
1 

Security of a key agreement protocol based on 
chaotic maps 

Song Han * 
Curtin University of Technology 


GPO Box U1987 Perth, WA 6845, Australia 


Abstract 

Kacorev et al. proposed new public key encryption scheme using chaotic maps. 
Subsequently, Bergamo et al. has broken Kacorev and Tasev's encryption scheme 
and then applied the attack on a key agreement protocol based on Kacorev et al. 's 
system. In order to address Bergamo et al.' attack, Xiao et al. proposed a novel key 
agreement protocol. In this paper, we will present two attacks on Xiao et al.'s key 
agreement protocol using chaotic maps. Our new attack method is different from 
the one that Bergamo et al. developed. The proposed attacks work in a way that 
an adversary can prevent the user and the server from establishing a shared session 
key even though the adversary cannot get any private information from the user 
and the server's communications. 

Key words: Chaos, chaotic map, secure communication, shared session key 

Introduction 

Chaos is a universal, random-like and robust phenomenon in nonlinear sys­
tems. Chaotic systems are characterized by sensitive dependence on initial 
conditions and similarity to random behavior. Chaotic systems have been used 
to design and analyze secure communications [3-6, 13]. There are two main 
methods in the design of chaotic secure communication schemes: one is analog 
method, the other is discrete digital method. In the analog method, chaos 
synchronization is achieved using chaotic circuits, where the communication 
parties take advantage of the chaotic synchronization to implement secure 

* Corresponding. 
Email address: s.han<Qcurtin. edu. au (Song Han). 

Preprint submitted to Chaos, Solitons & Fractals (Accepted for publication) 



2 

communication [3, 6, 12]. In the discrete digital method, chaotic systems are 
used to generate chaotic ciphers for secure communication [4]. 

A key agreement protocol is used to derive a shared secret by two or more 
parties as a function of information contributed by, or associated with, each of 
these, but no party can predetermine the resulting value [8]. Xiao et al. pro­
posed a key agreement protocol based on chaotic maps [9], which was proved 
to be broken by Bergamo et al.'s method [1,2]. In Bergamo et al.'s method, an 
adversary can retrieve the private information from the communication par­
ties. Recently, a new key agreement protocol was proposed based on chaotic 
maps [11]. This new protocol has greatly enhanced the security against Berg­
amo et al. 's compromise method. 

In this paper, we will provide a security analysis of Xiao et al.'s key agreement 
protocol based on chaotic maps. We will develop new attacks on their protocol. 
We will demonstrate that their protocol is not secure against these attacks. 
In these attacks, an adversary can successfully prevent communication parties 
from establishing a secret shared session key. 

Xiao et al. '8 key agreement protocol 

Xiao et al. 's key agreement protocol uses the one-way hash function based on 
Chebyshev chaotic maps. The details of the key agreement protocol are: 

• 	(1) User A chooses a random number ra E [-1,1]' then he sends his user 
identity number, IDA, and ra to server B. 

• 	 (2) Server B chooses a random number rb E [-1, l] and sends it back to 
user A. 

• 	 (3) User A juxtaposes hpw , ra and rb from left to right as the pending 
message, and uses the one-way hash function He) to compute the authenti ­
cation value AU = H (hpw , ra, rb) . Then he sends IDA and AU to server B. 

• 	 (4) Server B takes out his own copies of hpw , ra and rb corresponding to 
the user identity number IDA. Then she uses the same Hash function to 
compute AU' = H(hpw , ra, rb) similarly. 

• 	 (5) After receiving AU, server B compares it with the computed AU'. If 
they are equal, then the identity of A is authenticated. 
By using the random number ra chosen in Step 1 as the seed x of the 
Chebyshev polynomial map, the key agreement operations are performed 
as follows: 

2 



3 

• 	 (6) User A chooses a random integer T' and computes X = Ehpw(Tr(x)), 
and then sends it to B. Simple stream XOR approach can be used as the 
encryption algorithm here. 

• 	 (7) Server B chooses a random integer s and computes Y = Ehpw(Ts(x)), 
then sends it to A. 

• 	 (8) User A and Server B decrypts X and Y, respectively, then computes 
the shared secret key: k = Tr{Tx{x)) = Ts(Tr(x)) Trs(x). 

Hash function based on chaotic maps 

The hash function used in the above key agreement is a hash function based 
on chaotic maps. One dimension piecewise linear chaotic system is defined as 

X(t)/P if a~ X(t) < P, 
(X{t) - P)/(0.5P) if P ~ X(t) < 0.5,

X(t + 1) = Fp(X(t)) 
(1 - X(t) - P)/(0.5 P) if 0.5 ~ X{t) < 1 P, 

(1 - X(t))/P if 1 - P ~ X (t) ~ 1 

where X E [0,1], P E (0, 0.5). Xo and Ho are secretly chosen from [0,1] as 
the keys. The 3-unit iterations, 1st to :.Ith, (:.I+ 1 )th to 2Nth, (2)I+l)th to 
3Nth, ensure that each bit of the final hash value will be related to all the bits 
of messages [10]. The following is a briefreferring to how to generate the hash 
value: 

• 	 (1) Translates the pending message to the corresponding ASCII numbers, 
then maps these ASCII numbers by means of linear transform into an array 
C, whose elements are numbers in [0, 1] and whose length N is the number 
of characters in the message. 

• 	 (2) The iteration process is as follows: 
1st: H = (C1 + Ho)/4 E [0,0.5), Xl = FP1 (Xo) E [0,1]; 
2nd to Nth: I; (Ci + Xi - 1)/4 E [0, 0.5), Xi Fpi(Xi-t} E [0,1]; 
(N+l )th: PNH (CN + X N )/4 E [0,0.5), XN+l = FpN+l (XN ) E [0,1]; 
(N+ 2) to 2Nth: I; (C2N- i +l + Xi- 1 )/4 E [0, 0.5), Xi = Fpi(Xi1 ) E 
[0,1]; 
(2N + 1): P2N+ I (C1 + Ho)/4 E [0, 0.5), X 2N+1 = FP2N+1 (X2N ) E [0,1]; 
(2N+ 2) to 3Nth: I; (Ci - 2N +Xi -t}/4 E [0, 0.5), Xi = Fpi(Xit} E [0, 1J. 

• 	 (3) Transforms X N , X 2N , X 3N to the corresponding binary format, extracts 
40, 40, 48 bits after the decimal point, respectively, and juxtaposes them 
from left to right to get a 128-bit final hash value. 

3 

http:P)/(0.5P


4 Bergamo et al. 's attack 

In order to study the security of the cryptosystems based on chaotic maps 
in [7], Bergamo et al. proposed security compromise method and successfully 
broke Kocarev and Tasev's cryptosytem [2, 7]. Bergamo et al.'s method also 
applied to the security of any Diffie-Hellman like key agreement protocol based 
on chaotic maps [9] if the adversary can obtain public information x, Ts(x) 
and Tr(x). In fact, 

• 	 the adversary can compute an r' such that Tr'(x) = Tr(x): 

r' = arccos(Tr(x)) + 2k7r Ik E Z (1)
arccos(x) 

• 	 the adversary evaluates Tr's(x) = Tr,(Ts(x)). Therefore, the shared session 
key Trs(x) is compromised. 

From Bergamo et al. 's attack, we can see that their attack does not work on 
Xiao et al. 's protocol in Section 2. This is because an attacker cannot get Tr (x) 
and Ts(x). Therefore, it is impossible to find r' or s' such that Tr'(x) = Tr(x) 
or TS'(X) = Ts(x). 

5 Security of Xiao et al. 's key agreement protocol 

In this section, we will develop three attacks on Xiao et al. 's key agreement 
protocol. From these attacks we can see that the novel key agreement protocol 
in [11] is still vulnerable and cannot help the user and the server to fulfil their 
purpose in establishing a secure session key. 

5.1 Attacks on Xiao et al. '8 key agreement protocol 

For each full run of the key agreement in Section 2, we call it a protocol run. 
For the i-th full run of the key agreement, we call it the i-th protocol run. 

Suppose the seeds for the Chebyshev polynomial map in the i-th protocol run 
and the j-th protocol run are x and y, respectively. Here, i < j and x =1= y 
(x, y E [-1,1] are random numbers). 

4 



5.1.1 Approach 1 

With different seeds x and y 

In the i-th protocol run, we inspect the step 6 and the step 7. 

(Step 6i) User A chooses a random integer r and computes Xi = E"pw(Tr(x)), 

and then sends it to server B. 


(Step 7i) Server B chooses a random integer s and computes Yi = E"pw(Ts(x)), 
then sends it to user A. 

An adversary can easily intercept Xi and Yi. Actually, this adversary cannot 
get Tr(x) and Ts(x) since they are encrypted. However, the adversary can take 
advantage of Xi and Yi as soon as she tries to prevent user A and server B from 
establishing a shared session key in the j-th protocol run. In the following, we 
look at the j-th protocol run through step-by-step to demonstrate how the 
adversary can prevent user A and server B from establishing a shared session 
key. 

The j-th protocol run: 

• 	 (Step 1j) User A chooses a random number y E [-1,1], then he sends his 
user identity number, IDA, and y to server B. 

• 	 (Step 2j) Server B chooses a random number rb E [-1,1] and sends it back 
to user A. 

• 	 (Step 3j) User A juxtaposes hpw , y and rb from left to right as the pending 
message, and uses the one-way hash function He) to compute the authen­
tication value AU H(hpw , y, rb) . Then he sends IDA and AU to server B. 

• 	 (Step 4j) Server B takes out his own copies of hpw, y and rb corresponding 
to the user identity number IDA' Then she uses the same Hash function to 
compute AU' H(hpw, y, rb) similarly. 

• 	 (Step 5j) After receiving AU, server B compares it with the computed AU'. 
If they are equal, then the identity of A is authenticated. 
By using the random number y chosen in Step 1j as the seed of the Cheby­
shev polynomial map, then 

• 	 (Step 6j) User A chooses a random integer rj and computes Xj = E"pw (Trj (y)), 
and then sends it to B. 

• 	 (Step 7.1j) The adversary intercepts Xj and does not let it arrive at server B. 

• 	 (Step 7.2j) The adversary replaces Xj with Xi which was intercepted in the 

5 



i-th protocol run. Then the adversary sends Xi to server B. 

• 	 (Step 7.3j) After receiving Xi, Server B chooses a random integer Sj and 
computes Yj Ehpw(Tsj(Y))' then sends it to A. 

• 	 (Step 8.1j) After receiving it, User A decrypts Yj - Ehpw (Tsj (Y)), then 
computes the shared secret key: 

(2) 

• 	 (Step 8.2j) After receiving Xi, Server B decrypts Xi Ehpw(Tr(x)), then 
computes the shared secret key: 

(3) 

After the j-th protocol run is completed, it is easy to see that Trjsj(Y) =1= 

Trs)x). This is because of the randomness of x and Y as well as rj and r. 
Therefore, the adversary successfully prevented user A and server B from 
establishing a shared session key. 

5.1.2 Approach 2 

With different secret random integers rj, sand Sj, and different seeds x and 

WI' 

The j-th protocol run: 

• 	 (Step Ij) User A chooses a random number Yjl E 1,1], then he sends his 
user identity number, IDA, and Yjl to server B. 

• 	 (Step 2j) Server B chooses a random number Yh E [-1, 1] and sends it back 
to user A. 

• 	 (Step 3j) User A juxtaposes hpw , Yjl and rb from left to right as the pending 
message, and uses the one-way hash function H(-) to compute the authenti­
cation value AU = H(hpw,YjpYj3) . Then he sends IDA and AU to server 
B. 

• 	 (Step 4j) Server B takes out his own copies of hpw, Yjl and rb corresponding 
to the user identity number IDA. Then she uses the same Hash function to 
compute AU' H(hpw , Yh, Yj3) similarly. 

• 	 (Step 5j) After receiving AU, server B compares it with the computed AU'. 
If they are equal, then the identity of A is authenticated. 

6 




By using the random number Yjj chosen in Step 1j as the seed of the Cheby­
shev polynomial map, then 

• 	 (Step 6j) User A chooses a random integer rj and computes Xj = Ehpw (Trj (Yjj)), 
and then sends it to B. 

• 	 (Step 7.1j) After receiving X), Server B chooses a random integer 8j and 
computes }j = Ehpw (Tsj (Yjj)), then sends it to A. 

• 	 (Step 7.2j) The adversary intercepts }j and does not let it arrive at user A. 

• 	 (Step 7.3j) The adversary replaces Yj with Yi which was intercepted in the 
i-th protocol run. Then the adversary sends Yi to user A. 

• 	 (Step 8.1j) User A decrypts Yi, then computes the shared secret key: 

(4) 

• 	 (Step 8.2j) Server B decrypts Xj, then computes the shared secret key: 

(5) 

After the j-th protocol run is completed, because of the randomness of rj, 
8j and 8, as well as Yjl and x, it is easy to see that kA =I- kB . Therefore, 
the adversary successfully prevented user A and server B from establishing a 
shared session key. 

5.1.3 Approach 3 

With different secret random integers rj, 8, 8j and rj. 

The j-th protocol run: 

• 	 (Step 1j) User A chooses a random number Yh E 1,1]' then he sends his 
user identity number, IDA, and Yh to server B. 

• 	 (Step 2j) Server B chooses a random number rb E 1,1] and sends it back 
to user A. 

• 	 (Step 3j) User A juxtaposes hpw , Yj2 and rb from left to right as the pending 
message, and uses the one-way hash function H(·) to compute the authenti­
cation value AU = H(hpw ,Yh, rb) . Then he sends IDA and AU to server B. 

• 	 (Step 4j) Server B takes out his own copies of hpw , Yh and rb corresponding 
to the user identity number IDA. Then she uses the same Hash function to 
compute AU' = H(hpw,Yh,rb) similarly. 

7 



6 

• 	 (Step 5j) After receiving AU, server B compares it with the computed AU'. 

If they are equal, then the identity of A is authenticated. 

By using the random number Yh chosen in Step Ij as the seed of the Cheby­

shev polynomial map, then 


• 	 (Step 6j) User A chooses a random integer rj and computes Xj = Ehpw (TTj(Yh)), 
and then sends it to B. 

• 	 (Step 7.1j) The adversary intercepts Xj and does not let it arrive at server B. 

• 	 (Step 7.2j) The adversary replaces Xj with Xi which was intercepted in the 

i-th protocol run. Then the adversary sends Xi to server B. 


• 	 (Step 7.3j) After receiving Xi) Server B chooses a random integer 8j and 
computes Yj = Ehpw(Tsj(Yh)), then sends it to A. 

• 	 (Step 7.4j) The adversary intercepts Yj and does not let it arrive at user A. 

• 	 (Step 7.5j) The adversary replaces Yj with Yi which was intercepted in the 
i-th protocol run. Then the adversary sends Yi to user A. 

• 	 (Step 8.1j) User A decrypts Yi, then computes the shared secret key: 

(6) 

• 	 (Step 8.2j) Server B decrypts Xi, then computes the shared secret key: 

(7) 

After the j-th protocol run is completed, because of the randomness of Tj, 

r, 8j, and 8, it is easy to see that TTjS(X) =/: TTSj (x). Therefore, the adver­
sary successfully prevented user A and server B from establishing a shared 
session key, which will be used for subsequent cryptographic applications and 
communications. 

Conclusions 

The idea of Xiao et al. 's key agreement is novel. Their new key agreement 
protocol enhanced the security of key agreement based on chaotic maps such 
that it can resist Bergamo et al.'s attack. However, in this paper, we pointed 
out that there still exist security issues in their protocol. The developed new 

8 



attacks can hinder the user and the server from accomplishing a shared secret 
session key. 

Acknowledgements 

The author sincerely thanks the anonymous reviewers. This work is supported 
by the CBS and Curtin R& D Office at Curtin University of Technology. 

References 

[1] 	 G. Alvarez, Security problems with a chaos-based deniable authentication 
scheme, Chaos, Solitons & Fractals, 2005, 26:7-11. 

[2] 	 P. Bergamo, P. D'Arco, A. Santis and L. Kocarev, Security of public key 
cryptosystems based on Chebyshev polynomials, IEEE Transactions on Cir­
cuits and Systems-I, July 2005, 52(7): 1382-1393. 

[3] 	 F. Dachselt and W. Schwarz, Chaos and cryptography, IEEE Transactions 
on Circuits and Systems-I, Fundamental Theory, December 2001, 48(12): 
1498-1509. 

[4] 	 G. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps, 
Internatinal Journal of Bifurcation and Chaos, 1998, 8: 1259-1284. 

[5] 	 Pecorra, T.L., Carroll, T.L., Driving systems with chaotic signals, Phys. 
Rev. A, 1991,44(4): 2374-83. 

[6] 	 L. Kocarev, Chaos-based cryptography: A brief overview, IEEE Circuits 
and Systems Magazine, 2001, 1: 6-21. 

[7] 	 L. Kocarev and Z. Tasev, Public-key encryption based on chebyshev maps, 
in Proceedings of IEEE Symp. Circuits and Systems (ISCAS'03), 2003, 3: 
28-31. 

[8] 	 A. Menezes, P. van Oorschot and S. Vanstone, Handbook of applied cryp­
tography, CRC Press, Boca Raton, 1997. 

[9] 	 D. Xiao, X. Liao, K. Wong, An efficient entire chaos-based scheme for 
deniable authentication, Chaos, Solitons & Fractals, 2005, 23:1327-1331. 

[10] 	 D. Xiao, X. Liao, S. Deng, One-way hash function construction based 
on the chaotic map with changeable-parameter, Chaos, Solitons & Fractals, 
2005, 24:65-71. 

[11] 	 D. Xiao, XF. Liao, SJ. Deng, A novel key agreement protocol based on 
chaotic maps. Information Sciences 2006, doi:l0.l016/j.ins.2006.07.026. 

[12] 	 G. Grassi and S. Mascolo, IEEE Trans. Circuits Syst., I: Fundam. Theory 
Appl. 46, 1135 (1999). 

[13] 	 K.W. Wong, A fast chaotic cryptographic scheme with dynamic look-up 
table, Physics Letters A, vol. 298, pp. 238-242, 2002. 

9 


