont longuement discutés et justifiés Caveing 1998, p. 172-176, est donnée par Caveing 1998, p. 176-177, qui discute ensuite son interprétation Caveing 1998, p. 177-186.
  30. Caveing 1998, p. 133.
  31. a et b Fowler 1999, p. 302 remarque qu'Aristote, alors qu'il cite souvent cet exemple de l'incommensurabilité de la diagonale au côté, ne précise jamais de quel polygone il s'agit.
  32. Aristote, Analytiques postérieurs, I,23,41 a 26-32 et I,44,50 a 36-38 cité d'après Caveing 1998, p. 132, une édition bilingue du XIXe siècle est accessible en ligne I, 23 et I, 44.
  33. Par exemple dans la Métaphysique, A, 2, Métaphysique, Livres A à E, trad. Bernard Sichère, Paris, Pocket, 2007, p. 35 : « [les hommes] s'étonnent [...] de ce qu'on ne peut mesurer la diagonale du carré, puisqu'il semble tout à fait merveilleux à tous ceux qui n'en ont pas encore envisagé la raison qu'une chose ne puisse pas être mesurée par la plus petite unité. » Mais cette traduction ajoute forcément des précisions à l'original, cf. la note citée précédemment, et note 18 de la traduction Pierron et Zevort, voir aussi la traduction plus littérale de Victor Cousin du même passage qui ne mentionne pas de carré.
  34. Caveing 1998, p. 219-223, voir aussi l'entrée fraction continue dans l'index.
  35. Caveing 1998, p. 245-253, section 3.2 Y a-t-il une preuve générale dans les livres Arithmétiques ?.
  36. Knorr 1975, p. 22 et note 15 p. 52. La proposition est rejetée en annexe de l'édition Heilberg, édition de référence des Éléments, et donc absente du livre X, dans les traductions réalisées à partir de celle-ci.
  37. Voir Fowler 1999, p. 294-295 et Knorr 1975 VII.3 pour le détail de l'argumentation : la démonstration d'Alexandre d'Aphrodise utilise les Éléments, pourtant bien que reposant sur le même principe, elle est différente de la proposition X,117.
  38. Knorr 1975, p. 52 note 15.
  39. Fowler 1999, p. 294-295.
  40. Saito 2004, p. 189.
  41. Saito 2004, p. 187-189 ; pour un historique très synthétique, voir aussi Berggren 1984, et Caveing 1998.
  42. Une telle reconstitution a été donnée par Oskar Becker en 1957, décrite par Caveing 1998, p. 134-135, elle s'appuie sur une représentation géométrique des nombres, en l'occurrence des quadrillages ou des points disposés en carré, arithmétique des nombres figurés attribuée aux pythagoriciens, dont il faut alors admettre qu'elle est pratiquée par des mathématiciens grecs du Ve siècle av. J.-C., pythagoriciens ou autres, cf. Caveing.
  43. Caveing 1998, p. 111-112.
  44. Knorr 1975, p. 31.
  45. À la différence de la figure ci-dessus, celles des historiens font apparaître explicitement les carrés, par exemple Caveing 1998, p. 124.
  46. Caveing 1998, p. 229.
  47. Caveing 1998, p. 230 et p. 157-164.
  48. Kurt von Fritz s'appuie pour cette hypothèse et sur des auteurs tardifs comme Jamblique et sur la figure du pentagramme, dans un article paru en 1945, The discovery of irrationality by Hippasus of Metapontum. L'article a fait date, même si ses conclusions sont depuis contestées Saito 2004, p. 189, voir pour des discussions à ce sujet Knorr 1975, p. 29-36, Caveing 1998, p. 99-119.
  49. Caveing 1998, p. 145.
  50. Pour se faire une idée des concepts que les Grecs utilisaient, voir Knorr 1975, p. 14-17 (Introduction, §III. Indispensable definitions) en particulier p. 15.
  51. DahanPeiffer, p. 101.
  52. DahanPeiffer, p. 102.
  53. DahanPeiffer, p. 102-103.
  54. DahanPeiffer, p. 103.
  55. le signe √ est introduit, sous une forme proche, par Christoff Rudolff en 1525 : DahanPeiffer, p. 104.
  56. DahanPeiffer, p. 103-104.
  57. Dans (de) Richard Dedekind, Stetigkeit und irrationale Zahlen, (lire en ligne) p. 27, voir Fowler 1992.
  58. La plupart des logiciels mathématiques, sur ordinateurs ou sur machines à calculer, utilisent des approximations préétablies de cette constante, au moins jusqu’à un certain rang.[réf. nécessaire]
  59. Karine Chemla et Guo Shuchun, Les neuf chapitres : Le classique mathématique de la Chine ancienne et ses commentaires [détail de l’édition], p. 322-329
  60. W. E. Clark, Aryabatha, Aryabhatiya of Aryabhata, p. 24 et suivantes, lire en ligne
  61. (la) Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, vol. II (lire en ligne), chap. 4 (« De conversione functionum in series »), p. 292.
  62. (en) Newton's method and high order iterations, Xavier Gourdon et Pascal Sebah, 2001.
  63. (en) Xavier Gourdon et Pascal Sebah, « Pythagoras’ Constant √2 », .

Bibliographie

[modifier | modifier le code]

Mathématiques en Mésopotamie

[modifier | modifier le code]

Mathématiques indiennes

[modifier | modifier le code]
  • (en) David Henderson, « Square Roots in the Sulbasutra », dans C. A. Gorini, Geometry at Work: Papers in Applied Geometry, coll. « MAA Notes » (no 53), , p. 39-45, en ligne sur le site de l’auteur
  • (en) Kim Plofker, Mathematics in India, Princeton University Press (Princeton), (ISBN 978-0-691-12067-6).

Mathématiques grecques

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]