Android'de Firebase ML ile Resim Etiketleme

Bir resimde tanınan nesneleri etiketlemek için Firebase ML simgesini kullanabilirsiniz. Bu API'nin özellikleri hakkında bilgi edinmek için genel bakış bölümüne bakın.

Başlamadan önce

  1. Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
  2. Modül (uygulama düzeyinde) Gradle dosyanıza (genellikle <project>/<app-module>/build.gradle.kts veya <project>/<app-module>/build.gradle) Android için Firebase ML Vision kitaplığının bağımlılığını ekleyin. Kitaplık sürümlendirmesini kontrol etmek için Firebase Android BoM simgesini kullanmanızı öneririz.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Firebase Android BoM kullanıldığında uygulamanız Firebase Android kitaplıklarının daima uyumlu sürümlerini kullanır.

    (Alternatif) BoM

    Firebase BoM kullanmamayı seçerseniz her Firebase kitaplık sürümünü bağımlılık satırında belirtmeniz gerekir.

    Uygulamanızda birden fazla Firebase kitaplığı kullanıyorsanız kitaplık sürümlerini yönetmek için BoM'ı kullanmanızı önemle tavsiye ederiz. Bu, tüm sürümlerin uyumlu olmasını sağlar.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Kotlin'e özgü bir kitaplık modülü mü arıyorsunuz? Ekim 2023'ten (Firebase BoM 32.5.0) itibaren hem Kotlin hem de Java geliştiricileri ana kitaplık modülünden yararlanabilir (ayrıntılar için bu girişimle ilgili SSS bölümüne bakın).
  3. Projeniz için bulut tabanlı API'leri henüz etkinleştirmediyseniz şimdi etkinleştirin:

    1. Firebase konsolunun Firebase ML API'leri sayfasını açın.
    2. Projenizi Blaze fiyatlandırma planına henüz yükseltmediyseniz bunu yapmak için Yükselt'i tıklayın. (Yükseltme işlemini yalnızca projeniz Blaze planında değilse yapmanız istenir.)

      Cloud tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.

    3. Bulut tabanlı API'ler etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın.

Artık görselleri etiketlemeye hazırsınız.

1. Giriş resmini hazırlama

Resminizden bir FirebaseVisionImage nesnesi oluşturun. Resim etiketleyici, Bitmap kullandığınızda veya camera2 API'yi kullanıyorsanız JPEG biçiminde bir media.Image kullandığınızda en hızlı şekilde çalışır. Mümkün olduğunda bu yöntemi kullanmanızı öneririz.

  • Bir media.Image nesnesinden FirebaseVisionImage nesnesi oluşturmak için (ör. bir cihazın kamerasından resim çekerken) media.Image nesnesini ve resmin dönme açısını FirebaseVisionImage.fromMediaImage()'ye iletin.

    CameraX kitaplığını kullanıyorsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini sizin için hesaplar. Bu nedenle, FirebaseVisionImage.fromMediaImage()'yi çağırmadan önce rotasyonu Firebase ML'in ROTATION_ sabitlerinden birine dönüştürmeniz yeterlidir:

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    Resmin dönme açısını gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme açısını ve cihazdaki kamera sensörünün yönünü kullanarak hesaplayabilirsiniz:

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Ardından, media.Image nesnesini ve dönüş değerini FirebaseVisionImage.fromMediaImage()'e gönderin:

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • Dosya URI'sinden FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath()'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT intent'i kullandığınızda kullanışlıdır.

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • Bir ByteBuffer veya bayt dizisinden FirebaseVisionImage nesnesi oluşturmak için önce, media.Image girişi için yukarıda açıklandığı şekilde resim rotasyonunu hesaplayın.

    Ardından, resmin yüksekliğini, genişliğini, renk kodlama biçimini ve döndürülmüş durumunu içeren bir FirebaseVisionImageMetadata nesnesi oluşturun:

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    FirebaseVisionImage nesnesi oluşturmak için arabellek veya diziyi ve meta veri nesnesini kullanın:

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • Bitmap nesnesinden FirebaseVisionImage nesnesi oluşturmak için:

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    Bitmap nesnesi tarafından temsil edilen resim dik olmalıdır ve ek döndürme işlemi gerekmemelidir.

2. Resim etiketleyiciyi yapılandırma ve çalıştırma

Bir resimdeki nesneleri etiketlemek için FirebaseVisionImage nesnesini FirebaseVisionImageLabeler'un processImage yöntemine iletin.

  1. Öncelikle FirebaseVisionImageLabeler örneği alın.

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. Ardından, resmi processImage() yöntemine iletin:

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3. Etiketlenmiş nesneler hakkında bilgi edinme

Görüntü etiketleme işlemi başarılı olursa başarı dinleyicisine FirebaseVisionImageLabel nesnelerinin listesi iletilir. Her FirebaseVisionImageLabel nesnesi, resimde etiketlenen bir nesneyi temsil eder. Her etiket için etiketin metin açıklamasını, Knowledge Graph varlık kimliğini (varsa) ve eşleşmenin güven puanını alabilirsiniz. Örneğin:

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Sonraki adımlar